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LEONARD EULER, SUPREME GEOMETER 
BY C. TRUESDELL 

On 23 August 1774, within a month of his appointment as Ministre 
de la Marine and the day before he was made Comptrolleur General 
of France, TURGOT wrote as follows to LOUIS XVI: 

The famous Leonard Euler, one of the greatest mathe
maticians of Europe, has written two works which could be 
very useful to the schools of the Navy and the Artillery. One is a 
Treatise on the Construction and Manmuver of Vessels; the other is a 
commentary on the principles of artillery of Robins ... I propose 
that Your Majesty order these to be printed; .... 

It is to be noted that an edition made thus without the consent 
of the author injures somewhat the kind of ownership he has of 
his work. But it is easy to recompense him in a manner very 
flattering for him and glorious to Your Majesty. The means 
would be that Your Majesty would vouchsafe to authorize me to 
write on Your Majesty's part to the lord Euler and to cause him to 
receive a gratification equivalent to what he could gain from the 
edition of his book, which would be about 5,000 francs. This sum 
will be paid from the secret accounts of the Navy. 

"The famous Leonard Euler", then sixty-nine years old and blind, 
was the principal light of CATHERINE II's Academy of Sciences in 
Petersburg. His name had figured before in the correspondence 
between TURGOT, the economist and politician, and CONDORCET, the 
prolific if rather superficial mathematician and litterateur soon to 
become Perpetual Secretary of the Paris· Academy of Sciences, and 
later first an architect and then a victim of the Revolution. Just twenty 
years afterward CONDORCET was to die because his hands had been 
found to be uncalloused and his pocket to contain a volume of 
HORACE, but in 1774 equality, while already advocated and projected 
by TURGOT, had not progressed so far. In a France threatened by 
bankruptcy a minister of state could stilUirid time to write in letters to 
a friend his opinions and doubts and' conjectures about everything 
from literature to manufacture, and hy the way the solution of alge
braic equations. It was such a minister who asked whether "this 
EULER, who lets nothing slip by unnoticed, might have treated in his 
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mechanics or elsewhere" the most advantageous height for wagon 
wheels l . 

In a time when intelligence was the highest virtue, when even men 
and women then thought to be lazy and stupid (and today proved by 
their words and deeds to have been lazy and stupid) were portrayed 
with little wrinkles of alertness around their sparkling, comprehend
ing eyes, the name of LEONARD EULER, the greatest mathematician of 
the century in which mathematics was almost unexceptionally regar
ded as the summit of knowledge, was better known than those of the 
literary and musical geniuses, for example SWIFT and BACH. In the 
firmament of letters only VOLTAIRE outshone EULER. True, in all the 
world there were but seven or eight men who could enter into dis
course with him, VOLTAIRE certainly not being one of them, and most 
of what he wrote could be understood in detail by only two or three 
hundred, VOLTAIRE not being one of these either, but pinnacles 
could then still be admired from below. In the volume for 1754 of The 
Gentleman's Magazine, a British periodical of general interest the con
tents of which ranged from heraldry to midwifery, we find an article 
entitled "Of the general and fundamental principles of all mechanics, 
wherein all other principles relative to the motion of solids or fluids 
should be established, by M. Euler, extracted from the last Berlin 
Memoirs." The anonymous extractor concludes that EULER's prin
ciple "comprises in itself all the principles which can contribute to the 
knowledge of the motion of all bodies, of what nature soever they be." 
This principle we call today the principle of linear momentum. There 
are in fact two further general principles of motion, the principle of 
rotational momentum and the principle of energy. The former of these 
EULER himself evolved and enounced twenty-five years later; it was 
the culmination of his researches on special cases of rotation that had 
extended over half of the eighteenth century. The latter principle was 
left for physicists of the next century to discover. 

An entire volume is required to contain the list of EULER'S publica
tions. Approximately one third of the entire corpus of research on 

I This remark is enlightening. The book to which TURGOT refers is EULER's 
famous Mechanica. published in 1738. One of the most abstract works of the century, it 
never comes near anything concerning a wheel, let alone a wagon. Respect unsupport
ed by even vague familiarity with the contents of thi~ book is not limited to statesmen 
but is shown even by modern general histories of.sdence or mathematics. which regu
larly and in positive terms provide it with a 'purely imaginary description as the 
"analytical translation" of NEWTON'S Principia. In fact, it is a treatise on the motion of 
a single point whose acceleration is induced by a rule of one of several simple kinds. 
Were it not for the headings, only an initiate would be able to recognize the contents 
as being mechanics. 
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mathematics and mathematical physics and engineering mechanics 
published in the last three quarters of the eighteenth century is by 
him. From 1729 onward he filled about half of the pages of the 
publications of the Petersburg Academy, not only until his death in 
1783 but on and on over fifty years afterward. (Surely a record for 
slow publication was won by the memoir presented by him to that 
academy in 1777 and published by it in 1830.) From 1746 to 1771 
EULER filled approximately half of the scientific pages of the proceed
ings of the Berlin Academy also. He wrote for other periodicals as 
well, but in addition he gave some of his papers to booksellers for 
issue in volumes consisting wholly of his work. By 1910 the number of 
his publications had reached 866, and five volumes of his manuscript 
remains, a mere beginning, have been printed in the last ten years. 
There is almost no duplication of material from one paper to another 
in anyone decade, and even most of his expository books, some 
twenty-five volumes ranging from algebra and analysis and geometry 
through mechanics and optics to philosophy and music, include mat
ter he had not published elsewhere, The modern edition of EULER'S 
collected works was begun in 1911 and is not yet quite complete; 
although mainly limited to republication of works which were pub
lished at least once before 1910, it will require seventy-four large 
quarto parts, each containing 300 to 600 pages. EULER left behind 
him also 3000 pages of clearly and consecutively written mathe
matical notebooks and early draughts of several books2 • A whole 
volume is filled by the catalogue of the manuscripts preserved in 
Russia. EULER corresponded with savants and administrators all over 
Europe; the topics of his letters range more widely than his papers, 
going into geography, chemistry, machines and processes, explora
tion, physiology, and economics. About 3000 letters from or to EULER 
are presently known; the catalogue of these, too, occupies a large 
volume; nearly one-third of them have been printed, usually in volumes 
consisting of particular correspondences. The first such volume, pub
lished in 1843, was of great importance for its impetus to developments 

2 There are also four classes of manuscripts of memoirs and books: 
l. Manuscripts from which, perhaps with some correction, the works were set in 

type in EULER'S lifetime. 
2. Manuscripts intended for publication and published in the regular volumes of 

the Petersburg Academy after EULER'S death. 
3. Manuscripts which EULER withheld from pUblication but which were published 

in the collections entitled Commentationes arithmeticae collectae (St. Petersburg, 1849) and 
Opera postuma, 2 vols. (St. Petersburg, 1862). 

4. Manuscripts of works not published before 1966. Many of these remain unpub
lished. 
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in the theory of numbers in the nineteenth century, more than fifty 
years after all the principals in the correspondence had died. This 
kind of permanence, difficult for literary men and historians and 
physicists to comprehend, is typical of sound mathematics. 

In modern usage EULER'S name is attached as a designation to 
dozens of theorems scattered over every part of mathematical science 
cultivated in his time. Even more astonishing than this broad though 
vague and incomplete tradition is the influence EULER's own writings 
continue to exert upon current research. The Science Citation Index 
for 1975 through 1979 lists roughly 200 citations of some 100 of 
EULER's publications; most of the works in which these citations occur 
are contributions to modern science, not historical studies. 

It was EULER who first in the western world wrote mathematics 
openly, so as to make it easy to read. He taught his era that the 
infinitesimal calculus was something any intelligent person could 
learn, with application, and use. He was justly famous for his clear 
style and for his honesty to the reader about such difficulties as there 
were. While most of his writings are dense with calculations, four of 
his books are elementary. One of these is a textbook for the Russian 
schools; one is the naval manual which TURGOT caused to be reprin
ted in France; one is a treatise on algebra which begins with counting 
and ends with subtle problems in the theory of numbers; and the 
fourth, called Letters to a Princess of Germany on Different Subjects in 
Natural PhilOSOPhy, is a survey of general physics and metaphysics. 
This last is the most widely circulated book on physics written before 
the recent explosion of science and schooling. It was translated into 
eight languages; the English text was published ten times, each time 
revised so as to bring the contents somewhat up to date; six of the 
editions were American, the last one in 1872, a date only a little 
further from the present day than from 1768, when the original first 
appeared. 

While EULER is known today primarily as a mathematician, he was 
also the greatest physicist of his era, a rank which was obscured for 
200 years but has been re-established by the recent studies of Mr. 
DAVID SPEISER. EULER was the first person to derive an equation of 
state for a gas from a kinetic-molecular theory. In geometrical optics 
he invented the achromatic lens. His design for it required glasses of 
high, distinct, and reproducible quality; attempts to construct lenses 
according to his prescriptions have been adduced as impulses to the 
rise of the optical industry in Germany,.\Vhich was supreme in pre
cision for at least a century. He desig,{~d and caused to be built and 
tried an apparatus for measuring the refractive index of a liquid; it 
worked, and it remained in use for a century and a half. EULER'S 
hydrodynamics was the first field theory. Perhaps his most important 
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progress in physics other than mechanics is his having taken the 
observed fact that beams of light pass through each other without 
interference as justifying use of his linear field theory of acoustic 
waves to describe waves of light in a luminiferous aether, which he 
visualized as a subtle fluid. 

To study the work of EULER is to survey all the scientific life, and 
much of the intellectual life generally, of the central half of the 
eighteenth century. Here I will not even list all the fields of science to 
which EULER made major additions. The most I attempt is to give some 
idea what kind of man he was. 

LEONARD EULER was born in Basel in 1707, the eldest son of a poor 
pastor who soon moved to a nearby village. The parsonage there had 
two rooms: the pastor's study and another room, in which the parents 
and their six children lived. EULER in the brief autobiography he 
dictated to his eldest son when he was sixty wrote that in his tender 
age he had been instructed by his father; 

as he had been one of the disciples of the world-famous James 
Bernoulli, he strove at once to put me in possession of the first 
principles of mathematics, and to this end he made use of Chris
topher Rudolf's Algebra with the notes of Michael Stiefel, which I 
studied and worked over with all diligence for several years. 

This book, then some 160 years old, only a gifted boy could have 
used. Soon EULER was turned over to his grandmother in Basel, 

so as partly by attendance at the gymnasium and partly by private 
lessons to get a foundation in the humanities [i.e. Greek and Latin 
languages and literatures] and at the same time to advance in 
mathematics. 

Documents of the day picture the gymnasium in a lamentable state, 
with fist-fights in the classroom and occasional attacks of parents upon 
teachers. Mathematics was not taught; EULER was given private 
lessons by a young university student of theology who was also a 
tolerable candidate in mathematics. 

At the age of thirteen EULER registered in the faculty of arts of the 
University of Basel. There were approximately 100 students and 
nineteen professors. Instruction was miserable, and the faculty, 
underpaid, was mediocre with one ~xc~ption. The Professor of 
Mathematics was JOHN BERNOULLI, the younger brother of the great 
JAMES, by that time deceased. JOHN BERNOULLI, a mighty mathe
matician and ferocious warrior of the pen, was universally feared 
and admired as a geometer second only to the aged and long silent 
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NEWTON. BERNOULLI had returned, reluctantly, to the backwater 
of Basel despite brilliant offers of chairs in the great universities of 
Holland; he had had to return because of pressure from his 
patrician father-in-law. Single-handed, he had made Basel the mathe
matical center of Europe. Three of the four principal French 
mathematicians of the first half of the century had sought and re
ceived instruction from him; his sons and nephews became 
mathematicians, some of them outstanding ones. He hated the 
"English buffoons", as he called them, and like Horatius at the bridge 
he had defeated every British champion who dared challenge him. 

BERNOULLI discharged his routine lecturing on elementary mathe
matics at the University with increasing distaste and decreasing atten
tion. Those few, very few, students whom he regarded as promising 
he instructed privately and sometimes gratis. EULER recalled, 

I soon found an opportunity to gain introduction to the famous 
professor John Bernoulli, whose good pleasure it was to advance 
me further in the mathematical sciences. True, because of his 
business he flatly refused me private lessons, but he gave me 
much wiser advice, namely to get some more difficult mathemati
cal books and work through them with all industry, and wherever 
I should find some check or difficulties, he gave me free access to 
him every Saturday afternoon and was so kind as to elucidate all 
difficulties, which happened with such greatly desired advantage 
that whenever he had obviated one check for me, because of that 
ten others disappeared right away, which is certainly the way to 
make a happy advance in the mathematical sciences. 

When he was fifteen, EULER delivered a Latin speech on temper
ance and received his prima laurea, first university degree. In the same 
year he was appointed public opponent of claimants for chairs of logic 
and of the history of law. In the following year he received his 
master's degree in philosophy, and to the session of 8 June 1724, at 
which the announcement was made, he gave a public lecture on the 
philosophies of DESCARTES and NEWTON. Meanwhile, he remem
bered, for the sake of his family 

I had to register in the faculty of theology, and I was to apply 
myself besides and especially to the Greek and Hebrew languages, 
but not much progress was made, for J-turned most of my time to 
mathematical studies, and by my ha,p~y fortune the Saturday visits 
to Mr. John Bernoulli continued,.' 

At nineteen EULER published his first mathematical paper, an out
growth of one of BERNOULLI'S contests with the English; EULER had 
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found that his teacher's solution of a certain geometrical problem, 
while indeed better than the English one, could itself be greatly 
improved, generalized, and shortened. In the case of his own sons, 
such turns aroused BERNOULLI'S jealousy and competition, but 
EULER at once became and remained his favorite disciple. 

The next year, at the age of twenty, EULER competed for the Paris 
prize. These prizes were the principal scientific honors of the century; 
golden honors they were, too, 2500 livres or even twice or thrice that 
much, not the empty titles of our time. JOHN BERNOULLI himself won 
the prize twice; his son DANIEL, ten times; EULER was to win it twelve 
times, or about every fourth year of his working life. The assigned 
topics were usually dull or vague or intricate matters of celestial 
mechanics, nautics, or physics, never mathematics as such. Often they 
were directed toward the interests of a specific Frenchman who had 
something ready and was expected therefore to win, but the competi
tions were administered fairly, and when an outsider sent in a fine 
essay, as a rule he was given the prize. The Basler mathematicians had 
a knack of twisting a promiseless subject into something more funda
mental, upon which mathematics could be brought to bear. The prize 
essays themselves rarely solved the problem announced and usually 
were works of second class in their authors' total outputs, but the 
competitions caused the great savants to take up and deepen inquiries 
they might otherwise never have begun, and so the competitions ten
ded indirectly to broaden the range of mathematical theories of phys
ics. Thus they played, though at a more individual and aristocratic 
height, a role like that of military support for science in our time. The 
subject of 1727 was the masting of ships. EULER had never seen a 
seagoing ship, but his entry received honorable mention and was 
published forthwith. The winner was BOUGUER, for whom the prize 
had been designed, and who had submitted an entire treatise he had 
been writing for some years; this treatise immediately became the 
standard work on the subject. The other two classics of the eighteenth 
century on naval science, one being much more general and mathe
matical and profound, and the other being the little handbook to 
which TURGOT referred, were both to be written later by EULER. 

In the same year, his twenty-first, EULER on BERNOULLI'S advice 
competed for the chair of physics. While he was quickly eliminated as 
a candidate, he published his specimen essay, A Physical Dissertation on 
Sound. With the clarity and directness that were to become his 
instantly recognizable signature, in sixteen pages he laid out in order 
and in simple words, without calculations, all that was then known 
about the production and propagation of sound, added some details 
of his own, and listed a number of open problems. This work became 
a classic at once; it was read and cited for over a hundred years, 
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during which it served as the program for research on acoustics. 
EULER himself later wrote at least 100 papers directly or indirectly 
related to the problems set here, and many of these he solved once 
and for all. The last page lists six annexes. The first denies the prin
ciple of pre-established harmony; the second asserts that NEWTON'S 
Law of gravitation is indeed universal; the fourth affirms that kinetic 
energy is the true measure of the force of bodies; while the remaining 
thre ~ announce solutions of problems concerning oscillation through 
a hole in the earth, the rolling of a sphere, and the masting of ships. 
The professorship was given to a man never heard of again, who in 
fact was interested primarily in anatomy and botany. EULER at twenty 
had entered the field of mechanical physics and philosophy as a chal
lenger with firm positions, openly avowed, on every main question 
then under debate. At the same time, and in equal measure, he was 
able to announce definite and final solutions to several specific prob
lems. When he died, fifty-five years later, his mastery of all physics as 
it was then understood, and his ability to solve special problems, were 
just the same. Indeed, most of the main general advances of the 
entire century had been made by him, and in addition he had solved 
many key··problems and hundreds of examples. On the day of his 
death he had discussed with his disciples the orbit of the planet 
Uranus, which HERSCHEL had discovered two years before. On his 
slate was a calculation of the height to which a hot-air balloon could 
rise. The news of the MONTGOLFIERS' first ascent had just reached St. 
Petersburg, where EULER had been residing for most of his life. 

Having had the good luck not to win the chair of physics at Basel, 
EULER went to Petersburg in 1727. JOHN BERNOULLI had been 
invited but felt himself too old; instead he offered one of his two sons, 
DANIEL and NICHOLAS, and then adroitly required that neither 
should go unless the other went too for company and comfort. One 
was a professor of law and the other was studying medicine in Italy; 
both were pleased to accept chairs of mathematics or physics. They 
promised the young EULER the first vacant place, but Russia's thirst 
for the mathematical sciences was slaked at the moment, and so they 
suggested he take a position as "Adjunct in Physiology". To this end 
they advised him to read certain books and learn anatomy; accord
ingly 

I matriculated in the medical faculty of Basel and began to apply 
myself with all industry to the medical course of study .... 

EULER arrived in Petersburg on the day the empress died and the 
Academy fell into 
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the greatest consternation, yet I had the pleasure of meeting not 
only Mr. Daniel Bernoulli, whose elder brother Mr. Nicholas had 
meanwhile died, but also the late Professor Hermann, a 
countryman and also a distant relative of mine, who gave me 
every imaginable assistance. My pay was 300 rubles along 
with free lodging, heat, and light, and since my inclination lay 
altogether and only toward mathematical studies, I was made 
Adjunct in Higher Mathematics, and the proposal to busy me 
with medicine was dropped. I was given liberty to take part in 
the meetings of the Academy and to present my developments 
there, which even then were put into the Commentarii of the 
Academy. 

The Academicians were all foreigners-Germans, Swiss, and a 
Frenchman, not only the professors but also the students. Thus 
language was not a problem, but the senior colleagues were. To a man 
the chiefs, like university officials today, were tumors, the only ques
tion being whether benign or malignant. The most promising 
mathematician, NICHOLAS II BERNOULLI, had died of a fever before 
EULER arrived. EULER'S friends were DANIEL BERNOULLI, seven years 
older and already a famous mathematician and physicist, and GOLD
BACH, an energetic and intelligent Prussian for whom mathematics 
was a hobby, the entire realm of letters an occupation, and 
espionage a livelihood. The Academy fell on evil days; its effective 
director was an Alsatian named SCHUMACHER, whose main interest 
lay in the suppression of talent wherever it might rear its 
inconvenient head. SCHUMACHER was to playa part in EULER'S life for 
more than a quarter century. 

Soon most of the old tumors had been excised by departure or 
death. So had most of the capable men. DANIEL BERNOULLI, after 
having competed for every vacancy in Basel, in 1733 finally obtained 
the chair of anatomy. Once back, he felt himself a new man in the 
good Swiss air, but in the rest of his long life he never again reached 
the level and the fruitfulness of his eight years in Petersburg, six of 
which were enlivened by friendly competition with EULER. 

EULER stayed on. For him, these were years of growth as well as 
production. While he never lost his love for mechanics and the 
"higher analysis", he steadily enlarged his knowledge and power of 
thought to include all parts of mathematics ever before cultivated by 
anyone. He was able to create new synthetic theorems in the Greek 
style, such as his magnificent discovery and proof that every rotation 
has an axis. He sought and read old books such as FERMAT'S commen
tary on DIOPHANTOS. On the basis of such antiquarian studies he 
recreated the arithmetic theory of numbers, which had been scarcely 
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noticed by the BERNOULLIS and LEIBNIZ, in whose school of thought 
he had been trained. He gave this subject new life and discovered 
more major theorems in it than had all mathematicians before him 
put together. He was equally at home in the algebra of the seven
teenth century, a field neither easy nor elementary, tightly wed to the 
theory of numbers. He also probed new subjects which were to flower 
only much later. One of these is combinatorial topology, in which he 
conjectured but was not able to prove what later became a key
theorem, now called the EULER polyhedron formula3. Unifying and 
subjecting to system the work of many predecessors, he created 
analytic geometry4 as we know that discipline today; from his textbook, 

3 Namely, in any simple polyhedron the number of vertices plus the number of 
faces is greater by two than the number of edges. EULER could not have known that the 
same assertion lay in an unpublished manuscript of DESCARTES. EULER did publish a 
proof, but it is false as it stands; the basic idea of it, nevertheless, is sound and has been 
applied in countless later researches. 

4 Analytic geometry is ordinarily attributed to DESCARTES and FERMAT. Of course, 
like any other mathematical innovation, it was neither without antecedents nor beyond 
improvement. The reader who doubts my statement should draw his own conclusion 
by comparing DESCARTES' La Geometrie, Volume 2 of EULER's Introductio in analysin 
infinitorum, and a textbook of the 1930s. 

EULER'S development of analytic geometry is described by C. B. BOYER on pages 
180-181 of his History of Analytic Geometry, New York, Scripta Mathematica, 1956. Of 
EULER'S Introductio in analysin infinitorum BOYER writes 

The Introductio of Euler is referred to frequently by historians, but its 
significance generally is underestimated. This book is probably the most influen
tial textbook of modern times. It is the work which made the function concept 
basic in mathematics. It popularized the definition of logarithms as exponents and 
the definitions of the trigonometric functions as ratios. It crystallized the distinc
tion between algebraic and transcendental functions and between elementary and 
higher functions. It developed the use of polar coordinates and of the parametric 
representation of curves. Many of our commonplace notations are derived from 
it. In a word, the Introductio did for elementary analysis what the Elements of 
Euclid did for geometry. It is, moreover, one of the earliest textbooks on college 
level mathematics which a modern student can study with ease and enjoyment, 
with few of the anachronisms which perplex and annoy the reader of many a 
classical treatise. 

BOYER states that EULER's "treatment of the linear equation is characteristic for its 
generality, but it is startlingly abbreviated." By the standards of modern textbooks for 
freshmen EULER's book is rather advanced. For example, he stated "the geometry of 
the straight line is well known." 

Finally, writes BOYER, 

The Introductio closes with a long and sy-rtematic appendix on solid analytic 
geometry. This is perhaps the most origjnal contribution of Euler to Cartesian 
geometry, for it represents in a sense the first textbook of algebraic geometry in 
three dimensions. 

By "Cartesian geometry" BOYER refers more or less to what is usually called "analytic 
geometry"; by "algebraic geometry", to what is usually called "co-ordinate geometry". 
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and from others based upon it, and still others based on them, and so 
on, students of mathematics learned the subject from 1748 until the 
1930s, when it was largely superseded by the rise of modern linear 
algebra. Students of natural science even today learn it in essentially 
EULER'S way. EULER was the first man to publish a paper on partial
differential equations, and the world has learnt most of the elementary 
calculus of partial derivatives from his books, although some of the 
rules had been known to NEWTON and LEIBNIZ but not published by 
them. It was mainly in his first Petersburg years that EULER developed 
his taste for pure mathematics, which has remained forever after, in a 
tradition deriving from him and unbroken by the most violent political 
changes, a Russian specialty. About one-third of his total product was 
regarded as "pure" mathematics in his own day; in the classification of 
our time, this term would apply to only about one-fifth of it; but that 
small fraction includes many of his deepest and most permanent 
contributions. One of these is the concept of real function: namely, a 
rule assigning to each real number in some interval another real 
number. In his earlier years EULER, like his predecessors, had used a 
concept of function both narrow and vague, but his own discoveries in 
the theory of partial-differential equations and wave propagation had 
shown him the clear way5. which every mathematician since 1850 has 
followed. Other great discoveries were the law of quadratic reciprocity6 

in number theory and the addition theorem for elliptic functions7 , but 
these came later than the time of which I am now speaking. 

What EULER did for mechanics blanks superlatives. The contents 
of anyone of the two dozen volumes of his OPera that concern 
mechanics primarily would have sufficed to earn its author a place at 
or near the summit of the field. There is no aspect of it as it stood 
before his day that he did not change essentially; he solved problems 
set by his predecessors, applied existing theories to important new 
instances, simplified ideas while making them more general, unified 
domains that before him had seemed separate. He created new con
cepts and new disciplines to embrace phenomena of nature that pre
viously were not understood. Sometimes he worked with the most 

'The "clear way" is commonly attributed to DIRICHLET or other mathematicians of 
the nineteenth century. 

"That is, in the notation of GAUSS, of the two congruences x 2 == q (mod P) and 
x 2 ==p(mod q), p and q being prime numbers, either both are soluble or neither is 
except if p ==q == 3(mod 4), in which case one is soluble and the other is not. 

7 That is, in the notation of JACOBI, 

(snu )(cnv )(dnv) + (cnu)(snv )(dnu) 
sn(u+v)= 2 2 2 

J-k (sn u)(sn v) 

and related formul.e. 
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abstruse mathematics known in his day; he was equally ready to 
explain his results and their applications by simple rules of practice; 
he regularly furnished numerical methods and worked-out instances. 
Above all, he sought and achieved clarity. 

Analysis was the key to mechanics, and in turn mechanics sug
gested most of the problems of analysis that mathematicians of the 
eighteenth century attacked. Astronomy and physics were mainly 
applications of mechanics. Over half of the pages EULER published 
were expressly devoted to mechanics or closely connected with it. 

Nonetheless, there is no evidence that EULER preferred anyone 
part of mathematics to the rests. The only sure conclusion we can 
draw from his prodigious output is that he sought to enlarge the 
domain of mathematics and its applications with a dediction as eager 
as that which led Don GIOVANNI to seduce even ugly girls pel piacer di 
porle in lista, but EULER's outposts, even those ridiculed by some of his 
contemporaries, have been bridgheads to future and permanent, 
total conquests. 

The first Petersburg years brought EULER success, instruction in 
the facts of life, and misfortune. 

In 1730, when Professors Hermann and Biilfinger returned to 
their native land, I was named to replace the latter as Professor of 
Physics, and I made a new contract for four years, granting me 
400 rubles for each of the first two and 600 for the next two, along 
with 60 rubles for lodging, wood, and light. 

Then EULER had the experience, not uncommon in the Enlighten
ment, of being unable to collect all of his contracted salary. In 1731 
there was a matter of promotion: Four little men, who up to that time 
had been receiving less than he. were set equal to him. In a formal 
protest EULER wrote, 

H In his beautiful book Fermat's Last Theorem, New York etc., Springer-Verlag, H. M. 
EDWARDS writes as follows: 

It is a measure of Euler's greatness that when one is studying number theory 
one has the impression that Euler was primarily interested in number theory, but 
when one studies divergent series one feels that divergent series were his main 
interest, when one studies differential equations one imagines that actually 
differential equations was his favorite subject, and so forth .... Whether or not 
number theory was a favorite subject of Euler's, it is one in which he showed a 
lifelong interest and his contributions to number theory alone would suffice to 
establish a lasting reputation in the annals of mathematics. 
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That we shall each be treated on the same footing is something I 
can't get through my head at all .... It is true that I have never 
applied myself so much to physics as to mathematics, but 
nevertheless I doubt much that you can get from the outside such 
a person as I for any 400 rubles. In the matter of mathematics, I 
think the number of those who have carried it as far as I is pretty 
small in the whole of Europe, and none of those will come for 
1000 rubles. 

(We should take note of EULER'S estimated difference of salaries: 400 
for a physicist, 1000 for a mathematician. In those days physics was 
a speculative or experimental science, not a mathematical onel 
BULFINGER, whose talent was modest at best and for mathematics 
naught, had been Professor of Physics; DANIEL BERNOULLI, whose 
lifelong passion was what he himself called physics, was Professor of 
Higher Mathematics. SCHUMACHER advised the President of the 
Academy not to grant EULER the least concession, since otherwise he 
would straightway grow impudent. EULER learned a lifelong lesson 
from this experience: It is futile to argue with administrators but easy 
to outwork and forget them. 

In 1733, EULER states, 

when Professor Daniel Bernoulli, too, went back to his native 
land, I was given the professorship of Higher Mathematics, and 
soon thereafter the directing senate ordered me to take over the 
Department of Geography, on which occasion my salary was 
increased to 1200 rubles. 

Earlier in the same year, even before this splendid increase in his 
salary, EULER had married, of course choosing a Swiss wife, the 
daughter of a court artist; in this way he continued the tradition of the 
BERNOULLlS, all of whom were either professors or painters, and his 
younger brother also became a painter. The first of EULER'S many 
children was born the next year. In 1738 a violent fever destroyed the 
sight of one of EULER'S eyes. The work in the geographical depart
ment strained his eyesight severely, but he was really interested in 
constructing a good general map of Russia, and he succeeded in 

!. This difference in their predecessors is recognized by both mathematicians and 
physicists today, since the latter are wont to say that the greatest discoveries in mathe
matics were made by (theoretical) physicist~, while the former often remark that most 
of the major discoveries in theoretical physics were made by mathematicians (until very 
recently). Usually they are speaking of the same persons, e.g., HUYGENS and NEWTON 

and EULER and LAGRANGE and CAUCHY and FOURIER. 
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doing so. He wrote to order a school arithmetic text and a great 
treatise on naval science, receiving for this latter 1200 rubles, in this 
way doubling his salary one year. EULER's precise recollection of the 
dates and salaries of his early appointments reHects his Swiss talent 
for making and saving money. On at least one occasion even Tyche 
smiled upon him: In the spring of 1749 he wrote to GOLDBACH that 
he had received 600 Reichsthaler from a lucky ticket in a lottery, 
"which was just as good as if I had won a Paris prize this year." 

In 1740 EULER was requested to cast the horoscope of the new 
Czar, who was only a few weeks old. While such a task would have 
been normal a century earlier, for the Enlightenment it was retar
dataire. EULER smoothly passed the honor on to the Professor of 
Astronomy. The contents of the horoscope is not known, but in less 
than a year the child Czar was deposed and hidden; twenty-four years 
later, still in prison, he died. 

In 1740 FREDERICK II ascended the throne of Prussia. This eccen
tric and semi-educated general, Hute player, and homosexual lay 
under the spell of France and French men. He wished to create in 
Berlin a mingled French Academie des Sciences and Academie 
Fran~aise. VOLTAIRE was his Apollo, and VOLTAIRE recommended as 
director a triHing but extremely eminent French scientist named 
MAUPERTUIS, whom he dubbed "Le Grand Aplatisseur" for his hav
ing led an expedition to Lapland to measure the length of one degree 
of a meridian, whence he had concluded that the earth was Hatter at 
the poles than at the equator. For VOLTAIRE, who endorsed mathe
matical philosophy but did not understand it, this proved DESCARTES 
wrong and NEWTON right about everything. The later Philosophes fol
lowed his judgment; the British gleefully followed them; and 
somehow this minor and precarious if not puerile side issue has 
assumed in the folklore of science an importance it never for a 
moment deserved or enjoyed among those who knew what was what 
in rational mechanics. In addition to being an argonaut, MAUPERTUIS 
was an heros de salon and a causeur, a fit table companion for the king; 
notwithstanding that, he had been a disciple of JOHN BERNOULLI, and 
though no geometer himself, he knew mathematics when he saw it. 
He proposed to bring all the BERNOULLIS and EULER to Berlin. 

Only EULER was seduced, and at that only because, as he put it, in 
the regency following the death of Empress ANNA "things began to 
look rather awkward." That the prospect in Russia was bad indeed, is 
proved by EULER'S consenting to move at no increase in pay. Even so, 
the Prussian king did not feel himself compelled to discharge his 
promise in full. After his return to Petersburg, EULER's dictated sum
mary of his twenty-five years in Berlin was "What I encountered 
there, is well known." 
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No sooner did EULER arrive in Berlin but the king's wars over
turned everything and endangered MAUPERTUlS, who withdrew 
from Prussia until he was sure FREDERICK'S seat was firm. EULER, 
meanwhile, was writing mathematical papers. Every associate mem
ber of the Academy was required to compose for publication at least 
one memoir per year; every pensioner, at least two; EULER never 
presented fewer than ten. 

The keys to the treasure house of learning in the eighteenth cen
tury-I should be tempted to say also today, were it not that any such 
statement would be empty because "learning" has been taken off 
the gold standard-were the Latin language and the infinitesimal 
calculus. FREDERICK II understood neither; he detested both. He 
ordered his Academy to speak and publish only in French, and he 
encouraged it to cultivate the sciences useful in promotion of trades 
and manufactures, in the restraint of savage passions, and in the 
development of a subject's duties. EULER, despite his thoroughly 
Classical training and his consummate mastery of the new "analysis of 
curves", easily accepted these conditions. He continued his connec
tion with the Academy of Petersburg, not only sending it a stream of 
papers, mainly on pure mathematics, but also serving as editor of its 
publications; in addition, he conveyed to SCHUMACHER information 
of all sorts regarding the scientific life of the West. In return, of 
course, he received a salary. These relations continued even through 
the Seven Years' War, during which Russia joined the alliance against 
Prussia and at one time overran Berlin. When a farm belonging to 
EULER10 was pillaged by the Russians, their commander, General 
TOTLEBEN, saying he did not make war upon the sciences, 
indemnified EULER for more than the damage sustained, and the 
Empress ELIZABETH added a further gift, finally turning the loss into 
a handsome profit. EULER also lodged and boarded in his house 
Russian students sent by the Petersburg Academy, one of these being 
RASUMOVSKI, hetman of the Cossacks, who later became president of 
the Academy. EULER gave these students instruction in mathematics, 
this being as close as he ever came to what is called "teaching" in 
American universities. EULER taught mathematics and physics to the 
whole world, and down to the present time his influence on instruc
tion in the exact sciences has been second only to EUCLID'S. In person, 
had he held a chair in a university, he might have reached a few 
hundred students at most; like EUCLID, by writing EULER has taught 
mathematics to millions. 

In The episode has come down to us only through CONDORCET's Eloge; we do not 
know whether EULER had more than one farm. 
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By no means all of EULER'S books were popular ones. Until about 
fifteen years ago unopened copies of his more advanced works turned 
up at low prices on the book market. At least five of these were the 
first treatises ever published on their subjects, and while easy for a 
dedicated reader to study, they seemed abstruse to the laity. Few as 
were the copies sold in EULER'S own day!!, they fell into the right 
hands. His treatises on rigid-body dynamics, infinite series, differen
tial and integral calculus, and the calculus of variations were mother's 
milk to three or four generations of mathematicians and theoretical 
physicists, including the great Frenchmen of the NAPOLEONic revival, 
as well as the less eminent but equally influential German and Italian 
professors of the same period; from the teaching of these three 
schools the basic core of EULER's work has passed into the common 
tradition of the mathematical sciences!2. While it is a rare young Doc
tor of Philosophy in America today who can decipher a page of 
.JOHNSON'S London without a dictionary if not a crib or coach, and 
while in another academic generation we can confidently expect that 
Robinson Crusoe will have to be translated into "modern English", even 
the mediocre juniors in engineering the world over have learnt and 
are able to use a dozen of EULER'S discoveries. With the music of the 
same period, the contrast is more striking. For example, in the eight
eenth century no-one outside Hamburg can have heard TELEMANN's 
Der Tag des Gerichtes; few can have been those who heard even some 
part of BACH'S Messe in H-moll, and no-one, certainly, had heard the 
whole of it or any part at all of Die Kunst der Fuge. While these works 
seem to us now to stand at the summit of the Enlightenment, even 
their authors had in their own day merely national or local reputa
tions. Not so with EULER, who was famous far, far beyond the tiny 
though international circle of those who could understand what he 
wrote. He was one of those favored few who achieved even from their 
own contemporaries the respect of which posterity has judged them 
worthy. EULER won his later fame by the usual method: merciless 

II EULER'S correspondence with KARSTEN shows that the printing of his book on 
the motion of rigid bodies, an acknowledged masterpiece of mechanics, was delayed 
four years for lack of interest. The publisher demanded subscriptions for 100 copies, 
but after waiting eighteen months he had received only thirty. EULER finally waived 
royalties; instead, he requested twenty free copies but said he would be satisfied with 
twelve. It seems this latter number was what he did)n the end receive. Twenty-five 
years later, and after EULER's death, the same publisher found it worthwhile to issue 
the work in a second edition, adding some of EULER's major papers on the subject as 
an appendix. 

12 It is well known that the British school of the mid-nineteenth century, the greatest 
representatives of which were GREEN, STOKES, KELVIN, and MAXWELL, learnt 
mathematics and mathematical physics primarily from French books. 
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trials by the fire and water of time. In his own day, from his twenty
fifth year onward, he was a senior academician, and he used well the 
advantages his position gave him. 

An academy of science on the Continent in the eighteenth century 
was not the honorary power group of old men we associate with the 
name today. Its senior members were employed to do research and 
give expert opinions. Junior associates, also paid, were in a sense 
students, but research was their duty; nothing then existed like the 
elementary teaching-every course optional, effectively without pre
requisites, and remedial-we regard today as the primary function of 
an institution of higher learning, ravenous for tuition and subsidies. 
In the eighteenth century the talented youngster was expected to have 
had an intense, unremitting preparation already; to succeed afterward, 
he had to learn at a pace faster than any college today would permit. 
Nevertheless the academies were far from being either successful in 
their purposes or happy places of work. To learn about an academy 
of the eighteenth century, you had best read the Third Voyage in 
Gulliver's Travels by Jonathan Swift. While today the First Voyage in 
some watered and censored abridgment is regarded as fit for children, 
Swift in 1727 designed his book as bitter satire on life and society in 
England and all Europe, and his readers then saw nothing jocose or 
juvenile in it, only biting caricature of themselves, their friends, and 
their enemies. 

Gulliver goes to Laputa, an island magnetically suspended in the 
air, whose inhabitants devoted themselves to the abstract arts: mathe
matics and music. They were 

... a race of mortals ... singular in their shapes, habits, and 
countenances. Their heads were all reclined either to the right or 
the left; one of their eyes turned inward, and the other directly 
up to the zenith. 

They were no good at anything other than mathematics and music: 

Their houses are very ill built, the walls bevil, without one right 
angle in any apartment, and this defect ariseth from the contempt 
they bear to practical geometry, which they despise as vulgar and 
mechanic, those instructions they give being too refined for the 
intellectuals of their workmen. . .. 

And although they are dexterous enough upon a piece of paper 
in the management of the rule, the pencil, and the divider, yet in 
the common actions and behaviour of life, I have not seen a more 
clumsy, awkward, and unhandy people, nor so slow and perplexed 
in their conceptions upon all other subjects, except those of mathe
matics and music. 
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Beneath them, on the low and subject earth, lay the bipartite Grand 
Academy of Lagado, where natural scientists and sociologists pursued 
their researches, all of which were directed toward betterment of 
human life. The former sought to reverse the processes of nature: to 
get the sunlight back out of the cucumbers, to build houses from the 
roof downward, to breed naked sheep so as to save the cost of shearing 
them, to convert human excrement into human food, etc. If these 
projects for achieving material good seem disturbingly up-to-date, just 
go to the other side of the Academy and consult "the projectors in 
speculative learning"-or, as we should say today, social studies. One 
specimen there may suffice. In Swift's words, 

The first professor I saw was in a very large room, with forty 
pupils about him .... Observing me to look earnestly upon a 
frame, ... he said perhaps I might wonder to see him employed 
in a project for improving speculative knowledge by practical and 
mechanical operations .... Everyone knew how laborious the usual 
method is of attaining to arts and sciences; whereas by his contriv
ance the most ignorant person at a reasonable charge, and with a 
little bodily labour, may write books in philosophy, poetry, politics, 
law, mathematics, and theology, without the least assistance from 
genius or study. He then led me to the frame ... The superficies 
was composed of several bits of wood, about the bigness of a 
die .... They were all linked together by slender wires ... [and] 
covered on every square with paper pasted on them, and on [them] 
were written all the words of their language, ... , but without any 
order. The professor then desired me to observe, for he was going 
to set his engine at work. The pupils at his command took each 
of them hold of an iron handle, and giving them a sudden turn, 
the whole disposition of the words was entirely changed. He then 
commanded six and thirty of the lads to read the several lines 
softly as they appeared upon the frame; and where they found 
three or four words together that might make part of a sentence, 
they dictated to the four remaining boys who were scribes .... Six 
hours a day the young students were employed in this labour, and 
the professor showed me several volumes ... of broken sentences, 
which he intended to piece together, and out of those rich materials 
to give the world a complete body of all arts and sciences; which 
however might be still improved, and much expedited, if the public 
would raise a fund for making and employing five hundred such 
frames in Lagado, and oblige the managers to contribute in com
mon their several collections. 

Everyone will recognize both the modernity and the obsoleteness of 
the frame. It is a randomizer, to which is subjoined a noise filter, the 
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whole designed to turn nonsense into sense. The elements it lacks are 
statistics, by use of which a clever fellow may change his unstated 
prejudices into scientific conclusions of high probability, and silicon 
chips, which in rendering obsolete the child labor multiply its product 
a billion fold and enable the project director to make money from the 
credulity of people rather than have to beg it. 

While this voyage of Gulliver was long interpreted as mere burlesque 
of the sciences, about fifty years ago two scholars succeeded in tracing 
everyone of the some forty gossamer schemes of experimental science 
in the Grand Academy for human betterment to actual projects already 
undertaken or at least considered by the Academies of Europe. None 
of those researches led to anything that we now value. All are examples 
of the workings of Gresham's Law, Parkinson's Law, and the Law of 
Light Weights rising to the Top in a Dense Medium. All are as actual 
today as they were 250 years ago. 

Of course the academies were required to consider projects for 
weapons, and some of these were taken seriously. Few brought any 
improvement in the arts of warfare, but they did yield as by-products 
much basic science which every man curious to understand the world 
around him must learn today, science upon which rests much of our 
ordinary technology, that ubiquitous and supremely ugly technology 
whose products the most humanitarian of humanists insist upon hav
ing, and at low cost, however much they may despise the kind of 
learning that has produced them. For example, EULER'S treatise on 
naval science was based largely on assumptions about the inertial and 
frictional resistances of water and air which were later shown to be 
false, and so his tediously scrupulous calculations of the efficiency of 
sails, oars, and paddle wheels, the design of hulls, and the courses of 
sailing ships, while correct as calculations, can have been little but 
useless to the Russian navy, yet his book contains also the first analysis 
of the stability of floating bodies in general and of the motion of rigid 
bodies about a variable axis. One device based upon EULER'S basic 
theory but not invented until over 150 years after his death is the 
gyrocompass, which has saved a thousand times the number of lives 
it has helped to destroy. Much of the fundamental science that is part 
of the toolbox of every engineer, which he may apply to kill or to 
rescue or to accommodate his fellow man, derives from the mathemati
cal research done in the academies of the eighteenth century. Notice 
that in Gulliver's Third Voyage it was the mathematicians of Laputa 
who calculated and directed the course of the aerial island and enforced 
its sway upon the base projectors of Lagado, of whom nothing but 
busy work was expected. ' 

SWIFT did not mention the disputes of the academicians and the 
precarious finances of the academies. Although by disposition 
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somewhat irascible, EULER was not quarrelsome; he was exceptionally 
generous, never once making a claim of priority and in some cases 
actually giving away discoveries that were his own. He was the first to 
cite the works of others in what is now regarded as the just way, that 
is, so as to acknowledge their worth. Up to his time citation had been 
little more than a weapon of attack, to show where predecessors went 
wrong. EULER's intellectual generosity can hardly be set as an 
example, any more than a rich man's scale of giving can be imitated by 
a poor one: EULER was so wealthy in theorems that loss of a dozen 
more or less would not be noticed. 

It was a different matter with religious issues. EULER main
tained throughout his life the simple Protestant faith his father had 
preached. It had no pretensions in science, and science for EULER had 
no just pretensions in morality and religion. Thus for EULER the 
atheism or deism or agnosticism of the French philosophes was 
devilish. King FREDERICK, on the other hand, while regarding organ
ized religion as desirable for the ignorant, upheld the supremacy of 
the human intellect so long as it impinged only upon GOD'S rights, not 
those of earthly kings. A Swiss Protestant was ready to bow to his king, 
but not to the DEVIL. EULER published anonymously a booklet called 
The Rescue of Divine Revelation from the Objections of the Freethinkers. 

In addition, EULER was a philosopher in his own right. Whereas 
the Philosophes ridiculed him as naive, KANT later was to derive his 
own metaphysics from his study of EULER'S writings, but he was not 
able enough in mathematics to understand EULER'S major metaphys
ical paper, Reflections on SPace and Time. The ridiculously narrow 
doctrine of the physical universe we are accustomed to associate with 
KANT and his successors in German philosophy was evolved after 
EULER'S death, and EULER'S point of view did not come into its own 
until the rise of non-Euclidean geometries and relativity, one and two 
centuries later 13. 

MAUPERTUlS, President of the Berlin Academy, was not precisely a 
philosophe. EULER was loyal to him, and he stood between EULER and 
the dislike, even contempt, of the king. MAUPERTUIS had sputtered 
an overriding law of nature, the Law of Least Action, according to 
which all natural operations rendered something the smallest it could 
possibly be. MAUPERTUIS' attempt to phrase this law in its application 
to mechanics was wrong, and ridiculously so. A year earlier EULER 
had found a correct statement for the motion of a single particle, 
greatly more special than MAUPERTUIS' pronouncement, but, as far as 

13 EULER did not anticipate these much later specific theories, but they are in no 
way contradictory or repugnant to the general conceptions of space and time he for
mulated. 
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it went, right. When he heard of MAUPERTUIS' principle, far from 
claiming any credit, EULER published his own result as being a 
confirmation of MAUPERTUIS'S grand idea, which he praised beyond 
measure. 

Not so the rest of the world. A distinguished nonresident member 
of the Academy named KOENIG, a good mathematician and a friend 
and former protege of MAUPERTUIS, had some objections, which he 
confided to MAUPERTUIS in a private conversation. A break followed, 
for MAUPERTUIS tolerated no criticism. The next year KOENIG pub
lished his objections, along with counterexamples, and he mentioned 
that in any case the idea had been sketched in a letter of LEIBNIZ, long 
dead, an extract from which he included. A dreadful rumpus ensued 
in Berlin. KOENIG could not produce the letter, which he said he had 
seen in the possession of his unfortunate friend HENZI, whom the 
fathers of the Canton of Bern had beheaded because he had accepted 
their invitation to make some suggestions regarding the government. 
EULER came to the defense of Least Action and MAUPERTUIS. Having 
handed over to MAUPERTUIS as a gift his own discovery of the one 
case in which the principle could then be proved right, he was sure 
MAUPERTUIS could not have stolen it from LEIBNIZ, and he had 
shown that something could be done with the principle if properly 
corrected. Unfortunately he chose to launch a counterattack against 
KOENIG, claiming that the letter was forged 14. 

Meanwhile VOLTAIRE, who after the death of his mistress the Mar
quise DU CHATELET had no agreeable lodging, came to visit King 
FREDERICK at Potsdam. Formerly VOLTAIRE had been a great 
admirer of MAUPERTUIS and had written: 

Heros de la Physique, Argonautes nouveaux 
Qui franchissez les monts, qui traversez les eaux, 
Dont Ie travail immense et l'exact mesure 
De la terre etonnee ont fixe la figure. 

Heroes of physics, new Argonauts, 
Who cross the mountains and the seas, 
Whose immense labor and exact measurement 
Have fixed the figure of the astonished earth. 

14 In EULER's entire life this episode is the only one that has given rise to any 
suspicion of wrongdoing. With the gleeful desire now in fashion to show that everyone is 
as evil as everyone else-or conversely, that nobody is better than anybody-so that no 
moral or intellectual values can have any but transitory and subjective, and hence 
meaningless, meaning, every biographical notice on EULER, no matter how meagre or 
slipshod, manages to mention his unfairness to KOENIG. 
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After having sat for a while as the rival of MAUPERTUIS at the king's 
table, VOLTAIRE changed his mind and republished the quatrain with 
"hero" replaced by "courier" and with the couplet about immense 
work and exact measurement replaced by: 

Ramenez des climats, soumis aux trois couronnes 
Vos perches, vos secteurs, et surtout deux Lapones! 

You bring back from climes subject to the three crowns 
Your poles, your sectors, and above all two Lapp girls. 

Indeed MAUPERTUIS had a strange household, which his Lapp mis
tress had to share with tropical birds, exotic dogs, and a black man, 
but this was only the beginning. Just at that time MAUPERTUIS pub
lished a medley called Letter on the Progress of the Sciences, in which he 
proposed numerous things worthy of the Academy of Lagado: 
investigations of the Patagonian giants, methods of prolonging life, a 
college composed of perfectly educated representatives of all nations, 
vivisection of criminals, a town where only Latin would be spoken, 
boring a study hole into the earth, use of drugs to allow experiments 
on the brain, and other metaphysical matters. VOLTAIRE was thus well 
prepared to regard the treatment of KOENIG by MAUPERTUIS as 
unjust, and MAUPERTUIS' eccentricities and pretensions furnished an 
immediate subject for a satire: Dr. Akakia, Physician of the Pope. The 
doctor's mission was to cure MAUPERTUIS of his dreadful case of 
insufferable arrogance. 

The king, while presumably amused by the wit displayed, was 
insulted by the attack on his own President. It must be remembered 
that the king himself regularly participated in the doings of his 
Academy by composing essays on moral philosophy for its memoirs. 
He forbade VOLTAIRE'S satire to be printed. VOLTAIRE printed it 
anyway, using a permit issued for another work. The king, doubly 
insulted, had the edition burnt by the hangman. The satire was 
reprinted in Holland, and Berlin was flooded with copies. VOLTAIRE, 
in increasing disgrace, left town as quickly as he could gain permission 
to do so. On his slow progress to Switzerland he was in fact arrested 
and detained for a while by the king's officers. MAUPERTUIS, already 
sick to death with tuberculosis, also left Berlin to take refuge in the 
home of one of the BERNOULLIS in Basel, where in a few years 
he died. VOLTAIRE published a sequel, in which Akakia induced 
MAUPERTUIS and KOENIG to signa treaty of peace. Article 19 
concerns EULER: 

... our lieutenant general L. Euler hereby through us openly 
declares 
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I. That he has never learnt philosophy and honestly repents 
that by us he has been misled into the opinion that one could 
understand it without learning it, and that in future he will rest 
content with the fame of being the mathematician who in a given 
time has filled more sheets of paper with calculations than any 
other .... " 

Unfortunately the further sections of this article of the treaty, while 
equally witty, repeat some of the specific objections of the Englishman 
ROBINS about mathematical points, objections which reflect only the 
inability of ROBINS to understand the advanced mathematics of his 
day. In a typical effusion of literary philosophy , VOLTAIRE did no more 
than blindly copy passages of bad science. 

After MAUPERTUIS' departure all the duties of the presidency fell 
on EULER, but the king would not have a German (for as such he 
regarded EULER) assume the title, be given the powers, or receive the 
pay of the office. The Academy had to finance itself from the sale of 
almanacs, and EULER had to direct their production and marketing. 
The depression caused by the Seven Years' War was severe. Serious 
disputes with the king ensued. Meanwhile, the Academy grew smaller 
from attrition, until besides EULER there was only one other man of 
any capacity, namely, the lately arrived, self-taught Genevan genius 
LAMBERT, whom FREDERICK regarded as a bear and could only with 
great difficulty and after long delay be persuaded to accept. 

Almost as soon as he had arrived in Berlin, EULER came to realize 
that in leaving Russia he had made a grave mistake. He found neither 
the leisure to work, for he was immediately engulfed in the administra
tion of the academy, nor the stimulation from gifted friends and 
acquaintances he had enjoyed in Petersburg. After having been in 
Berlin for eight years he wrote 

I and all those who have had the good fortune to spend some time 
in the Imperial Russian Academy must admit that we owe all we 
are to the advantageous circumstances in which we found our
selves there. For my part, had I not had that splendid oppor
tunity, I should have had to devote myself primarily to some other 
field of study, in which by all appearances I should have become 
only a bungler. 

Such vehemence of expression may be d~to its having been directed 
to SCHUMACHER, on whose good will EULER'S pension depended, yet 
because all evidence confirms his truthfulness at other times and in 
other matters, it is unlikely that what he wrote here differed much 
from what he felt. 
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While throughout his long life FREDERICK again and again 
expressed his contempt for the infinitesimal calculus, the elements of 
which, it seems, he had tried to learn several times but in vain, he 
insisted upon having a mathematician as President of his Academy. 
At the same time this mathematician had to be French, a man of the 
world, a lion of society. Few indeed have been the mathematicians of 
this kind, but FREDERICK found one. 

In 1759, when MAUPERTUIS died, there were besides EULER 
and LAMBERT only two other major mathematicians in Europe: 
DANIEL BERNOULLI and D'ALEMBERT. The former did not fit 
any of FREDERICK'S qualifications. The latter, a Frenchman ten 
years younger than EULER, was at the height of his fame; he 
was FREDERICK'S ideal, being a man of wit, a philosophe, a major col
laborator on DIDEROT's Encyclopedie, and a light of literature. Even 
seven years earlier the king had offered him a salary of 12,000 francs, 
which was seven times what he was receiving in Paris, and also free 
lodging in the royal chateau and meals at the royal table, but D'ALEM
BERT had preferred freedom in poverty to the dangerous vicinity of a 
king. Moreover, D'ALEMBERT had quarreled with the Berlin Academy 
over one of its prizes, and for a time he seemed to be a rival of EULER 
in mechanics and in some parts of analysis. The major scientific dis
pute of the mid-century, which concerned the tones and motions of 
the monochord, was at its hottest; the disputants were D'ALEMBERT, 
EULER, and DANIEL BERNOULLI, three powerful parties each consist
ing in just one man, since there was no-one else who could under
stand the mathematics enough to form a founded opinion, let alone 
take part. Here 15, as in several other circumstances of science, the 

15 While it had antecedents going back for over a century, the dispute began with a 
paper by O'ALEMBERT published in 1749 and continued through O'ALEMBERT'S 
remaining life. HANKINS on page 48 of his biography, Jean D'Alembert, Oxford, 
Clarendon Press, 1970, states that D' ALEMBERT conceded defeat in a final volume of his 
Opuscules, which exists in manuscript but was never published. On the whole, the 
controversy was not resolved during the lifetimes of any of the main disputants but 
rather just died out. EULER solved all the central problems concerning a homogenous 
string correctly and in generality. DANIEL BERNOULLI'S point of view has been used 
more often subsequently and is susceptible of greater generalization, but he himself 
was unable to do much on the basis of it, since the mathematical theory essential for 
exploiting it was not developed until the middle of the next century. LAGRANGE also 
took part from 1760 onward, but his work is largely incomplete or incorrect. While it 
made a great stir in its day and drew high praise from both EULER and D'ALEMBERT, it 
stands up but ill under critical scrutiny. For a review of the whole matter, see pages 
237-300 of my Rational Mechanics of Flexible liT Elastic Bodies, 1638-1788, LEONHARD! 
EULERI Opera omnia (II) 112 , 1960. Although various historians of science have pro
tested that my estimates of LAGRANGE'S work in mechanics and analysis (for I have 
never formed any judgment whatever concerning his work in algebra and number 
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eighteenth century is unique: never before had mathematics been so 
highly regarded by the community of learning, but never before or 
after were there so few persons able to enter the arena of mathematical 
research. 

O'ALEMBERT came to visit FREOERICK at Potsdam in 1763. The 
Academicians, most of whom were Swiss, feared the worst. O'ALEM
BERT spoke graciously to them and recommended them to the king. 
In particular, he declined the presidency and recommended EULER 
for it; the king positively refused, and indeed all along he had spoken 
contemptuously of EULER, written to him with harsh disrespect, and 
declined to grant him the least of the requests he had submitted from 
time to time on behalf of his family and friends. After O'ALEMBERT 
had returned to Paris, FREOERICK wrote for his advice on all matters 
concerning the Academy of Berlin, to the extent that when the 
Academicians wished to suggest something to the king, they found it 
best to convey the message first to O'ALEMBERT in Paris, who 
thereupon, if he agreed, offered it to the king as his own idea. 

EULER then found the position intolerable. For a long time he had 
been negotiating intermittently regarding return to the Petersburg 
Academy. With the accession of a German princess as CATHERINE II 
of Russia in 1762, the auspices for the arts and sciences there 
improved greatly, and EULER succeeded in obtaining an excellent 
appointment. He tendered his resignation to King FREOERICK, who 
brusquely told him to stop petitioning. EULER desisted from taking 
part in any activity of the Academy. O'ALEMBERT, meanwhile, had 
found a replacement for him, the young LAGRANGE, a Piedmontese 
who had begun in 1760, at the age of twenty-four, to pour forth 
brilliant research on analysis and mechanics at EULER'S own level and 
speed. EULER had tried to induce him to come to Berlin, but 
LAGRANGE, seeing that he had to choose between EULER and O'ALEM
BERT, took O'ALEMBERT as his foster father in the politics of science, 
though in research he always followed tacitly in EULER'S footsteps. 
The choice reflected LAGRANGE'S s.agacity. O'ALEMBERT, though not 
old, had ceased to produce anything worthwhile and had become 
merely a conniver; he had quarreled with all mathematicians of his 
own age or older, and he was detested by his fellow academicians in 
Paris; vain, he badly needed an admirer at the highest echelon of 

theory) are too harsh, those estimates are induced from detailed examination of the 
sources, page by page and line by line, and so I will not revise them until such time as I 
be shown specific errors in my evaluations of specific passages. Anyone who has read 
older essays on the history of mathematics will be accustomed to sweeping generalities 
based on a glancing acquaintance with a few of the more elementary parts of works 
cited, but I see no reason to respect utterances of this kind today. 
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mathematics. EULER was at the summit and plateau of his creative 
powers, was on excellent terms with everyone except D'ALEMBERT, 
KOENIG, and Ki~g FREDERICK, and needed nothing but money and 
rank. D'ALEMBERT arranged that LAGRANGE go to Berlin as EULER's 
successor 16. In order to do so, D'ALEMBERT had to tell FREDERICK a 
white lie, namely, that LAGRANGE was a philosophe and man of the 
world. In fact he was neither; he had no interests outside mathematics 
and a narrow outlook within it, but in society he knew how to keep his 
mouth shut when not expressing deference to the views of his seniors. 
In addition, he could pass more or less for a Frenchman, and he later 
became one17 , but he never lost his heavy Piedmontese accent. 

In all of EULER'S vast correspondence there is no mention of 
politics and little reference to social conditions. Evidently one 
country, government, or party was the same as another for him, pro
vided it allowed free worship in the Protestant faith his father had 
taught him and the chance to do a mountain of mathematics for a 
good salary. Like many other men of the Enlightenment, EULER 
expressed a general interest in human wellbeing and in good works 
such as widows' pensions, charity for orphans and cripples, and com
mon measures for prevention of disease and promotion of trades and 
manufactures, but his own contribution to these estimable objectives 
seems to have been confined, beyond a few special mathematical 
studies, to an exemplary personal life and a miraculously creative and 
ageless exercise in mathematical science. Again and again he stated 
that truth of all kinds, knowledge in general, and mathematics in 
particular led to the betterment of man's condition, and he never 
showed evidence of seeing any conflict between service to his prince 
and service to humanity. While obviously neither a Prussian national
ist nor a Russian one, EULER served both countries with the total 
loyalty which in those days was regarded as the ordinary, moral duty 

16 The relations between EULER and O'ALEMBERT in 1763-1766 are too compli
cated to trace here. Like most other savants of the period. EULER despised O'ALEM
BERT'S character, and he did not wish to remain in the Academy if O'ALEMBERT were 
to become its president. By the time O'ALEMBERT came to decline the presidency, 
EULER wished only to leave Berlin and feared that O'ALEMBERT'S recommendation of 
him might result in his being retained against his will; and by the time it came to 
persuading FREOERICK to accept LAGRANGE as EULER'S successor, O'ALEMBERT'S 
actions were in EULER'S best interest, because without a replacement EULER would not 
have succeeded in getting permission to go. 

17 LAGRANGE's mother tongue was the fiedmontese dialect; his first publication 
was in Latin. The errors of language in his earliest papers in French have been 
silently corrected in the reprints in his (Euvres Completes, the editors of which, 
unfortunately, for the most part have not taken similar pains with the numerous errors 
in mathematics. 
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of a servant to his master. The personal failings of FREDERICK II as a 
candidate for GOD'S lieutenant on earth must hav~ been more than 
obvious to EULER, but it was not those that drove him from Berlin. 
Rather, he sought a social and financial position worthy of himself 
and, above all, advancement for his children. 

Finally FREDERICK granted EULER leave to depart with most of his 
family and some of his servants, eighteen persons all told. EULER, 
then in his sixtieth year, was entertained en route by the King of 
Poland and the eminent nobility, and upon arrival in Russia was 
received by the empress. In addition to his salary of 3000 rubles he 
was given 8800 rubles to buy a good house and 2000 rubles for fur
niture. He was not burdened with duties; his counsels were requested 
regularly and often followed. His greatest reward was that good 
places in the Academy or the imperial service were found for his sons, 
and marriages into the nobility were arranged for his daughters. 

In his last years in Petersburg EULER had more time free for 
mathematics than ever before. He soon lost the sight of his one 
remaining eye. Like BACH, he underwent the torment of an operation 
for cataract, which was unsuccessful and rendered him almost totally 
blind. If anything, this enforced end to most of the ordinary duties of 
life left him still freer to work. About half of his 800 publications were 
written in these, the last seventeen years of his life. In 1766, the year 
he moved, EULER composed the first general treatise on hydrody
namics; it was to be about 100 years before anyone wrote another. 
The next year EULER wrote his famous Complete Introduction to 
Algebra. After EUCLID'S Elements, this is the most widely read of all 
books on mathematics, having been printed at least thirty times in 
three editions and in six languages; selections were being used as 
textbooks in the Boston schools in the 1830s. The next year, 1768, 
EULER wrote his treatise on geometrical optics in three volumes and 
his tract on the motion of the moon; both of these are filled with 
colossal calculations, and the latter contains a single table 144 pages 
long, calculated under EULER'S direction "by the tireless labor" of his 
son, KRAFFT, and LEXELL, all of them academicians. In 1770 he wrote 
a monograph on the difficult orbit of a comet which had appeared the 
year before. 

EULER'S total blindness put an end to composition of such long 
treatises, and the great increase in the annual number of his publica
tions reflects the change in his method of w.ork. In the middle of his 
study he had a large table with a slate top. Being barely able to distin
guish white from black, he could write a few large equations. Every 
morning a young Swiss assistant read him the post, the newspaper, 
and some mathematical literature. EULER then explained some prob
lem he had been sleeping on and proposed a method of attacking it. 
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The assistant was usually able to produce the outline for a draught of 
a short memoir, or part of one, by the next morning. In 1775, for 
example, EULER composed more than one complete paper per week; 
these run from ten to fifty pages in length and concern widely 
different special problems. 

Two years before his death EULER presented to the Petersburg 
academy a pair of papers suggested by VERGIL'S line 

anchora de prora jacitur, stant littore puppes. 

The problem is to find the motion of a ship whose prow is anchored. 
The title of the first paper tells us that the problem is "commonplace 
enough, but very difficult to solve"; EULER derives the differential 
equation of motion for a much simplified model and obtains some 
integrals of the motion but despairs of proceeding further; in the 
second paper he presents and analyses the general solution. The Acta 
for that year include five further papers by EULER, but his output was 
become too great for the ordinary channels, and in the year of his 
death the Academy issued in addition to nineteen memoirs in the Acta 
an extra volume called Opuscula analytica, which consists in thirteen of 
his papers composed and presented to the Academy nine to twelve 
years earlier. 

EULER'S memory, always extraordinary, had by then become pro
digious. He could still recite the .lEneid in Latin from beginning to 
end, remembering also which lines were first and last on each page of 
the edition from which he had learnt it some sixty or seventy years 
earlier. Enormous equations and vast tables of numbers were ready 
on demand for the eye of his mind. He became one of the sights of 
the town for distinguished visitors, with whom he usually spoke on 
non mathematical topics. Amazed by the breadth and immediacy of 
his knowledge concerning every subject of discourse, they spread 
fairy tales about what he could do in his last years. 

Only recently have we been able, by study of the manuscripts he 
left behind, to determine the course of EULER's thought. We now 
know, for example, that many of the manuscript memoirs published 
in the two volumes of posthumous works in 1862 he wrote while still a 
student in Basel and himself withheld from publication for a reason
which usually was some hidden error or an unacceptable or uncon
vincing result. The first page of one of these memoirs is reproduced 
here as Figure 22. The memoir it opens is the one that served to 
introduce EULER to DANIEL BERNOULLI and was important in secur
ing him his first post in Petersburg. There can be only one reason 
EULER did not publish it: DANIEL BERNOULLI had obtained the same 
result at about the same time by somewhat different means, and 
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EULER did not wish to detract from his friend's glory. The result 
itself, the solution of the problem of efflux of water from a vessel, 
became known through DANIEL BERNOULLI'S book, published twelve 
years later. 

The manuscript is a typical one. The spots are ink from the other 
side showing through. There are few corrections in the smooth, easy 
writing. The manuscripts of the books EULER wrote in later life are 
much the same, but for some remain one or even two complete earlier 
manuscripts of the whole, showing many differences from the final 
one. When EULER wished to revise a work, he wrote it all out afresh, 
neat and clean. Like MOZART, he revised in his head and did not 
begin to use paper until the revision was complete. 

The most interesting of all EULER'S remains is his first notebook, 
written when he was eighteen or nineteen and still a student of JOHN 
BERNOULLI. It could nearly be described as being all his 800 books 
and papers in little. Much of what he did in his long life is an out
growth of the projects he outlined in these years of adolescence. 
Later, he customarily worked in some four domains of mathematics 
and physics at once, but he kept changing these from year to year. 
Typically he would develop something as far as he could, write eight 
or ten memoirs on various aspects of it, publish most of them, and 
drop the subject. Coming back to it ten or fifteen years later, he would 
repeat the pattern but from a deeper point of view, incorporating 
everything he had done before but presenting it more simply and in a 
broader conceptual framework. Another ten or fifteen years ·would 
see the pattern repeated again. To learn the subject, we need consult 
only his last works upon it, but to learn his course of thought, we must 
study the earliest ones, especially those he did not himself publish. 

In an age when genius, intellectual ambition, and drive were com
mon, no man surpassed EULER in anyone, and none came near him 
in combination of all three. Nevertheless, histories of the eighteenth 
century and social or intellectual histories in general rarely mention 
him. The explanation was written by FONTENELLE, before EULER was 
born: 

We like to regard as useless what we do not know; it is a kind of 
revenge; and since mathematics and physics are rather generally 
unknown, they rather generally pass for useless. The source of 
their misfortune is plain; they are prickly, wild, and hard to 
reach .... 

Such is the destiny of sciences handled by few. The usefulness 
of their progress is imperceptible to most people, especially if 
they are practised by professions not particularly illustrious. 
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ANNOTATED BIBLIO(;RAPHY 

Biography: 

Article X, pages 32-60 of Adumbratio eruditorum Basiliensium meritis apud 
exteros olim hodieque celebrium, published as "Adpendix" to Athenae Rauricae, 
sive catalof{Us professorum academiae Basiliensis ab anna 1770 ad annum 1778, 
cum brevi singulorum biographia, Basileae, 1778. I know this work only 
through the article by F. Mi'n.LER, "Uber eine Biographie L. Eulers 
vom Jahre 1780 and Zusatze zur Euler-Literatur", Bericht der Deutschen 
Mathematiker- Vereinigung 17 (1908): 36-39. 

NICOLAUS Fuss, Lobrede auf Herrn Leonhard Euler... 23 Octob. 1783 
vorgelesen . .. , Basel, 1786 = pages XLIII-XCV of LEONHARD! EULERI 
Opera omnia (I)I, Leipzig & Berlin, Teubner, 1911. 

M.-J.-A.-N. CARITAT, Marquis de CONDORCET, "Eloge de M. Euler", His
toire de l'Acadimie Royale des Sciences (Paris) 1783: 37-68 (1786) = pages 
287-310 of LEONHARD! EULERI OPera omnia (III)12, Zurich, Orell Fussli, 
1960. 

O. SPIESS, Leonhard Euler, Ein Beitrag zur Geistesgeschichte des XVIII. Jahrhun
derts. Frauenfeld/Leipzig. 1929. 

Note: Fuss did not meet EULER until 1773, EULER's sixty-seventh year; 
CONDORCET never met him at all. Neither was competent in more than a 
small part of the range of science enriched by EULER; both were younger 
than he by more than thirty years, and neither showed evidence of having 
studied EULER's early work in detail. Their necrologies of EULER are 
heavily weighted by hearsay and treat his youth as already legendary. The 
accounts of EULER's life and work in the general histories of mathematics 
or collected biographies of mathematicians are mainly if not entirely their 
authors' personal embroideries upon odds and ends pecked out of the two 
necrologies. The biography by SPIESS, in welcome contrast, is based upon 
extensive study of unpublished letters and documents as well as all published 
sources concerning EULER's life. Nevertheless, it is a biography in the 
literary sense; while SPIESS made some attempts to write what is now called 
intellectual history, his understanding of the contents of EULER's researches 
was limited not only to what in SPIESS's day was called pure mathematics 
but even to elementary matters such as quadratures, properties of particular 
curves, explicit sums of series, etc. Thus, inevitably, EULER appears in 
SPIESS'S pages as the most dazzling of mathematical jugglers but not as the 
great creator of concepts and organizer of doctrines he really was. In 
general, the critical reader who would understand EULER's conceptual 
frame and intellectual achievement can find ~oday no intermediary between 
himself and EULER's own writings except the prefaces to some volumes of 
the Opera omnia, for which see below,' "EULER's place in the history of 
science". 

A. P. YOUSCHKEVITCH, article "Euler", Dictionary of Scientific Biography, 
Volume 4,1971. 
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Portraits: 

H. THIERSCH, "Zur Ikonographie Leonhard und Johann Albrecht Euler's", 
Gesellschaft der Wissenschaften zu Gottingen, Nachrichten der PhilosoPhisch
Historischen Classe 1928: 264-289+4 plates. 

H. THIERSCH, "Leonhard Euler's 'verschollenes' Bildnis und sein Maler", 
ibid. 1930: 193-217 + Nachtrag+ 2 plates. 

H. THIERSCH, "Weitere Beitrage zur Ikonographie Leonhard und Johann 
Albrecht Euler's", ibid. 219-249+3 plates. 

Lists of publications, of manuscripts, and of letters: 

G. ENESTROM, "Verzeichnis der Schriften Leonhard Eulers", Jahresbericht 
der Deutschen Mathematiker- Vereinigung 4. Ergiinzungsband (2 Lieferungen), 
388 pages (1910) and 22: 191-205 (1910). 

Manuscripta Euleriana Archivi Academiae Scientiarum URSS, 1 (Acta Archivi 
Academiae Scientiarum URSS, fasciculus 17), Moscow & Leningrad, 1962. 
(This volume, prepared by G. K. MIKHAILOV, describes the scientific 
manuscripts preserved in Russia. According to ENESTROM, the manuscripts 
left in the Archives of the Academy in Berlin were once described by 
JACOBI. I have not seen his description and do not know if it was ever 
published or if the manuscripts still exist.) 

LEONHARDI EULERI commercium epistolicum. Descriptio commercii epistolici. 
LEONHARDI EULER! Opera omnia (lVA)I, ediderunt A. P. JUSKEVIC, V. 
I. SMIRNOV, & W. HABICHT, Basel, Birkhauser, 1975. 

Works: 

Memoirs, books, and manuscripts, mainly those published at least once before 1911: 

LEONHARD! EULERI Opera omnia, at first Leipzig, then Zurich or other 
cities of Switzerland, 1911-: 
Series I. OPera mathematica (complete, 29 volumes issued in 30 parts). 
Series II. OPera mechanica et astronomica (27 of 32 part-volumes pub
lished by the summer of 1984). 
Series III. OPera physica et miscellanea (11 of 12 volumes published by the 
summer of 1984). 

Manuscripts not published before 1911: 

Manuscripta Euleriana Archivi Academiae Scientiarum URSS, Volume 2 (Acta 
Archivi Academiae Scientiarum URSS, fasciculus 20), Moscow & Lenin
grad, 1965. This volume was prepared by G. K. MIKHAILOV. 

Letters: 

LEONHARD! E ULERI Opera omnia (IV A)l: the catalogue of the letters, gives 
references to the some thirty publications in which one or more letters 
appear. Other volumes in this series are to publish the letters in full. 
Volume 5 was published in 1980. It includes errata and addenda for 
Volume I. 
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Euler's place in the history of science: 

Although it would be hard to find any history of mathematics or physics 
that does not say something about one or more aspects of EULER's work, and 
although his name is used as a label for a dozen or more of the commonest 
and most useful theorems in the mathematical sciences, the bulk and level of 
his works seem to have discouraged critical study of them. Even volumes of 
essays devoted to celebrations of EULERian anniversaries often contain no 
more than musings by senior scientists who have glanced at a few pages 
before composing variants of the generalities imparted to them by their 
teachers in elementary courses half a century earlier. In regard to eighteenth
century mathematics and physics the general histories of science or mathe
matics or physics are grossly unreliable because they are based largely on 
tale-bearing or caprice or both. Some of the prefaces to individual volumes of 
LEONHARD! EULERI Opera omnia explain succinctly some part of EULER's 
work, especially those in Volumes (1)4 and 5 (by FUETER), (1)9 (by A. 
SPEISER), (1)24 (by CARA THEODORY), (1)25 through 29 (by A. SPEISER), (11)3 
(by BLANC), (11)5 (by FLECKENSTEIN), (11)6, 7, and 9 (by BLANC), (11)112 
through 13 (by TRUESDELL), (11)14 (by SCHERRER), (11)15 (by ACKERET), 
(11)16 and 17 (by BLANC & DE HALLER), (11)20 and 21 (by HABICHT), (11)22 
(by COURVOISIER), (11)23 (by FLECKENSTEIN), (11)25 (by SCHURER), (11)28 
(by A. SPEISER), (11)29 and 30 (by COURVOISIER), (111)5 (by D. SPEISER), 
(III)6 (by A. SPEISER), (111)7 (by HABICHT), (111)8 (by HERZBERGER), (111)9 
(by HABICHT), (III)10 (by D. SPEISER), (111)11 and 12 (by A. SPEISER). A few 
of these also place EULER's work in the setting of its antecedents and its time. 
For mechanics there is also my book, Essays in the History of Mechanics, New 
York, Springer-Verlag, 1968, and SZABO's Geschichte der Mechanischen Prin
zipien, 2nd edition, Basel etc., Birkhauser, 1979; both treat EULER merely 
incidentally. 

The only other occasional yet solid analyses of EULER's work I have found 
in languages other than Russian are included in Chapter VII of C. R. 
BOYER's History of Analytic Geometry, New York, Scripta Mathematica, 1956, 
and in six articles in the Archive for History of Exact Sciences: 

J. E. HOFMANN, "Uber zahlentheoretische Methoden Fermats und Eulers, 
ihre Zusammenhange und ihre Bedeutung", 1(1960/1962): 122-159 
(1961 ). 

O. B. SHEYNIN, "On the mathematical treatment of observations by,L. 
Euler", 9 (1972): 45-56, 

H, J. M. BOS, "Differentials, higher-order differentials and the derivative 
in the Leibnizian calculus", 14 (1974/1975): 1-90 (1974), 

R. CALINGER, "Euler's 'Letters to a Princess of Germany' as an expression 
of his mature scientific outlook", 15 (1975/1976): 211-233 (1976), 

A. P. YOUSCHKEVITSCH, "The concept of function up to the middle of 
the 19th century", 16 (1976/1977): 37-H5 (1976), 

C. A. WILSON, "Perturbations and solar tables from Lacaille to Delambre: 
the rapprochement of observation and theory", 22 (1980); 53-304. 

Note also the chapter in EDWARDS' book cited above in Footnote 8 



LEONARD EULER, SUPREME GEOMETER. xxxix 

A distinguished mathematician of our day, GEORG POLY A, has composed 
a treatise on methods of discovery in mathematics which refers to EULER so 
often, even including analyses and schemas of some of his papers, that 
EULER might be said to be the hero of the work. This treatise is Mathematics 
and Plausible Reasoning, 2 volumes, Princeton, Princeton University Press, 
1954. POLYA's estimate of EULER, on page 90 of Volume 1, is as follows: 

Yet Euler seems to me almost unique in one respect: he takes pains to 
present the relevant inductive evidence carefully, in detail, in good 
order. He presents it convincingly but honestly, as a genuine scientist 
should do. His presentation is "the candid exposition of the ideas that led 
him to those discoveries" and has a distinctive charm. Naturally enough, 
as any other author, he tries to impress his readers, but, as a really good 
author, he tries to impress his readers only by such things as have 
genuinely impressed himself. 

We await with great eagerness the first volume of ANDRE WElL's history 
of number theory, which will concern EULER's work primarily. 

Note for the Reprinting 

This essay is reprinted, with the quotations from Gulliver's Travels mainly 
omitted, from An Idiot's Fugitive Essays on Science, New York etc., Springer
Verlag, 1984. 
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Such is the short history of this illustrious man. 
The incidents of his life, like that of most other 
laborious students, afford very scanty materials for 
biography; little more than a journal of studies, 
and a catalogue of publications; but curiosity may 
find ample compensation in surveying the charac
ter of his mind. An object of such magnitude, 
so far elevated above the ordinary range of human 
intellect, cannot be approached without reverence, 
nor nearly inspected, perhaps, without some de
gree of presumption. Should an apology be ne
cessary, therefore, for attempting the following 
estimate of Euler's character, let it be considered, 
that we can neither feel that admiration, nor offer 
that homage, which is worthy of genius, unless, 
aiming at something more than the dazzling sensa
tions of mere wonder, we subject it to actual ex
amination, and compare it with the standards of 
human nature in general. 
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Whoever is acquainted with the memOIrs of 
those great men, to whom the human race is in
debted for the progress of knowledge, must have 
perceived, that, while mathematical genius is dis
tinct from the other departments of intellectual 
excellence, it likewise admits in itself of much di
versity. The subjects of its speculation are become 
so extensive and so various, especially in modern 
times, and present so many interesting aspects, that 
it is natural for a person, whose talents are of this 
cast, to devote his principal curiosity and attention 
to particular views of the science. 'V-hen this hap
pens, the faculties of the mind acquire a superior 
facility of operation, with respect to the objects 
towards which they are most frequently directed, 
and the invention becomes habitually most active 
and most acute in that channel of inquiry. 

The truth of these observations is strikingly 
illustrated by the character of Euler. His studies 
and discoveries lay not among the lines and figures 
of geometry,-those characters, to use an expres
sion of Galileo, in which the great book of the 
uni verse is written; -nor does he appear to have 
had a turn for philosophising by experiment, and 
advancing to discovery through the rules of in
ductive investigation. The region, in which he 
delighted to speculate, was that of pure intellect. 
He surveyed the properties and affections of 
quantity under their most abstracted forms. With 
the same rapidity of perception, as a geometrician 
ascertains the relative position of portions of exten-
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sion, Euler ranges through the regions of abstract 
quantities, unfolding their most involved combina
tions, and tracing their most intricate proportions. 
That admirable system of mathematical logic and 
language, which at once teaches the rules of just 
inference, and furnishes an instrument for prose
cuting deductions, free from the defects, which 
obscure and often falsify our reasonings on other 
subjects ;-the different species of quantity, whether 
formed in the understanding by its own abstrac
tions, or derived from modifications of the repre
sentative system of signs ;-the investigation of the 
various properties of these, their laws of genesis, 
the limits of comparison among the different 
species, and the method of applying all this to the 
solution of physical problems; - these were the re
searches on which the mind of Euler delighted to 
dwell, and in which he never engaged without 
finding new objects of curiosity, detecting sources 
of inquiry, which had passed unobserved, and ex
ploring fields of speculation and discovery, which 
before were unknown. 

The- subjects, which we have here slightly enu
merated, form, when, taken together, what is called 
the Modern Analysis: a science eminent for the 
profound discoveries which it has revealed; for 
the refined artifices that have been devised, in 
order to bring the most abstruse parts of mathe
matics within the compass of our reasoning powers, 
and for applying them to the solution of actual 
phrenomena, as well as for theiemarkable degree 
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of systematic simplicity, with which the various 
methods of investigation are employed and com
bined, so as to confirm and throw light on one 
another. The materials, indeed, had been col
lecting for years, from about the middle of the 
seventeenth century; -the foundations had been 
laid by Newton, Leibnitz, the elder Bernoullis, 
and a few others; but Euler raised the superstruc
ture: it was reserved for him to work upon the 
materials, and to arrange this noble monument of 
human industry and genius in its present sym
metry. Through the whole course of his scientific 
labors, the ultimate and the constant aim on which 
he set his mind, was the perfection of Calculus 
and Analysis. Whatever physical inquiry he be
gan with, this always came in view, and very fre
quently received more of his attention than that 
which was professedly the main subject. His 
ideas ran so naturally in this train, that even in 
the perusal of Virgil's poetry, he met with images 
that would recall the associations of his more fa
miliar studies, and lead him back, from the fairy 
scenes of fiction, to mathematical abstraction, as 
to the element, most congenial to his nature. 

That the sources of analysis might be ascertained 
in their full extent, as well as the various modifica
tions of form and restrictions of rule that become 
necessary in applying it to different views of 
nature; he appears to have nearly gone through a 
complete course of philosophy. The theory of 
rational mechanics, the whole range of physical 
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astronomy, the vibrations of elastic fluids, as well 
as the movements of those which are incom
pressible, naval architecture and tactics, the doc
trine of chances, probabilities, and political arith
metic, were successively subjected to the analytical 
method; and all these sciences received from him 
fresh confirmation and further improvement. '*' 

It cannot be denied that, in general, his at
tention is more occupied with the analysis itself, 
than with the subject to which he is applying it ; 
and that he seems more taken up with his instru
ments, than with the work, which they are to assist 
him in executing. But this can hardly be made a 
ground of censure, or regret, since it is the very 
circumstance to which we owe the present perfec
tion of those instruments; - a perfection to which 
he could never have brought them, but by the 
unremitted attention and enthusiastic preference 
which he gave to his favorite object. If he now 
and then exercised his ingenuity on a physical, or 
perhaps metaphysical, hypothesis, he must have 
been aware, as well as anyone, that his conclusions 
would of course perish with that from which they 
were derived. What he regarded, was the proper 
means of arriving at those conclusions; - the new 
views of analysis, which the investigation might 

,.. A complete edition of his works, comprising the numerous 
papers, which he sent to the Academies of St. Petersburg, 
Berlin, Paris, and other public societies, his separate Treatises 
on Curves, the Analysis ofInfinites, the Differential and Integral 
Calculus, &c. would occupy, at least; forty quarto volumes. 
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open; and the new expedients of calculus, to which 
it might eventually give birth. This was his uni
form pursuit; all other inquiries were prosecuted 
with reference to it; and in this consisted the 
peculiar character of his mathematical genius. 

The faculties that are subservient to invention 
he possessed in a very remarkable degree. His 
memory was at once so retentive and so ready, 
that he had perfectly at command all those nu
merous and complex formulre, which enunciate 
the rules and more important theo~ems of analysis. 
As is reported of Leibnitz, he could also repeat 
the LEneid from beginning to end; and could 
trust his recollection for the first and last lines in 
every page of the edition, which he had been ac
customed to use. These are instances of a kind 
of memory, more frequently to be found where 
the capacity is inferior to the ordinary standard, 
than accompanying original, scientific genius. 
But in Euler, they seem to have been not so much 
the result of natural constitution, as of his most 
wonderful attention; a faculty, which, if we con
sider the testimony of Newton * sufficient evi
dence, is the great constituent of inventive power. 
It is that complete retirement of the mind within 
itself, during which the senses are locked up;
that intense meditation, on which no extraneous 
idea can intrude ;-that firm, straightforward pro
gress of thought, deviating into no irregular sally, 

• This opinion of Sir Isaac Newton respecting himself is 
recorded by Dr. Pemberton. 

b 
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which can alone place mathematical objects in a 
light sufficiently strong to illuminate them fully, 
and preserve the perceptions of "the mind's eye" 
in the same order that it moves along. 

Two of Euler's pupils (we are told by M. Fuss, 
a pupil himself) had calculated a converging 
series as far as the seventeenth term; but found, 
on comparing the written results, that they dif. 
fered one unit at the fiftieth figure: they com· 
municated this difference to their master, who 
went over the whole calculation by head, and his 
decision was found to be the true one. - For the 
purpose of exercising his little grandson in the 
extraction of roots, he has been known to form to 
himself the table of the six first powers of all num· 
bers, from 1 to 100, and to have preserved it 
actually in his memory. 

The dexterity which he had acquired in analysis 
and calculation, is remarkably exemplified by 
the manner in which he manages formulm of the 
greatest length and intricacy. He perceives, 
almost at a glance, the factors from which they 
may have been composed; the particular system 
of factors belonging to the question under present 
consideration; the various artifices by which that 
system may be simplified and reduced; and the 
relation of the several factors to the conditions of 
the hypothesis. His expertness in this particular 
probably resulted, in a great measure, from the 
ease with which he performed mathematical in. 
vestigations by head. He had always accustomed 
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himself to that exercise; and having practised it 
with assiduity, even before the loss of sight, which 
afterwards rendered it a matter of necessity, he is 
an instance to what an astonishing degree of per
fection that talent may be cultivated, and how 
much it improves the intellectual powers. No 
other discipline is so effectual in strengthening 
the faculty of attention; it gives a facility of ap
prehension, an accuracy and steadiness to the 
conceptions; and, what is a still more valuable 
acquisition, it habituates the mind to arrangement 
in its reasonings and reflections. 

If the reader wants a further commentary on 
its advantages, let him proceed to the work of 

Euler, of which we here offer a Translation; and 
if he has any taste for the beauties of method, 
and of what is properly called composition, we 
venture to promise him the highest satisfaction 
and pleasure. The subject is so aptly divided, 
the order is so luminous, the connected parts 
seem so truly to grow one out of the other, and 
are disposed altogether in a manner so suitable to 
their relative importance, and so conducive to 
their mutual illustration, that, when added to the 
precision, as well as clearness with which every 
thing is explained, and the judicious selection of 
examples, we do not hesitate to consider it, next 
to Euclid's Elements, the most perfect model of 
elementary writing, of which the scientific world 
IS III possession. 

When our reader shall have studied so much 



FRANCIS HORNER. xlix 

of these volumes as to relish their admirable style, 
he will be the better qualified to reflect on the 
circumstances under which they were composed. 
They were drawn up soon after our author was 
deprived of sight, and were dictated to his ser. 
vant, who had originally been a tailor's apprentice; 
and, without being distinguished for more than 
ordinary parts, was completely if,rnorant of mathe. 
matics. But Euler, blind as he was, had a mind 
to teach his amanuensis, as he went on with the 
subject. Perhaps, he undertook this task by way 
of exercise, with the view of conforming the 
operation of his faculties to the change, which the 
loss of sight had produced. Whatever 'was the 
motive, his Treatise had the advantage of being 
composed under an immediate experience of the 
method best adapted to the natural progress of a 
learner's ideas: from the want of which, men of 
the most profound knowledge are often awkward 
and unsatisfactory, when they attempt elementary 
instruction. It is not improbable, that we may 
be farther indebted to the circumstance of our 
Author's blindness; for the loss of this sense is 
generally succeeded by the improvement of other 
faculties. As the surviving organs, in particular, 
acquire a degree of sensibility, which they did not 
previously possess; so the most charming visions 
of poetical fancy have been the offspring of minds, 
on which external scenes had long been closed. 
And perhaps a philosopher, familiarly acquainted 
with Euler's writings, might trace some improve-
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ment in perspicuity of method, and in the flowing 
progress of his deductions, after this calamity had 
befallen him; which, leaving " an universal blank 
of Nature's works," favors that entire seclusion of 
the mind, which concentrates attention, and gives 
Ii veliness and vigor to the conceptions. 

In men devoted to study, we are not to look for 
those strong, complicated passions, which are con
tracted amidst the vicissitudes and tumult of public 
life. To delineat.e the character of Euler, requires 
no contrasts of coloring. Sweetness of disposition, 
moderation in the passions, and simplicity of man
ners, were his leading features. Susceptible of the 
domestic affections, he was open to all their amiable 
impressions, and was remarkably fond of children. 
His manners were simple, without being singular, 
and seemed to flow naturally from a heart that 
could dispense with those habits, by which many 
must be trained to artificial mildness, and with the 
forms that are often necessary for concealment. 
Nor did the equability and calmness of his temper 
indicate any defect of energy, but the serenity of a 
soul that overlooked the frivolous provocations, 
the petulant caprices, and jarring passions of 
ordinary mortals. . 

Possessing a mind of such wonderful compre
hension, and dispositions so admirably formed to 
virtue and to happiness, Euler found no difficulty 
in being a Christian: accordingly, "his faith was 
unfeigned," and his love "was that of a pure and 
undefiled heart." The advocates for the truth of 
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revealed religion, therefore, may rejoice to add to 
the bright catalogue, which already claims a Bacon, 
a Newton, a Locke, and a Hale, the illustrious 
name of Euler. But, on this subject, we shall 
permit one of his learned and grateful pupils· to 
sum up the character of his venerable master. 
" His piety was rational and sincere; his devotion 
"was fervent. He was fully persuaded of the 
" truth of Christianity; he felt its importance to 
"the dignity and happiness of human nature; 
" and looked upon its detractors, and opposers, as 
" the most pernicious enemies of man." 

The length to which this account has been ex
tended may require some apology; but the cha
racter of Euler is an object so interesting, that, 
when reflections are once indulged, it is difficult 
to prescribe limits to them. One is attracted by 
a sentiment of admiration, that rises almost to the 
emotion of sublimity; and curiosity becomes eager 
to examine what talents and qualities and habits 
belonged to a mind of such superior power. We 
hope, therefore, the student will not deem this an 
improper introduction to the work which he is 
about to peruse; as we trust he is prepared to 
enter on it with that temper and disposition, which 
will open his mind both to the perception of ex
cellence, and to the ambition of emulating what 
he cannot but admire. 

41< M. Fuss, Eulogy of M. L. Euler. 



ADVERTISEMENT BY M. BERNOULLI, THE 
FRENCH TRANSLATOR. 

THE Treatise of Algebra, which I have undertaken to 
translate, was published in German, 1770, by the Royal 
Academy of Sciences at Petersburg. To praise its merits, 
would almost be injurious to the celebrated name of its 
author. It is sufficient to read a few pages, to perceive, from 
the perspicuity with which every thing is explained, what 
advantage beginners may derive from it. Other subjects 
are the purpose of this advertisement. 

I have departed from the division which is followed in 
the original, by introducing, in the first volume of the 
French translation, the first Section of the Second Volume 
of the original, because it completes the analysis of deter
minate quantities. The reason for this change is obvious: 
it not only favors the natural division of Algebra into de
terminate and indeterminate analysis; but it was necessary 
to preserve some equality in the size of the two volumes, 
on account of the Additions which are subjoined to the 
Second Part. 

The reader will easily perceive that those Additions come 
from the pen ofM. De la Grange; indeed, they formed one 
of the principal reasons that engaged me in this translation. 
I am happy in being the first to shew more generally to 
mathematicians, to what a pitch of perfection two of our 
most illustrious mathematicians have lately carried a 
branch of analysis but little known, the researches of 
which are attended with many difficulties, and, on the 
confession even of these great men, present the most diffi
cult problems that they have ever resolved. 
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I have endeavoured to translate this Algebra in the style 
best suited to works of the kind. My chief anxiety was to 
enter into the sense of the original, and to render it with 
the greatest perspicuity. Perhaps I may presume to give 
my translation some superiority over the original, because 
that work llaving been dictated, and admitting of no revi
sion from the author himself, it is easy to conceive that in 
many passages it would stand in need of correction. If I 
have not submitted to translate literally, I have not failed 
to follow my author step by step; I have preserved the 
same divisions in the Articles; and it is only in so few places 
that I have taken the liberty of suppressing some details of 
calculation, and insel·ting one or two lines of illustration 
in the text, that I believe it unnecessary to enter into an 
explanation of the reasons by which I was justified in 
so doing. 

Nor shall I take any more notice of the notes which I 
have added to the First Part. They are not so numerous as 
to make me fear the reproach of having unnecessarily in
creased the volume; and they may throw light on several 
points of mathematical history, as well as make known a 
great number of Tables that are of subsidiary utility. 

With respect to the correctness of the press, I believe it 
will not yield to that of the original. I have carefully com
pared all the calculations, and having repeated a great 
number of them myself, have by those means been enabled 
to correct several faults, beside those which are indicated 
in the Errata. 
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ELEMENTS 

OF 

A L G E BRA. 

PART I. 

CONTAINING THE ANALYSIS OF DETERMINATE QUANTITIES. 

SECTION 1. 

OF THE DIF~'ERENT METHODS OF CALCULATING 

SIMPLE QUANTITIES. 

CHAPTER I. 

Of Mathematics in general. 

ARTICLE I. 

WHATEVER is capable of increase or diminution, is called 
magnitude, or quantity. 

A sum of money therefore is a quantity, since we may 
increase it or diminish it. It is the same with a weight, 
and other things of this nature. 

2. From this definition it is evident, that the different 
kinds of magnitude must be so various as to render it dif:' 
ficult to enumerate them: and this is the origin of the dit:. 
ferent branches of Mathematics, each being employed on 
a particular kind of magnitude. Mathematics, in general, 
is the science of quantity; or, the science which investigates 
the means of measuring quantity. 

3. Now, we cannot measure or determine any quantity, 
except by considering some other quantity of the same 
kind as known, and pointing out their mutual relation. 
If it were proposed, for example, to determine the quantity 
of a sl1m of money, we should take some known piece of 

B 
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money, as a louis, a crown, a ducat, or some other coin, 
and shew how many of these pieces are contained in the 
given sum. In the same manner, if it were proposed to 
determine the quantity of a weight, we should take a cer
tain known weight.; for example, a pound, an ounce, &c., 
and then shew how many times one of these weights is 
contained in that which we are endeavouring to ascertain. 
If we wished to measure any length or extension, we 
should make use of some known length, such as a foot. 

4. So that the determination, 01' the measure of magni
tude of all kinds, is reduced to this: fix at pleasure upon 
anyone known magnitude of the same species with that 
which is to be determined, and consider it as the measure 
or unit; then, determine the proportion of the proposed 
magnitude to this known measure. This proportion is 
always expressed by numbers; so that a number is no
thing but the proportion of one magnitude to another 
arbitral'ily allsumed as the unit. 

5. From this it appears, that all magnitudes may be 
expressed by numbers; and that the foundation of all the 
Mathematical Sciences must be laid in a complete treatise 
on the science of numbers, and in an accurate examination 
of the different possible methods of calculation. 

This fundamental part of mathematics is called Ana
lysis, or Algebra.* 

6. In Algebra, then, we consider only numbers, which 
represent quantities, without regarding the different kinds 
of quantity. These are the subjects of other branches of 
the mathematics. 

7. Arithmetic treats of numbers in particular, and is 
the science of numbers properly so called; but this science 
extends only to certain methods of calculation, which 
occur in common practice: Algebra, on the contrary, com
prehends in general all the cases that can exist in the 
doctrine and calculation of numbers. 

• Several mathematical writers make a distinction between 
Analysis and Algebra. By the term Analysis, they understand 
the method of determining those general rules which assist the 
understanding in all mathematical investigations; and by Alge
bra, the instrument which this method employs for accomplish
ing that end. This is the definition given by M. Bezout in the 
preface to his Algebra.-F. T. 
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CHAPTER II. 

E1:planation of the Sig1ls + Plus and - Minus. 

8. When we have to add one given number to another, 
this is indicated by the sign +, which is placed before the 
second number, and is read plus. Thus 5 + 3 signifies 
that we must add 3 to the number 5, in which case, every 
Qne know~ that the result is 8; in the same manner 12 + 7 
make 19; 25 + 16 make 41; the sum of25 + 41 is 66, &c. 

9. We also make use of the same sign + plus, to con
nect several numbers together; for example, 7 + 5 + 9 
signifies that to the number 7 we must add 5, and also 9, 
which make 21. The reader will therefore understand 
what is meant by 

8 + 5 + 13 + 11 + 1 + 3 + 10, 
viz. the sum of all these numbers, which is 51. 

10. All this is evident; and we have only to mention, 
that in Algebra, in order to generalise numbers, we re
present them by letters, as a, h, c, d, &c. Thus, the ex
pression a + b, signifies the sum of two numbers, which we 
express by a and b, and these numbers may be either very 
great, or very small. In the same manner,! + m + b + x, 
signifies the sum of the numbers represented by these four 
letters. 

If we know, therefore, the numbers that are represented 
by letters, we shall at all times be able to find, by al·ith
metic, the sum or value of such expressions. 

11. When it is required, on the contl'ary, to su btl'act one 
given number fl'om another, this operation is denoted by the 
sign -, which signifies minus, and is placed before the 
number to be subtracted: thus, 8 - 5 signifies that the 
number 5 is to be taken from the number 8; which being 
done, there remain 3. In like manner, 12 - 7 is the same 
as 5; and 20 - 14 is the same as 6, &c. 

12. Sometimes, also, we may have several numbers to 
subtract from a single one; as, for instance, 50 - 1 - 3-
5 - 7 - 9. This signifies, first, take 1 from 50, and there 
remain 49; take 3 from that remainder, and there will re
main 46; take away .5, and 41 remain; take away 7, and 
34 remain; lastly, from that take 9, and there remain 25: 
this last remainder is the value of the expression. But as 
the numbers 1, 3, 5, 7, 9, are all t6 be subtracted, it is the 
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same thing if we subtract their sum, which is 25, at once 
from 50, and the remainder will be 25 as before. 

13. It is also easy to determine the value of similar ex
pressions, in which both the signs + plus and - minus are 
found. For example, 

12 - 3 - 5 + 2 - 1 is the same as 5. 
We have only to collect separately the sum of the numbers 
that have the sign + before them, and subtract from it the 
sum of those that have the sign -. Thus; the sum of 12 
and 2 is 14; and that of 3, 5, and 1, is 9; hence 9 being 
taken from 14, there remain 5. 

14. It will be perceived, from these examples, that the 
order in which we write the numbers is perfectly indif
ferellt and arbitrary, provided the proper sign of each be 
preserved. We might with equal propriety have arranged 
the expression in the preceding article, thus, 12 + 2 - 5 
- 3 -1, or 2 - 1- 3 - 5 + 12, or 2 + 12 - 3 - 1-5, or 
in still different orders; where it must be observed, that in 
the arrangement first proposed, the sign + is supposed to 
be placed before the number 12. 

15. It will not be attended with any more difficulty if, in 
order to generalise these operations, we make use of letters 
instead &f real numbers. It is evident, for example, that 

a-b-c +d-e, 
signifies, that we have numoors expressed by a and d, and 
that from these numbers, or from their sum, we must sub
tract the numbers expressed by the letters b, c, e, whi~h 
have before them the sign -. 

16. Hence it is absolutely necessary to consider what 
sign is prefixed to each number, for in Algebra, simple 
quantities are numbers considered with regard to the signs 
which precede, or affect them. Further, we call those 
positive quantities, before which the sign + is found; and 
those are called negatitve quantities, which are affected by 
the sign-. 

17. The manner in which we generally calculate a per
son's property, is an apt illustration of what has just been 
said. For we denote what a man really possesses by posi
tive numbers, using, or understanding the sign +; whereas 
his debts are represented by negative numbers, or by nsing 
the sign -. Thus, when it is said of anyone that he has 
100 crowns, but owes 50, this means that his real posses
sion amounts to 100 - 50; or, which is the same thing, 
+ 100-50, that is to say, 50. 

18. Since negative numbers may be considered as debts, 
because positive numbers represent real possessions, we 
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may say that negative numbers are less than nothing, Thus, 
when a man has nothing of his own, and owes 50 crowns, 
it is certain that he has 50 crowns less than nothing; for 
if anyone were to make him a present of 50 crowns to pay 
his debts, he would still be only at the point nothing, 
though really richer than before. 

19. In the same manner, therefore, as positive numbers 
are incontestably greater than nothing, negative numbers 
are less than nothing. Now, we obtain positive numbers 
by adding 1 to 0, that is to say, 1 to nothing; and by con
tinuing always to increase thus from unity. This is the 
origin of the series ofnumbel's called natural numbers; the 
following being the leading tel'ms of this sCI'ies : 

0, + 1, +2, +3, +4, +5, +6, +7, +8, +9, + 10, 
and so on to infinity. 

But if, instead of continuing this series by successive ad
ditions, we continued it in the opposite direction, by per
petually subtracting unity, we should llave the following 
series of negative numbers: 

0, -1, -2, -3, -4, -5, -6, -7, -8, -9, -10, 
and so on to infiinty. 

20. All these numbers, whether positive or negative, 
have the known appellation of whole numbers, 01' integers, 
which consequently are either greater or less than nothing. 
We call them integers, to distinguish them from fractions, 
and from several other kinds of numbers of which we shall 
hereafter speak. For instance, 50 being greater by an en
tire unit than 49, it is easy to comprehend that there may 
be, between 49 and 50, an infinity of intermediate num
bers, all greater than 49, and yet all less than 50. We need 
only imagine two lines, one 50 feet, the other 49 feet long, 
and it is evident that an infinite number of lines may be 
drawn, all longer than 49 feet, and yet shorter than hO. 

21. It is of the utmost importance through the whole of 
Algebra, that a pl'ecise idea should be f(wmed of those ne
gative quantities, about which we have been speaking, I 
shall, however, content myself with remarking here, that 
all such expressions as 

+ 1 - 1, + 2 - 2, + 3 - 3, + 4 - 4, &c. 
are equal to 0, or nothing. And that 

+ 2 - 5 is equal to - 3 : 
for if a person has 2 crowns, and owes 5, he has not only 
nothing, but still owes 3 crowns. In the same manner, 

7 - 12 is equal to - 5, and 25 - 40 is equal to - 15. 
22. The same observations hold true, when, to make the 

expression more general, letters are used instead ofnumuel's; 
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thus 0, or nothing, will always be the value of + a - a; 
but if we wish to know the value of + a - b, two cases are 
to be considered. 

The first is when a is greater than b; b must then be 
subtracted from a, and the remainder (before which is 
placed, or understood to be placed, the sign +) shews the 
value sought. 

The second case is that in which a is less than b: here a 
is to be subtracted from b, and the remainder being made 
negative, by placing before it the sign -, will be the value 
sought. 

CHAPTER III. 

Of the Multiplication of Simple Quantities. 

23. When there are two or more equal numbers to be 
added together, the expression of their sum may be abridged: 
for example, 

a + a is the same with 2 x a, 
a + a + a .•......•. 3 x a, 
a + a + a + a . '" ... 4 X a, and so on, where x is the 

sign of multiplication. In this manner we may form an 
idea of multiplication; and it is to be observed that, 

2 x a signifies 2 times, or twice a, 
3 X a ...... 3 times, or thrice a, 
4 x a ...... 4 times a, &c. 

24. If therefol'e a number expressed by a lettel' is to be 
multiplied by any other number, we simply put that num
ber before the letter, thus :-

a multiplied by 20 is expressed by 20a, and 
b multiplied by 30 is expressed by 30b, &c. 

It is evident, also, that c taken once, or Ie, is the same as c. 
25. Further, it is extremely easy to multiply such pro-

ducts again by other numbers; for example, 
2 times, or twice 3a, makes 6a, 
3 times, or thrice 4b, makes 12b, 
5 times 7x makes 35;r, 

and these products may be still multiplied by other numbers 
at pleasure. 

26. When the number by which we are to multiply is 
also represented hya letter, we place it immediately befol'e 
tbe other letter; thus, in multiplying b by ll, tIle product is 
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written ab; and pq will be the product of the multiplica
tion of the number q by p. Also, if we multiply this pq 
again by a, we shall obtain apq. 

27. It may be further remarked here, that the order in 
which the letters al'e joined together is indifferent; thus 
ab is the same thing as ba; for b multiplied by a is the 
same as a multiplied by b. To understand this, we have 
only to substitute for a and b, known numbers, as 3 and 4, 
and the truth will be self-evident; for 3 times 4 is the 
same as 4 times 3. 

28. It will not be difficult to perceive, that when we sub
stitute numbers for letters joined together, in the manner we 
have described, they cannot be written in the same way by 
putting them one after the other. For, if we were to write 
34 for 3 times 4, we should have 34, and not 12. When 
therefore it is required to multiply common numbers, we 
must separate them by the sign X , or by a point: thus, 
3 x 4, or 3.4, signifies 3 times 4, that is, 12. So, 1 x 2 is 
equal to 2; and 1 x 2 x 3 makes 6. In like manner, 
1 x 2 x 3 x 4 x 56 makes 1344; and 1 x 2 x 3 x 4 x 5 x 
6 x 7 x 8 x 9 x 10 is equal to 3('328800, &c. 

29. In the same manner, we may discover the value of an 
expression of this form, 5.7 .8.abed. It shews that 5 must 
be multiplied by 7, and that this product is to be again 
multiplied by 8; that we are then to multiply this product 
of the three numbers by a, next by b, then bye, and lastly 
by d. It may be observed, also, that instead of 5.7.8, we 
may write its value, 280; for we obtain this number when 
we multiply 35 (the product of 5 by 7) by 8. 

30. The results which arise from the multiplication of 
two or mOI'e numbers are called products; and the num
bers, or individual letters, are called factors. 

3]. Hitherto we have considered only positive numbers; 
and there can be no doubt, but that the products which we 
have seen arise are positive also: viz. + a by + b must 
neces:;;arily give + abo But we must separately examine 
what the multiplication of + a by - b, and of - a by- b, 
will produce. 

32. Let us begin by multiplying - a by 3 or + 3. Now, 
since - a may be considered as a debt, it is evident that if 
we take that debt three times, it must thus become three 
times greater, and consequently the required product is 
- 3u. So if we multiply - a by + b, we shall obtain - ba, 
or, which is the same thing, - abo Hence, we conclude, 
that if a positive quantity be multiplied by a negative quan
tity, the product will bc negative,;' aBel it mny be laid down 
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as a rule, that + by + makes + or plus; and that, on the 
contrary, + by-, or - by +, gives - or minus. 

33. It remains to resolve the case in which - is multi
plied by - ; or, for example, - a by - b. It is evident, at 
first sight, with regard to the letters, that the product will 
be ab; but it is doubtful whether the sign +, or the sign -, 
is to be placed before it; aU we know is, that it must be 
one or the other of these signs. Now, I say that it cannot 
be the sign -; for - a by + b gives - an, and - a by - b 
cannot produce the same result as - a by + b; but must 
produce a contrary result, that is to say, + ab; conse
quently, we have the following rule: - multiplied by -
produces +, that is, the same as + multiplied by +.* 

<10 A further illustration of this rule is generally given by alge
braists as follows :-

First, we know that + a multiplied by + h gives the product 
+ ab; and if + a be multiplied by a quantity less than b,as b - c, 
the product must necessarily be less than ab; in short, from ab 
we must subtract the product of a, multiplied bye; hence 
a X (b - c) must be expressed by ab - ae; therefore it follows 
that a X - e gives the product- ae. 

If now we consider the product arising from the multiplication 
of the two quantities (a- b), and (e - d), we know that it is less 
than that of (a - b) X c, or of ae - be ; in short, from this pro
duct we must subtract that of (a-b) X d: but the product 
( a - b) X (e - d) becomes ac - be - ad, together with the pro
duct of - b X - d annexed; and the question is only what sign 
we must employ for this purpose, whether + or -. Now, we 
have seen that from the product ae - be we must subtract the 
product of (a - b) X d; that is, we must subtract a quantity less 
than ad. We have therefore subtracted already too much by 
the quantity bd; this product must therefore be added; that is, 
it must have the sign + prefixed; hence we see that - b X - d 
gives + bd for a product; or - minus multiplied by - minus 
gives + plus. See Art. 273, 274. 

Multiplication has been erroneously called a compendious 
method of performing addition; whereas it is the taking, or re
peating of one given number as many times as the number by 
which it is to be multiplied contains units. Thus, 9 X 3 means 
that 9 is to be taken 3 times; or, that the measure of multi plica
tion is 3; again 9 X t means that 9 is to be taken half a time, 
or that the measu~e of multiplication is t. In multiplication 
there are two factors, which are sometimes called the multipli
cand and the multiplier. These, it is evident, may reciprocally 
chang'e places, and the product will be still the same: for 
9 X 3=3 x 9, and 9 X t=t x 9. Hence it appears, that 
numbers may be diminished by multiplication, as well as in-
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34. The rules which we have explained are expressed 
more briefly, as follows:-

Like signs, multiplied together, give + ; unlike or con
trary signs give -. Thus, when it is required to multiply 
the following numbers; + a, - b, - c, + d; we have first 
+ a multiplied by - b, which makes - ab; this by - c, 
gives + abc; and this by + d, gives + abed. 

35. The difficulties with respect to the signs being re
moved, we have only to shew how to multiply numbers that 
are themselves products. Ifwe were, for instance, to mul
tiply the number ab by the number cd, the product would 
be abed, and it is obtained by multiplying first ab by c, and 
then the result of that multiplication hy d. Or, if we had 

creased in any given ratio; which is wholly inconsistent with 
the nature of addition; for 9 X t=4.t, 9 X t= 1,9 X ~h= 
T~O' &c. The same will be found true with respect to algebraic 
quantities; a X b = ab, - 9 X 3 = - 27, that is, 9 negative in
tegers multiplied by 3, or taken 3 times, are equal to - 27, be
cause the measure of multiplication is 3. In the same manner, 
by inverting the factors, 3 positive integers multiplied by - 9, 
or taken 9 times'negatively, must give the same result. There
fore a positive quantity taken negatively, or a negative quantity 
taken positively, gives a negative product. 

From these considerations we shall illustrate the present sub
ject in a different way, and endeavour to shew, that the product 
of two negative quantities must be positive. First, algebraic 
quantities may be considered as a series of numbers increasing 
in any ratio, on each side of nothing, to infinity. See Art. 19. 
Let us assume a small part only of such a series for the present 
purpose, in which the ratio is unity, and let us multiply every 
term of it by - 2. 

5, 4, 3, 2, 1, 0, -1, -2, -3, -4, -5, 
-2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, 

-10, -8, -6, -4, -2, 0, +2, +4, +6, +8, +10. 
Here, of course, we find the series inverted, and the ratio dou
bled. Further, in order to illustrate the subject, we may con
sider the ratio of a series of fractions between 1 and 0, as in
definitely small, till the last term being multiplied by -2, the 
product would be equal to 0. If, after this, the multiplier hav
ing passed the middle term 0, be multiplied into any negative 
term, however small, between ° and -1, on the other side of 
the series, the product, it is evident, must be positive, otherwise 
the series could not go on. Hence it appears, that the taking 
of a negative quantity negatively destroys the very property of 
negation, and is the conversion of negative'into positive numbers. 
So that if + X - = -, it necessarily-follows that - X - must 
give a contrary product, that is, +.' See Art. 176, 177. 
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to multiply 36 by 12; since 12 is equal to 3 times 4, we 
should only multiply 36 first by 3, and then the product 
108 by 4, in order to have the whole product of the mul
tiplication of 12 by 36, which is consequently 432. 

36. But if we wished to multiply 5ab by 3cd, we might 
write 3cd x 5ab. However, as in the present instance the 
order of the numbers to be multiplied is indifferent, it will 
be better, as is also the custom, to place the common num
bers before the letters, and to express the product thus: 
5 x 3abcd, or 15abcd; since 5 times 3 is 15. 

So if we had to multiply 12pqr by 7xy, we should obtain 
12 x 7pqrxy, or 84pqrxy. 

CHAPTER IV. 

Of the Nature of whole Numbers, or Integers, with 1'espect 
to their Factors. 

37. We have observed that a product is generated by 
the multiplication of two or more numbers together, and 
that these numbers are called factors. Thus, the numbers 
a, b, c, d, are the factors of the product abcd. 

38. If, therefore, we consider all whole numbers as pro
ducts of two or more numbers multiplied together, we shall 
soon find that some of them cannot result from such a mul
tiplication, and consequently have not any factors; while 
others may be the products of two or more numbers mul
tiplied together, and may consequently have two or more 
factors. Thus, 4 is produced by 2 x 2; 6 by 2 x 3; 8 by 
2 x 2 x 2; 27 by 3 x 3 x 3; and 10 by 2 x 5, &c. 

39. But, on the other hand, the numbers 2, 3, 5, 7, 11, 
13, 17, &c. cannot be represented in the same manner by 
factors, unless for that purpose we make use of unity, and 
represent 2, for instance, by 1 x 2. But the numbers 
which are multiplied by 1 remaining the same, it is not 
proper to reckon unity as a factor. 

All numbers, therefore, such as 2, 3,5,7, 11, 13, 17, 
&c. which cannot be represented by factors, are called 
simple, or prime numbers; whereas others, as 4,6,8,9, 10, 
12, 14, 15, 16, 18, &c. which may be represented by 
factors, are called composite num"Qers. 

40. Simple, or prime numbers deserve, therefore, parti-
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cular attention, since they do not result from the multi
plication of two or more numbers. It is also particularly 
worthy of observation, that if we write these numbers in 
succession as they follow each other, thus, 
2,3,5,7, 11, 13, 17, 19,23,29,31,37,41,43,47, &c .... 
we can trace no regular order; their increments being some
times gl'eater, sometimes less; and hitherto no one has been 
able to discover whether they follow any certain law or not. 

41. All composite numbers, which may be represented 
by factors, result from the prime numbers above-mentioned; 
that is to say, all their factors are prime numbers. For, if 
we find a factor which is not a prime number, it may always 
be decomposed and represented by two or more prime num-

• All the prime numbers from 1 to 100000 are to be found 
in the Tables of divisors, which I shall speak of in a succeeding 
note. But particular Tables of the prime numbers from 1 to 
101000 have been published at Halle, by M. Kruger, in a Ger
man work, entitled Thoughts on Algebra; M. Kruger had 
received them from a person called Peter Jaeger, who had cal
culated them. M. Lambert has continued these Tables as far as 
102000 and republished them in his supplements to the loga
rithmic and trigonometrical Tables, printed at Herlin in 1770; 
a work which contains likewise several Tables that are of great 
use in the different branches of mathematics, and explanations 
which it would be too long to enumerate here. 

The Royal Parisian Academy of Sciences is in possession of 
Tables of prime numbers, presented to it by P. Mercastel de 
l'Oratoire, and by M. du Tour; but they have not been pub
lished. They are spoken of in Vol. V. of the Foreign Memoirs, 
with a reference to a memoir, contained in that volume, by M. 
Rallier des Ourmes, Honorary Counsellor of the Presidial Court 
at Rennes, in which the author explains an easy method of 
finding prime numbers. 

In the same volume we find another method by M. Rallier des 
Ourmes, which is entitled, "A new Method for Division, when 
the Dividend is a Multiple of the Divisor, and may, therefore, be 
divided without a remainder; and for the Extraction of Roots 
when the Power is perfect." This method, more curious, in
deed, than useful, is almost totally different from the common 
one: it is very easy,. and has this singularity, that, provided we 
know as many figures on the right of the dividend, or the power, 
as there are to be in the quotient, or the root, we may pass over 
the figures which precede them, and thus obtain the quotient. 
M. Rallier des Ourmes was led to this new method by reflecting 
on the numbers terminating the numerical expressions of pro
ducts or powers, a species of numbers which I have remarked 
also, on other occasions, it would be useful to consider.-F. T. 
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bers. When we have represented, for instance, the number 
30 bv 5 x 6, it is evident that 6 not being a prime number, 
but being produced by 2 x 3, we might have represented 
30 by 5 x 2 x 3, or by 2'x 3 x 5; that is to say, by factors 
which are all prime numbers. 

42. If we now consider those composite numbers which 
may be resolved into prime factors, we shall observe a 
great difference among them; thus we shall find that some 
have only two factors, that others have three, and others 
a still greater number. We have ali'eady seen, for 
example, that 

4 is the same as 2 x 2, 6 is the same as 2 x 3, 
8 •••••••.. 2 x 2 X 2, 9 .•....... " 3 X 3, 

JO •••••••••• 2x5, 12 •••.•••• 2x3x2. 
14 •••..•.•.. 2 X 7, 15 .•.•..••. " 3 X 5, 
16 ••••. 2 X 2 x 2 X 2, and so on. 

43. Hence, it is easy to find a method for analysing any 
nunlber, or resolving it into its simple factors. I.et there 
be proposed, for instance, the number 360; we shall 
represent it first by 2 X 180. Now 180 is equal to 
2 X 90, and 

901 [2 X 45, 
45J' is the same as ,3 X 15, and lastly 
]5 L3 X 5. 

So that the number 360 may be represented by these 
simple factors, 2 X 2 X 2 X 3 x 3 x 5; since all these 
numbers multiplied together produce 360.* 

44. This shews, that prime numbers cannot be divided 
by other numbers; and, on the other hand, that the 
simple factors of compound numbers are found most con
veniently, and with the greatest certainty, by seeking the 
simple, or prime numbers, by which those compound 
numbers are divisible. But for this Division is necessary; 
we shall, therefore, explain the rules of that operation in 
the following chapter. 

... There is a table at the end of a German book of arithmetic, 
published at Leipsic, by Poetius, in 1728, in which all the num
bers from 1 to 10000 are represented in this manner by their 
simple factors.-F. T. 
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CHAPTER v. 

Of the Division of Simple Quantities. 

45. When a number is to be separated into two, three, or 
more equal parts, it is done by means of division, which 
enables us to determine the magnitude of one of those parts. 
When we wish, for example, to separate the number 12 
into three equal parts, w~ find by division that each of 
those parts is equal to 4. 

The following terms are made nse of in this operation. 
The number which is to be decompounded, or divided, is 
called the dividend; the number of equal parts sought is 
called the divisor; the magnitude of one of those parts, 
determined by the division, is called the quotient: thus, 
in the above example, 

12 is the dividend, 
3 is the divisor, and 
4 is the quotient. 

46. It follows from this, that if we divide a number by 2, 
or into two equal parts, one of those parts, or the quotient, 
taken twice, makes exactly the number proposed; and, in 
the same manner, if we have a number to divide by 3, the 
quotient taken thrice must give the same number again. 
In general, the multiplication of the quotient by the 
divisor must always reproduce the dividend. 

47. It is for this reason that division is said to be a rule, 
which teaches us to find a number or quotient, which, 
being multiplied by the divisor, will exactly produce the 
dividend. For example, if 35 is to be divided by 5, we 
seek for a number, which, multiplied by 5, will produce 
35. Now, this number is 7, since 5 times 7 is 35. The 
manner of expression employed in this reasoning is, 5 in 
35 goes 7 times; and 5 times 7 makes 35. 

48. The dividend, therefore, may be considered as a pro
duct, of which one of the factors is the divisor, and the other 
the quotient. Thus, supposing we have 63 to divide by 7, 
we endeavour to find such a product, that, taking 7 for 
one of its factors, the other factor multiplied by this may 
exactly give 63. Now 7 x 9 is such a product; and conse
quently 9 is the quotient obtained when we divide 63 by 7. 

49. In general, if we have to divide a number ab by a, 
it is evident that the quotient wiH be b; for a multiplied 



14 ELEMENTS SECT. I. 

by b gives the dividend abo It is clear also, that if we 
had to divide ab by b, the quotient would be a. And in 
all examples of division that can be proposed, if we divide 
the dividend by the quotient, we shall again obtain the 
divisor; for as 24 divided by 4 gives 6, so 24 divided by 6 
will give 4. 

50. As the whole operation consists in representing the 
dividend by two factors, of which one may be equal to the 
divisor, and the other to the quotient, the following 
examples will be easily understood. I say first that the 
dividend abc, divided by a, gives be; for a, multiplied 
by be, produces abe: in the same manner abc, being 
divided by b, we shall have ac; and abc, divided by ac, 
gives b. It is also plain, that 12 mn, divided by 3m, 
gives 4n; for 3m, multiplied by 4n, makes 12mn. But 
if this same number 12mn had been divided by 12, we 
should have obtained the quotient mn. 

51. Since every number a may be expressed by la, 
or a, it is evident that if we had to divide a, or la, by 1, 
the quotient would be the same number a. And, on the 
contrary, if the same number a, or la, is to be divided 
by a, the quotient will be 1. 

52. It often happens that we cannot represent the 
dividend as the product of t"I'O factors, of which one is 
equal to the divisor; hence, in this case, the division 
cannot be performed in the manner we have described. 

When we have, for example, 24 to divide by 7, it is at 
first sight obvious, that the number 7 is not a factor of 24 ; 
for the product of 7 X 3 is only 21, and consequently too 
small; and 7 x 4 makes 28, which is greater than 24. 
We discover, however, from this, that the quotient must 
be greater than 3, and less than 4. In order, therefore, to 
determine it exactly, we employ another species of num
bers, which are called fractions, and which we shall con
sider in one of the following chapters. 

53. Before we proceed to the use offractions, it is usual 
to be satisfied with the whole number which approaches 
nearest to the true quotient, but at the same time paying 
attention to the remainder which is left; thus we say, 7 in 
24 goes 3 times, and the remainder is 3, because 3 times 7 
produces only 21, which is 3 less than 24. We may also 
consider the following examples in the same manner: 

6)34(5, that is to say, the divisor is 6, the 
30 dividend 34, the quotient 5, and the 

4 remainder 4. 
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9)41(4, 
30 

here the divisor is 9, the dividend 41, 
the quotient 4, and the remainder 5. 

5 

The following rule is to be observed in examples where 
there is a remainder;-

54. Multiply the divisor hy the quotient, and to the 
product add the remainder, and the result will be the 
dividend. This is the method of proving the division, 
and of discovering whether the calculation is right or not. 
Thus, in the first of the two last examples, if we multiply 
6 by 5, and to the product 30 add the remainder 4, we 
obain 34, or the dividend. And, in the last example, 
if we nlUltiply the divisor 9 by the quotient 4, and to 
the product 36 add the remainder 5, we obtain the 
dividend 41. 

55. Lastly, it is necessary to remark here, with regard 
to the signs + plus and - minus, that if we divide + ab 
by + a, the quotient will be + b, which is evident. But 
if we divide + ab by - a, the quotient will be - b; be
cause - a X - b gives + abo If the dividend is - ab, 
and is to be divided by the divisor + a, the quotient will 
be - b; because it is - b which, multiplied by + a, 
makes - abo Lastly, if we have to divide the dividend 
- ab by the divisor - a, the quotient will be + b; for 
the dividend - ab is the product of - a by + b. 

56. With regard, therefore, to the signs + and -, 
division requires the same rules to be observed that we 
have seen take place in multiplication; viz. 

+ by + makes +; + by - makes - ; 
- by + makes -; - by - makes + : 

or, in few words, like signs give plus, and unlike signs 
give minus. 

57. Thus when we divide 18pq by - 3p, the quotient is 
- 6q. Further;-

- 30xy divided by + 6y gives - 5x, and 
- 54abc divided by - 9b gives + 6ac; 

for, in this last example, - 9b multiplied by + 6ac makes 
- 6 x 9abc, or - 54abc. But enough has been said on 
the division of simple quantities; we shall, therefore, 
hasten to the explanation of fractions, after having added 
some further remarks on the nature of numbers, with 
respect to their divisors. 
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CHAPTER VI. 

Of the Properties of Integers, with respect to theil' Divisors. 

58. As we have seen that some numbers are divisible 
by certain divisors, while others are not; it will be proper, 
in order to obtain a more particular knowledge of num
bers, that this difference should be carefully observed, 
both by distinguishing the numbers that are divisible by 
divisors from those which are not, and by considering the 
remainder that is left in the division of the latter. For 
this purpose, let us examine the divisors 

2,3,4,5,6,7,8,9, 10, &c. 
59. First, let the divisor be 2; the nUlUbers divisible 

by it are, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, &c. which, it 
appears, increase always by two. These numbers, as far 
as they can be continued, are called even numbers. But 
there are other numbers, viz. 

1,3,5,7,9, 11, 1:3, 15, 17, 19, &c. 
which are uniformly less or greater than the former 
by unity, and which cannot be divided by 2, without the 
remainder 1 ; these are called odd numbers. 

The even numbers may all be comprehended in the 
general expression 2a ; for they are all obtained by succes
sively substituting for a the integers 1,2, 3, 4, 5, 6, 7, &c. 
and hence it follows that the odd numbers are all compre
hended in the expression 2a + 1, because 2a + 1 is greater 
by unity than the even number 2a. . 

60. In the second place, let the number 3 be the 
divisor; the numbers divisible by it are, 

3, 6, 9, 12, 15, 18, 21, 24, 27, 30, and so on; 
which numbers may be represented by the expression 3a ; 
for 3a, divided by 3, gives the quotient a without a re
mainder. All other numbers which we would divide by 3, 
will give 1 or 2 for a remainder, and are consequently 
of two kinds. Those which after the division leave the 
remainder I, are, 

1, 4, 7, 10, 13, 16, 19, &c. 
and are contained in the expression 3a + 1.; but the other 
kind, where the numbers give the remainder 2, are, 

2,5,8, 11, 14, 17,20, &c. 
which may be generally represented by 3a + 2; so that 
all numbers may be expressed either by 3a, or by 3a + 1 ; 
or by 3a + 2. 
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61. Let us now suppose that 4 is the divisor under con
sideration; then the numbers which it divides are, 

4, 8, 12, 16, 20, 24, &c. 
which increase uniformly by 4, and are comprehended in 
the expression 4a. All other numbers, that is, those which 
are not divisible by 4, may either leave the remainder 1, 
or be greater than the former by 1; as, 

1,5,9, 13, 17,21,25, &c. 
and consequently may be comprehended in the expression 
4a + 1; or they may give the remainder 2; as, 

2, 6, 10, 14, 18, 22, 26, &c. 
and be expressed by 4a + 2 ; or, lastly, they may give the 
remainder 3; as, 

3, 7, 11, 15, 19, 23, 27, &c. 
and may then be represented by the expression 4a + 3. 

All possible integer numbers are contained, therefore, 
in one or other of these four expressions:-

4a, 4a + 1, 4a + 2, 4a + 3. 
62. It is also neady the same when the divisor is 5; 

for all numbers which can be divided by it are compre
hended in the expression 5a, and those which cannot be 
divided by 5 are reducible to one of the following ex
pressions :-

5a + 1, 5a + 2, 5a + 3, 5a + 4; 
and in the same manner we may continue, and consider 
any greater divisor. 

63. It is here proper to recollect what has been already 
said on the resolution of numbers into their simple factors; 
for every number, among the factors of which is found 

2, or 3, or 4, or 5, or 7, 
or any other number, will be divisible by those numbers. 
For example; 60 being equal to 2x 2 x 3 x 5, it is evi
dent that 60 is divisible by 2, and by 3, and by 5.* 

* There are some numbers which it is easy to perceive 
whether they are divisors of a given number or not. 

1. A given number is divisible by 2, if the last digit is even; 
it is divisible by 4, if the two last digits are divisible by 4; it is 
divisible by 8, if the three last digits are divisible by 8; and 
in general, it is divisible by 2", if the n last digits are divisible 
by 2". 

2. A number is divisible by 3, if the sum of the digits is 
divisible by 3; it may be divided by 6, if, beside this, the last 
digit is even; it is divisible by 9, if the sum of the digits may be 
divided by 9. 

3. Every number that has the last digit 0 or 5, is divisible 
by 5. 

C 
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64. Farther, as the general expression abed is not only 
divisible by a, and b, and e, and d, but also by 

ab, ae, ad, be, bd, cd, and by 
abc, abd, aed, bcd, and lastly by 
abed, that is to say, its own value; 

it follows that 60, or 2 x 2 x 3 x 5, may be divided not 
only by these simple numbers, but also by tholle which are 
composed of any two of them; that is to say, by 4, 6, 10, 
15: and also by those which are composed of any three of 
its simple factors; that is to say, by 12, 20, 30, and lastly 
also, by 60 itself. 

65. When, therefore, we have represented any number 
assumed at pleasure, by its simple factors, it will be very 
easy to exhibit all the numbers by which it is divisible. 
For we have only, first, to take the simple factors one by 
one, and then to multiply them together two by two, 

4. A number is divisible by 11, when the sum of the first, 
third, fifth, &c. digits is equal to the sum of the second, fourth, 
sixth, &c. digits. 

It would be easy to explain the reason of these rules, and to 
extend them to the products of the divisors which we have just 
now considered. Rules might be devised likewise for some 
other numbers, but the application of them would in general be 
longer than an actual trial of the division. 

For example, I say that the number 53704689213 is divisible 
by 7, because I find that the sum of the digits of the number 
64004245433 is divisible by 7: and this second number is formed, 
according to a very simple rule, from the remainders found after 
dividing the component parts of the former number by 7. 

Thus, 53704689213 = 50000000000 + 3000000000 + 
700000000 + 0 + 4000000 + 600000 + 80000 + 9000 + 200 
+ 10 + 3: which being, each of them, divided by 7, will leave 
the remainders 6, 4, 0, 0, 4, 2, 4, 5, 4, 3, 3, the number here 
given.-BERNOULLI. 

If a, b, e, d, e, &c. be the digits composing any number, the 
number itself may be expressed universally, thus: a + lOb + 
Ioee + I03d, + IOte, &c. to lO-z; where it is easy to perceive 
that, if each of the terms a, lOb, 1 02e, &c. be divisible by n, the 
number itself a + 10 b + IO~c, &c. will also be divisible by n. 

A d 'f a lOb I02e I h . d & .. n ,I -, --, --, &c. eave t e remam ers p, q, T, c. It IS 
n n n 

obvious, that a + lOb + Ioee, &c. will be divisible by n, when 
p + q + T, is divisible by n; which renders the principle of the 
rule sufficiently clear. 

The reader IS indebted to that excelleht mathematician, the 
late Professor Bonnycastle, for this-satisfactory illustration of 
M. Bernoulli's note. ' 
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three by three, four by four, &c. till we arrive at the 
number proposed. 

66. It must here be particularly observed that every 
number is divisible by 1; and also, that every number is 
divisible by itself; so that every number has at least two 
factors, or divisors, the number itself and unity: but every 
number which has no other divisor than these two, belongs 
to the class of numbers which we have before called simple, 
or prime number.~. 

Except these simple uumhers, all other numbers have, 
beside unity and themselves, other divisors, as may be 
seen from the following Table, in which are placed undcr 
each number aU its divisors.* 

TABLE. 

1~1~ 3 4 5 6 7 8 9 10 11\12 13 14 15 16 17 18 19 20 

I 1 1 1 I 1 1 1 1 I 1 1 I 1 I I I I 1 1 
'2 3 '2 5 '2 7 '2 3 211 213 2 3 217 '219 '2 

4 3 4 9 5 3 7 5 4 3 4 
'6 8 10 4 14 15 8 6 [) 

6 16 9 10 
12 18 201 

- - - - - - - - - - - - - - -- - - - - -
1 '2 2 3 2 4 2 4 3 4 2 6 2 4 4 5 2 6 2 6 

- - - - - - - I- - 1-- - - - - - - - - -
p. P.P. P. P. 1 P. P. P. P. 

67. Lastly, it ought to be observed that 0, or nothing, 
may be considered as a number which has the property of 
being divisible by all possible numbers; because by what
ever number, a, we divide 0, the quotient is always 0; for 
it must be remarked, that the multiplication of any num
ber by nothing produces nothing, and therefore 0 times a, 
or Oa, is O. 

* A similar Table for all the divisors of the natural numbers, 
from 1 to 10000, was published at Leyden, in 1767, by M. 
Henry Anjema. We have likewise another Table of divisors, 
which goes as far as 100000, but it gives only the least divisor 
of each number. It is to be found in Harris's Lexicon Tech
nicum, the EncycZopedie, and in M. Lambert's RecueiZ, which 
we have quoted in the note to p. II. In this last work, it is 
t~ontinued as far as 102000.-F. T .. 
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CHAPTER VII. 

Of Fractions in general. 

68. When a number, as 7, for instance, is said not to 
be divisible by another number, let us snppose by 3, this 
only means, that the quotient cannot be expressed by an 
integer number; but it must not by any means be thought 
that it is impossible to form an idea of that quotient. 
Only imagine a line of 7 feet in length; nobody can doubt 
the possibility of dividing this line into 3 equal parts, and 
of forming a notion of the length of one of those parts. 

69. Since, therefore, we may form a precise idea of the 
quotient obtained in similar cases, though that quotient 
may not be an integer number, this leads us to consider a 
particular species of numbers, called fractions, or broken 
numbers; of which the instance adduced furnishes an 
illustration. For if we have to divide 7 by 3, we easily 
conceive the quotient which should result, and express 
it by t; placing the divisor under the dividend, and 
separating the two numbers by a stroke or line. 

70. So, in general, when the number a is to be divided 

by the number b, we represent the quotient by i, and call 

this form of expression a fraction. We cannot, therefore, 

give a better idea of a fraction i, than by saying that it 

expresses the quotient resulting from the division of the 
upper number by the lower. We must remember, also, 
that in all fractions the lower number is called the deno
minator, and that above the line the numerator. 

71. In the above fraction~, which we read seven thirds, 
7 is the numerator, and 3 the denominator. We must 
also read t, two thirds; -t, three fourths; t, three eighths 
J:~' twelve hundredths; and t, one half, &c. 

72. In order to obtain a more perfect knowledge of the 
nature of fl'actions, we shall begin by considering the case, 
in which the numerator is equal to the denominator, as in 

a Now, since this expresses the quotient obtained by 
a 
dividing a by a, it is evident that this quotient is exactly 

unity, and that consequently the fraction ~ is of the same 
a 
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value as 1, or one integer; for the same reason, all the 
following fractions, 

%, 1, 1-, %, t, -t, -~-, &c. 
are equal to one another, each being equal to 1, or one 
integer. 

73. We have seen that a fl'action whose numerator is 
equal to the denominator, is equal to unity. All fractions, 
therefore, whose numerators are less than the denomina
tors, have a value less than unity: for if I have a number 
to divide by another, which is greater than itself, tho 
result must necessarily be less than 1. If we cut a liue 
for example, two feet long, into three equal parts, one of 
those parts will undoubtedly be shorter than a foot: it i~ 
evident then, that t is less than I, for the same reason; 
that is, the numerator 2 is less than the denominator 3. 

74. If the numerator, on the contrary, be greatel' than 
the denominator, the value of the fraction is greater than 
unity. Thus i is greater than 1, for t is equal to % together 
with t. Now, % is exactly I; consequently t is equal to 
1 + t, that is, to an integer and a half. In the same man ner, 
-} is equal to I-t. 1- to It, and t to 2t. And, in general, it 
is sufficient in snch cases to divide the upper number by 
the lower, and to add to the quotient a fraction, having 
the remainder for the numerator, and the divisol' for the 
denomillator. If the given fraction, for example, were tt, 
we should have for the quotient 3, and 7 for the remainder; 
whence we conclude that tt is the same as 3-h. 

75. Thus we see how fractions, whose numerators are 
greater than the denominators, are resolved into two mem
bel's; one of which is an integer, and the other a fractional 
number, having the numerator less than the denominator. 
Such fractions as contain one or more integers, are called 
improper fractions, to distinguish them from fractions 
properly so called, which, having the numerator less thall 
the denominator, are less than unity, or than an integer. 

76. The nature of fractions is frequently considered in 
another way, which may throw additional light on the 
subject. If, for example, we consider the fraction -t, it is 
evident that it is three times greater than -!-. Now, this 
fraction -t means, that if we divide 1 into 4 equal parts, 
this will be the value of one of those parts; it is obvious 
then, that by taking 3 of those parts we shall have the value 
of the fraction -to 

In the same manner we may consider every other frac
tion; for example, T\; if we divide unity into 12 equal parts, 
7 of those parts will be equal to the fraction proposed. 
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77. From this manner of considering fractions, the ex
pressions numerator and denominator al'e derived. For, as 
in the preceding fraction T~' the number under the line 
shews that 12 is the number of parts into which unity is to 
be divided; and as it may be said to denote, or name, the 
parts, it has not improperly been called the denominator. 

Farther, as the upper number, viz. 7, shews that, in 
order to have the value of the fraction, we must take, or 
collect, 7 of those parts, and therefore may be said to 
reckon or number them, it has been thought proper to 
call the number above the line the numerator. 

78. As it is easy to understand what 1- is, when we know 
the signification of -b we may consider the fractions whose 
numerator is unity, as the foundation of all others. Such 
are the fractions, 

t, -to t, ·h t, -h h 1/, -{-o, -IT' n, &c. 
and it is observable that these fractions go on continually 
diminishing: for the more you divide an integer, or the 
greater the number of parts into which you distribute it, 
the less does each of those parts become. Thus, Tio is 
less than T10; Trloo i.s less than Tio; and Toioo is less than 
1:0100' &c. 

79. As we have seen that the more we increase the 
oenominator of such fractions the less their values become, 
it may be asked, whether it is not possible to make the 
denominator so great that the fraction shall be reduced to 
nothing? I answel', No; for into whatever number of 
parts unity (the length of a foot, for instance) is divided; 
let those parts be ever so small, they still preserve a 
certain magnitude, and, therefore, can never be absolutely 
reduced to nothing. 

80. It is true, if we divide the length of a foot into 1000 
parts, those parts will not easily fall undel' the cognisance 
of our ~enses; but view them through a good microscope, 
and each of them will appear large enough to be still sub
divided into 100 parts, and more. 

At present, however, we have nothing to do with what 
depends on ourselves, or with what we are really capable of 
performing, and what our eyes can perceive; the question 
is rather what is possible in itself: and, in this sense, it is 
certain, that, howerer great we suppose the denominator, 
the fraction will never entirely vanish, or become equal to O. 

81. We can never, therefore, arrive completely at 0, or 
nothing, however great the denominator may be; and, con
sequently, as those fractions must always preserve a cer
tain quantity, we may continue the series offractions in the 
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78th article without interruption. This circumstance has 
introduced the expl'ession, that the denominator must be 
infinite, or infinitely great, in order that the fraction may 
be reduced to 0, or to nothing; hence the word infinite 
in reality signifies here, that we can never arrive at the 
end of the series of the above-mentioned fractions. 

82. To express this idea, according to the sense of it 
above-mentioned, we make use of the sign 00 , which con
sequentlyindicates a number infinitely great; and we may 
therefore say, that this fraction {;; is in reality nothing; 
because a fraction cannot be reduced to nothing, until the 
denominator has been increased to infinity. 

83. It is the more necessary to pay attention to this 
idea of infinity, as it is derived from the first elements of 
our knowledge, and as it will be of the greatest importance 
in the following part of this treatise. 

We may here deduce from it a few consequences that 
are extremely curious, and worthy ofattentiOI1. The frac
tion -Ix; represents the quotient resulting fmm the division 
of the dividend I by the divisor 00. Now, we know, that 
if we divide the dividend 1 by the quotient -{;;, which is 
equal to nothing, we obtain again the divisor 00 : hence, 
we acquire a new idea of infinity; and learn that it arises 
from the division of 1 by 0; so that we are thence autho
rised in saying, that 1 divided by 0 expresses a number 
infinitely great, or 00 • 

84. It may be necessary also, in this place, to correct 
the mistake of those who assert, that a number infinitely 
great is not susceptible of increase. This opinion is incon
sistent with the just principles which we have laid down; 
for! signifying a number infinitely great, and .g. being 
incontestably the double of !, it is evident that a number, 
though infinitely great, may still become twice, thrice, or 
any number of times greater.'" 

'" There appears to be a fallacy in this reasoning, which con
sists in taking the sign of infinity for infinity itself, and in apply
ing the property of fractions in general to a fractional expression, 
whose denominator bears no assignable relation to unity. It is 
certain, that infinity may be represented by a series of units (that 

is, by ! = _1_ = 1 + 1 + 1, &c.), or by a series of numbers 
1-1 

increasing in any given ratio. Now, though any definite part 
of one infinite series may be the half, the third, &c. of a definite 
part of another, yet still that paIt bears no proportion to the 
whole, and the 8eries can only be said, in that case, to go on 
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CHAPTER VIII. 

Of tlte Properties of Fractions. 

85. We have already seen, that each of the fractions, 
t, t, t, t, i, t, t, &c. 

makes an integer, and that consequently they are all equal 
to one another. The same equality prevails in the fol
lowing fractions. 

t, t, t, t, 1.1', 'i, &c. 
each of them making two integers; for the numerator of 
each, divided by its denominator, gives 2. So all the fractions 

t, t, t, tj, II, \8, &c. 
are equal to one another, since 3 is their common value. 

86. We may likewise represent the value of any frac
tion in an infinite variety of ways. For if we multiply 
both the numerator and the denominator of a fraction by 
the same number, which may be assumed at pleasure, this 
fraction wilI still preserve the same value. For this 
reason, all the fractions 

t, t, t, t, 10, T\' T"4, T\' -ts' {t, &c. 
are equal, the value of each. being t. Also, 

t, %, t, T\' -h, -fa, iT, -h, -;", ts-, &c. 
are equal fractions, the value of each being i. The fractions 

t, -t, T\' H, ti, tt. ]t, &c. 
have likewise all the same value. Hence we may conclnde, 

in general, that the fraction i may be represented by any 

of the following expressions, each of which is equal to i; viz. 

to infinity in a different ratio. But, farther, ~, or any other 
numerator, having 0 for its denominator, is, when expanded, 
precisely the same as ct. 

Thus, ! = 2~2' by division becomes 

2-2)2 (1 + 1 + 1, &c. ad infinitum. 
2-2 

2 
2-2 

2 
2-2 

2, &c. 
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a 2a 3a 4a 5a 6a 7a 
b'2b'3b'4b'5b'6b'7b'&c. 
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87. To be convinced of this, we have only to write for the 

value of the fraction ~ a certain letter c, representing by 

this letter c the quotient of the division of a by b; and to 
recollect that the multiplication of the quotient c by the 
divisor b must give the dividend. For since c multiplied by 
b gives a, it is evident that c multiplied by 2b will give 2a, 
that c multiplied by 3b will give 3a, and that, in general, c 
multiplied by mb will give ma. Now, changing this into an 
example of division, and dividing the product ma by mb, 
one of the factors, the quotient must be equal to the other 
factor c; but ma divided by mb gives also the fraction 

::' which is consequently equalto c; and this is what was 

to be proved: for c having been assumed as the value of the 

fraction i, it is evident that this fraction is equal to the 

fraction :~, whatever be the value of m. 

88. We have seen that every fraction may be represented 
in an infinite number of forms, each of which contains the 
same value; and it is evident that of all these forms, that 
which is composed of the least numbers will be most easily 
understood. For example, we may substitute, instead of 
t, the following fractions, 

t, f, T\' H, H, &c. 
but of all these expressions t is that of which it is easiest to 
form an idea. Here, therefore, a problem arises, how a 
fraction, such as T\' which is not expressed by the least 
possible numbers, may be reduced to its simplest form, or to 
its least terms; that is to say, in our present example, to t. 

89. It will be easy to resolve this problem, if we consider 
that a fraction still preserves its value, when we multiply 
both its terms, or its numerator and denominator, by the 
same number. For from this it also follows, that if we 
divide the numerator and denominator ofa fraction by the 
same number, the fraction will still preserve the same value. 
This is made more evident by means of the general ex-

pression :~; for if we divide both the numerator ma and 

the denominator mb by the number m, we obtain the fraction 

};' which, as was before proved, is equal to :~. 
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90. In order therefore to reduce a given fraction to its 
least terms, it is required to find a number, by which both 
the numerator and denominatol' may be divided, Such a 
number is called a common divisor; and as long as we can 
find a common divisor to the numerator and the denomi
nator, it is certain that the fraction may be reduced to a 
lower form; but, on the contrary, when we see that, ex
cept unity, no other common divisor can be found, this 
shews that the fraction is already in its simplest form. 

91. To make this more clear, let us consider the fraction 
T'*-!o , We see immediately that both the terms are divisible 
by 2, and that there results the fraction -H-; which may also 
be divided by 2, and reduced to H; and as this likewise 
has 2 for a common divisor, it is evident that it may be re
duced to T6-S' But now we easily perceive, that the nume
rator and denominator are still divisible by 3; performing 
this division, therefore, we obtain the fraction f, which is 
equal to the fraction proposed, and gives the simplest ex
pression to which it can be reduced; for 2 and 5 have no 
common divisor but I, which cannot diminish these numbers 
any farther. 

92. This property of fractions p"eserving an invariable 
value, whether we divide or multiply the numerator and 
denominator by the same number, is of the greatest import
ance, and is the principal foundation of the doctrine of 
fractions. For example, 'we can seldom add together two 
fractions, or subtract the one from the other, before we 
have, by means of this property, reduced them to other 
forms; that is to say, to expressions whose denominators 
are equal. Of this we shall treat in the followin~' chapter. 

93. We will conclude the present, however, by remark
ing, that all whole numbers may also be represented by 
fractions. For example, 6 is the same as 1, because 6 
divided by I makes 6; we may also, in the same manner, 
express the numbe]' 6 by the f!'actions \2, If, V, :Jl, and 
an infinite number of others, which have the same value. 

QUESTIONS FOR I'RACTlCE. 

C:l'+x2 • x 
1. Reduce 0 2 to ItS lowest terms. Ans. -n. 

ca- + a x a-
x 3 - b~x x 2 -bx 

2. Reduce -----.--- toitslowestterrns. Ans. ---. 
x2 + 2bx + b2 x + b 

X4_ 64 • x 2 +b~ 
:_L Reduce .5 b2 3 to Its IOWl~8t terms. A. liS. --3-' 

X - X X 
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x2_y'1. 
4. Reduce -4--4 to its lowest terms. 

x -y 

27 

1 
Ans. -z--n,' x +y~ 

a4_x4 • 
5. Reduce 3 2 2 3 to Its lowest terms. 

a -a x-ax +x 
a2 +x2 

Ans. --. 
a-x 

5a5+ lOa4x + 5a3x '1. . 
6. Reduce 3 2 2 2 2 3 4. to Its lowest terms. 

a x+ a x + ax +x 

CHAPTER IX. 

Of the Addition and Subtraction of Fractions. 

94. When fractions have equal denominators, there is no 
difficulty in adding and subtracting them; for t + 4- is 
equal to 4, and t - t is equal to f. In this case, therefore, 
either for addition or subtraction, we alter only the numew 

rators, and place the common denominator under the line, 
thus: 

T%O + Th - ilo - TVo + -fio is equal to T%o; 
H -10 - H + H is equal to H, or -H ; 
H - io - -H + H is equal to H. or t ; 

also t + % is equal to t, or I, that is to say, an integer; and 
i - i- + {- is equal to~, that is to say, nothing, or O. 

95. But when fractions have not equal denominators, we 
can always change them into other fractions that have the 
same denominator. For example, when it is proposed to 
add together the fractions t and t, we must consider that t 
is the same as i, and that t is equivalent to -i-; we have 
therefore, instead of the two fractions proposed, i + %' the 
sum of which is i. And if the two fractions were united 
by the sign minus, as t - t, we should have i - -i-, 01' t. 

As another example, let the fractions proposed be i- + i. 
Here, since t is the same as t, this value may be substituted 
for i-, and we may then say -% + i makes Ii, or 1%. 

Suppose farther, that the sum of t and -t were required, I 
say that it is T\; for t = i\, and -t ='T~: thereforeq \ + 
T\=T~' , 

96. We may have a great.er number of fractions to reduce 
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to a common denominator; for example, t, t, i, t. i. In 
this case, the whole depends on finding a number that shall 
be divisible by all the denominators of those fractions. In 
this instance, 60 is the number which has that property, and 
which consequently becomes the common denominator. We 
shall therefore have -H, instead oft; ~&, instead oft; H. 
instead of i; -U, instead of 1-; and i&, instead of i. If 
now it be required to add together all these fractions. -H, 
1-&, H, -H, and i&; we have only to add all the numera
tors, and under the sum place the common denominator 
60; that is to say, we shall have ~C!, or 3 integers, and 
the fractional remainder, i~, or -H. 

97. The whole of this operation consists, as we before 
stated, in changing fractions, whose denominators are un
equal, into others whose denominators are equal. In order, 

therefore, to perform it generally, let i and ~ be the frac

tions proposed. First, multiply the two terms of the 

first fraction by d, and we shall have the fraction ~~ equal 

to i; next multiply the two tel'ms of the second fraction 

by b, and we shall have an equivalent value of it expressed 

by :~; thus the two denominators are become equal. Now, 

if the sum of the two proposed fractions be required, we 
. d" I h ". ad + be d"f h " d"f. may Imme Iate y answel' t at It IS ~; an I t CIr 1-

ference be asked, we say that it is ad~be. If the fractions 

i and i, for example, were proposed, we should obtain in 
their stead, Hand 4-t; of which the sum is Ifi, and the 
difference tt"* 

98. To this part of the subject belongs also the question, 
Of two proposed fractions which is the greater or the less? 

'It The rule for reducing fractions to a common denominator 
may be concisely expressed thus :-Multiply each numerator 
into every denominator except its own, for a new numerator, and 
all the denominators together for a common denominator. 
When this operation has been performed, it will appear, that the 
numerator and denominator of each fraction have been multiplied 
by the same quantity, and consequently, that the fractions retain 
the same value" 
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for, to resolve this, we have only to reduce the two fractions 
to the same denominator. Let us take, for example, the 
two fractions 1- and i-; when reduced to the same denomi
nator, the first becomes it, and the second tf. where it is 
evident that the second, or t, is t.he greater, and exceeds 
the former by +r. 

Again, if the fractions J and i be proposed, we shall 
have to substitute for thp.m Hand H; whence we may 
conclude, that -i exceeds t, but only by -to' 

99. When it is required to subtract a fraction from an 
integer, it is sufficient to change one of the units of that 
integer into a fraction, which has the same denominator as 
that which is to be subtracted; then in the rest of the ope
ration there is no difficulty. lfit be required, for example, 
to subtract t from 1, we write t instead of 1, and say that 
t taken from t leaves the remainder t. So -f--2 subtracted 
from 1, or -H-, leaves 12. 

If it were required to subtract t from 2, we should write 
,. x -t instead of 2, and should then immediately see that 
after the subtraction there must remain Ii. 

100. It happens also sometimes, that having added two 
or more fractions together, we obtain more than an inte
ger; that is to say, a numerator greater than the denomi
nator: this is a case which has already occurred, and 
deserves attention. 

We found, for example [Article 96], that the sum of the 
five fractions t, t, t, t, and i, was 2..lc?, and remarked, that 
the value of this sum was 3-H, or 3H. Likewise'1- + -t, or 
-h + -h, makes -it, or IT%-' We have therefore only to 
perform the actual division of the numerator by the deno
minator, to see how many integers there are for the quotient, 
and to set down the remainder. 

N early the same must be done to add together numbers 
compounded of integers and fractions; we first add the 
fractions, and if the sum produces one or more integers, 
these are added to the other integers. If it be proposed, 
for example, to add 3t and 2t; we first take the sum of 
t and 1-, or of i- and ,*", which is -I-, or It; and thus we 
find the total sum to be 6t. 

QUESTIONS FOR PRACTICE. 

1. Reduce 2x and ~ to a common denominator. 
a c 

2cx ab Ans. - and-. 
ac ac 
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a a+b . 
2. Reduce band -c- to a common denommator. 

ac ab+b'l. 
Ans. be and --riC' 

3. Reduce ;:' ;!, and d to fractions having a common 

A 9cx 4ab d 6acd 
denominator. ns. 6ac' 6ae' an 6ac' 

32x 2x . 
4. Reduce 4':3"' anda+a- to a common denommator. 

9a Sax 12a2 + 24x 
Ans. 12a' 12a' and 12a . 

1 a2 x2+a2 . 
5. Reduce -2' 3' and -- to a common denomlllator. 

x+a 
A. 3x + 3a 2a2x + 2a3 6x2 + 6a2 

ns. 6x+6ti' 6x+6a' 6x+6a' 

6. Reduce 2b2' 2e , and':!. to a common denominator. a a a 
2a2b 2a3c 4a3d b ae 2ad 

Ans. 4a4 ' 4a4 ' and 4a4 ; or 2a2' 2a2' and 2a2 • 

CHAPTER X. 

OJ tke Multiplication and Division of Fractions. 

101. The rule for the multiplication of a fraction by an 
integer, or whole number, is to multiply the numerator 
only by the given number, and not to change the denomi
nator: thus, 

2 times, or twice t makes t, or 1 integer; 
2 times, or twice t makes t; and 
3 times, or thrice t makes i, or t ; 
4 times -Ii makes -H, or 1"1\' or It· 

But, instead of this rule, we may use that of dividing the 
denominator by the given integer, which is preferable when 
it can be done, because it shortens the operation. Let it be 
required, for example, to multiply t by 3; if we multiply 
the numerator by the given int6ger we obtain y, which 
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product we must reduce to t. But if we do not change the 
numerator, and divide the denominator by the integer, we 
find immediately t, or 2t, for the given product; and, in 
the same manner, -H- multiplied by 6 gives 1.(, or 3i-. 

102. In general, therefore, the product ofthe multiplica-

tion of a fraction i by c is ~c; and here it may be re-

marked, when the integer is exactly equal to the denomi
nator, that the product must be equal to the numerator. 

{
t taken twice, gives 1 ; 

So that t taken thrice, gives 2 ; 
-t taken four times, gives 3. 

And, in general, if we multiply the fraction ;by the 

number b, the product must be a, as we have already shewn; 

for since i expresses the quotient resulting from the di-

vision of the dividend a by the divisor b, and because it has 
been demonstrated that the quotient multiplied by the divi-

sor will give the dividend, it is evident that ~multiplied by 

b must produce a. 
103. Having thus shewn how a fraction is to be mul

tiplied by an integer, let us now consider also how a frac
tion is to be divided by an integer. This inquiry is neces
sary, before we proceed to the multiplication of fractions 
by fractions. It is evident, if we have to divide the frac
tion t by 2, that the result must be t; and that the quo
tient of t divided by 3 is -to The rule therefore is, to 
divide the numerator by the integer without changing the 
denominator. Thus: 

tt divided by 2 gives is-; 
tt divided by 3 gives n; and 
it divided by 4 gives is, &c. 

104. This rule may be easily practised, provided the 
numerator be divisible by the number proposed; but very 
often it is not: it must therefore be observed, that a frac
tion may be transformed into an infinite number of other 
expressions, and in that number there must be some, by 
which the numerator might be divided by the given inte
ger. If it were required, for example, to divide -t by 2, 
we should change the fraction into i, and then dividing 
the numerator by 2, we should immediately have t for the 
quotient sought. 
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In general, if it be proposed to divide the fraction i 
by c, we change it into :~, and then dividing the nume

rator ac by c, write :c for the quotient sought. 

105. When therefore a fraction ~ is to be divided by an 

integer c, we have only to multiply the denominator by that 
number, and leave the numerator as it is. Thus i dIvided 
by 3 gives -h, and ..f.r; divided by 5 gives -/1)' 

This operation becomes easier, when the numerator 
itself is divisible by the integer, as we have supposed in 
article 103. For example, n divided by 3 would give, 
according to our last rule, 18; but by the first rule, which 
is applicable here, we obtain -h, an expression equivalent 
to -n, but more simple. 

I 06. We shall now be able to understand how one fraction 

i may be multiplied by another fraction ~. For this pur-

pose, we have only to consider that ~ means that c is di

vided by d; and on this principle we shall first multiply the 

fraction i by c, which produces the result ~c; after which 

we shall divide by d, which gives ;~. 
Hence the following rule for multiplying fractions. Mul

tiply the numerators together for a numerator, and the de
nominators together for a denominator. 

Thus t by i gives the product -i, 01' t; 
t by -} makes -h ; 
i by -h produces -H, or -h; &c. 

107. It now remains to shew how one fraction may be 
divided by another. Here we remark first, that jfthe two 
fractions have the same number for a denominator, the 
division takes place only with respect to the numerators; 
for it is evident, that -h are contained as many times in-h 
as 3 is contained in 9, that is to say, three times; and, in 
the same manner, in order to divide -h by T\' we have 
only to divide 8 by 9, which gives i. We shall also 
have /1) in }!, 3 times; Th in TV1), 7 times; -h in -IE' l, 
&c. 

108. Butwhen the fractions bave not equal denominators, 
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we must have recourse to the method already mentioned for 
reducing them to a common denominatol'. Let there be, 

for example, the fraction ~ to be divided by the fraction 

e it We first reduce them to the same denominator, and 

thel'e results ~~ to be divided by ~~; it is now evident that 

the quotient must be represented simply by the division of 

ad by be; which gives ~:. 
Hence the following rule: Multiply the numerator of 

the dividend by the denominator of the divisor, and the 
denominator of the dividend by the numerator of the 
divisor; then the first product will be the numerator of 
the quotient, and the second will be its denominator'. 

109. Applying this rule to the division of % by -to we 
shall have the quotient -H'; also the division of t by t will 
give t. or t. or It; and H by i will give -H&, or %. 

110. This rule for division is often expressed in a manner 
that is more easily remembered, as follows: - Invert the 
terms of the divisor, so that the denominator may be in the 
place of the numerator, and the lattel' be written under the 
line; then multiply the fraction, which is the dividend by 
this imerted fraction. and the product will be the quo
tient sought. Thus, t divided by t is the same as t mul
tiplied by t, which makes -~, or 1+. Also % divided by -tis 
the same as % multiplied by t, which is H; or H divided 
by i gives the same as H multiplied by *. the product of 
which is ill, or %. 

We see then, in general, that to divide by the fraction 
t is the same as to multiply by t. or 2; and that dividing 
by t amounts to multiplying by f, or by 3, &c. 

Ill. The number 100 divided by t will give 200; and 
1000 divided by t will give 3000. Farther, if it were re
quired to divide 1 by TO~' the quotient would be 1000; 
and dividing 1 by 1001000' the quotient is 100000. This 
enables us to conceive that, when any number is divided by 
0, the result must be a number indefinitely great; for even 
the division of 1 by the small fraction 10000100000 gives 
for the quotient the very great number 1000000000. 

112. Every number, when divided by itself, producing 
unity, it is evident that a fraction divided by itself must also 
give 1 for the quotient; and the same follows from our rule: 

D 
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for, in order to divide 1- by {-, we must multiply 1- by 1, in 
which case we obtain t%-, or I; and if it be required 'to 

divide ~ by~, we multiply ~ by ~; where the product 

:~ is also equal to 1. 

II 3. We have still to explain an expression which is 
frequently used. It may be asked, for example, what is 
the half of {- ? This means, that we must multiply -t by t. 
So likewise, if the value of t of i were required, we 
should multiply i by t, which produces 11; and {- of 1.7; 
is the same as 1% multiplied by {-, which produces -H. 

114. Lastly, we must here observe, with respect to the 
signs + and -, the same rules that we before laid down 
for integers. Thus, + t multiplied by - t, makes -!; 
and - t multiplied by - t, gives + T\· Farther, - i 
divided by + t, gives - H; and - -t divided by - -!, 
gives + H, or + I. 

QUESTIONS FOR PRACTICE. 

1. Required the product of~ and ~x. Ans. ~;. 
· x 4x lOx 4x3 

2. ReqUIred the product of 2' 5 and 21' Ans'N' 

· x x+a x2 +ax 3. ReqUIred the product of- and --. Ans. -2--' 
a a+c a +ac 

· 3x d 3a A 9ax 4. ReqUIred the product of"2 an b' ns. U· 
2x 3x2 3x3 

5. Required the product of [) and 2a' Ans. 5a' 

· 2x 3ab 3ac 
6. ReqUIred the product of a' c' and 2b-' Ans.9ax. 

7. Required the product of b + bx and~. 
a x ab+br 

Ans.---. 
x 

.1,2- b2 r2 + b2 

8. Required the product of-b- and -b--' 
c +c 

x4_b4 

Ans. b2c+bcZ' 
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. x+l x-I 
9. ReqUIred the product of x, --, and --b' 

a a+ 
x 3 -x 

Ans·-2--b· a +a 

10. Required the quotient of ~ divided by 2;. Ans. It. 

II. Requil'ed the quotient of 2; divided by ~. 
ad 

Ans. 2bc' 

12 R . d h . f x+a d' 'd db x+b · eqUlre t e quotxent 0 2 2b IVI e y -5--' 'x- x+a 
5x2 +6ax+a2 

Ans. 2x2 _2b2 • 

13. Required the quotient of ;X2 3 divided by-=-. 
a +x x+a 

2X2 + 2ax 
Ans. 3 3' 

x +a' 

14 R . d h . f 7x d· 'd db 12 A 91x • eqUlre t e quotIent 0 [) IVI e y 13' ns. 60 . 

15. Required the quotient of 4:( divided by 5x. Ans. :~. 
16 R . d h . fX+l d' 'd db 2x · eqUlre t e quotient 0 -6- IVI e y 3' 

x+I 
Ans. 4x' 

17 R . dh . fx-bd"ddb 3cx · eqUlre t e quotIent 0 8cd IVI e y 4d' 

18. Required the quotient 

x2+bx 
x-b' 

x-b 
Ans'-62 • cx 

x4-b' 
of x2-2bx+b2 divided by 

b2 
Ans. x +-. x 
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CHAPTER XI. 

Of Square Numbers. 

115. The product of a number, when multiplied by 
itself, is called a square; and, for this reason, the number, 
considered in relation to such a product, is called a square 
root. FOI' example, when we multiply 12 by 12, the 
product 144 is a square, of which the root is 12. 

The origin of this term is borrowed from geometry, 
which teaches us that the contents of a square are found 
by multiplying its side by itself. 

I] 6. Square numbers are found, therefore, by multipli
cation; that is to say, by multiplying the root by itself: 
thus, 1 is the square of!, since I multiplied by I makes 1 ; 
likewise, 4 is the square of 2; and 9 the square of' 3; 
2 also is the root of 4, and 3 is the root of 9. 

We shall begin by considering the squares of natural 
numbers; and for this purpose shall give the following 
small Table, on the first line of which several numbers, or 
roots, are ranged, and on the second their squares.* 

I ::::::~'1+1;1~1~1~1~1~16;1~\~1~11~1f:g1 
117. Here it will be readily perceived that the sel'ies of 

square- numbers thus arranged has a singular property; 
namely, that if each of them be subtracted from that which 
immediately follows, the remainders always incl'ease by 2, 
and form this series; 

3,5,7,9,11,13,15,17,19,21, &c. 
which is that of the odd numbers. 

118. The squares of fractions are found in the same 
manner, by multiplying any given fraction by itself. For 
example, the square of t is ·to 

'* We have very complete Tables for the squares of natural 
numbers, published under the title Tetragonometria Tabularia, 
&c. Auct. J. Jobo Ludolfo, Amstelodami, 1690, in 4to. These 
Tables are continued from 1 to 100000, not only for finding 
those squares, but also the products of any two numbers less 
than 100000; not to mention several other uses, which are 
explained in the introduction to the work.-F. T. 
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(

-l' ~. 
3 g, 

..2.. ..4..-
The square of 1 J is.:i.:.. 

4 16 , 

'~ 17;, &c. 
We have only, therefore, to divide the square of the 

nnmerator by the square of the denominator, and 1he 
fraction which expresses that division will be the square 
of the given fmction; thus, %1 is the square of %; and 
recipl'ocall y, % is the root of H. 

119. When the square ofa mixed number, or a number 
composed of an integer and a fraction, is required, we have 
only to reduce it to a single fraction, and then take the 
square of that fmction. Let it be required, for example, 
to find the square of 21-; we first express this mixed num
ber by t, and taking the square of that fraction, we have 
¥, 01' 6t, for the value of the square of 2t. Also to 
obtain the square of :3t, we say 3t is equal to Ll; there
fore its square is equal to V'-!, or to 10T\. The squares 
of the numbers between 3 and 4, supposing them to in
crease by one fourth, are as follow:-

I :::~::.s·I~I~I~I~I~1 
From this small Table we may infer, that if a root con

tain a fraction, its square also contains one. Let the root, 
for example, be l-i\·; its square is f-H-, or 2T h·; that is to 
say, a little greater than the integer 2. 

120. Let us now proceed to general expressions. First, 
when the root is a, the square mllst be aa; if the root be 
2a, the square is 4aa; which shews that by doubling the 
root, the square becomes 4 times greater; also, if the root 
be 3a, the square is 9aa; and if the root be 4a, the square 
is 16aa. Farther, if the root be ab, the square is aabb; 
and if the root be abc, the square is aabbcc; or a2b2c2 • 

121. Thus, when the root is composed of two, or more 
factors, we multiply their squares together; and, reci
procally, if a square be composed of two, or more factors, 
ofwhich each is a square, we have only to multiply together 
the roots of those squares, to obtain the complete root of 
the square proposed. Thus, 2:304 is equal to 4 x 16 x 36, 
the square root of which is 2 x 4 x 6, or 48; and 48 is 
found to be the true square root of 2304, because 48 x 48 
gives 2:304. 

122 Let us now consider what rnnst be observed 011 this 
subject with regard to the signs + and First, it is 
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evident that if the root have the sign +, that is to say, if 
it be a positive number, its square must necessarily be a 
positive number also, because + multiplied by + makes 
+ : hence the square of + a will be + aa: but if the root 
be a negative number, as -a, the square is still positive, 
for it is + aa. We may therefore conclude, that + aa 
is the square both of + a and of - a, and ·that, conse
quently, every square has two 1'00ts, one positive and the 
other negative. The square 1'00t of 25, for example, is 
both + 5 and - 5, because - 5 multiplied by - 5 gives 
25, as well as + 5 by + 5. 

CHAPTER XII. 

Of Square roots, and of Irrational Numbers resulting 
from them. 

123. What we have said in the preceding chapter 
amounts to this; that the square root of a given number 
is that number whose square is equal to the given num
bel'; and that we may put before those roots either the 
positive 01' the negative sign. 

124. So that when a square number is given, provided 
we retain in our memory a sufficient number of square 
numbers, it is easy to find its root. If 196, for example, 
be the given number, we know that its square root is 14. 

Fractions, likewise, are easily managed in the same way. 
It is evident, for example, that + is the square root of H·; 
to be convinced of which, we have only to take the square 
root of the numerator and that of the denominator. 

If the number proposed be a mixed number, as 12t, we 
reduce it to a single fraction, which, in this case, will be 4.j ; 
and from this we immediately perceive that t, or at, must 
be the square root of 12t. 

125. But when the given number is not a square, as 12, 
for example, it is not possible to extract its square root; or 
to find a number, which, multiplied by itself, will give the 
product 12. We know, however, that the square root of 12 
must be greater than 3, because 3 x 3 produces only 9; 
and less than 4, becanse 4 x 4 produces 16, which is more 
than 12; we know also, tlIat this root is less than 3t, for we 
have seen that the !1quare of3t, ort, is ]2i; and we may 
approach still nearer to this root,.by comparing it with 3-1-5; 
for the squareof3-l~, or of {t. is'WI,or 12;rh; so that this 
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fraction is still greater than the root required, though 
but very little so, as the difference of the two squares is 
only 2"h. 

126. We may suppose that as 3t and 3ft are numbers 
greater than the root of 12, it might be possible to add to 
3 a fraction a little less than -h, and precisely such, that 
the square of the sum would be equal to 12. 

Let us therefore try with 3-h since t is a little less than l-s' 
Now, 3t is equal to 9",4, the square of which is W, and con
sequently less by -H- than 12, which may be expressed by 
%8f'. It is therefore proved that 34- is less, and that 31.~ 
is greater than the root required. Let us then try a num
ber a little greater than 3t, but yet less than 3--l?i"; for ex
ample, 3-fr; this number, which is equal to -41, has for its 
square \4l'l' ; and by reducing 12 to this denominator, we 
obtain ~¥l which shews that 3--tT is still less than the root 
of 12, viz. by Th; let us, therefore, substitute for --f-r the 
fraction T\' which is a little greater', and see what will be 
the result of the comparison of the square of3"I\' with the 
proposed number 12. Here the square of 3T\ is \W; 
and 12 reduced to the same denominator is ~lUI; so that 
3T'""a is still too small, though only by Th, whilst 3--l-s has 
been found too great. 

127. It is evident, therefore, that whatever fraction is 
joined to 3, the square of that sum must always contain a 
fraction, and can never be exactly equal to the integer 12. 
Thus, although we know that the square root of 12 is greater 
than 3-f-s, and less than 3ft, yet we are unable to assign an 
intermediate fraction between these two, which, at the same 
time, if added to 3, would express exactly the square root 
of 12; but notwithstanding this, we are not to assert that 
the square root of 12 is absolutely and in itself indetermi
nate: it only follows from what has been said, that this 
root, though it necessarily has a determinate magnitude, 
cannot be expressed by fractions. 

128. There is, therefore, a sort of numbers, which 
cannot be assigned by fractions, but which are neverthe
less determinate quantities; as, for instance, the square 
root of 12: and we call this new species of numbers, 
irrational numbers. They occur whenever we endeavour 
to find the square root ofa number which is not a square; 
thus, 2 not being a perfect square, the square root of 2, 
or the number which multiplied by itself would produce 2, 
is an irrational quantity. These nUIl!bers are also called 
surd quantities, or incommensllrable.~. 

129. These irrational quantities, though they cannot he 
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expressed by fractions, are nevertheless magnitudes of which 
we may form an accurate idea; since, however concealed 
the square root of 12, for example, may appear, we are not 
ignorant that it must be a number, which, when multiplied 
by itself, would exactly produce 12; and this property is 
sufficient to give us an idea of the number, because it is in 
our power to approximate towards its value continually. 

130. As we are, therefore, sufficiently acquainted with 
the nature of irrational numbers, under our present con
sideration, a particular sign has been agreed on to express 
the square roots of all llumbers that are not perfect 
squares; which sign is written thus V, and is read square 
Toot. Thus, V12 represents the square root of 12, or the 
number which, multiplied by itself, produces 12; and V2 
represents the square root of 2; V3 the square root of 3; vt that of t; and, in general, Va represents the square 
root of the number a. Whenever, therefore, we would 
express the square root of a number, which is not a 
square, we need only make use of the mark V by placing 
it befol'e the number. 

131. The explanation which we have given of irrational 
numbers will readily enable us to apply to them the 
known methods of calculation. For, knowing that the 
square root of 2, multiplied by itself, must produce 2; we 
know also, that the multiplication of V2 by V2 must 
necessarily produce 2; that, in the same manner, the mul
tiplication of V3 by V3 must give 3; that V5 by V5 
makes 5; that vt by vt makes t; and, in general, that 
Va multiplied by Va produces a. 

132. But when it is required to multiply Va by Vb, the 
product is Vab; for we have already shewn, that if a square 
has two or more factors, its root must be composed of the 
roots of those factors; ,ve, therefore, find the square root 
oftbe product ab, which is Vab, by multiplying the square 
root of a, or Va, by the square root of b, or Vb ; &c. It 
is evident from this, that if b were equal to a, we should 
have vaa for the product of Va by Vb. But vaa is 
evidently a, since aa is the square of a. 

133. In division, if it were required, for example, to 

divide Va by Vb, we obtain vi; and, in this instance, 

the irrationality may vanish in the quotient. Thus, having 
to divide V18 by V8, the quotient is vy, which is 
reduced to V-t, and consequently to i, because -t is the 
square of i. . 

134. When the numh!" before which we have placed the 
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radical sign V, is itself a square, its root is expressed in the 
usual way; thus, 114 is the same as 2; 119 is the same as 
3; 11'36, the same as 6; and 11121. the same as t, or at. 
In these instances, the irrationality is only apparent, and 
vanishes of course. 

135. It is easy also to multiply irrational numbers by 
ordinary numbers; thus, for example, 2 multiplied by 11'5 
makes 211'5; and 3 times 11'2 makes 311'2. In the second 
example, however, as 3 is equal to V9, we may also ex
press 3 times y2 by y9 multiplied by v2, or by V18; 
also, 2Va is the same as v4a, and 3Va the same as1l9a; 
and, in general, bVa has the same value as the square root 
of bba, or Vbba: whence we infel' reciprocally, that when 
the number which is preceded by the radical sign contains 
a square, we may take the root of that square, and put it 
before the sign, as we should do in writing by a instead of 
Vbba. After this, the following reductions will be easily 
understood: 

and so on. 

V8, or V~2.4)* \ 211'2 
11'12, or 11'(3.4) 21(3 
1118, or 11'(2.9). I t 3V2 
1124, or 11'(6.4) JIS equa 0 2V6 
11'32, or 1/(2.16) 4112 
1175, or 11'(3.25) 511'3 

136. Division is founded on the same principles; as Va 

divided by Vb gives ~:, or V i. In the same manner, 

V8 8 V2 V2' or v4, or 2, 

yl8 18 
y2 is equal to V2' or v9, or 3, 

VI2 12 
y3 Va' or V4, or 2. 

2 y4 4 
Farther, v2 y2' or V2' or V2, 

3 y9 9 
V3 is equal to V3' or V 3' or V3, 

12 yl44 144 
V6 yo ,or vT' or V24. 

or 11(6 x 4), or lastly, 211'6. 
137. There is nothing in particular to be observed in 

• The point between i.4, 3.4, &c. indicates multiplication. 
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addition and subtraction, because we only connect the 
numbers by the signs + and -: for example, 1/2 added 
to 1/3 is wl'itten 1/2 + 1/3; and 1/3 subtracted from 1/5 
is written V5 - V3. 

138. We may observe, lastly, that in order to distinguish 
the irrational numbers, we call all other numbers, both in
tegral and fractional, rational numbers ; so that, whenever 
we speak of rational numbers, we understand integers, or 
fractions. 

CHAPTER XIII. 

Of Impossible, or Imaginary Quantities, which arise from 
the same source. 

139. We have already seen that the squares ofnumbers, 
negative as well as positive, are always poaitive, or affected 
by the sign + ; having shewn that - a multiplied by -a 
gives + aa, the same as the product of + a by + a: 
wherefore, in the preceding chapter, we supposed that all 
the numbers,. of which it was required to extract the 
square roots, weJ'e positive. 

140. When it is required, therefore, to extract the 1'00t 
of a negative number, a great difficulty arises; since there 
is no assignable number, the square of which would be a 
negative quantity. Suppose, for example, that we wished 
to extract the root of -4; we here require fiUch a number 
as, when multiplied by itself, would produce - 4: now, 
this number is neither + 2 nor -2, because the square 
both of + 2 and of - 2, is + 4, and not - 4. 

141. We must therefore conclude, that the square 
root of a negative number cannot be either a positive 
number or a negative number, sinc~ the squares of nega
tive numbers also take the sign plus: consequently, the 
root in question must belong to an entirely distillct species 
of numbers; as it cannot be ranked either among posi
tive, or negative numbers. 

142. Now, we before remarked, that positive numbers 
are all greater than nothing, or 0, and that negative 
numbers are all less than nothing, or 0; so that what
ever exceeds 0 is expressed by positive numbers, and 
whatever is less than 0 is express~d by negative num
bers. The square roots of negative numbers, therefore, 
are neither gl'eater nOl' less than nothing; yet we cannot 
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say, that they are 0; for ° multiplied by ° produces 0, 
and consequently does not give a negative number. 

143. And, since all numbers which it is possible to con
ceive are either greater or less than 0, or al'e ° itself, it is 
evident that we cannot rank the square root of a negative 
number amongst possible numbers, and we must therefore 
say that it is an impossible quantity. In this manner we are 
led to the idea of numbers, which from their nature are im
possible; and therefore they are usually called imaginary 
quantities, because they exist merely in the imagination. 

144. All such expressions as V-I, V - 2, V - 3, 
V - 4, &c. are consequently impossible, or imaginary 
numbers, since they represent roots of negative quantities; 
and of such numbers we may truly assert that they are 
neither nothing, nOl' greater than nothing, nOI' less than 
nothing; which necessarily constitutes them imaginary, 
or impossible. 

145. But notwithstanding this, these numbers present 
themselves to the mind; they exist in our imagination, 
and we still have a sufficient idea of them; since we know 
that· by V - 4 is meant a number which, multiplied by 
itself, prod Ilces - 4; for this reason also, nothing prevents 
us from making use of these imaginary numbers, and em
ploying them in calculation. 

146. The first idea that occurs on the present subject 
is, that the square of V - 3, for example, or the pro
duct of V - 3 by V - 3, must be - 3; that the product 
of V -1 by V-I, is - 1; and in general, that by mul
tiplying V - a by V - a, or by taking the square of 
V - a, we obtain - a. 

147. Now, as - a is equal to + a multiplied by -1, and 
as the square root of a product is found by multiplying 
together the roots of its factors, it follows that the root of a times - 1, or V - a, is equal to va mul tiplied by 
V-I; but va is a possible or real number, consequently 
the whole impossibility of an imaginary quantity may be 
always reduced to V - I ; for this reason, V - 4 is equal 
to V 4 multiplied by V-I, or equal to 2 V - I, because 
V4 is equal t02; likewise 1/ - 9 is reduced to 1/9 x V -I, 
or 3 V-I ; V - 16 is equal to 4 V - 1. 

148. Moreover, as va multiplied by Vb makes Vab, 
we shall have V6 for the value of V - 2 multiplied by 
V - 3; and V 4, 01' 2, for the value of the product of 
V - I by 1/ - 4. Thus we see that two imaginary num
bers, multiplied together, produce.a real, or possible one. 

But, on the contrary, a possible number, multiplied by an 
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impossible number, gives always an imaginary product: 
thus, V-3 by V + 5, gives V-IS. 

149. It is the same with regard to division; for Va 
divided by Vb making vi. it is evident that V - 4 di

vided by V-I will make V + 4, or 2; that V + 3 divided 
by V - 3 will give V - l; and that 1 divided by V - I 

gives V ~ }, or V - I; because 1 is equal to V + 1. 

ISO. We have before observed, that the square root of 
any number has always two values, one positive and the 
other negative; that V4, for example, is both + 2 and 
- 2, and that, in general, we may take - Va as well as 
+ Va for the square root of a. This remark applies also 
to imaginary numbers; the square root of - a is both 
+ V - a and - V - a; but we must not confound the 
signs + and -, which are before the radical sign V, with 
the sign which comes after it. 

151. It remains for us to remove any doubt which may 
be entertained concerning the utility of the numbers of 
which we have been speaking; for those numbel's being im
possible, it would not be surprising if they were thought 
entirely useless, and the object only of an idle specu
lation. This, however, would be a mistake; for the cal
culation of imaginary quantities is of the greatest impOI'
tance, as questions frequently arise, of which we cannot 
immediately say whether they include any thing real and 
possible, 01' not; but when the solution of such a question 
leads to imaginary numbers, we are certain that what is 
required is impossible. 

In order to illustrate what we have said by an example, 
suppose it were proposed to divide the number 12 into two 
such parts, that the product of those parts may be 40. If 
we resolve this question by the ordinary rules, we find for 
the parts sought 6 + V -4 and 6 -V -4; but these num
bers being imaginary, we conclude that it is impossible 
to resolve the question. 

The difference will be easily perceived, if we suppose the 
question had been to divide 12 into two parts which, mul
tiplied together, would produce 35; for it is evident that 
those parts must be 7 and 5. 
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CHAPTER XIV. 

Of Cubic Numbers. 

]52. When a number has been multiplied twice by itself, 
or, which is the same thing, when the square ofa number 
has been multiplied once more by that number, we obtain 
a product which is called a cube, or a cubic number. Thus, 
the cube of a is aaa, since it is the product obtained by 
multiplying a by itself, or by a, and that sqnare aa again 
bya. 

The cubes of the natural numbers, therefore, succeed 
each other in the following order: '* 

I Numbers. I I 12 13 41516171819110 
Cubes. I 8" 27 64 125 216 343 ill 729loOo 

153. If we consider the diff'erences of those cnbes, as 
we did of the squares, by subtracting each cube from that 
which comes after it, we obtain the following series of 
numbers: 

7, 19,37,61,91, 127, 169,217,271. 
Where we do not at first observe any regularity in them; 
but if we take the respective differences of these numbers, 
we find the following series: 

12, 18,24,30, 36,42,48,54,60; 
in which the terms, it is evident, increase always by 6. 

154. After the definition we have given ofa cube, it will 
not be difficult to find the CII bes of fractional numbers; 
thus, i is the cube of t; -h is the cube of 1-; and -h is the 
cube of t. In the same manner, we have only to take the 
cube of the numerator and that of the denominator sepa
rately, and we shall have * for the cube of f. 

155. If it be required to find the cube of a mixed num
ber, we must first reduce it to a single fraction, and then 
proceed in the manner that has been described. To find, 
for example, the cube of It, we must take that of t, which 

'" Weare indebted to a mathematician of the name of J. Paul 
Buchner, for Tables, published at Nuremberg in 1701, in which 
are to be found the cubes, as well as the squares, of all numbers 
from 1 to 12000.-F. T. 
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is V, or 3%; also the cube of l-t, or of the single fraction 
1-, is ~45, or I-H-; and the cube of 3t, or of \3, is 2i-r, 
ot·34H· 

156. Since aaa is the cube of a, that of ab will be aaabbb; 
whence we see, that if a number has two OJ' more factors, 
we may find its cube by multiplying together the cubes of 
those factol's. For example, as 12 is equal to 3 x 4, we 
multiply the cube of' 3, which is 27, by the cube of4, which 
is 64, and we obtain 1728, the cube ofl2; and farther, the 
cube of 2a is 8aaa; consequently, 8 times greater than 
the cube of a: likewise, the cube of 3a is 27aaa; that is 
to say, 27 times greater than the cube of a. 

157. Let us attend here also to the signs + and -. It 
is evident that the cube ofa positive number + a must also 
be positive, that is + aaa; but if it be required to cube a 
negative number - a, it is found by fit'st taking the square, 
which is + aa, and then multiplying, according to the rule, 
this square by - (1, which gives for the cube required - aaa. 
In this respect, therefore, it is not the same with cubic num
bers as with squares, since the latter are always positive: 
whereas the cube of - 1 is - 1, that of - 2 is - 8, that of 
- 3 is - 27, and so on. 

CHAPTER XV, 

Of Cube Roots, and of Irrational Numbers resulting from 
them. 

158. As we can, in the manner already explained, find 
the cube of' a given number, 80, when a nnmber is pro
posed, we may also reciprocally find a number, which, 
multiplied twice by itself, will produce that number. The 
number het'e sought is called, with relation to the other, 
the cube root; so that the cube root of a given number is 
the number whose cube is equal to that given number. 

159. It is easy therefore to determine the cube root, 
when the number proposed is a real cube; such as in the 
examples in the last chapter: for we easily perceive that 
the cube root of J is 1; that of 8 is 2 ; that of 27 is 3 ; 
that of 64 is 4, and so on. And, in the same manner, the 
cube root of - 27 is - 3; and that of - 125 is - 5. 

Farther, if the proposed number be a fraction, as -fr, the 
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cube root of it must be t; and that of -fb is~. Lastly, 
the cube root of a mixed number, such as 2}lj- must be t, 
or It; because 2t-ll- is equal to 14. 

160. But if the proposed number be not a cube, its cube 
root cannot be expressed either in integers, or in fractional 
numbers. For example, 43 is not a cubic numbel'; there
fore it is impossible to assign any number, either integer or 
fl'actional, whose cube shall be exactly 43. We may, 
however, affirm, that the cube root of that number is 
greater than 3, since the cube of 3 is only 27; and less 
than 4, because the cube of 4 is 64: we know, therefore, 
that the cube root required is necessarily contained be
tween the numbers 3 and 4. 

161. Since the cube root of 43 is greater than 3, if we 
add a f!"action to 3, it is certain that we may approximate 
still nearer and nearer to the true value of this root: but we 
can never assign the number which expresses the value 
exactly; because the cube of a mixed number can never 
be perfectly equal to an integer, such as 43. If we were 
to suppose, for example, 3t, or t to be the cube root 
required, the error would be !; for the cube of t is only 
3t3, or 42i. 

162. This, therefore, shews that the cube root of 43 
cannot be expressed in any way, either by integers or by 
fractions. However, we have a distinct idea of the mag
nitude of this root; and therefore we use, in order to 
represent it, the sign iV , which we place before the pro
posed number, and which is read cube root, to distinguish 
it from the square root, which is often called simply the 
root; thus, iV 43 means the cube root of 43; that is to say, 
the number whose cube is 43, or which, multiplied by 
itself, and then by itself again, produces 43. 

]63. Now, it is evident that such expressions cannot 
belong to rational quantities, but that they rather form a 
particular species of ilTational quantities. They have 
nothing in common with square roots, and it is not 
possible to express such a cube root by a square root; as, 
for example, by 11'12; for the square of 11'12 being 12, its 
cube will be 1211'12, consequently still irrational, and, 
therefore, it cannot be equal to 43. 

164. If the proposed number be a real cube, our ex
pressions become rational. Thus, iV I is equal to ]; 
iV 8 is equal to 2; iV 27 is equal to 3; and, generally, 
tt aaa is equal to a. 

165. If it were proposed to multiply one cube root, tt a, 
by another, Vb, the product must be iVab; for we know that 
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the cube root of a product ab is found by multiplying to
gether the cube roots of the factors. Hence, also, if we 

divide tI a by tI b, the quotient will be t; i 
166. We farther perceive, that 2t; a is equal to tI 8a, 

because 2 is equivalent to t; 8; that 3t; a is equal to t; 27a, 
btl a is equal to t; abbb; and, reciprocally, if the number 
under the radical sign has a factor which is a cube, we 
may make it disappear by placing its cube root before the 
sign; for example, instead of t; 64a we may write 4t; a; 
and 5t; a instead of t; 125a: hence t; 16 is equal to 2t; 2, 
because 16 is equal to 8 x 2. 

167. When a number proposed is negative, its cube root 
is not su~ject to the same difficulties that occurred in 
treating of square roots; for, since the cubes of negative 
numbers are negative, it follows that the cube roots of 
negative numbers are also negative; thus, t; -8 is equal 
to -2, and t; -27 to -3. It follows also, that t; -12 
is the same as -t; 12, and that t; -a may be expressed 
by -t; a. Whence we see that the sign -, when it is 
found after the sign of the cube root, might also have been 
placed before it. Weare not, therefore, led here to im
possible, or imaginary numbers, which happened in con
sidering the square roots of negati ve numbers. 

CHAPTER XVI. 

Of Powers in general. 

168. The product which we obtain by multiplying a 
number once, or several times by itself, is called a power. 
Thus, a square which arises from the multiplication of a 
number by itself, and a cube which we obtain by mul
tiplying a number twice by itself, are powers. We say 
also in the former case, that the number is raised to the 
second degree, or to the second power; and, in the latter, 
that the number is raised to the third degree, or to the 
third power. 

169. We distinguish these powerj!' from one another by 
the number of times that the given number has been mul
tiplied by itself. For example, Ii, square is called the second 
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power, because a certain given number has been multiplied 
by itself; and if a number has been multiplied twice by 
itself we call the product the third power, which therefore 
means the same as the cube; also, if we multiply a number 
three times by itself we obtain its fourth power, or what is 
commonly called the biquadrate: and thus it will be easy 
to understand what is meant by the fifth, sixth, seventh, 
&c. power of a number. I shall only add, that powers, 
after the fourth degree, cease to have any other but these 
numeral distinctions. 

170. To illustrate this still better, we may observe, in 
the first place, that the powers of 1 remain always the 
same; because, whatever number of times we multiply 1 
by itself, the product is found to be always 1. We shall 
therefore begin by representing the powers of 2 and of 3, 
which succeed each other as in the following order: 

Powers. Of the number 2.\ Of the number 3. 

1st 2 3 
2d 4 9 
3d 8 27 
4th ]6 81 
5th 32 243 
6th 64 729 
7th 128 2187 
8th 256 6561 
9th 512 W683 

10th 1024 59049 
11th 2048 177147 
12th 4096 531441 
13th 8192 1594323 
14th 16384 4782969 
15th 32768 14348907 
16th 65536 43046721 
17th ]31072 129140163 
18th 262144 387420489 

But the powers of the number 10 are the most remark
able: for on these powers the system of our arithmetic is 
founded. A few of them ranged in order, and beginning 
with the first power, are as follow: 

lst 2d 3d. 4th 5th 6th 
10, 100, 1000, 10000, 100000, 1000000, &c. 

17]. In order to illustrate this subject, and to consider 
it in a more general manner, ",e may observe, that the 

E 
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powers of any number, a, succeed each other in the follow
ing order:-

1 st 2d 3d 4th 5th 6th 
0., aa, aaa, aaaa, aaaaa, aaaaaa, &c. 

But we soon feel the inconvenience attending this manner 
of writing the powers, which consists in the necessity ofre
peating the flame letter very often, to express high powers; 
and the reader also would have no less trouble, if he were 
obliged to count all the letters, to know what power is 
intended to be represented. The hundredth power, for 
example, could not be conveniently written in this man
ner; and it would be equally difficult to read it. 

172. To avoid this inconvenience, a much more commo
dious method of expressing such powers has been devised, 
which, from its extensive use, deserves to be carefully ex
plained. Thus, for example, to express the hundredth 
power, we simply write the number 100 above the quantity, 
whose hundredth power we would express, and a little 
towards the right hand; thus, a100 represents a raised to 
the lOOth power, or the hundredth power of a. It must 
be observed, also, that the name exponent is given to the 
number written above that whose power, or degree, it 
represents, which, in the present instance, is 100. 

173. In the same manner, a2 signifies a raised to the 2d 
power, or the second power of a, which we represent some
times also by aa, because both these expressions are 
written and understood with equal facility; but to express 
the cube, or the third power aaa, we write a3, according 
to the rule, that we may occupy less room; so a4 signifies 
the fourth, a5 the fifth, and a6 the sixth power of a. 

174. In a word, the different powers of a will be re
presented by a, a2 , a3 , a4, a5 , a6 , a7 , a8 , a9 , a10, &c. Hence 
we see, that in this manner we might very properly have 
written a1 instead of a for the first term, to shew the order 
of the series more clearly. In fact, a1 is no more than a, 
as this unit shews that the letter a is to be written only 
once. Such a series of powers is called also a geometrical 
progression, because each term is greater by one-time, or 
term, than the preceding. 

175. As in this series of powers each term is found 
by multiplying the preceding term by a, which increases 
the exponent by I; so when any term is given, we may 
also find the preceding term, if we divide by a, because this 
diminishes the exponent by 1. This shews that the term 
which precedes the first tertn' a1 must necessarily be 
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~, or 1 ; and, if we proceed according to the exponents, we 
a 
immediately conclude, that the te,'m which precedes the 
first must be uP; and hence we deduce this remarkable 
property, that aO is always equal to 1, however great or 
small the value of the number a may be, and even when 
a is nothing; that is to say, aO is equal to 1. 

176. We may also continue our series of powers in a 
retrograde order, and that in two different ways; first, by 
dividing always by a; and secondly, by diminishing the 
exponent by unity; and it is evident that, whether we 
follow the one or the other, the terms are still perfectly 
equal. This decreasing series is represented in both 
forms in the following Table, which must be read back
wards, or from right to left: -

I I I _11_1 I 
I a 

aaaaaa aaaaa aaaa aaa aa a 
------- - - - - -

lst. I I I 1 1 1 
ali a5 a' a3 a2 al 

~ 
---- --a-5 a-4 a-3 a-2la-l aO a l 2d. 

] 77. Weare now come to the know ledge of powers 
w hose exponents are negative, and are enabled to assign 
the precise value of those powers. Thus, from what has 
been said, it appears that 

aO 1 

a-I 1 
a 

1 1 a_2 
is equal to -or-

au a2 

a-3 

a3 

1 
a-4 4 &c. 

a 

178. It will also be easy, from the foregoing notation, 
to find the powers of a p"oduct, ab; for they inust 
evidently be ab, or albl , a2b2 , a3b3 , a4b4, a5b5 , &c. and the 
powers of fract.ions will be found in the same manner; 

a 
for example, those of bare 

al a2 a3 a4 a5 , ali aT 

bI' l}i' /)3' b4 ' b5 ' b6' b7' &c. 
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179. Lastly, we have to consider the powers of nega
tive numbers. Suppose the given number to be - a; 
then its powers will form the following series:-

_ a, + a2 , - a3, + a4 , _ as, + a6, &c. 
Where we may observe, that those powers only becoml::: 
negative whose exponents are odd numbers, and that, 
on the contrary, all the powers which have an even 
number for the exponent are positive. So that the 
third, fifth, seventh, ninth, &c. powers have all the 
sign - ; and the second, fourth, sixth, eighth, &c. powers 
are affected by the sign +. 

CHAPTER XVII. 

Of the Calculation of Powers. 

180. We have nothing particular to observe with re
gard to the Addition and Subtraction of powers; for we 
only represent those operations by means of the signs + 
and -, when the powers are different. For example, 
a3 + a2 is the sum of the second and third powers of a; 
and as - a4 is what remains when we subtract the fourth 
power of a from the fifth; and neither of these results can 
be abridged: but when we have powers of the same kind 
or degree, it is evidently unnecessary to connect them by 
signs; as a3 + a3 becomes 2a3 , &c. 

181. But in the Multiplication of powers, several cir
cumstances require attention. 

First, when it is required to multiply any power of a by 
a, we obtain the succeeding power; that is to say, the power 
whose exponent is greater by an unit. Thus, a2 multiplied 
by a produces a3 ; and a3 multiplied by a produces a4 • 

In the same manner, when it is required to multiply by a 
the power of any number represented by a, having negative 
exponents, we have only to add 1 to the exponent. Thus, 
a-I multiplied by a produces aO, or 1; which is made more 

evident by considering that a-I is equal to!, and that the 
a 

product of! by a being~, it is consequently equal to 1; 
a a 

1 
likewise a-2 multiplied by a produces a-I, or a i and 
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a-IO multiplied by a gives a-g, and so on. [See Art. 175, 
176.J 

J 82. Next, if it be required to multiply any power of a 
by a2 , or the second power, I say that the exponent becomes 
greater by 2. Thus, the product of a2 by a2 is a4 ; that of 
a2 by as is a5 ; that of a4 by a2 is a6 ; and, more generally, 
an multiplied by a2 makes a"+2. With regard to negative 
exponents, we shall have at, or a, for the product of a-I by 

a2 ; for a-I being equal to !, it is the same as if we had 
a 

divided aa by a; consequently, the product required is 

aa, or a; also a--2 multiplied by a2 produces aO, or 1 ; 
a 
and a-3 multiplied by a2 produces a-I. 

183. It is no less evident, that to multiply any power 
of a by as, we must increase its exponent by three units; 
consequently, the product of an by a3 is an+3. And when
ever it is required to multiply together two powers of a, 
the product will be also a power of a, and such that its 
exponent will be the sum of those of the two given 
powers. For example, a4 multiplied by a5 will make a9, 
and a12 multiplied by a7 will produce a19, &c. 

184. From these considerations we may easily determine 
the highest powers. To find, for instance, the twenty
fourth power of ~, I multiply the twelfth power by the 
twelfth power, because 224 is equal to 212 X 212. Now, we 
have already seen [Table, p. 49J that 212 is 4096; I say 
therefore that the number 16777216, 01' the product of 
4096 by 4096, expresses the power required, namely, 224. 

185. Let us now proceed to division. We shall remark, 
in the first place, that to divide a power of a by a, we mnst 
subtract 1 from the exponent, or diminish it by unity; 
thus, a5 divided by a gives a4 ; and aO, or 1, divided by a, 

is equal to a-lor!; also a-3 divided by a, gives a-4• 
a 

186. If we have to divide a given power ofa by a2 we 
must diminish the exponent by 2; and if by a3 , we must 
subtract three units from the exponent of the power pro
posed; and, in general, whatever power of a it is required 
to divide by any other power of a, the rule is always to 
subtract the exponent of the second from the exponent of 
the first of those powers; thus, a 15 divided by a7 will give 
a8 ; a6 divided by a7 will give a-I; and a-3 divided by a4 
will give a-7• 

187. From what has been said; it is easy to understand 
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the method of finding the powE!rs of powers, this being 
done by multiplication. When we seek, for example, the 
square, or the second power, of a3, we nnd a6 ; and in the 
same manner we find a12 for the third power, or the cube, 
of a4• To obtain the square of a power, we have only to 
double its exponent; for its cube, we must triple the expo
nent; and so on. Thus, the square of an is a2n ; the cube 
of an is a3n ; the seventh power of an is a7n , &c. 

188. The square of a2, or the square of the square of a, 
being a4 , we see why the fourth power is called the biqua
drate: also, the square of a3 being a6, the sixth power has 
received the name of the square-cubed. 

Lastly, the cube of a3 being ag, we call the ninth power 
the cuba-cube: after this, no other denominations of this 
kind have been introduced for powers; and, indeed, the 
two last are very little used. 

CHAPTER XVIII. 

Of Roots, with relation to Powers in general. 

189. Since the square root of a given number is a num
ber whose square is equal to that given number; and since 
the cube root of a given number is a number whose cube 
is equal to that given number; it follows, that any number 
whatever being given, we may always suppose such roots 
of it, that the fourth, or the fifth, or any other power of 
them, respectively, may be equal to the given number. 
To distinguish these different kinds of roots better, we shall 
call the square root the second root; and the cube root, 
the third root; because, according' to this denomination, 
we may call the fourth root, that whose biquadrate is equal 
to a given number; and the fifth root, that whose fifth 
power iii equal to a given number, &c. 

190. As the square, or second root, is marked by the 
sign ..;, and the cubic, or third root, by the sign ~, so the 
fourth root is represented by the sign tI ; the fifth root, by 
the sign :tI; and so on. It is evident that, according to 
this method of expression, the sign of the square root ought 
to be t'; but as of all roots this OCCllrs most frequently, it 
has been agreed, for the sake of brevity., to omit the num
ber 2 as the sign of this root. So that when the radical 
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sign has no number prefixed to it, this always shews that 
the square root is meant. 

191. To explain this matter still better, we shall here 
exhibit the different roots of the number a, with their 
respective values: 

t:] is the (!thJ t'a 5th 
Va 6th 

So that, conversely, 

[

a, 
a, 

root of a, 
a, 
a, and so on. 

~~: !~h} power of / t:} is equal to (:: 
The 5th ltJa a, 
The 6th t' a a, and so on. 

192. Whether the number a therefore be great or small, 
we know what value to affix to all these roots of different 
degrees. 

It must be remarked also, that if we substitute unity 
for a, all those roots remain constantly 1; because all the 
powers of I have unity for their value. If the number a 
be greater than 1, all its roots will also exceed unity. 
Lastly, if that number be less than 1, all its roots will also 
be less than unity. 

193. When the number a is positive, we know, from 
what was before said of the square and cube roots, that all 
the other roots may also be determined, and will be real 
and possible numbel·s. 

But if the number a be negative, its second, fourth, 
sixth, and all its even roots, become impossible, or imagi
nary numbers; because all the powers of an even order, 
whether of positive or of negative numbers, are affected by 
the sign +: whereas the third, fifth, seventh, and all its 
odd roots, become negative, but rational; because the odd 
powers of negative numbers are also negative. 

194. We have here also an inexhaustible source of new 
kinds of surds, or irrational quantities; for whenever the 
number a is not really such a power, as some one of the 
foregoing indices represents, or seems to require, it is im
possible to express that root either in whole numbers or in 
fractions, and, consequently, it must be classed among the 
numbers which are called irrational. . 
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CHAPTER XIX. 

Of the Method of representing Irrational Numbers by 
Fractional Exponents. 

195. We have shewn in the preceding chapter, that the 
square of any power is found by doubling the exponent of 
that power; or that, in general, the square, or the second 
power, of a", is a2n ; and the converse also follows, viz. 
that the square root of the power a2" is an, which is found 
by taking half the exponent of that power, or dividing it 
by 2. 

196. Thus, the square root of a2 is aI, or a; that of a4 

is a2 ; that of a6 is a3 ; and so on: and, as this is general, 

the square root of a3 must necessarily be ai, and that of 

a5 must be at; consequently, we shall in the same manner 
~ ~ 

have a 2 for the square root of a l • Whence we see that a 2 

is equal to .j a; which new method of representing the 
square root demands particular attention. 

197. We have also shewn, that, to find the cube ofa 
power, as an, we must multiply its exponent by 3, and con
sequently that cube is a3". 

Hence, conversely, when it is required to find the third, 
or cube root, of the power a3n, we have only to divide that 
exponent by 3, and may thei'efore with certainty conclude, 
that the root required is an: consequently, aI, or a, is the 
cube root of a3 ; a2 is the cube root of a6; as of ag~ and 
so on. 

19S. There is nothing to prevent us from applying the 
same reasoning to those cases, in which the exponent is not 
divisible by 3, or from concluding that the cube root of a2 

• .2., d h h b f' ~ 4.1. IS a 3, an t at t e cu e root 0 a4 IS a 3, or a 3; conse-

quently, the third, or cube root of a, or aI, must be at: 

whence also it appears, that at is the same as Va. 
199. It is the same with roots of a higher degree: thus, 

1 
the fourth root of a will be a4 , which expression has the 

1 
same value as t;a; the fifth root of a will be a~, which is 
consequently equivalent to ~a; and fhe same observation 
may be extended to all roots of R'higher degree. 
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200. We may therefore entirely reject the radical signs 
at present made use of, and employ in their stead the 
fractional exponents which we have just explained: but 
as we have been long accustomed to those signs, and meet 
with them in most books of Algebra, it might be wrong to 
banish them entirely from calculation; there is, however, 
sufficient reason also to employ, as is now frequently done, 
the other method of uotation, because it manifestly cor
responds with the nature of the thing. In fact, we see 

immediately that at is the square root of a, because we 

know that the square of at, that is to say, at multiplied by 
.1. • I all, IS equa to aI, or a. 

201. What has been now said is sufficient to shew how 
we are to understand all other fractional exponents that 

D;tayoccur. If we have, for example, at, this means, that 
we must first take the fourth power of a, and then extract 

its cube, or third root; so that at is the same as the com-
A 

mon expression t'a4. Hence, to find the value of a4, we 
must first take the cube, or the third power of a, which is 
as, and then extract the fourth root of that power; so 

that ai- is the same as t;a3, and a-! is equal to t'a4, &c. 
202. When the fraction which represents the exponent 

exceeds unity, we may express the value of the given quan-

tity in another way: for instance, suppose it to be at; this 

quantity is equivalent to a2t, which is the product of a~ by 
.1. .1. b . I' / .. ·d h .Ii. all: now all emg equa to v a, It IS eVl ent t at all IS 

equal to a2Va.5: a.Iso a 1f, or a81-, is equal to a3 t'a; and 

a If , that is, a81-, expresses a3t;a3• These examples are suf
ficient to illustrate the great utility of fractional exponents. 

203. Their use extends also to fractional numbers: for if 

there be given ~a' we know that this quantity is equal to 

~ ; and we have seen already that a fraction of the form 
a 2 

;n may be expressed by a-n; so that instead of J a we 

may use the expression a -t; and, in the same man-



58 ELEMENTS SECT. I. 

I _.1. a~ 
ner, -3 - is equal to a 3 Again, if the quantity ~ be 

~a va 
2 

proposed; let it be transformed into this, :' which is the 
a' 

product of a2 by a -t; now this product is equivalent to 

a-i, or to ali, or lastly, to a'!Ja. Practice will render 
similar reductions easy. 

204. We shall observe, in the last place, that each root 
may be represented in a variety of ways ; for Va being the 

same as at, and t being transformable into the fractions, t. 
i. t, -fo. -h, &c. it is evident that Va is equal to '!Ja2 , or to 
t,ta3, or to ~a4, and so on. In the same manner, t;a, which 

is equal to at, will be equal to t,ta2 , or to Va3, or to It'a'. 
Hence also we see that the number a, or a1, might be 
represented by the following radical expressions :-

t'a2 , t;a3, '!Ja" ~a5, &c. 
205. This property is of great use in multiplication and 

division; for if we have, for example, to multiply t'a by t;a, 
we write t,ta3 for t'a, and t,ta2 instead of Va; so that in this 
manner we obtain the same radical sign for both, and the 
multiplication being now performed, gives the product t,ta5• 

The same result is also deduced from at +i , which is the 

product of af multiplied by at; for t + i is t, and conse

quently the product required is at, or t,ta5• 

On the contrary, if it were required to divide t'a, or 
1. b .1. I h h . .1._.1. a 2 , y Va, or as, we shou d ave for t e quotIent a 2 3, 

lI._~ h' .1. 6 or a 6 6, t at IS to say, a 6 , or 'lJa. 

QUESTIONS FOR PRACTICE RESPECTING SURDS. 

1. Reduce 6 to the form of 11'5. Ans. 11'36. 
2. Reduce a + b to the form of Vbc. 

Ans. V (a2 + 2ab + b2 ). 

a a2 

3. Reduce bVc to the form of Vd. Ans. V b~c' 

4. Reduce a2 and bt to the common index i. 
Ans. ~t, and b1)t. 
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5. Reduce V48 to its simplest form. Ans.4V3. 
6. Reduce v(a3x - a2x'l.) to its simplest form. 

Ans. a";(ax-x2). 
27a3b3 

7. Reduce V 8b-8a to its simplest form. 

3ab 3 a 
Ans. """2 ':I b-a' 

8. Add ..;6 to 2";6; and ";8 to ..;50. 
Ans. 3V6; and 7..;2. 

9. Add ..;4a and '!Ja6 together. Ans. (a + 2)..;a. 

10. Addlt and]t together. Ans. ~2~:C. 
11. Subtract ";4a from '!Ja6• Ans. (a-2)..;a. 

12. Subtractlt from 1t. Ans. b2 b e2
..; ie' 

. 2ab 9ad 3a2d 
13. MultIply..; 3C by..; 2b' Ans. -e-' 

14. Multiply ";d by Vab. Ans. V(aWd3 ). 

15. Multiply ";(4a - 3x) by 2a. 
Am . ..;(l6a! - 12a2x). 

16. Multiply ;b ";(a-x) by (e-d)..;ax. 

A ae-ad (2 '1.) ns. 2b ..; a x - ax . 

•• .2. J... ;l- ~ 
17. DIvIde a 3 bya4 ; anda by a . 

-h .... Ans. a ; and a 

18 D·· ae-ad b· a . lVlde -u- ";(a2x - ax2) y 2b ";(a- x). 

Ans. (e-d)..;ax. 
19. Divide a2 _ ad - b + d..; b by a - ..; b. 

Ans. a + ..;b- d. 
20. What is the cube of ..;2? Ans . ..;8. 
21. What is the square of 3V-b&? Am.9&..;b2c. 

22. What is the fourth power of ;b ..; e 2a b ? 

a6 

Ans. 4b4(c'1.-2be+b2 )' 

23. What is the square of 3 + ..; 5 ? Ans. 14 + 6"; 5 . 
.a. 

24. What is the square root of a3 ? Am. a2 ; or ..; a3 • 

25. What is the cube root of ..; (a2":'" X2)? 
Am. ~(a2 - x 2 ). 
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26. What multiplier will render a + v3 rational? 
Ans. a-v3. 

27. What multiplier will render va - v b rational? 
Ans. va+vb. 

28. What multiplier will render the denominator of the 

fraction /6 3 rational? A.ns. v7 - v3. v +v 

CHAPTER XX. 

Of the different Methods of Calculation, and of their 
mutual Connexion. 

206. Hitherto we have only explained the different me
thods of calculation: namely, addition, subtraction, mul
tiplication, and division; the involution of powers, and the 
extraction of roots. It will not be improper, therefore, in 
this place, to trace back the origin of these different methods, 
and to explain the connexion which subsists among them; 
in order that we may satisfy ourselves whether it be pos
sible or not for other operations of the same kind to exist. 
This inquiry will throw new light on the subjects which we 
have considered. 

In prosecuting this design, we shall make use of a new 
character, which may be employed instead of the expression 
that has been so often repeated, is equal to ; this sign is =, 
which is read is equal to: thus, when I write a = b, this 
means that a is equal to b: so, for example, 3 X 5 = 15. 

207. The first mode of calculation that presents itselfto 
the mind, is undoubtedly addition, by which we add two 
numbers together and find their sum: let therefore a and b 
be the two given numbers, and let their sum be expressed 
by the letter c, then we shall have a + b = c ; so that when 
we know the two numbers a and b, addition teaches us to 
find the number c. 

208. Preserving this comparison a + b = c, let us reverse 
the question by asking, how we are to find the number b, 
when we know the numbers a and c. 

It is here required therefore to know what nnmber must 
be added to a, in order that the sum may be the number c : 
suppose, for example, a = 3 and c == 8; so that we must 
have 3 + b = 8; then b will evidently be found by sub-
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tracting 3 from 8; and, in general, to find b, we must sub
tract a from c, whence arises b = c - a; for, by adding a 
to both sides again, we have b + a = c - a + a, that is to 
say, = c, as we supposed. 

209. Subtraction therefore takes place, when we invert 
the question which give!'! rise to addition. But the number 
which it is required to subtract may happen to be greater 
than that from which it is to be subtracted; as, for example, 
if it were required to subtract 9 from 5: this instance there
fore furnishes us with the idea of a new kind of numbers, 
which we call negative numbers, because 5 - 9 = - 4. 

210. When several numbers are to be added together, 
which are all equal, their sum is found by multiplication, 
and is called a product. Thus, ab means the product 
arising from the multiplication of a by b, or from the 
addition of the number a, b number of times; and if we 
represent this product by the letter c, we shall have 
ab =c; thus multiplication teaches us how to determine 
the number c, when the numbers a and b are known. 

211. Let us now propose the following question: the 
numbers a and c being known, to find the number b. Sup
pose, for example, a = 3, and c = 15; so that 3b = 15, 
and let us inquire by what number 3 must be multiplied, 
in order that the product may be 15; for the question pro
posed is reduced to this. This is a case of division; and 
the number required is found by dividing 15 by 3; and, in 
general, the number b is found by dividing c by a; from 

which results the equation b = !:. 
a 

212. Now, as it frequently happens that the number c 
cannot be really divided by the number a, while the letter 
b must however have a determinate value, another new 
kind of numbers present themselves, which are called 
fractions. }'or example, suppose a = 4, and c = 3, so that 
4b = 3; then it is evident that b cannot be an integer, but 
a fraction, and that we shall have b = i. 

213. We have seen that multiplication arises from ad
dition; that is to say, from the addition of several equal 
quantities: and if we now proceed farther, we shall perceive 
that, from the multiplication of several equal quantities to
gether, powers are derived; which powers are represented 
in a general manner by the expression abo This signifies 
that the number a must be multiplied as many times by 
itself, minus 1, as is indicated by the number b. And we 
know from what has been already'said, that, in the present 
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instance, a is called the root, b the exponent, and a6 the 
power. 

214. Farther, if we represent this power also by the 
letter c, we have a6 = c, an equation in which three letters 
a, b, c, are found; and we have shewn in treating of 
powers, how to find the power itself, that is, the letter c, 
when a root a and its exponent b are given. Suppose, for 
example, a = 5, and b = 3, so that c = 53: then it is evi
dent that we must take the third power of 5, which is 125~ 
so that in this case c = 125. 

215. We have now seen how to determine the power c, 
by means of the root a and the exponent b; but if we wish 
to reverse the question, we shall find that this may be done 
in two ways, and that there are two different cases to be 
considered: for if two of these three numbers a, b, c, were 
given, and it were required to find the third, we should 
immediately perceive that thi!l question would admit of three 
different suppositions, and consequently of three solutions. 
We have considered the case in which a and b were the 
given numbers; we may therefore suppose farther that c 
and a, or c and b, are known, and that it is requitOed to 
determine the third letter. But, before we proceed any 
farther, let us point out a very essential distinction between 
involution and the two operations which lead to it. When, 
in addition, we reversed the question, it could be done 
only in one way; it was a matter of indifference whether 
we took c and a, or c and b, for the given numbers, because 
we might indifferently write a + b, or b + a; and it was 
also the same with multiplication; we could at pleasure 
take the letters a and b for each other, the equation ab = c 
being exactly the same as ba = c: but in the calculation of 
powers, the same thing does not take place, and we can 
by no means write b· instead of ab ; as a single example 
will be sufficient to illustrate: for let a = 5, and b = 3 ; 
then we shall have ab = 53 = 125 ; but b· = 35 = 243: which 
are two very different results. 

216. It is evident, then, that we may propose two 
questions more: one, to find the root a by means of the 
given power c, and the exponent b; the other, to find the 
exponent b, supposing the power c and the root a to be 
known. 

217. It may be said, indeed, that the former of these 
questions has been resolved in the chapter on the extraction 
of roots; since if b = 2, for example, and a2 = c, we know 
by this means, that a is a number whose square is equal to 
c, and consequently that a = Ve. In the same manner, if 
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b = 3, and a3 = C, we know that the cube of a must be equal 
to the given number c, and consequently that a = ~c. It 
is therefore easy to conclude, generally, from this, how to 
determine the letter a by means of the letters c and b; for 
we must necessarily have a :t'c. 

218. We have already remarked also the consequence 
which follows, when the given number is not a real power; 
a case which very frequently occurs; namely, that then the 
required root, a, can neither be expressed by integers, nor 
by fractions; yet since this root must necessarily have a 
determinate value, the same consideration led us to a new 
kind ofnumber, which, as we observed, are called surds, or 
irrational numbers; and which we have seen are divisible 
into an infinite number of different sorts, on account of the 
great variety of roots. Lastly, by the same inquiry, we 
were led to the knowledge of another particular kind of 
numbers, which have been called imaginary numbers. 

219. It remains now to consider the second question, 
which was to determine the exponent, the power c and 
the root a both being known. On this question, which 
has not yet occurred, is founded the important theory of 
Logarithms, the use of which is so extensive through the 
whole compass of mathematics, that scarcely any long cal
culation can be carried on without their assistance; and 
we shall find, in the following chapter, for which we reserve 
this theory, that it will lead us to another kind of numbers 
entirely new, as they cannot be ranked among the irra
tional numbers before mentioned. 

CHAPTER XXI. 

Of Logarithms in general. 

220. Resuming the equation ab = c, we shall begin by 
remarking that, in the doctrine of Logarithms, we assume 
for the root a, a certain number taken at pleasure, and sup
pose this root to preserve invariably its assumed value. 
This being laid down, we take the exponent b such, that 
the power ab becomes equal to a given number C; in which 
case this exponent b is said to be the l()garithm of the num
ber c. To express this, we shall use the letter L. or the 
initial letters log. Thus, by b";:' L. c, or b = log. c, we 
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mean that b is equal to the logarithm of the number c, or 
that the logarithm of c is b. 

221. We see, then, that the value of the root a being 
once established, the logarithm of any number, c, is nothing 
more than the exponent of that power of a, which is equal 
to c: so that c being = ab , b is the logarithm of the power 
abo If, for the present, we suppose b = 1, we have 1 for 
the logarithm of at, and consequently log. a = 1 ; but if we 
suppose b = 2, we have 2 for the logarithm of a2 ; that is 
to say, log. a2 =2, and we may, in the same manner, ob
tain log. a3 = 3; log. a4 = 4; log. as = 5, and so on. 

222. If we make b = 0, it is evident that ° will be the 
logarithm ofao; butao=l; consequently, log. 1 =0, what
ever be the value of the root a. 

Suppose b = - 1, then - 1 will be the logarithm of 
1 1 

a-I; but a-I = -; so that we have log. - = - 1, and in 
a a 

1 1 
the same manner, we sllall have log. 2" = - 2; log. 3" 

a a 
1 

= -3; log. 4=-4, &c. a 
223. It is evident, then, how we may represent the loga

rithms of aU the powers of a, and even those of fractions, 
which have unity for the numerator, and for the denominator 
a power of a. We see also, that in all those cases the loga
rithms are integers; but it must be observed, that if b were 
a fraction, it would be the logarithm of an irrational num
ber: if we suppose, for example, b = t, it follows, that t is 

- ~ 

the logarithm of a2 , or of Va; consequently we have also 
log. Va =t; and we shall find, in the same manner, that 
log. ~a = t, log. t;a = -t, &c. 

224. But if it be required to find the logarithm of another 
number c, it will be readily perceived, that it can neither 
be an integer, nor a fraction; yet there must be such an 
exponent b, that the power ab may become equal to the 
number proposed; we have therefore b = log. C; and 
generally, aL., = C. 

225. Let us now consider another number, d, whose loga
rithm has been represented in a similar manner by log. d; 
so that aL •d = d. Here if we multiply this ex~ression by 
the preceding one aL ., = c, we shall have a .,+L.rI = cd; 
hence, the exponent is always tlte logarithm of the power; 
consequently, log. c + log. d = log. cd. But if, instead of 
multiplying, we divide the former expression by the latter, 
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we shall obtain aL.C-L.d=a; and, consequently, log. c

c 
log. d= log. d: 

226. This leads us to the two principal properties ofloga
rithms, which are contained in the equations log. e + log. d 

e 
= log. cd, and log. e -log. d = log. '{{ The former of these 

equations teaches us, that the logarithm of a product, 
as cd, is found by adding together the logarithms of the 
factors; and the latter shews us this propeJ'ty, namely, 
that the logarithm of a fraction may be determined by 
subtracting the logarithm of the denominator from that 
of the numerator. 

227. It also follows from thi~, that when it is required 
to multiply, or divide, two numbers by one another, we 
have only to add, or subtract, their logarithms; and this 
is what constitutes the singular utility oflogarithms in cal
culation: for it is evidently much easier to add, or sub
b'act, than to multiply, or divide, particularly when the 
question involves large numbers. 

228. Logarithms are attended with still greater advan
tages, in the involution of powers, and in the extraction of 
roots; for if d = e, we have, by the first property, log. c + 
log. e=log.ee, or e2 ; consequently, log.ce=2 log. e; and, 
in the same manner, we obtain log. e3 = 3 log. e; log. e4 = 
4 log. c; and generally, log. en = n log. c. If we now sub
stitute frac~ional numbers for n, we shall have, for example, 

log. /i, that is to say, log . ..; c, =t log. c; and lastly, if we 
suppose n to represent negative numbers, we shall have log. 

I I 
c-l, or log. -, = -lug. c; log. e-2 , or log. 2' = - 2 log. e, 

e e 
and so on; which follows not only from the equation 
log. en = n log. e, but also from log. I = 0, as we have alt'eady 
seen. 

229. If therefore we had Tables, in which logarithms 
were calculated for all numbers, we might certainly derive 
from them very great assistance in performing the most 
prolix calculations: such, for instance, as require frequent 
multiplications, divisions, invol utions, and extractions of 
roots: for, in such Tables, we should have not only the 
logarithms of all numbers, but also the numbers answering 
to all logarithms. If it were required, for example, to find 
the square root of the number e. we must fiJ'st find the 

F 
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logarithm of c, that is, log. c, and next taking the half of 
that logarithm, or Fog. c, we should have the logarithm of 
the square root required: we have therefore only to look 
in the Tables for the number answering to that logarithm, 
in order to obtain the root required. 

2:30. We have already seen, that the numbers, 1,2,3,4, 
5, 6, &c. that is to say, all positive numbers, are logarithms 
of the root a, and of its positive powers; consequently, 
logarithms ofnumbel's greater than unity: and, on the con
trary, that the negative numbers, as - 1, - 2, &c. are 

logarithms of the fractions !, -;, &c. which are less than 
a a 

unity, but yet greater than nothing. 
Hence, it follows, that, if the logarithm be positive, the 

numher is always gl'eater than unity: but if the logal·jthm 
be negative, thenumbel' is always less than unity, and yet 
greater than 0; consequently, we cannot express the loga
rithms of npgative numbers: we must therefore conclude, 
that the logal'ilhms of negati ve numbers are impossible, 
and that they belong to the class of imaginary quantities. 

231. In order to illustrate this more fully, it will be 
proper to fix on a determinate number for the root a. Let 
us make choice of that, on which the common Logarithmic 
Tables are formed, that is, the number 10, which has been 
preferred, because it is the foundation of our Arithmetic. 
But it is evident that any other number, provided it were 
greater than unity, would answer the same purpose: and 
the reason why we cannot suppose a = unity, or I, is 
manifest; because all the powers, ab, would then be con
stantly equal to unity, and could never become equal to 
another given number, c. 

CHAPTER XXII. 

Of tke Logarithmic Tables now in use. 

232. In those Tables, as we have already mentioned, we 
begin with the supposition, that the root a is = 10; so that 
the logarithm of any number, c, is the exponent to which 
we must raise the number 10, in order that the power re
sulting from it may be equal to the numberc; 01' if we denote 
the logarithm of c by L.c, we shall always have lOL .. = c. 
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233. We have already observed, that the logarithm of 
the number 1 is always 0 ; and we have also 100 = 1; con
sequently, log. 1 = 0; log. 10 = 1; log. 100, or 1O~ = 2; 
log. 1000=3; log. 10000=4; log. 100000=5; log. 
1000000=6. Farther, log.-h= -1; log. m= -2; 
log. 10100=-3; log·Tllioo=-4; log'10iooo=-5; 
log, 100Aooo -6. 

234. The logarithms of the principal numbers, tllerefore. 
are easily determined; but it is much more difficult to 
find the logarithms of all the other intervening numbers; 
and yet they must be inserted in the Tables. This how
ever is not the place to lay down all the rules that are 
necessary for such an inquiry; we shall therefore at present 
content ourselves with a general view only of the su~ject. 

235. First, since log. 1 = 0, and log. 10 = I, it is evident 
that the logarithms of all uumbers between I and 10 must be 
included betweenOand unity; and, com.equently, be greater 
than 0, and less than 1. It will therefol'e be sufficient to 
consider the single number 2; the logarithm of which is 
certainly greater than 0, but less than unity: and if we re
present this logarithm by the letter x, so that log. 2 = x. 
the value of that letter must be such as to give exactly 
10'"=2. 

We easily perceive, also, that x must be considerably 

less than t, or which amounts to the same thing, 101-
is greater than 2; for if we square both sides, the square of 

lOt = 10, and the square of 2=4. Now, this latter is 
much less than the former; and, in the same manner, we 

...l 
see that x is also less than t; that is to say, 10 3 is greater 

than 2: for the cube of 101- is ] 0, and that of 2 is only B. 
But, on the contrary, by making x = t, we give it too small 

a value; because the fourth power of Wi being 10, and 

that of 2 being 16, it is evident that lOt is less than 2. 
Thus, we see that :17, or the log. 2, is le~s than -t, but greater 
than 1-: and, in the same mauner, we may determine, with 
respect to every fraction contaiued between -t and t, whether 
it be too great or too small. 

In making trial, for example, with -t, which is less than 

t, and greater than t, 10'", or 10+, ought to be =2; or 

the seventh power of 10\ that is to say, 102, or 100, ought 
to be equal to the seventh power of 2, or 128; which is 
consequently greater than 100. We see, therefore, that 
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~ is less than log. 2, and that log. 2, which was found less 
than -1-, is however greater than t. 

Let us try another fraction, which, in consequence of 
what we have already found, must be contained between -f 
and i. Such a fraction between these limits is -(0; and it 

3 

is therefore required to find whether lOTTi =2; if this be 
the case, the tenth powers of those numbers are also equal: 

but the tenth power of 1O"t\ is 103 = 1000, and the tenth 

power of 2 is 1024; we conclude, therefore, that 1OT\ is 
less than 2, and, consequently, that -in is too small a frac~ 
tion ; and therefore the log. 2, though less than -h is yet 
greater than T7J' 

236. This discussion serves to prove, that log. 2 has a 
determinate value, since we know that it is certainly 
greater than /0' but less than t; we shall not, however, 
proceed any farther in this investigation at present. Being 
therefore still ignorant of its true value, we shall represent 
it by x, so that log. 2=.1:; and endeavour to shew how, if 
it were known, we could deduce from it the logarithms of 
an infinity of other numbers. For this purpose, we shall 
make use of the equation already mentioned, namely, log. 
cd=log. c+ log. d, which comprehends the property, that 
the logarithm of a product is found by adding together the 
logarithms of the factors. 

237. First, as log. 2 = x, and log. 10 = 1, we shall have 
log. 20 = x + 1, log. 200 = x + 2 
log.2000=x+3, log.20000=x+4 
log. 200000 = x + 5, log. 2000000 = x + 6, &c. 

238. Farther, as log. c2=2 Log. c, and log. c3=3 log. c, 
and log. c4=4 log. c, &c. we have 

log.4=2x; Log.8=3x; log. 16=4x; log. 32=5x; 
log. 64 = 6x, &c. Hence we find also, that 

log. 40 = 2x + 1, log. 400 = 2x + 2 
log.4000=2x+3. log. 40000=2x+4, &c. 
log. 80 = 3.1: + 1, log. 1'00 = 3x + 2 
log.8000=3x+3, log. 80000=3x+4, &c. 
log. 160 = 4x + 1, log. 1600 = 4x +2 
log. 16000=4x+3, log. 160000=4x+4, &c. 
239. Let us resume also the other fundamental equation, 

c 
log. d = log. c-log. d, and let us suppose c= 10, and 

d = 2; since log. 10 = 1, and log. 2 = x, we shall have 
log. 1..j, or log. 5 = I - x, and shall deduce from hence the 
following equations: 
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log.50=2-x, 
log. 5000 = 4 - x, 
log. 25 = 2 - 2x, 
log. 625=4-4x, 
log. 250=3-2x, 
log. 25000 = 5 - 2x, 
log. 1250 = 4 - 3x, 
log. 125000 = 6 - 3x, 
log. 6250 = 5 - 4x, 
log. 625000 = 7 - 4x, 

and so on. 

log.500=3-x 
log. 50000=5-.1', &c. 
log. 125=3-3x 
log. 3125=5-5x, &c. 
log. 2500= 4 - 2x 
log. 250000 = 6 - 2x, &c. 
log. ]2500=5- 3x 
log. 1250000=7-3x, &c. 
log. 62500 = 6 - 4x 
log. 6250000 = 8 - 4r, &c. 

69 

240. If we knew the logarithm of 3, this would be the 
means also of determining a number of other logarithms; 
as appears from the following examples. Let the log. 3 
be represented by the letter y: then, 

log. SO=y+l, log.300=y+2 
log.3000=y+3, log. 30000=y+4, &c. 
log. 9 = 2y, log. 27 = 3y, log. 81 = 4y, &c. we shall 

have also, 
log. 6=x+y, log. 12=2x+y, log. 18=r+2y, 
log. 15= log. 3+ lryg. 5=y + I-x. 

241. We have already seen that all numbers arise from 
the multiplication of prime numbers. If therefore we 
only knew the logarithms of all the prime numbers, we 
could find the logarithms of all the other numbers by 
simple additions. The number 210, for example, being 
formed by the factors 2, 3, 5, 7, its logarithm will be 
log. 2+ log. 3+ log. 5+ log. 7. In the same manner, since 
3(jO = 2 x 2 x 2 x 3 x 3 x 5 = 23 X 32 X 5, we have log. 
360 = 3 log. 2 +2 log. 3 + log. 5. It is evident, therefore, 
that by means or the logarithms of the prime numbers, we 
may determine those of all others; and that we must first 
apply to the determination of the former, if we would 
construct Tables of Logarithms. 

CHAPTER XXIII. 

Of tke Method of expressing Logarithms. 

242. We have seen that the logarithm of2 is greater than 
-/0, and less than'h and that, conseq1;lently, the exponent 
of 10 must fall between those twoJractions, in order that 
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the power may become 2. Now, although we know this, 
yet whatever fraction we assume on this condition, the 
power resulting from it will be always an irrational num
be,·, greater or less than 2; and, consequently, the loga
rithm of 2 cannot be accurately expressed by such a frac
tion: therefore we must content ourselves with determining 
the value of that logarithm by such an approximation as 
may render the error of little orno importance; for which 
purpose, we employ what are called decimal fractions, 
the nature and properties of which ought to be explained 
as clearly as possible. 

243. It is well known that, in the ordinary way of writing 
numbers by means of the ten figures, or characters, 

0, I, 2, 3, 4, 5, 6, 7, 8, 9, 
the first figure on the right alone has its natural significa
tion; that the figures in the second place have ten times 
the value which they would have had in the first; that the 
figures in the tbi,'d place have a hundred times the value; 
and those in the fourth a thousand times, and so on: so 
that as they advance towards the left, theyacqui,·e a value 
ten times greater than they had in the preceding rank. 
Thus, in the number 1765, the figure 5 is in the first place 
on the right, and is just equal to 5; in the second place is 
6; but this figure, instead of 6, represents 10 x 6, or 60 ; 
the figUl'c 7 is in the third place, and represents 100 x 7, or 
700; and lastly, the I, which is in the fourth place, 
becomes 1000; so that we read the given number thus: 

One thousand, seven hundred, and six~lj-jive. 
244. As the value of figures becomes always ten times 

greater as we go from the right towards the left, and as it 
consequently becomes continually ten times less as we go 
from the left towards the right; we may, in conformity with 
this law. advance still farther towards the right, and obtain 
figures whose value will continue to become ten times less 
than in the preceding place: but it must be observed, that 
the place where the figures have their natural value is 
marked by a point. So that if we meet, for example, with 
the number 36·54892, it is to be understood in this manner: 
the figure 6, in the first place, has its natural value; and the 
figure 3, which is in the second place to the left, means 30. 
But the figure 5, which comes after the point, expresses 
only +0; and the 4 is equal only to Th; the figure 8 is 
equal to "f1ho; the figure 9 is equal to -roho; and the 
figure 2 is equal to 1 0 020 0 0 • We see then, that the more 
.those figures advance towards the right, the more their 
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values diminish; and at last, those values become so 
small, that they may be considel'ed as nothing.* 

245. This is the kind of numbers which we call decimal 
fractions, and in this manner logarithms are represented in 
the Tables. The logarithm of '2, for example, is expressed 
by 0'3010300; in which we see, 1st. That since there is 0 
befOl'e the point, this logarithm does not contain an integer; 
2dly, that its value is "lo + T%-o + Ti5~O + To%-oo + Toi\roo 
+ Toogooo + 1000°0000' We might have left out the two 
last ciphers, but they serve to shew that the logarithm in 
question contains none of those parts which have 1000000 
and 10000000 for the denominator. It is however to be 
understood, that, by continuing the series. we might have 
found still smaller parts; but with regard to these, they 
are ne~lecterl, on account of their extreme minuteness. 

246.- The logarithm of 3 is expressed in the Table by 
0'4771213; we see, thcrefOl"e, that it contains no integer, 
and that it is composed of the following f!"actions: +0 + 
T-to + rioo + TO~OO + To 02000 + loohoo + 100010000' 
But we must not suppose that the logarithm is thus ex-
pressed with the utmost exactness; we are only cel·tain that 
the errol' is less than 100010000 ; which is cel·tainly so small, 
that it may very well he neglected in most calculations. 

247. According to this method of expressing logarithms, 
that of 1 must be represented by 0'0000000, sinee it is 
really = 0 : the logarithm of 10 is 1 0000000, whel'e it evi
dently is exactly = I : the logarithm of 100 is 2'0000000, 
or 2. And hence we may conclude, that the logarithms of 
all numbers, which are included between 10 and 100, and 

* The operations of arithmetic are performed with decimal 
fractions in the same manner nearly as with whole numbers; 
some precautions only are necessary, after the operation, to 
place the point properly, which separates the whole numbers 
from the decimals. On this subject, we may consult almost any 
of the treatises on arithmetic. In the multiplication of these 
fractions, when the multiplicand and multiplier contain a great 
number of decimals, the operation would become too long, and 
would give the result much more exact than is for the most 
part necessary; but it may be simplified by a method, which is 
not to be found in many authors, and which is pointed out by 
M. Marie in his edition of the mathematical lessons of M. de la 
Caille, where he likewise explains a similar method for the 
division of decimals.-F. T. 

The method alluded to in this note is clearly explained ill 
Bonnycastle's Arithmetic. 
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consequently composed of two figures, are comprehended 
between 1 and 2, and therefore must be expressed by 1 plus 
a decimal fraction. as Log. 50 = 1'6989700: its value there
fore is unity, plus T% + 160 + -nfoo + To%-o-o + To lo 0 0 : 
and it will be also easily perceived, that the logarithms of 
numbers, between 100 and 1000, are expressed by the in
teger 2 with a decimal fraction: those of numbers between 
1000 and 10000, by 3 plus a decimal fraction; those of 
numbers between 10000 and 100000, by 4 integers plus 
a decimal fraction, and so on. Thus, the log. 800, for 
example, is 2'9030900; that of 2290 is 3';3598355, &c. 

24t:!. On the other hand, the logarithms of numbers which 
are less than 10, or expressed by a single figure, do not 
contain an integer, and for this reason we find 0 before the 
point: so that we have two parts to consider in a logarithm. 
First, that which precedes the point, or the integral part; 
and the other, the decimal fractions that are to be added 
to the former. The integral part of a logarithm, which is 
usually called the characteristic, is easily determined from 
what we have said iu the preceding article. Thus, it is 
0, for all the numbers which have but one figure; it is 1, 
for those which have two; it is 2, for those which have 
three; and, in general, it is always one less than the num
ber of figures. If therefore the logarithm of 1766 be re
quired, we already know that the first part, or that of the 
integers, is necessarily 3. 

249. So reciprocally, we know at the first sight of the 
integer part of a logarithm, how many figures compose the 
number answering to that logarithm; since the number of 
those figures always exceed the integer part of the logarithm 
by unity. Suppose, for example, the number answering 
to the logarithm 6'4771213 wer'e required, we know imme
diately that that number must have seven figures, and be 
greater than 1000000. And in fact this number is 3000000; 
for log. 3000000 = log. 3 + log. 1000000. Now log. 3 = 
0'4771213, and log. 1000000 = 6, and the sum of those 
two logarithms is 6'4771213. 

250. The pl'incipal considemtion therefore with respect 
to each logarithm is, the decimal fraction which follows the 
point; and even that, when once known, serves for several 
numbers. In order to prove this, let us consider the loga
rithm of the number 365; its first part is undoubtedly 2 ; 
with respect to the other, or the decimal fraction, let us at 
present represent it by the letter x; we shall have log. 365 
= 2 + x; then multiplying continually by lO, we shall 
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have log. 3650 = 3 + x; log. 36500 = 4 +x; log. 365000 
=5 +x, and so on. 

But we can also go back, and continually divide by 10; 
which will give us log. 36'5 = 1 +x; log. 3'65=0 +x; 
log. 0'365 = - 1 +x; log. 0·0365 = - 2+ x; log. 0'00365 
= -3 +x, and so on. 

251. All those numbers then which arise from the figures 
365, whether preceded or followed by ciphers, have always 
the same decimal fraction for the second pal't of the loga
rithm: and the whole difference lies in the integer before 
the point, which, as we have seen, may become negative; 
namely, when the number proposed is less than 1. Now, as 
ordinary calculators find a difficulty in managing negative 
numbers, it is usual, in those cases, to increase the integers 
of the logarithm by 10, that is, to write 10 instead of 0 
before the point; so that instead of-l we have 9: instead 
of-2 we have 8; instead of-3 we have 7, &c.; but then 
we must remember, that the characteristic has been taken 
ten units too great, and by no means suppose that the num
ber consists of 10, 9, or 8 figures. It is likewise easy to 
conceive, that, ifin the case we speak of, this characteristic 
be less than 10, we must write the figures of the number 
after a point, to shew that they are decimals: for example, 
if the characteristic be 9, we must begin at the fil'st place 
after a point; if it be 8, we must also place a cipher in 
the first row, and not begin to write the figures till the 
second: thus 9'.5622929 would be the logarithm of 0'365, 
and 8'5622929 the log. of 0'0365. But. this manner of 
writing logarithms is principally employed in Tables of sines. 

252. In the common Tables, the decimals of logarithms 
are usually carried to seven places of figures, the last of 
which consequently represents the TOOOIOOOO part, and we 
are sllre that they are never erroneous by the whole of this 
part, and that therefore the error cannot be of any import
ance. There are, however, calculations in which we require 
still greater exactness; and then we employ the large Tables 
ofVlacq, where the logarithms are calculated to ten decimal 
places.* 

;/0 The most valuable set of Tables we are acquainted with are 
those published by Dr. Hutton, late Professor of Mathematics 
at the Royal Military Academy, Woolwich, under the title of 
" Mathematical Tables; containing common, hy perbolic, and 
logistic logarithms. Also sines, tangents, &c.: to which is pre
fixed a large and original history of discoveries and treatises 
relating to those subjects." 
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253. As the first part, or characteristic of a logarithm, is 
subject to no difficulty, it is seldom expressed in the Tables; 
the second part only is written, or the seven figures of the 
decimal fraction. There is a set of English Tables in which 
we find the logarithms of all numbers from 1 to 100000, 
and even those of greater numbers; for small additional 
Tables shew what is to be added to the logarithms, in pro
portion to the figures, which the proposed numbers have 
more than those in the Tables. We easily find, for ex
ample, the logarithm of 379456, by means o·fthat of 37945 
and the small Tables of which we speak.* 

254. From what has been said, it will easily be perceived 
how we are to obtain from the Tables the number corre
sponding to any logarithm which may occllr. Thus, in mul
tiplying the numbers 343 and 2401 ; since we must add 

'" The English Tables spoken of in the text are those which were 
published by Sherwin in the beginning of the seventeenth century, 
and have been several times reprinted; they are likewise to be 
found in the Tables of Gardener, which are commonly made use 
of by astronomers, and which have been reprinted at Avignon. 
With respect to these Tables it is proper to remark, that as they 
do not carry logarithms farther than seven places, independently 
of the characteristic, we cannot use them with perfect exact
ness except on numbers that do not exceed six digits; but when 
we employ the great Tables of Vlacq, which carry the loga
rithms as far as ten decimal places, we may, by taking the pro
portional parts, work, without error, upon numbers that have 
as many as nine digits. The reason of what we have said, and 
the method of employing these Tables in operations upon still 
gTeater numbers, is well explained in Saunderson's Elements 
of Algebra, Book IX. Part II. 

It is farther to be observed, that these Tables only give the 
logarithms answering to given numbers, so that when we wish 
to get the numbers answering to given logarithms, it is seldom 
that we fiud in the Tables the precise logarithms, that are given; 
and we are, for the most part, under the necessity of seeking for 
these numbers in an indirect way, by the method of interpola
tion. In order to supply this defect, another set of Tables was 
published in London, 1742, under the title of "The Anti
logarithmic Canon, &c., by James Dodson." He has arranged 
the decimals of logarithms from 0,000 I to 1,0000, and opposite 
to them, in order, the corresponding numbers carried as far as 
eleven places. He has likewise given the proportional parts 
necessary for determining the numbers which answer to the 
intermediate logarithms that are not to be found in the 
Table.-F. T. 
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together the logarithms of those numbers, the calculation 
will be as follows: 

log. 343 = 2'5352941} added 
log. 2401 = 3'3803922 

5-9156863 their sum 
log. 823540 = 5'9156847 nearest tabular log. 

16 difference, 
which in the Table of Differences answers to 3; this there
fore being used instead of the cipher, gives 823543 for the 
product sought; for the sum is the logarithm of the product 
required; and its characteristic 5 shews that the product 
is composed of 6 figures; which are found as above. 
_ 255. But it is in the extraction of roots that logarithms 
are of the greatest service; we shall therefore give an ex
ample of the manner in which they are used iu calculations 
of this kind. Suppose, for example, it were required to 
extract the square root of 10. Here we have only to divide 
the logarithm of 10 which is 1'0000000 by 2; and the 
quotient 0'5000000 is the logarithm of the root required. 
Now, the number in the Tables which answers to that 
logarithm is 3'16228, the square of which is very nearly 
equal to 10, being only one hundred thousandth part too 
great.* 

• In the same manner, we may extract any other root, by 
dividing the log. of the number by the denominator of the index 
of the root to be extracted; that is, to extract the cube root, 
divide the log. by 3, the fourth root by 4, and so on for any 
other extraction. For example, if the 5th root of 2 were re
quired, the log. of 2 is 0'3010300: therefore 

5)0'3010300 

0'0602060 is the log. of the root, which 
by the Tables is found to correspond to 1'1497; and hence we 
have ~2 = 1'1497. When the index, or characteristic of the 
log. is negative, and not divisible by the denominator of the 
index of the root to be extracted, then as many units must be 
borrowed as will make it exactly divisible, carrying tbose units 
to the next figure, as in common division. 
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SECTION II. 

OF THE 'DIFFERENT METHODS OF CALCULATING COMPOUND 

QUANTITIES. 

CHAPTER I. 

Of the Addition of Compound Quantities. 

256. When two or more expressions, consisting of 
several terms, are to be added together, the operation is 
frequently represented merely by signs, placing each 
expression between two parentheses, and connecting it 
with the rest by means of the sign +. Thus, for example, 
if it be required to add the expression a + b + c and 
d + e + f, we represent the sum by 

(a + b + c) + (d + e + f). 
257. It is evident that this is not to perform addition, 

but only to represent it. We see, however, at the same 
time, that in order to perform it actually, we have only to 
leave out the parentheses; for as the number d+e+ f is 
to be added to a + b + c, we know that this is done by 
joining to it first +d, then +e, and then + f; which 
therefore gives the sum a+b+c+d+e+f; and the same 
method is to be observed, if any of the terms are affected 
by the sign - ; as they must be connected in the same 
way, by means of their proper sign. 

258. To make this more evident, we shall consider an 
example in pure numbers, proposing to add the expression 
15 - 6 to 12 - 8. Here, if we begin by adding 15, we 
shall have 12-8 + 15; but this is adding too much, since 
we had only to add 15 - 6, and it is evident that 6 is the 
number which we have added too much; let us therefore 
take this 6 away by writing it with the negath'e sign, and 
we shall have the true sum, 

12-8 + 15-6-; 
which shews that the sums are ,found by writing all the 
terms, each with its proper sign. 
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259. If it were required therefore to add the expression 
d-e-f to a-b+c, we should express the sum thus; 

a-b+c+d-e-f; 
remarking, however, that it is of no consequence.in what 
order we write these terms; for their places may be 
changed at pleasure, provided their signs be presel'ved; 
so that this sum might have been written thus; 

c - e + a - f + d - b. 
260. It is evident, therefore, that addition is attended 

with no difficulty, whatever be the form of the terms to 
he added. 'rhus, if it were necessary to add tog.ether the 
expression 2a3+6Vb-41og.c and Mja-7c, we should 
write them 

2a3 + 6 Vb - 4log.c + 5~a-7c, 
either in this 01' in any oth.er order of the terms; for if the 
signs are not changed, the sum will always be the same. 

261. But it fl'equently happens that the sums repre
sented in this manner may he considerably abl'idged, as is 
the case when two or more terms destroy each other: for 
example, if we find in the same sum the terms +a-a, or 
3a-4a +a; or when two or more terms may be reduced 
to one, &c. Thus, in the following examples: 

&+~=~ n-~=+~ 
-6c+ lOc= +4c, 4d-2d=2d 

5a-8a=-3a, -7b+b=-6b 
-3c-4c=-7c, -3d-5d=-8d 

2a-5a+a=-2a, -3b-5b+2b=-6b. 
Whenever two or more terms, therefore, are entirely the 
same with regard to letters, their sum may be abridged; 
but those cases must not be confounded with such as these, 
2a2 +3a, or 2b3 -b4, which admit of no abridgement. 

262. Let us consider now some other examples of re
duction, as the following, which will lead us immediately 
to an important truth. Suppose it were required to add 
together the expressions a+b and a-b; our rule gives 
a+b+a-b; now a+a=2a, and b-b=O; the sum there
fore is 2a: consequently, if we add together the sum of 
two numbers (a+b) and their difference (a-b), we obtain 
the double of the greater of those two numbers. 

This will be better understood perhaps fl'om the follow
ing examples: 

3a-2b-c a3-2a2b +2ab2 

5b-6c+a - a2b+2ab2 _b3 
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4a2-3b+ 2c 
3a2 +2b-12c 

7a2 _ b-IOc 
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a4 +2ab +b3 

-a4 _2a2b+3b3 

-2a2b +2ab +4b3 

CHAPTER II. 

Of the Subtraction of Compound Quantities. 

263. If we wish merely to represent subtraction, we 
enclose each expression within two parentheses, joining, 
by the sign -. the expression which is to be subtracted, 
to that from which we have to subtract it. 

When we subtract, for example, the expression d - e 
+ f from the expression a - b + c, we write the remainder 
thus: 

(a-b+c) - (d-e+.f); 
and this method of representing it sufficiently shews which 
of the two expressions is to be subtracted from the other. 

264. But if we wish to perform the actual subtraction, 
we must observe, first, that when we subtract a positive 
quantity + b from another quantity a, we obtain a- b : 
and secondly, when we subtract a negative quantity -b 
from a, we obtain a + b; because to free a person from 
a debt is the same as to give him something. 

265. Suppose now it were required to subtract the 
expression b-d from a-c. We first take away b, which 
gives a-c-b: but this is taking away too much by the 
quantity d, since we had to subtract only b-d; we must 
therefore restore the value of d, and then shall have 

a-c-b+d; 
whence it is evident that the terms of the expression to be 
subtracted must change their signs, and then be joined 
with those contrary signs, to the terms of the other 
expression. 

266. Subtraction is therefore easily performed by this 
rule, since we have only to write the expression from 
which we are to subtract, joining the other to it without 
any change beside that of the signs. Thus, in the first 
example, where it wa.s required to subtmct the expression 
d-e+ f from a-b+c, we obtain a-b+c-d+e-f· 

An example in numbers will render this still more 
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clear; for if we subtract 6 - 2 + 4 from 9 - 3 + 2, we 
evidently obtain 

9-3+2-6+2-4=0; 
for 9-3+2=8; also, 6-2+4=8; and 8-8=0. 

267. Subtraction being therefore subject to no difficulty, 
we bave only to remark, that if there are found in the 
remainder two or more terms, which are entirely similar 
with regard to the letters, that remainder may be reduced 
to an abridged form by the same rules that we have given 
in addition. 

268. Suppose we have to subtract a- b from a + b ; 
that is, to take the difference of two numbers from their 
sum: we shall then have (a+b)-(a-b); but a-a=O, 
and b + b =2h; the remainder sought is therefore 2b; 
that is to say, the double of the less of the two quantities. 

269. The following examples will supply the place of 
further illustrations: 
a2+ab+b~ 3a-4b+5c a3 +3a2b+3ab2 +b3 ";a+2..;b 

-a2 +ab+b2 2b+4c-6a a3 _3a2b+3ab2_b3 ..;a-3..;b 
2a2. 9a-6b+c. 6a2b+2b3• 5..;b. 

CHA PTER III. 

Of tke Multiplication of Compound Quantities. 

270. When it is only required to represent multiplica
tion, we put each of the expressions that are to be mul. 
plied together within two parentheses, and join them to 
each other, sometimes without any sign, and sometimes 
placing the sign x between them. Thus, for example, to 
represent the product of the two expressions a-b+c and 
d-e+f, we write 

(a-b+c) x (d-e+f) 
or barely, (a-b+c) (d-e+f) 
which method of expressing products is much used, be
cause it immediately exhibits the factors of which they are 
composed. 

271. But in order to shew how multiplication is actually 
performed, we may remark,·in the first place, that to mul
tiplya quantity, such as a-b+c, by 2, fol' example, 
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each term of it is separately multiplied by that number; 
so that the product is 

2a-2b+2c. 
And the like takes place with re~ard to aU other num
hers; for if d were the number by which it was required to 
multiply the same expression, we should obtain 

ad-bd+cd. 
272. In the last article, we have supposed d to be a 

positive number; but if the multiplier were a negative 
number, as -e, the rule formerly given must be applied; 
namely, that unlike signs multiplied together produce -, 
and like signs +. Thus we should have 

-ae+be-ce. 
273. Now, in order to shew how a quantity, A, is to be 

multiplied by a compound quantity, d-e; let us first 
consider an example in numbers, supposing that A is to 
be multiplied by 7 -3. Here it is evident, that we are 
required to take the quadruple of A: for if we first take .A 

seven times, it will then be necessary to subtmct 3A from 
that product. 

In geneml, therefol'e, if it be required to multiply A 

by d-e, we multiply the quantity A first by d, and then 
bye, and subtract this last product from the first: whence 
results dA-eA. 

If we now suppose A=a-b, and that this is the 
quantity to be multiplied by d-e; we shall have 

d.A=ad-bd 

eA=ae- be 
whence dA - eA = ad - bd - ae + be is the product re
quired. 

274. Since therefore we know accurately the product 
(a- b) x (d-e), we shall now exhibit the same example 
of multiplication under the following form: 

a-b 
d-e 

ad-bd-ae+be. 
Which shews, that we must multiply each term of the 

upper expression by each term of the lower, and that, 
with regard to the signs, we must strictly observe the 
rule before given; a rule which this circumstance would 
completely confirm, if it admitted of the least doubt. 

275, It will be easy, therefore, according to this method, 
to calculate the following example, which is to multiply 
a+b by a-b; 
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a+b 
a-b 
a~+ab 

-ab-b~ 

Product a2 _b2 

81 

276. Now, we may substitute for a and b any numbers 
whatever; so that the above example will furnish the 
following theorem; viz. The sum of two numbers, multi
plied by their difference, is ~qual to the difference of 
the squares of those numbers: which theorem may be 
expressed thus: 

(a+b) x (a-b) =a2 _b2 • 

And from this another theorem may be derived; namely, 
The difference of two square numbers is always a product, 
and divisible both by the sum and by the difference of the 
roots of those two squares; consequently, the difference 
of two squares can never be a prime number.· 

277. Let us now calculate some other examples: 

2a-3 4a2 -6a+9 
a+2 2a+3 

3a2 -2ab 
2a -4b 

6a3 --ta2b 
-12a2b + 8ab2 

6a3-16a~b+8ab2 

8a3_12a2 + 18a 
12dl -18a+27 

8a3 +27 

a6 +a5h3 

_a5b3_a4b6 

a6_a4b6 

'* This theorem is general, except when the difference of the 
two numbers is only I, and their sum is a prime; then it is 
evident that the difference of the two squares will also be a 
prime: thus, 62_52=11,72_62=13,92_81=17, &c. 

G 
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a2+2ab+2b~ 
a2 -2ah+2b2 

a4 + 2a3b + 2a2b2 

-2a3b-4a2b2 -4ab3 

2a2b2 +4ab3 +4b4 

2a2 - 3ab - 4b2 

:3a2 - 2ab + b2 

6a4 -9a3b-12a2b2 

-4a3b+ 6a2b2 +8ab3 

2a2b2 -3ab3 -4b4 

6a4-1:3a3b-4a2b2+5ab3-4b4 

a2 + b2 + c2 -ab-ac-bc 
a +b+c 

a3 +ab2 +ac2 -a2b-a2c-abc 

SECT. II. 

a2b+h3 +bc2-ab2 -abc-b2c 
a2c+b2c+c3 -abc-ac2 -bc'Z 

278. When we have more than two quantities to mul
tiply together, it will easily be understood that, after 
having multiplied two of them together, we must then 
multiply that product by one of those which remain, and 
so on : but it is indifferent what order is observed in those 
multiplications. 

Let it be proposed, for example, to find the value, or 
product, of the four following factors, viz. 

1. II. III. IV. 
(a+b) (a2 +ab+b2 ) (a-b) (a2 -ab+b2 ). 

lst. The product of the fae- 2d. The product of the fac-
tors I. and II. tors II I. and IV. 

~+~+~ ~-~+~ 
a+b a-b 

a3 +a~b+ab2 

+a2b+ab2 +b3 

a3 + 2a2b + 2ab2 + b~ 

a3 -a2b+ab2 

-o,2b +ab2 _h3 

a3-2a2b+2ab2 -h3 
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It remains now to multiply the first product I. II. by 
this second product III. IV. 

a3 + 2a2b + 2ab2 + b3 

a3 - 2a2b + 2ab2 - b3 

a6 + 2a5b + 2a4b2 + aSb3 

-2a5b-4a4b2-4a3b3_2a2b4 
2a4b2 + 4a3b3 + 4a2b4 + 2ab5 

a3b3 _ 2a2b4 - 2ab5 - b6 

which is the product required. 
279. Now let us resume the same example, but change 

the order of it, first multiplying the factors I. and III. 
and then II. and IV. together. 

a+b a2 +ab+b2 

a-b a2 -ab+b2 

a4 + aSb + a2b2 

_ aSb _ a2b2 _ ab3 

a2b2 + ab3 + b4 

Then multiplying the two products I. II I. and II. I V. 
a4 +a2b2 +b4 

a2 _b2 

a6 + a4b2 + a2b4 

_a4b2_a2b4_bG 

a6_b6 

which is the product required. 
280. We may perform this calculation in a manner 

still more concise, by first multiplying the I"t factor by 
the IV'h, and then the lId by the IIId. 

a2 -ab+b2 a2 +ab+b2 

a +b a -b 

a3 -a2b+ab2 

a2b-ab2+b3 

a3 +b3 

a3 +a2b+ab2 

_a2b_ab2 _b3 

a3 -b3 
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It remains to multiply the product I. IV. by that of 
]1. and III. 

a:l +b3 

n3 _b3 

a6 +a3b3 

_a3b3 _b6 

a6 _b6 
---

the same result as before. 
281. It will be proper to illustrate this example by a 

numerical application. For this purpose, let us make 
a=3 and b=2, we shall then have a+b=5, and a-b= I; 
farther, a'1.=9, ab=6, and b2=4: therefore a2 +ab+b2 

=19, and a2 -ab+b2=7: so that the product required is 
that of 5 x 19 x I x 7, which is 665. 

Now, a6=729, and b6=64; consequently, the product 
required is a6-b6=665, as we have already seeu. 

CHAPTER IV. 

Of Ike Division of Compound Quantities. 

282. When we wish simply to represent division, we 
make use of the usual mark offl'actions; which is, to write 
the denominator under the numerator, separating them 
by a line; or to enclose each quantity between paren
theses, placing two points between the divisor and 
dividend, and. a line between them. Thus, if it were 
required, for example, to divide a+b by c+d, we should 

represent the quotient thus; a +db, according to the former 
c+ 

method; and thus, 
(a+b) -:- (c+d) 

according to the latter, where each expression is read a+b 
divided by c+d. 

283. When it is required to divide a compound quantity 
by a simple one, we divide each term separately, as in the 
following examples: 

(6a-8b+4c) -:- 2=3a-4b+2c 
(a2 -2ab) -:- a=a-2b 
(a3 _2a2b+3ab2 ) -:- a=a2 -2ab+3b2 
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(4a2 -6a2e +8abe) -:- 2a=2a-3ac+4be 
(9a2be-12ab2e+ 15abr;2) -:- 3abe=3a-4b+5e. 

8.5 

284. If it should happen that a term of the dividend is 
not divisible by the divi,;or, the quotient is represented by 
a fraction, as in the division of a + b by a, which gives 

l+~. Likewise, (a2 -ab+b2 )-:-a2=1 -~+~. 
a a a-

In the same manner, if we divide 2a+b by 2, we 

obtain a +;: and here it may be remarked, that we may 

write tb, instead of;, because t times b is equal to ~; and, 

. h b. l b d 2b h III t e same manner':3 IS t Ie same as 1 ,an ;r t e same 

as tb, &c. 
285. But when the divisor is itself a compound quantity, 

division becomes more difficult. This frequently occurs 
where we least expect it; and when it cannot be per
formed, we must content ourselves with representing the 
quotient by a fraction, in the manner already described. 
At present, we will begin considei'ing some cases in which 
actual division takes place. 

286. Suppose, for example, it were required to divide 
ae-be by a-b, the quotient mllst here be such as, when 
multiplied by the divisor a-b, will produce the dividend 
ae-be. Now, it is evident that tbis quotient must 
include e, since without it we could not obtain ae; in 
order therefore to try whether e is the whole quotient, we 
have only to multiply it by the divisor, and see if that 
multiplication produces the whole dividend, or ollly a 
part of it. In the present case, if we multiply a- b bye, 
we have ae-be, which is exactly the dividend; so that c 
is the whole quotient. It is no less evident, that 

(a2+ab) -:- (a+b) =a; 
(3a2 -2ab) -:- (3a-2b) =a; 
(6a2 -9ab) -:- (2a-:3b) =3a, &c. 

287. "Ve cannot fail, in this way, to find a part of the 
quotient; if, theref()re, what we have found, when mul
tiplied by the divisor, does not exhaust the dividend, we 
have only to divide the remainder again by the divisor, 
in order to obtain a second part of the quotient; and to 
continue the sallle method, until we have found the 
whole. 
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Let us, as an example, divide a2 + 3ab + 2bz by a + b. 
It is evident, in the first place, that the quotient will 
include the term a, since otherwise we should not obtain 
a2 • Now, from the multiplication of the divisor a+b 
by a, arises a2 +ab ; which quantity being subtracted from 
the dividend, leaves the remainder, 2ab + 2bz ; and this 
remainder must also be divided by a + b, where it is 
evident that the quotient of this division must contain 
the term 2b. Now, 2b, multiplied by a + b, produces 
2ab+2b2 ; consequently, a+2b is the quotient required; 
which multiplied by the divisor a + b, ought to produce 
the dividend a2 +3ab+2b2• See the operation. 

a +b)a2 +3ab +2b2(a + 2b 
a2 + ab 

2ab+2b2 

2ab+2b2 

O. 
288. This operation will be considerably facilitated by 

choosino' one of the terms of the divisor, which contain s 
the highest power, to be written first; and then, in ar
ranging the terms of the dividend, begin with the highest 
powers of that first term of the divisOl', continuing it 
according to the powers of that letter. This term in the 
preceding example was a. The following examples will 
render the process more pe,'spicuous. 

a - b )a3 - 3a2b + 3ab2 - b3( a2 _ 2ab + b2 

a3 _ a2b 

-2a2b+3ab2 

-2a2b+2ab2 

a+b)a2-b2(a-b 
a~+ab 

-ab-b2 

_ab-b2 

o. 

ab2-b3 

ab2 _b3 

o. 
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3a-2b)18a2 - 8b2(6a +4b 
18a2 -12ab 

12ah-8b't 
12ab-8b~ 
----

o. 

II + b)a J + b:l(tt"-ab + b~ 
a3+a~b 

-a2b+ b" 
-a2b-ab2 

ab2 +b3 

ab2 +b'-; 

2a- b )8aS - b3 ( 4a2 + 2ab + b~ 
8a3-4a2b 

4a2b_b:1 

4azb-2ab2 

2ab2-b3 

2ab2 _b3 

o. 

a2 - 2a b + b2 )a4 - 4a3b + 6a2b2 - 4ab3 + b4(a2 - 2ab + bZ 

a4 _2a3b+ a2b2 

-2113b +5a2b2 _4ab3 

-2a3b+4aPb2 -2ab3 

a2b2 _ 2ab3 + b4 

a2b2 _2ab3 +b4 

o. 

87 
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a~- 2ab +4b2)a4 + 4a2b2 + 16b4(a2 + 2ab + 4b2 

a4 _ 2asb + 4a2b2 

2asb + 16b4 

2asb - 4a2b2 + Sabs 

4a2b2 -SabS + 16b4 

4a~b2 - Sabs + 16b" 

O. 

a2 - 2ab + 2b2 )a4 + 4b4( a,2 + 2ab + 2bz 
a4 -2a3h+2a2b2 

2a3b-2a2b2 +4b4 

2a3b_4a2b2 +4ab3 

2a2b2-4ab3 +4b4 

2a2b2 - 4ab3 + 4b4 

O. 

1-2x+x2)1-5x+ lOx2-lOx3+5x4-x5(1-3x+3x2-x3 
1-2x+x2 

-3x+9x2 -IOx3 

-.3x+6x2 - 3x3 

3x2-7x3 +5x4 

3x2 - 6.1:3 + 3x4 

-x3 +2x4-x5 
-x3 +2x4 -x" 

o. 
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CHAPTER V. 

Of the Resolution of Fractions into Infinite Series.'" 

289. When the dividend is not divisible by the divisor, 
the quotient is expressed, as we have already observed, by 
a fraction: thus, if we have to divide 1 by I-a, we obtain 

the fraction -1 1 • This, however, does not prevent us from 
-a 

attempting the division according to the rules that have 
been given, nor from continuing it as far as we please; 
and we shall not fail thus to find the true quotient, though 
under different forms. 

290. To prove this, let us actually divide the dividend I 
by the divisor I-a, thus: 

I-a)I '*' (l+~ I-a 
I-a 

remainder a 

or, I-a)I 

I-a 
a 
a-aQ 

remainder a2 

To find a greater number of forms, we have only to con ... 
tinue dividing the remainder a2 by I-a; 

a3 

l-a)a2 * (a2 +--J-a 

'" The Theory of Series is one of the most important in all the 
mathematics. The series considered in this chapter were dis
covered by Mercator, about the middle of the seventeenth cen
tury; and soon after, Newton discovered those which are derived 
from the extraction of roots, and which are treated of in Chapter 
XII. of this section. This theory has gradually received improve
ments from several other distinguished mathematicians. The 
works of James Bernoulli, and the second part of the Differen
tial Calculus of Euler, are the books in which the fullest infor
mation is to be obtained on these subjects. There is likewise in 
the Memoirs of Berlin for 1768, a new method by M. de la 
Grange for resolving, by means of infinite series, all literal equa
tions of any dimensions whatever.-F. T. 
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then, l-a)a3 

and again, l-a)a4 

291. This shews that the fraction -I 1 may be exhibit
-a 

ed under all the following forms: 
a 

I. 1+ -I -. -a 
a2 

II. l+a+-1-; 
-a 

2 3 4 a5 
V. I +a+a +a +a + -]-, &c. 

-a 

N ow, by considering the first ofthese expressions, which 
.] a db' hI' h ] -a IS + -1-' an remem ermg t at IS t e same as -1 -. , 

-a -a 
we have 

1+ _a __ I-a +_a __ ]-a+a=_I_ 
I-a -I-a I-a - I-a I-a' 

If' we follow the same process, with regard to the second 
2 

expression, 1 +a+ -1 a ,that is to say, if we reduce the 
-a 

integral part 1 +a to the same denominator, I-a, we shall 
1-~ ~ 

have -1--' to which if we add + -1-' we shall have 
-a -a 

l_a2 +a2 • 1 
-1---' that IS to say, -1-' -a -a 

I h h ' d '1 2 a3 h' n t e t Ir expreSSIOn, +a+a + -1--' t e mtegers 
-a 

reduced to the denominator I-a make II-a3 ; and if we 
-a 

a3 1 
add to that the fraction -1-' we have -]-, as before; 

-a -a 

therefore all these expressions are equal in value to -1 1 , 
-a 

the proposed fraction. 
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292. This being the case, we may continue the series as 
far as we please, without being under the necessity of per
forming any more calculations; and thus we shall have 

1 ~ 
-- = 1 + a +a2+a3+a4+a5+a6+a7 +--
I-a I-a; 

or we might continue this farther, and still go on without 
end; for which reason it may be said that the proposed 
fraction has been resolved into an infinite series, which is, 
I + a + a,2 + as + a'" + a5 + a6 + a7 + as + a9 + a lO + all + a12, &c. 
to infinity: and there are sufficient grounds to maintain, 
that the value of this infinite series is the same as that of 

the fraction -1 1 • 
-a 

293. What we have said may at first appear strange; 
bnt the consideration of some particular cases will make 
it easily understood. Let us suppose, in the first place, 
a= 1; our series will become 1 + 1 + 1 + 1 + 1 + 1 + 1, &c.; 

and the fraction -1 I • to which it must be equal, becomes 
-a 

1 1 l' or!. Now, we have before remarked, that! is a 

number infinitely great; which is therefore here confirmed 
in a satisfactory manner. See Art. 83 and 84. 

Again, if we suppose a = 2, our series becomes 1 + 2 + 
4+8+ 16+32+64, &c. to infinity, and its value must 

be the same as I ~ 2' that is to say 11 = -1; which at first 

sight will appear absurd. But it must be remarked, that if 
we wish to stop at any term of the above series, we cannot 
do so without annexing to it the fraction which remains. 
Suppose, for example, we were to stop at 64, after having 
written 1 + 2 + 4 + 8 + 16 + 32 + 64, we must add the frac-
. 128 128 

tlOn l _ 2,or -1' or, -128; we shall therefore have 127 

- 128, that is in fact - 1. 
Were we to continue the series without intermission, the 

fraction would be no longer considered; but, in that case, 
the series would still go on. 

294. These are the considerations which are necessary, 
when we assume for a numbers greater than unity; but if 
we suppose a less than 1, the whole becomes more intel
ligible: for example, let a = t; and we shall then have 

-1 I =-1 1 =~=2, which will be equal to the following 
-a -~ ~ 

.2 .2 & . .I! • 
series 1 +-1- +-l +t +T"<r + }2 + h +rh, c. to lDllDlty. 
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Now, if we take only two terms of this series, we 

shall have 1 +·h and it wants t of being equal to -I 1 =2. 
-a 

If we take three terms, it wants i; for the sum is Ii. If 
we take four terms, we have lh and the deficiency is only 
t. Therefore, the more terms we take, the less the dit:. 
ference becomes; and, consequently, if we continue the 
series to infinity, there will be no difference at all between 

its sum and the value of the fraction -1 1 ,or 2. 
-a 

295. Let a = 1'; and our fraction 1 ~a will then be = 

1 I ~ = t = It, which reduced to an infinite series, be-
3 

comes 1 + l' + ~ + -h + 8\ + 213' &c. which is conse
I 

quently equal to I-a' 

Here, if we take two terms, we have It, and there wants 
~-. Ifwe take three terms, we have Ii, and there will still 
be wanting ,)s' If we take four terms, we shall have I ~ ~, 
and the difference will be n; since, therefore, the error 
always becomes three times less, it must evidently vanish 
at last. 

I I 
296. Suppose a =!; we shall have I _ a = 1-.2. = 3, 

= I + i + t +-f.r + -H + l423' &c. to infinity; anl hel'e, 
by taking first It, the error is 11'; taking three terms, 
which make 2i-, the error is ~; taking four terms, we have 
2-H, and the error is #. 

297. If a = i, the fraction is I ~.L = ~ = It; and the 
4. 4 

series becomes I +-!-+1"6+ l4 +zh, &c. The first two 
terms are equal to Ii, which gives ,'z for the error; and 
taking one term more, we have 1-/",5, that is to say, only 
an error of is. 

298. In the same manner we may resolve the fraction 

-1 1 into an infinite series, by actually dividing the nu
+a 

merator 1 by the denominator I + a, as follows.* 

'* After a certain number of terms have been obtained, the 
law by which the following- terms are formed will be evident; 
so that the series may be carried ,to any length without the 
trouble of continual division, as is shewn in this example. 



CHAP. V. OF ALGEBRA. 

l+a) 1 (l-a+a2_a3+a4 
l+a 

-a 
-a-aZ 

a4 

a4 +a5 

_a5 , &c. 

93 

Whence it follows, that the fraction -11 is equal to the 
+a 

series, 
l_a+a2_a3+a4_a5+a6_a7, &c. 

299. If we make a = 1, we have this remarkable com
parison: 

1 
-1- = t= 1 - 1 + 1 - 1 + 1 - 1 + I - I, &c. to in-

+a 
finity; which appears rather contradictory; for if we stop 
at -1, the series gives 0; and if we finish at + 1, it gives 
] ; but this is precisely what solves the difficulty; for since 
we must go on to infinity, without stopping either at -lor 
at + 1, it is evident that the sum can neither be 0 nor 1, 
but that this result must lie between these two, and there
fore be t.* 

300. Let us now make a = t, and our fraction will be 

1 I ~ = t, which must therefore express the value of the 
+2 

series I-t+t+~+-h--h+i4' &c. to infinity; h.ere 
if we take only the two leading terms of this series, we 
have t, which is too small by i; if we take three terms, 
we have i. which is too much by T\; if we take four terms, 
we have i, which is too small by n, &c. 

<if It may be observed, that no infinite series is in reality equal 
to the fraction from which it is derived, unless the remainder be 
considered; which, in the present case, is alternately + ~ and 
-t; that is, +!when the series is 0, and -i when the series 
is 1, which still gives the same value for the whole expression. 
Vid. Art. 293. 
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301. Suppose again a = -t, our fraction will then be = 

_1_ = -t, which must be equal to this series I--t+t-
1+~ 
i7+8~-2!3+7h, &c. continued to infinity. Now, 
by considering only two terms, we have -t, which is too 
small by T\; three terms make i, which is too much by 
:/"6; four terms give -H, which is too small by m, and so on. 

302. The fraction -1 1 may also be resolved into an in
+a 

finite series another way; namely, by dividing I by a + 1, 
as follows: 

1 1 I 
a+ 1) 1 *(---+- &c. 

a a~ a3 ' 

1+ ~ 
a 

a 
I I 

I 
a2 

1 1 
a~ + a 3 

- -;, &c.* 
a 

Consequently, our fraction ~1' is equal to the infinite 
a+ 

.] III I I 
serIes - - - + - - - + - - - &c Let us make a ~ ~ ~ ~ ~' . 
a = I, and we shall have the series I - I + I - 1 + 1 - I, 
&c. = {, as before: and if we suppose a = 2, we shall 
have the series i-t+i--T1o+:J\-l4 &c. =-t. 

• It is unnecessary to carry the actual division any farther, 
as the series may be continued to any length from the law ob
servable in the terms already obtained; for the signs are alter
nately plus and minus, and any subsequent term may be 
obtained by multiplying that immediately preceding it by 
1 
a. 
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303. In the same manner, by resolving the general 

fraction ~b into an infinite series, we shall have, 
a+ 

e be b2c b3c 
a+b)c *(---+----* a a2 as a4 

be 
c+-

a 

be 

b2c 
a2 

b2c bSc 
a2 + a~ 

b3c 
- as 

Whence it appears, that we may compare ~b with the 
a+ 

. c bc b2c b3e & . fi . 
senes -- 2 + 3-4' c. to In mty. a a a a 

Let a = 2, b = 4, c = 3, and we shall have 
_c _ __ 3 __ 3 -.1. -.:t _ .:> + 6 12 &c 
a+b-2+4- 6 - 2 - 2 tJ -, • 

If a = 10, b = 1, and c = 11, we shall have 
c 11 

a + b = 10 + i = 1 = H - TVO - THo + TOVoo' &c. 
Here if we consider only one term of the series, we 

have t-1;-, which is too much by T~; if we take two terms, 
we have To9o. which is too small by Th if we take three 
terms, we have tH-1;-, which is too much by T-rJoO' &c. 

304. When there are more than two terms in the divisor, 
we may also continue the division to infinity in the same 

'* Here again the law of continuation is manifest; the signs 
being alternately + and -, and each succeeding term is formed 

by multiplying the foregoing by~. 
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manner. Thus, ifthe fraction 1 I ~ were proposed, the 
-a+a 

infinite series, to which it is equal, will be found as follows: 
] -a+a2) 1 * *(1 +a_a3 _a4 +a6, &c. 

1-a+a2 

_a3 

_a3 +a4 _a5 

_a4 +a5 

_a4 +a5_a6 

a6 

a6_a7 +aB 

a7_aB 

a7 _a8 +a9 

_a9 

w~ have therefore the equation 

1 1 2 = 1 +a-a3-a4 +a6 +a7, &c.; where, if we make 
-a+a 

a=l, we have 1=1+1-1-1+1+1-1-1, &c. which 
series contains twice the series found above I-I + 1-1 
+ I, &c. Now, as we have found this to be t, it is not 
extraordinary that we should find t, or 1, for the value of 
~hat which we have just determined. 

By making a=t, we shall have the equation i=1= 
4 

1 +i-i-T~ + 7}4; +Th - 5i2' &c. 

If a=i. we shall have the equation i=~=1 +i-i7-
9 

iT +ng. &c. and if we take the four leading terms of this 
series, we have IN, which is only rl71ess than~. 

Suppose again a=t, we shall have i=~=l +t-f,--
9 

M +-r¥9, &c. This series is therefore equal to the pre-
ceding; and, by subtracting the one from the other, we 
obtain i-i-r-H+M-, &c. which is necessarily =0. 

305. The method, which we have here explained, serves 
to resolve, generally, all fractions into i.nfinite series; which 
is often found to be of the greatest utility. It is also 
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remarkable, that an infinite series, though it never ceases, 
may have a determinate value. It should likewise be 
observed, that, from this branch of mathematics, inven
tions of the utmost importance have been derived; on 
which account the subject deserves to be studied with the 
greatest attention. 

QUESTIONS FOR PRACTICE • 

• 1. Resolve ~ into an infinite series. 
a-x 

x2 x 3 X4 
Ans. x+- +------;z + J' &c. a a a 

2Rl b. 'fi' . ,'. eso ve -- Into an III lllte senes. 
a+x 

b X x 2 x3 

Ans. - x (1- - + - - - + &c.) 
a a a2 a3 , 

3. Resolve a2
b into an infinite series. 

x+ 
a2 b b2 b3 

A.ns. - x (1- - +---+ &c.) 
x x x2 x 3 ' 

4 R I ] +.1' . . fi' . 
. eso ve I-x mto an III mte senes. 

AIlS. 1 +2x+2;v2 +2x3 +2x4, &c. 
2 

5. Resolve -( a )~ into an infinite series. 
a+x 

2x 3.1.2 4.r3 
A1Is. 1--+---- &c. 

a a2 a3 ' 

CHAPTER VI. 

Of the Squares of Compound Quantities. 

306. When it is required to find the ~q\lare of a com
pound quantity, we have only to multiply it by itself, and 
the product will be the square required. 

For example, the square of' a + b is found in the following 
manner: 

II 
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a+b 
a+b 

a2 +ab 
ab+b2 

a2+2ab+b~ 

SECT. n. 

307. When the root consists of two terms added together, 
as a + b, the square comprehends, 1st, the squares of each 
term, namely, a2 and b2 ; and 2dly, twice the product of the 
two terms, namely, 2ab: so that the sum a2 + 2ab + b2 is 
the square of a + b. Let, fOI' example, a = 10, and b = 3 ; 
that is to say, let it be required to find the square of 10 + 3, 
or 13, and we shall have 100+60+9, or 169. 

308. We may easily find, by means of this formula, the 
squares of numbers, however great, if we divide them into 
two parts. Thus, for example, the square of 5 7, if we con-:
sider that this number is the same as 50 + 7, will be found 
=2500 + 700 + 49=3249. 

309. Hence it is evident, that the square of a + 1 will 
be a2 + 2a + 1 : for since the square of a is a2 , we find the 
square of a + 1 by adding to that square 2a + I; and it 
mu!'!t be observed, that this 2a + 1 is the sum of the two 
roots a, and a + 1. 

Thus, as the square of 10 is 100, that of 11 will be 100 
+21: the square of 57 being 3249, that of 58 is 3249+ 
115=3364; the square of 59=3364+117=3481; the 
square of 60=3481 + 119=3600, &c. 

310. The square of a compound quantity, as a + b, is 
represented in this manner (a+b)2. We have therefore 
(a +b)2=a2 +2ah+b2, whence we deduce the following 
equations: 

(a+ 1)2=a2 +2a+ 1 ; 
(a+3)2=a2+6a+9 ; 

(a+2)2=a~+4a+4 ; 
(a+4)2=a2 +8a+ 16; &c. 

311. If the root be a - b, the sq uare of it is a2 - 2ab + 
b2, which contains also the squares of the two terms, but 
in snch a manner, that we must take from their sum twice 
the product of those' two terms. Let, for example, a= 10, 
and b= - I, then the square of 9 will be found equal to 
100-20 + 1 =81. 

312. Since we have the equation (a-b)2=a2 -2ab+ 
bi , we shall have (a-l )!I=a!l-2a +.1. The square of 
a-I is found, therefore, by subtractmg from a2 the sum of 
the two roots fl, and a-I, namely, 2a-1. Thus, for 
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example, if a=50, we have a2 =2500, and 2a-l =99; 
therefore 492=2500-99=2401. 

313. What we have said here may be also confirmed and 
illnstrated by fractions; for if we take as the root t + i= ], 
the square will be, -f;-+H+"2%-=tf=l. 

Farther, the square of t-1 =i- will be t-t+t=-h· 
314. When the root consists of a greater number of 

terms, the method of determining the square is the same. 
Let us find, for example, the square of a + b + c : 

a+b+c 
a+b+c 

a2 +ab+ac 
ab+b~+bc 

ac+bc+c~ 

(1,2 + 2ab + 2ac + b2 + 2bc + c~ 
We see that it contains, first, the square of each term of 

the root, and beside that, the double products of those 
terms multiplied two by two. 

315. To illustrate this by an example, let us divide the 
number 256 into three parts, 200 + 50 + 6; its sqnare will 
then be composed of the following parts: 

2002 =40000 
,1)02= 2500 
6'l= :36 

:2 (50 x 2(0)=20000 
:2 ( 6 x 200)= 2400 
:2 ( 6 x 50)= (iOO 

65536=256 x 256, or 256~. 

316. When some terms of the root are negative, the 
square is still found by the same rule; only we mllst be 
careful what signs we prefix to the double products. Thus, 
(a-b-c)2=a2 +b2 +c2 -2ab-2ac+2hc; lind if we repre
sentihe number 256 by 300-40-4, we shall ha,·e, 
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Positive Parts. 
3002 =90000 

402= 1600 
2(40 x 4)= 320 

42= 16 

91936 
-26400 

ELEMENTS SECT. n. 

Negative Parts. 
2(40 x 300)=24000 
2( 4 x 300)= 2400 

-26400 

65536, the square of 256 as before. 

CHAPTER VII. 

Of the Extraction of Roots applied to Compound 
Quantities. 

317. In order to give a certain rule for this operation, 
we must consider attentively the square of the root a + b, 
which is a2 +2ab+b2, in order that we may reciprocally 
find the root of a given square. 

318. We must consider therefore, 6rst1 that as the 
square, a2 +2ab+b2 , is composed of several terms, it is 
certain that the root also will comprise more than one 
term; and that if we write the terms of the square in such 
a manner, that the powers of one of the letters, as a, may 
go on continually diminishing, the first term will be the 
square of the first term of the root; and since, in the 
present case, the first term of the square is a2 , the first 
term of the root must be a. 

319. Having therefore found the first term of the root, 
that is to say, a, we must consider the rest of the square, 
namely, 2ab + b2 , to see if we can derive from it the second 
part of the root, which isb. Now, this remainder, 2ab+ 
b2, may be represented by the product, (2a+b)b; where
fore the remainder having two factors, (2a+b), and b, it 
is evident that we shall find the latter, b, which is the 
second part of the root, by dividing the remaindel', 
2ab+b2, by 2a+b. 

320. So that the quotient, arising from the division of the 
above remainder by 2a + b, is the second term of the root 
required; and in this division we observe, that 2a is the 
double of the first term a, which is already determined: so 
that although the second term is yet unknown, and it is 
necessary, for the present, to lea,ve its place empty, we may 
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nevertheless attempt the division, since in it we attend only 
to the first term 2a; but as soon as the quotient is found, 
which in the present case is b, we must put it in the vacant 
place, and thus render the division complete. 

321. The calculation, therefore, by which we find the 
root of the square a2 + 2ab + b2 , may be represented thus: 

a2 +2ab + b2(a +b 
a2 

2a + b)2ab + b2 

2ab+b2 

o. 

322. We may, also, in the salUe manner, find the 
square root of other compound quantities, provided they 
are squares, as will appear from the following examples: 

a2 +6ab+9b2 (a+3b 
a2 

2a+3b) 6ab+9b2 

6ab+9b2 

o. 

4a2 -4ab+b2 (2a-b 
4a2 

4a-b) -4ab+b2 

-4ab+b2 

o. 

6p+4q) 24pq+ 16q2 
24pq+ 16q2 

O. 

25x2-60x+36 (5x-6 
25x2 

lOx-6) -60x+36 
-60x+36 

o. 
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323. When there is a remainder after the division, it is 
a proof that the root is composed of more than two terms. 
We must in that case consider the two terms already found 
as forming the first part, and endeavour to derive the other 
from the remainder , in the same manner as we found the 
second term of the root from the first. The following 
examples will render this operation more clear. 

a2 + 2ab-2ac-2bc + b2 +c2(a + b-c 
a2 

2a + b)2ab - 2ac-2bc + b2 + c2 

2ab +b2 

2a+2b-c) -2ac-2bc+c2 

-2ac-2bc+c2 

O. 

a4 +2a3 +3a2 +2a+ 1 (a2 +a+ 1 
a4 

2a2 +a) 2a3 +3a2 

2a3 + ae 

2a2 +2a + 1) 2a2 +2a+ 1 
2a2 +2a+1 

o. 
a4 -4a3b +8ab3 +4b4 (a2 -2ab-21/l 
a4 

2a2 -2ab) -4a3b+8ab3 +4b4 

-4a3b + 4a2b2 

2a2-4ab-2b2) _4a2b2 + 8ab3 +4b4 

_4a2b2 +8ab3 +4b4 

o. 
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a6-6a5b+ 15a4b2 -20a3b3+ 15a2b4 -6ab5 +b6 

a6 (a3-3a2b+3ab2-b3 

2a3-3a2b)-6a5b+ 15a4b'Z 
-6a5b + 9a4b2 

'la3-6a2b +3ab2)6a4b2-20a3b3 + 15a2bi 

6a4b2-18a3b3 + 9a2b4 

2a3 -6a2b + 6ab2 - b3 ) - 2a3b3 + 6a2b4 -6ab5 + b6 

-2a3b3 + 6a2b4-6ab5 +b6 

O. 
324. We easily deduce from the rule which we have 

explained, the method which is taught in books of 
arithmetic for the extraction of the square root, as will 
appear from the following examples in numbers : 

529 (23 2304 (48 
4 16 

43) 129 88) 704 
129 704 

O. o. 
4096 (64 9604 (98 
36 81 

124) 496 IH8) 1504 
496 1504 

O. O. 

i5625 (125 99800i (999 
1 81 

22) 56 189) 1880 
44 1701 

245) 1225 1989) 17901 
1225 17901 

O. O. 
325. But when there is a remainder after all the figures 

have been used, it is a proof that the number proposed is 
not a square; and consequently, that its root cannot be 
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assigned. In such cases, the radical sign, which we 
before employed, is made use of. This is written before 
the quantity, and the quantity itself is placed between 
parentheses, or under a line; thus, the square root of 
a2 + b2 is represented by v(aZ + bZ), or by .; a2 + b2 ; and 
v(l-x2 ), or V l-x2, expresses the square root of l-x2. 
Instead of this radical sign, we may use the fractional 
exponent {, and represent the square root ofa2 +b2, for 

1 I 
instance, by (a2+~2/2, or by a2 +bzl"2. 

CHAPTER VIII. 

Of tile Calculation of Irrational Quantities. 

326. When it is required to add together two or more 
irrational quantities, this is to be done, according to the 
method before laid down, by writing all the terms in suc
cession, each with its proper sign: and, with regard to 
abbreviations, we must remark that, instead of .; a + .; a, 
for example, we may write 2.; a; and that Va-.; a=O, 
because these two terms destroy one another. Thus, the 
quantities 3 +.;2 and 1 + .; 2, added together, make 
4+2';2, or 4+.;8; the sum of 5+';3 and 4-.;3, 
is 9; and that of 2.;3+3.;2 and V3-.;2, is 3';3+ 
2.;2. 

327. Subtraction also is very easy, since we have only 
to add the proposed numbers, after having changed their 
signs; as will be readily seen in the following example, 
by subtracting the lower line from the upper. 

4- V2+2y3-3V5+4y6 
1+2y2-2V3-5V5+6y6 

3-3V2+4V3+2V5-2y6 
328. In multiplication, we must recollect that .; a 

multiplied by .; a produces a; and that if the numbers 
which follow the sign .; are different, as a and b, we 
have .; ab for the product of .; a multiplied by .; b. 
After this, it will be easy to calculate the following 
examples: 
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1+ ...;2 
1+ ...;2 

1+...;2 
"';2+2 

OF ALGEBRA. 

4+2"';2 
2- ...;2 

8+4"';2 
-4"';2-4 

8-4=4. 
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329. What we have said applies also to imaginary 
quantities; we shall only observe farther, that "';-a 
multiplied by ...; -a produces -a. If it were required to 
find the cube of -1 +...; -3, we should take the square 
of that number, and then multiply that square by the 
same number; as in the following operation: 

-1+...;-3 
-1+"';-3 

1-...;-3 
-...;-3-3 

1-2V -3-3= -2-2...;-3 
-1+ "';-3 

2+2"';-3 
-2...;-3+6 

2+6=8. 

330. In the division of surds, we have only to express 
the proposed quantities in the form of a fraction; which 
may be then changed into another expression having a 
rational denominator; for if the denominator be a + Vb, 
for example, and we multiply both this and the numerator 
by a-Vb, the new denominator will be a2-h, in which 
there is no radical sign. Let it be proposed, for example, 

to divide 3+2"';2 by 1 +...;2: we shall first have~:2~~ 
then multiplying the two terms of the fraction by 1- ...; 2, 
we shall have for the numerator: 

3+2"';2 
1- "';2 

3+2...;2 
-3"';2-4 

3- "';:2-4= - ./2-1 ; 
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and for the denominator: 

1 +";2 
1- ..;2 

1 +";2 
- ..;2-2 

1-2=-1. 

SECT. II. 

O f · hr· - ";2-1 d 'f . ur new ractIOn t erelore IS -1 ; an 1 we agam 

multiply the two terms by -1, we shall have for the 
numerator 1/2+ 1, and for the denominator +]. Now, 
it is easy to shew that 1/2 + 1 is equal to the proposed 

fraction ~! 2 ~;; for 1/2 + 1 being multiplied by the 

divisor 1 + ..; 2, thus, 

1+";2 
1 + ..;2 

1 +..;2 
..;2+2 

we have 1 +2..;2+2=3+2..;2. 

Another example. Let 8-5";2 be divided by 3-2";2. 

Th' . h fi' . 8-5";2 d I' I . 
IS, In t erst Instance, IS 3 _ 2..; 2; an mu tIp ymg 

the two terms of this fraction by 3 + i"; 2, we have for 
the numerator, 

8-5";2 
3+2";2 

24-15";2 
16..;2-20 

24 + ..;2-20=4 +..;2; 
and for the denominator, 

3-2..;2 
3+2";2 

9-6";2 
6";2-8 

9-8=1. 
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Consequently the quotient will be 4 + ..;2. The truth of 
this may be proved, as before, by multiplication; thus, 

4+ ..;2 
3-2..;2 

12+31/2 
-8";2-4 

12 - 5..; 2 -4 = 8 - 5"; Z. 
331. In the same manner, we may transform irrational 

fractions into others, that have rational denominators. If 

we have, for example, the fraction 5-;..;6' and multiply its 

numerator and denominator by 5 + 2"; 6; we transform it 
. h' 5 + 2 "; 6 5 2 6 . l'k h fi . mto tIS, 1 = + ..; ; m 1 e manner, t e ractlOn 

2 . 2+2..;-3 1+";-3 
-1 +..; -3 assumes thIS form, -4 = -2 . 

Al ..;6+V5_11+2..;30_112./30 
so, ..;6-";5- 1 - + v • 

332. When the denominator contains several terms, we 
may, in the same manner, make the radical signs in it 

vanish one by one. Thus, if the fraction 10 1 2 3 ..; -..;-..; 
be proposed, we first multiply these two terms by ..; 10 

. ...; 10+ ";2+";3 
+ ";2+1/3, and obtam the fractIOn 5-2..;6 ; 

then multiplying its numerator and denominator by 5 + 2 
";6, we have 5..;10+11..;2+9";3+2..;60. 

CHAPTER IX. 

Of Cubes, and of the Extraction of Cube Roots. 

333. To find the cube of a + b, we have only to 
multiply its square, a2 +2ab+b2 , again by a+b, thus; 

a2 +2ab+b2 

a +b 

a3 + 2a2b + ab2 

a2b + 2ab2 + b:l 

and the cube will be a3 + 3a2b + 3ab2 + b3 
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We see therefore that it contains the cubes of the two 
parts of the root, and, beside that, 3a2b + 3ab2 ; which 
quantity is equal to (3ab) x (a + b); that is, the triple pro
duct of the two parts, a and b, multiplied by their sum. 

334. So that whenever a root is composed of two terms, it 
is easy to find its cube by this rule: for example, the num
ber 5=3+2; its cube is therefore 27 +8+(18 x 5)=125. 

And if 7 +3= 10 be the root; then the cube will be 
343+27+(63x 10)=1000. 

To find the cube of 36, let us suppose the root 36=30 
+6, and we have for the cube required, 27000+216+ 
(540 x 36) = 46656. 

335. But if, on the other hand, the cube be given, 
namely, a3 +3a2b+3ab2 +b3 , and it be required to find its 
root, we must premise the following remarks: 

First, when the cube is arranged according to the 
powers of one lettel', we easily know by the leading term 
a3, the first term a of the root, since the cube of it is a3 ; 

if, therefore, we subtract that cube from the cube pro
posed, we obtain the remainder, 3a2b+3ab2 +b3, which 
must furnish the second term of the root. 

336. But as we already know, from Art. 333, that the 
second term is+b, we have principally to discover how it 
may be derived from the above remainder. Now, that re
mainder may be expressed by two factors, thus, (3a2 +3ab 
+b2 ) x (b); if, therefore, we divide by 3a2 +3ab+b2, 

we obtain the second part of the root + b, which is re
quired. 

337. But as this second term is supposed to be unknown, 
the divisor also is unknown; nevertheless we have the first 
term of that divisor, which is sufficient: for it is 3a2 , that 
is, thrice the square of the first term already found; and by 
means of this, it is not difficult to find also the other part, 
b, and then to complete the divisor before we perform the 
division; for this purpose, it will be necessary to join to 
3a2 thrice the product of the two terms, or 3ab, and b2, or 
the square of the second term of the root. 

338. Let us apply what we have said to two examples 
of other given cubes. 

a3 + 12a2 +48a+64 (a+4 
a3 

3a2 + 12a+ 16) 12a2 +48a+64 
12a2 + 48a + 64 

------~. 

O. 
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di-6a5 + 15a4 -20a!+ 15al?-6a+ 1 (a'l-2a + 1 
a6 

3a4 _ 6a3 + 4a2) - 6a5 + 15a4 - 20as 
_6a5 + 12a4 - 8as 

3a4 _12a3 + 12a2 +3a2-6a+ 1) 3a4 -12a3 + 15a2 -6a+ 1 
3a4-12a3 + 15a2 -6a+ 1 

o. 
339. The analysis which we have given is the founda

tion of the common rule for the extraction of the cube root 
in numbers. See the following example of the operation 
in the number 2197 : 

2197(10+3=13 
1000 

300 1197 
90 

9 

3991197 
O. 

Let us also extract the cube root of 34965783 : 
34965783(300 + 20 + 7, or 327 
27000000 

270000 7965783 
18000 

400 

288400 5768000 

307200 2197783 
6720 

49 

313969 2197783 
O. 
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CHAPTER X. 

Of the higher Powers of Compound Quantities. 

340. After squares and cubes, we must consider higher 
powers, or powers of a greater number of degrees; which 
are generally represented by exponents in the manner be
fore explained: we have only to remember, when the root 
is compound, to enclose it in a parenthesis: thus (a + b)5 
means that a + b is to be raised to the fifth power, and 
(a-b)6 represents the sixth power of a-b, and so on. 
We shall in this chapter explain the nature of these 
powers. 

341. I.et a + b be the root, or the first power, and the 
higher powers will be found, by multiplication, in the 
following manner: 

(a+b)l=a+b 
a+b 

(l2+ab 
ab+b2 

(a+ b)2=a2 +2ab+b'z 
fl+b 

(l1 + 2a2b + ab2 
aZb + 2abZ + b3 

---
(a + b yl = a1 + 3a2b + 3ab2 + bj 

a+b 
~~~------------

a4 + 3a3b + 3a2bZ + ab~ 
a3b + 3a2bz + 3ab3 + b4 

---------
(a + b)4=([4 +4rl~b + 6aZb2 + 4({b~+ b4 

(( +h 

a5 + 4a4b + 6u3b2 + 4a2b:l + ab4 

a4h + 4a:1bZ + 6a2b1 + 4ab4 + hr. 

(ri + .')a4 h + lOa:1bZ + I Oa'!fJ'1 + Gab l + //' 
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(a + b )5=a5 + 5a4b + lOa3b2 + lOa2b3 + 5ab'" + bS 

a+b 

a6 + na5b + IOa4b2 + lOa3b3 + 5a2b4 + ab5 

a5b + 5a4b2 + IOa3b3 + IOa2b4 + 5abs + b6 
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342. The powers of the root a-b are found in the same 
manner: and we shall immediately perceive that they do 
not differ from the preceding, excepting that the 2d, 4th, 
6th, &c. terms are affected by the sign minus. 

(a-b)1=a -b 
a-b 

a2-ab 
-ab+b2 

(a-b )2=a2 _ 2ab + b2 

a -b 

a3-2a2b+ ab2 
- a2b+2ab2 +b3 

(a-b)3=a3-3a2b +3ab2~ b3 

a -b 

a4 _ 3a3b + 3a2b2 - ab3 

_ a3b+3a2b2-3ab3+b4 

(a - b)4=a4-4a3b + 6a2b2 -4ab3 + b4 

a -b 

a5_4a4b+6a3b2_4a2b3+ ab4 
_ a4b+4a3b2_6a2b3+4ab4-b5 

(a_b)5=a5_5a4b + lOa3b2_lOa2b3+5ab4-b5 
a-b 

a6_5a5b + lOa4b2 _lOa3b3 + 5a2b4- ab5 

_ aSb + 5a4b2 _lOa3b3 + lOa2b4 -5ab5 + btl 

(a_b)6=a6_6a5b + l.5a4b2_20a3b3+ 15a2b4-6ab5+b6,&c. 

Here we see that all the odd powers of b have the sign 
-, while the even powe,·s retain the sign +. The reason 
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of this is evident; for since - b is a term of the root, the 
powers of that letter will ascend in the following series, 
-b, +iJ2, _b3, +b4, _b5, +b6, &c. which clearly shews 
that the even powers must be affected by the sign +, and 
the odd ones by the contrary sign -. 

343. An important question occurs in this place; namely, 
how we may find, without being obliged to perform the 
same calculation, all the powers either of a+b, or a-b. 

We must remark, in the first place, that if we can 
assign all the powers of a+b, those of a-b are also found; 
since we have only to change the signs of the even terms, 
that is to say, of the second, the fourth, the sixth, &c. The 
business then is to establish a rule, by which any power of 
a+b, however high, may be determined without the ne
cessity of calculating all the preceding powers. 

344. Now, if from the powers which we have already 
determined, we take away the numbers that precede each 
term, which are called the coefficients, we observe in all 
the terms a singular order: first, we see the first term a of 
the root raised to the power which is required; in the fol
lowing terms, the powers of a diminish continually by unity, 
and the powers of b increase in the same proportion; so 
that the sum of the exponents of a and of b is always the 
same, and always equal to the exponent of the power 
required; and, lastly J we find the term b by itself raised 
to the same power. If therefore the tenth power of a + h 
were required, we are certain that the terms, without their 
coefficients, would succeed each other in the following 
order; a10, a9b, aflb2, a7b3 , a6b4, a5b5, a4b6 , a3b7 , a2b8 , ab9, bIO• 

345. It remains therefore to shew how we are to de
termine the coefficients, which belong to those terms, or 
the numbers by which they are to be multiplied. Now, 
with respect to the first term, its coefficient is always 
unity; and, as to the second, its coefficient is constantly 
the exponent of the power. With regard to the other 
terms, it is not so easy to observe any order in their 
coefficients; but, if we continue those coefficients, we 
shall not fail to discover the law by which they are 
formed; as will appear f.·om the following Table: 
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Powers. Coefficients. 
1st. ................. 1, 1 
2d ................ 1, 2, I 
3d ........•....... 1, 3, 3, 1 
4th .............. ], 4, 6, 4, 1 
5th ............ 1, 5, 10, 10, 5, 1 
6th .......... 1, 6, 15, 20, 15, 6, 1 
7th ........ 1, 7, 21, 35, 35,21, 7, 1 
8th ...... I, 8, 28, 56, 70, 56, 28, 8, 1 
9th .... 1,9,36,84, 126,126,84,36,9, 1 

10th 1, 10, 45, 120, 210,252, 210, 120,45, 10, 1, &c. 
We see then that the tenth power of a + b will be a10 + 

lOa9b + 45aBb2 + 120a7b3 + 21Oa6b4 + 252a5b5 + 21Oa4b6 + 
120aSb7 + 45a2bB+ lOab9 +b10• 

346. Now, with regard to the coefficients, it must be ob
served, that for each power their sum must be equal to the 
number 2 raised to the same power; for let a= 1 and b= 1, 
then each term, without the coefficients, will be 1; conse
quently, the value of the power will be simply the sum of 
the coefficients. This sum, in the preceding example, is 
1024, and accordingly (l + 1 )1°=21°= 1024. It is the same 
with respect to all other powers; thus, we have for the 

1st 1 + I =2=21, 
2d 1+2+1=4=22, 
3d I + 3 + 3 + 1= 8= 23 , 

4th 1+4+6+4+1=16=24 
5th 1 +5 + 10 + 10 +5 + 1 =32=2\ 
6th 1+6+]5+20+15+6+1=64=26, 

7th 1 +7 +21 +35+35+21 +7 + 1=128=27 , &c. 
347. Another necessary remark, with regard to the co

efficients, is, that they increase from the beginning to the 
middle, and then decrease in the same order. In the even 
powers, the greatest coefficient is exactly in the middle; 
but in the odd powers, two coefficient.s, equal and greater 
than the others, are found in the middle belonging to the 
mean terms. 

The order of the coefficients likewise deserves particular 
attention; for it is in this order that we djscover the means 
of determining them for any power whatever, without cal
culating all the preceding powers. We shall here explain 
this method, reserving the demonstration however for the 
next chapter. 

348. In order to find the coefficients of any power pro
posed, the seventh for example, let us write the following 
fractions one after the other: 

1, 1, 1,t-, %, -~, i· 
1 
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In this arrangement, we perceive that the numerators 
begin by the exponent of the power required, and that they 
diminish successively by unity; while the denominators 
follow in the natural order of the numbers, 1) 2, 3, 4, &c. 
Now, the first coefficient being always 1, the first fraction 
gives the second coeffiCient; th!:) product of the first two 
fractions, multiplied together, represents the third coeffi
cient; the product of the three first fractions represents 
the fourth coefficient, and so 011. ThlIS, the 

] st coefficient is 1 - 1 
7 

2d ••.......... r - 7 

3d ••.•.•••.... ~ : ~ =21 

4th .••••....... r : ~ : ~ =35 

5th .••.•..•••.. r : ~ : ~ : ! =35 

6 h 7 . 6 . 5 .4 . 3 21 
t ••••••.•..•. 1.2.3.4.5 = 

7 h 7.6.5.4.3.2 7 
t •••••••••••• 1.2.;1.4.5.0 -

8h 7.6.5.4.3.2.1 1 
t ••.••.••••.. 1.2.3.4.5.ti.7-

349. So that we have, for the second power, the fractions 
t, t; whence the first coefficient is 1, the second t=2, and 
the third 2 X t = 1. 

The third power furnishes the fractions i, i. -}; where
fore the 

1st coefficient = 1 ; 
3d=3. %=3; 

2d=i=3; 
and 4th = t . % . -} = 1. 

We have, for the fourth power, the fractions t, t, t, -to 
consequently, the 

1st coefficient = 1 ; 
2d t = 4 ; 3d t . t = 6 ; 
4th t . t . t = 4; and 5th t . t . t . 1- = 1. 

350. This rule evidently renders it unnecessary to find 
the coefficients of the preceding powers, as it enables us to 
discover immediately the coefficients which belong to any 
one proposed. Thus, for the tenth power, we write the 
fractions 1..f, t, t, -h -g-, i, t, 1, %, T~' by means of which 
we find the 
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18t coefficient = 1 ; 
2d = l.f = 10; 7th = 252 . t =210; 
3d = 10.%= 45; 8th=2l0. 4 =120; 
4th = 45. t= 120; 9th = 120. i =45; 
5th = 120 . t = 210 ; 10th = 45. t = 10 ; 
6th =210. * =252; and 11th = 10. -10= 1. 

351. We may also write these fractions as they are, 
without computing their value; and in this manner it is 
easy to express any power of a+b. Thus, (a+b)loo= 

100 100 99b 100 . 99 98b~ 100 . 99 . 98 97bl 
a + T· a + 1.2 +a + 1.2.3 a 

+ 100 . 99 . 98 . 97 96b4 + &c * Whence the law of the 
1.2.3.4 a ,. 

succeeding terms may be easily deduced. 

CHAPTER XI. 

Of tlte Transposition of the Letters, on which the demon
stration of the preceding Rule is founded. 

352. If we trace back the origin of the coefficients which 
we have been considering, we shall find, that each term is 
presented as many times as it is possible to transpose the 
letters of which that term is composed; or, to express the 
same thing differently, the coefficient of each term is equal 
to the number of transpositions which the letters composing 
that term admit of. In the second power, for example, the 
term ab is taken twice, that is to say, its coefficient is 2; 
and in fact we may change the order of the letters which 
compose that term twice, since we may write ab and ba. 

'" Or, which is a more general mode of expression, 
n n.(n-l) 

(a+ht=a"+ TaR- 1h + 1.2 an- 2hz 

n. (n-I). (n-2) n-3b3 n. (n-I) . (n-2). (n-3) n-4" 

+ 1.2.3 a + 1.2.3.4 a b 
& n.(n-I).(n-2).(n-3) ..... 1 

c..... 1.2.3 4 ••••• . n· 
This elegant theorem for the involution of a compound quantity 
of two terms, evidently includes all powers whatever; and WE' 

shall afterwards shew how the same may be applied to the ex~ 
traction of roots.-See Art. 361. 
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The term aa, on the contmry, is found only once, and 
here the order of the letters can undergo no change, or 
transposition. In the third power of a + b, the term aab 
may be written in three different ways; thus, aab, aba, 
baa; the coefficient therefore is 3. In the fourth power, 
the term a3b or aaab admits of foUl' different arrangements, 
aaab, aaba, abaa, baaa; and consequently the coefficient 
is 4. The term aabb admits of six transpositions, aabb, abba, 
baba, abab, bbaa, baab, and its coefficient is 6. It is the 
same in all other cases. 

353. Tn fact, if we consider that the fourth power, for 
example, of any root consisting of more than two terms, as 
(a + b + c + d)4, is found by the multiplication of the four 
factors, (a+b+c+d) (a+b+c+d) (a+b+c+d) (a+b 
+c+d), we readily see, that each letter of the first factor 
must be multiplied by each letter of the second, then by 
each letter of the third, and, lastly, by each letter of the 
fourth. So that every term is not only composed of four 
letters, but it also presents itself, or enters into the sum, 
as many times as those letters can be differently arranged 
with respect to each other; and hence arises its coefficient. 

354. It is therefore of great importance to know, in how 
many different ways a given number of letters may be ar
ranged'; but, in this inquiry, we must particularly consider, 
whether the letters in question are the same, or different: 
for when they are the same, there can be no transposition 
of them; and for this reason the simple powers, as a2, a3, 

a4, &c. have all unity for their coefficients. 
355. Let us first suppose all the letters different; and, 

beginning with the simplest case of two letters, or ab, we 
immediately discover that two transpositions may take 
place, namely, avand ba. 

If we have three letters, abc, to consider, we observe 
that each of the three may take the first place, while the 
two others will admit of two transpositions; thus, if a be 
the first letter, we have two arrangements abc, acb; if b 
be in the first place, we have the arrangements bac, bca; 
lastly, if c occupy the first place, we have also two ar
rangements, namely, cab, cba; consequently the whole 
number of arrangements is 3 x 2=6. 

If there be four lettel's, abed, each may occupy the first 
place; and in every case the three others may form six 
different arrangements, as we ha"e just seen; therefore the 
whole number of trallspositions is 4 x 6=24=4 x:j x 
2x 1, 

If we have five letters, abede, each ofthe five may be the 
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first, and the four others will admit of twenty-fonr trans
positions; so that the whole number oftrampositions will 
be 5 x 24= 120=5 x 4 x :3 x 2 x l. 

356. Consequently, however great the numbel' ofletters 
may be, it is evident, provided they are all different, that 
we may easily determine the llum ber of tTlll1spositions, and, 
for this purpose, may make use of the following 'fable: 

Number of Lelters. N umber of Transpositions. 

1 ...........................• 1=1. 
2 ...........•.............. 2.1 =2. 
3 ........................ 3.2.1=6. 
4 .................... 4 . 3 . 2 . 1 = 24. 
5 .................. 5 . 4 . :3 . 2 . I = 120. 
6 .............. 6 . 5 . 4 . 3 . 2 . 1 = 720. 
7 .......... 7. 6 . 5 . 4 . 3 . 2 . J = 5040. 
8 ........ 8 . 7 . 6 . 5 . 4 . 3 . 2 . 1 = 40320. 
9 ...... ~) . 8 . 7 . 6 . 5 . 4 . 3 . 2 . 1 = 362880, 

10. . 10 . 9 . 8 . 7 . 6 . 5 . 4 . 3 . 2 . 1 = ::' 628S00. 

357. But, as we have intimated, the numbers ill this 
'fable can be made use of only when all the letters al'e dif
ferent; for if two or more of them are alike, the numbel' of 
transpositions becomes much less; and if all the letters are 
the same, we have only one arrangement: we shall thel'e
fore now shew how the numbers in the Table are to be 
diminished, according to the number of letters that are 
alike. 

358. When two letters are given, and those letters are 
the same, the two arrangements are reduced to one, and 
consequently the number, which we have found above, is 
reduced to the half; that is to say, it must be divided by 2. 
If we have three letters alike, the six tmnspositions are 
reduced to one; whence it follows, that the llLlm bers in the 
'fable must be divided by 6=3 . 2 . 1; and, for the same 
reason, if four letters are alike, we must divide the num
bel's found by 24, or 4.3 .2. 1, &c, 

It is easy therefore to find how many transpositions the 
letters arwbbc, for example, may ulldergo. They are in 
number 6, and consequently, if they were all different, they 
would admit of6 . 5 . 4 . 3 . 2 . I transpositions; but since 
a is found thrice in those letters, we must divide that num
ber of transpositions by 3 . 2 . 1 ; and since b occurs twice, 
we must again divide it by 2. r: the number of trans-
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. . . d '11 h ~ b 6. 5 . 4 . 3 . 2 . 1 5 posItIons reqUire WI t ereJore e 3. 2 . I . 2 . I = . 

4.3=60. 
359. We may now readily determine the coefficients of 

all the terms of any power; as for example of the seventh 
power, (a+b)7. 

The first term is a7, which occurs only once; and as all 
the other terms have each seven letters, it follows that the 
number of transpositions for each term would be 7 . 6 . 5 . 
4 . 3. 2 . 1, if all the letters were different; but since in the 
second term, a6b, we find six letters alike, we must divide 
the above product by 6 . 5 . 4 . 3 . 2 . 1, whence it follows 
h t h ffi · .7.6.5.4.3.2.1 7 7 
tat e coe Clent IS 6. 5 . 4 . 3 . 2 . I = I' or . 

In the third term, a5b2 , we find the same letter a five 
times, and the same letter b twice; we must thel'efore 
divide that number first by 5.4.3.2. 1, aud then by 
2 1 h 1 h ffi · 7.6.5.4.3.2.1 

. ; w euce resu ts t e coe clent 5 . 4 . 3 . 2 . 1 • 2 . I 

=;: ~ =21. 
The fourth term a4b3 contains the letter a four times, and 

the letter b thrice; consequently, the whole number of the 
transpositions of the seven letters must be divided, in the 
first place, by 4 • 3 . 2 . 1, and secondly, by 3 . 2 . 1, and 
h ffi · b 7.6.5.4.3.2.1 7.6.5 

t e coe Clent ecomes == 4 . 3 . 2 . I . 3 . 2 . I I. 2 • 3' 

I h fi d7. 6. 5 .4i' h ffi . 
n t e same manner, we n 1. ~. 3. 4JOr t e coe clent 

of the fifth term, and so of the rest; by which the rule 
before given is demonstrated.* 

360. These considerations carry us farther, and shew us 

'iF From the Theory of Combinations, also, are frequently de
.duced the rules that have just been considered for determining 
the coefficients of terms of the power of a binomial; and this is 
perhaps attended with some advantage, as the whole is then 
reduced to a single formula. 

In order to perceive the difference between permutations and 
comliinations, it may be observed, that in the former we inquire 
in how many different ways the letters, which compose a certain 
formula, may change places; whereas, in combinations, it is 
only necessary to know how many times these letters may be 
taken, or multiplied together, one by one, two by two, three by 
three, &c. 
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also how to find aU the powers of roots composed of more 
than two terms.* We shall apply them to the third power 
of a + b + e; the terms of which must be formed by aU 
the possible combinations of three letters, each term 
having for its coefficient the number of its transpositions, 
as shewn, Art. 352. 

Here, without performing the multiplication, the third 
power of (a+b+e) will be, a3 +3aQb+3a2e+3ab2 +6abe 
+ 3aeZ + b3 -I- 3bz + 3be2 + e3 • 

Suppose a = 1, b = 1, e = 1, the Cll be of 1 + 1 + 1, or 
of 3, will be 1+3+3+3+6+3+1+3+3+1=27; 

Let us take the formula abc; here we know that the letters 
which compose it admit of six permutations, namely, abc, aeb, 
bac, bca, cab, eba: but as for combinations. it is evident that by 
taking these three letters one by one, we have three combinations, 
namely, a, b, and c; if two by two, we have three combinations, 
ab, ac, and be; lastly, if we take them three by three, we have 
only the single combination abc. 

Now, in the same manner as we prove that n different things 
admit of 1 X 2 X 3 X 4 .. n different permutations, and that if 
r of these n things are equal, the number of permutations is 
1 X 2 X 3 X 4 •. It l'k' h h' b k 1 2 ; so I eWlse we prove t at n t mgs may e ta en 

X x3x .. r 
b n x (n-I) X (n-2) ... (n-r+]) f . 

r y r, number 0 times; or 
lx2x3 .. r 

that we may take r of these n things in so many different ways. 
Hence, if we call n the exponent of the power to which we wish 
to raise the binomial a + b, and r the exponent of the letter b 
in any term, the coefficient of that term is always expressed 
b h fi I nx(n-l)x(n-2 .. (n-r+l). Th . h 

Y t e ormu a 1 X 2 X ;3 •••• r . us, m t e 
example, Article 359, where n=7, we have a5b2 for the third 
term, the exponent r = 2, and consequently the coefficient = 
~ ~ ~; for the fourth term we have r = 3, and the coefficient 

7 X 6 X 5 d I' h 'd I h I = 1 x 2 x 3' an so on; w HC are eVl ent y t e same resu ts as 

the permutations. 
For complete and extensive treatises on the theory of com

binations, we are indebted to Freniele, De 1Jfontmort, James 
Bernoulli, &c. The last two have investigated this theory, 
with a view to its great utility in the calculation of proba
bilities.-F. T. 

'I/< Roots, or quantities, composed of more than two terms, are 
called polynomials, in order to distinguish them from binomials, 
or quantities composed of two terms.-F. T. 
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which result is accurate, and confirms the rule. But if we 
had supposed a=l, b=l, and c=-I, we should have 
found for the cube of 1 + 1-1, that is of 1, 

1 + 3-3 + 3-6+3 + 1-3 +3-1=1, which is a still 
further confirmation of the rule. 

CHAPTER XII. 

Of the Expression of Irrational Powers by Infinite Series. 

361. As we have shewn the method of finding any 
power of the root a + b, however great the exponent may 
be, we are able to express, generally, the power of a+b, 
whose exponent is undetermined; for it is evident that if 
we represent that exponent by n, we shall have by the rule 
already given (Art. 348 and the following) : 

( b)" n n ,,-lb n n-l "-2b2 n n-l n-2 
a + =a +Ta +1'-2 a +T'~'-3-

n-3b3 n 11.-1 n-2 n-3 n-4b4 & 
a +T . -2- . -3- . ---;r-a + c. 

362. If the same power of the root a-b were required, 
we need only change the signs of the second, fourth, sixth, 
&c. terms, and should have 

n _ n n _1 n n-l n-2b2 1/. n-l n-2 
(a - b) - II - Ta b + T' -2-a - T . -r' -3-

n-3b3 11. n-I n-2 n-3 n-4b4 & 
a +T'-2-';r-'-4-a - c. 

363. These formulre are remarkably useful, since they 
serve also to express all kinds of radicals ; for we have shewn 
that all irrational q uantities may assume the form of powers 

1 1 

whose exponents are fractional, and thaq/ a =a"2, Va = a-s, 
.1_ 

and t!a=a 4 , &c.: we have, therefore, 
.1. 1 

t'(a+b) =(a+b)2; V(a+b)=(a+b)3; 
and t!(a+b) = (a+b}h &c. 

Consequently, if we wish to find the square root of a + b, 
we have only to substitute for the exponent n the fraction 
i, in the general formula, Art. 361, and we shall have 
first, for the coefficients, 
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11 n-l n-2 n-3 n-4 _-.1-. __ - _J... __ - _.,'i. ____ 5. __ _ 
1-2' 2 - 4' 3 - 6' 4 - 8' 5-

71-5 
- -?o; -6- = - n· Then, an = at = va and an- 1 = 

1 1 A 1 & 'h - ; a"-2= -- ; a"-J = -- c. or we mIg t express 
va ava aZ";a, 
those powers of a in the following manner: an = va ; a"-1 

va 0 an va an va an 
= a; an-- = a2 = --;;}i; an- 3 = a3 = -,;); a"-4. = a4-

Va 
--4' &c. a 

364. This being laid down, the square root of a+b may 
be expressed in the following manner: 

V( a + b) = va + tb Va - t . tb2 v: a + t . t. ¥Jb3 ~~ 
a a~ a 

Va - t . t . t . 1-b4 -4 ,&c. 
a 

365. If a therefore be a square number, we may assign 
the value of va, and, consequently, the square root of 
a + b may be expressed by an infinite series, without any 
radical sign. 

Let, for example, a = c2, we shall have Va = c; then 
b b2 b3 b4 

V(c2 + b) = c + -1- • - - it . 3" + T17i • 5"" - T~lf • 7' 
~ c c c c 

&c. 
We see, therefore, that there is no number, whose 

square root we may not extl'act in this manner; since 
every number may be resolved into two parts, one of 
which is a square represented by c2• If, for example, the 
square root of6 were required, we make 6=4+2, conse
quently, c2 =4, c=2, b=2; whence results 

V 6 = 2 + t - T~ + --h - Tfu, &c. 
If we take only the two leading terms of this series, we 

shall have 2t = t, the square of which, V, is t greater 
than 6; but if we consider three terms, we have 2-r~=-H-, 
the square of which, Vii, is still it-r; too small. 

366. Since, in this example, t approaches very nearly to 
the true value of V6, we shall take for 6 the equivalent 
quantity ¥ - t; thus c2 = ¥; c = t, b = t; and cal
culating only the two leading terms, we find V6=t+1-. 
_J.. J _ 
_ 4 -..i _ J.. --±""-..i _ ....L - ±J!.. the squal'e of WI1I'ch .5...-:') 2',i-S 20-20' 

>1 2 
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fraction being "'m, it exceeds the square of V6 only 
bY-do' 

Now, making 6 = "'m - 4!0' so that e = -H and b = 
- 4to; and still taking only the two leading terms, we 

h '/6 -ti .1. -4to_ti t 4-tO_1. Q ~ ave -v - 20 + 2' -U - JlO - 2"' ~_ - 20 - 1960 
20 .20 

=tu-!, the square of which is V'8Qi'f-looi; and 6, when 
reduced to the same denominator, is = 2a"'-f-l196PooOo; the 
error therefore is only 384. i 6 0 o· 

367. In the same manner, we may express the cube root of 
a+ b by an infinite series; for since tt(a+ b)=(a + b){-. we 
shall have in the general formula, n=t, and for the coeffi-
. n n-1 n-2 n-3 

Clents, I = i ; -2- = - t; -3- = - ~; -r = - 1 ; 
n-4 
-5- = - -t!, &c. and, with regard to the powers of a, we 

31a 31a 3 1a 
shall have an = t'a; a,,-l = -"'-; an-<.Z = -"-; a,,-3 = -"-3 , 

a all a 
tta t' a &c. then ~(a + b) =t'a +t·b--t·b2_~ +iT a a 

/)3 t' a J.lL b4 ~ a & 
• -3-ll43' -4' c. a a 

368. If a therefore be a cube, or a=e3 , we have ~ a= 
e, and the radical signs will vanish; for we shall have 

b b2 b3 b4 

V' (e3 + b) = e + t . 2" - t '"5 +tT' 8" - --Ha . 11 c c e c 
+, &c. 

369. We have therefore arrived at a formula, which 
will enable us to find, by approximation, the cube root of 
any number; since every number may be resolved into 
two parts, as e3 + b, the first of which is a cube. 

If we wish, for example, to determine the cube root of 
2, we represent 2 by 1 + I, so that c = 1 and b = I; con
sequently ,~2 = I + t - t + Jr, &c. The two leading 
terms of this series make ]t = 1, the cube of which * is 
too great by {4: let us therefore make 2 = * - -H-, we 
have c = 1- and b = - t!}, and consequently V' 2 = 1 + 

--H t . ~: these two terms give t - 7\ = -H, the cube of 
9 

which is -1-Hill: but, 2 = tHtM, so that the error is 
at-His; and in this way we might still approximate the 
faster in proportion as we take a greater number ofterms.* 

* In the Philosophical Transactions for 1694, Dr. Halley has 
given a very elegant and general mlthod for extracting roots of 
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CHAPTER XIII. 

Of tIle Resolution of Negative Powers. 

1 
370. We have already shewn, that-may be expressed 

a 
1 

by a-I; we may therefore express --b also by (a + b)-I; 
a+ 

so that the fraction ~b may be considered as a power of 
a+ 

a + b, namely, that power whose exponent is - 1 ; from 
which it follows that the series already found as the value 
of (a + b)n extends also to this case. 

371. Since, therefore, ~b is the same as (a + b)-I, let 
a+ 

us suppose, in the general formula, [Art. 361.] n = - 1 ; 

and we shall first have, for the coefficients, I = - 1 ; 

n-l n-2 n-3 
-2- = - 1 ; -3- = - 1 ; ~ = - I, &c. And, for the 

1 powers of a, we have an = a-I = -; a,,-I = a-2 = 
a 

~. an-2 - ~. an-3 - ~ &c . sothat(a+b)-l- 1 
a2 ' - a3 , - a4 ' • • - a + b 

1 b b2 b3 b4 b5 •• 
=--- + -- - + - --,&c.whlChls the same 

a a2 a3 a4 a5 a6 

series that we found before by division. 

372. Farther, (a~b)2 being the same with (a+b)-2, let 

any degree whatever by approximation; where he demonstrates 
this general formula, 

m-2 (a'1. 2b) 
~(am±b)=m_la+'I! (m-l)2±(m2-m)a'" I • 

Those who have not an opportunity of consulting the Philo
sophical Transactions, will find the formation and the use of this 
formula explained in the new edition of Le~ons Elementaires 
de Mathematiques by M. D'Abbe de la Caille, published by 
M. L'Abbe Marie. F. T. See also Dr. Hutton's Math. Dic
tionary. 
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US reduce this quantity also to an infinite series. For this 
purpose we must suppose n= -2, and we shall first have 

n n-I n-2 
for the coefficients, 1 = - t; T = - t; ---:r- = - t ; 
n-:.3 -4-=-t, &c.; and, for the powers of a, we obtain a"= 

1 1 1 1 -' an-I __ . a"-Z-_' an - 3- - &c We have there 
a2 ' - as ' - a4 ' - as' . -

L' b _Q 1 1 2.b 2.3. b2 2.3.4. bl 

IOre(a+ ) -=-b)2=!i--1 3+-1 2 4-123 5 (a+ a .a .. a ...a 
2.3.4.5.1J'~ & N ~ 2 2.3 3 2.3.4 

+ I . 2 . 3 . 4 . a6' C. ow, 1 = ; D =. ; I. 2 . 3 

4 2.3.4.5 5 & d 1 1 1 2 = ; 1 2 3 4 = , c. an consequent y, (-b 2 = 2-. . . a+) a 
b b2 b3 b4 b5 b6 

a,3 + 3(;4 -4 a5 +5dl -6 li1 + 7 £is' &c. 

373. Let us proceed, and suppose n= -3, and we shall 

have a sel'ies expressing the value of -( 1 b 3' or of (a +b)-3. 
a+ ) 

n n-l n-2 
Here the coefficients will be T = - t; -2- = - t ; :r-

1 = - t, &c. and the powers of a become, an ="3; a-I = 
a 

1 71-. 1 & h' h' I 1 3 . b 
dJ.; a -=aa' c. w IC gIves (a+b)3=a3 -I.a4 + 
3 • 4 . b'.l _ 3.4 . 5. b3 + 3 .4 . 5 . 6 . b4 = 1-. _ 3~ + 6 b2 _ 

1 . 2 .a a ] .2 . 3 . a6 1 . 2 . 3 . 4 . aT as a4 a5 

b3 b4 b5 b6 
1°6+157-218+289' &c. a a a a 

If now we make n = - 4; we shall have for the 
. n n-l n-2 n-3 

coeffiCIents 1=-4; ~ =- t; -3- =--}; -4--

1 1 
_1- &c And for the powers an - - • a"-l- -' an-<:!. 

4' • , - a4 , - a5 ' 

=~; an-3=~; a"-4=4, whence we obtain, 
a a a 
I _1-._ 4b 4 .5.b'.l_ 4.5.6.b 3 &c -~-4~ 

(a+b)4-a4 la5 +1.2.a6 1.2.3.a7' '-a4 a5 

b2 b3 b4 b5 

+ 10 6 -2°7+ 35 -II -56-g +,&c. a a u- a 
374. The different cases that have beeu considered 
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enable us to conclude with certainty, that we shall have, 
generally, for any negative power of a+b; 

] I m.b m.(m-]).b2 m.(m-I).(m-2).b3 

(a+br=am -a1n+1 + 2.a1n+£ - 2.3.amH , 

&c. And, by means of this formula, we may transform 
all such fractions into infinite series, substituting fractions 
also, or fractional exponents, for m, in order to express 
irrational quantities. 

375. The following considerations will illustrate this 
subject still farther: for we have seen that, 

I I b b2 b3 b4 b5 
------+---+---+ &c a + b - a a2 a3 a4 a5 aD , . 

If, therefore, we multiply this series by a + b, the pro
duct ought to be = I ; and this is found to be true, as will 
be seen by performing the multiplication: 

1 b b2 b3 b4 b5 
---+---+---+ &c a a2 a3 a4 a5 aD ' . 
a+b 

where all the terms but the first cancel each other. 
376. We have also found that 

1 1 2b 3b2 4b3 5b4 6b5 

-----.,------+---+---- &c (a+h)2 - a2 a3 a4 a5 aD a7 ' • 

And if we multiply this series by (a + b)2, the product 
ought also to be equal to 1. Now, (a + b)2 = a2 + 2ab 
+b2 , and 

1 2b 3b2 4b3 5b4 6b5 

---+-4 --5-+-6 --7-+' &c. a2 a3 a a a a 
a2 + 2ab + b2 
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which gives 1 for the product, as the nature of the thing 
required. 

377. If we multiply the series which we found for the 
1 

value of (a+W' by a + b only, the product ought to 

answer to the fraction ~b' or be equal to the series 
a+ 

1 b b2 b3 b4 
already found, namely, - - 2 + -; - '4 + 5' &c. and this 

a a a a a 
the actual multiplication will confirm. 

1 2b 3b2 4b3 5b4 

---+---+- &c. a2 a3 a4 as a6 ' 

a+b 

1 b b2 b3 b4 • --- + - - - + - &c. as reqUIred. 
a a2 a3 a4 a5' 

SECTION III. 

OF RATIOS AND PROPORTIONS. 

CHAPTER I. 

Of Arithmetical Ratio, or of the Difference between two 
Numbers. 

378. Two quantities are either equal to one another, or 
they are not. In the latter case, where one is greater 
than the other, we may consider their inequality under 
two different points of view: we may ask, how much one of 
the quantities is greater ~han the other? Or we may ask, 
how many times the one IS grea,1€r than the other? The 
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results which constitute the answers to these two questions 
are both called relations or ratios. We usually call the 
former an aritl/metical ratio, and the latter a geometrical 
ratio, without these denominations, however, having any 
connexion with the subject itself. The adoption of these 
expressions is entirely arbitrary. 

379. It is evident, that the quantities of which we 
speak must be of one and the same kind; otherwise 
we could not determine any thing with regard to their 
equality or inequality: for it would be absurd to ask if 
two pounds and three ells are equal quantities. So that 
in what follows, quantities of the same kind only are to 
be considered; and since they may always be expressed 
by numbers, it is of numbers only that we shall treat, as 
was mentioned at the beginning. 

380. When of two given numbers, therefore, it is 
required how much the one is greater than the other, the 
answer to this question determines the arithmetical ratio 
of the two numbers; but since this answer consists in 
giving the difference of the two numbers, it follows, that 
an arithmetical ratio is nothing but the difference between 
two numbers; and as this appears to be a better expres
sion, we shall reserve the words ratio and relation to 
express geometrical ratio. 

381. As the difference between two numbers is found by 
subtracting the less from the greater, nothing can be easier 
than resolving the question how much one ~s greater 
than the other: so that when the numbers are equal, 
the difference being nothing, if it be required how much 
one of the numbers is greater than the other, we answer, 
by nothing; for example, 6 being equal to 2 X 3, the 
difference between 6 and 2 x 3 is O. 

382. But when the two numbers are not equal, as 5 and 
3, and it is required how much 5 is greater than 3, the 
answer is 2; which is obtained by subtracting 3 from 5. 
Likewise 15 is greater than 5 by 10; and 20 exceeds 8 
by 12. 

383. We have therefore three things to consider on this 
subject; 1st. the greater of the two numbers; 2d. the 
less; and 3d. the difference: and these three quantities 
are so connected together, that any two of the three being 
given, we may always determine the third. 

Let the greater number be a, the less b, and the 
difference d; then d will be found by subtracting b from 
a, so that d=a-b; whence we see how to find d, when 
a and b are given. 
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384. But if the difference and the less of the two num
bers, that is, if d and b were given, we might determine 
the greater number by adding together the difference and 
the less number, which gives a=b+d; for if we take 
irom b+d the less number b, there remains d, which is 
the known difference: suppose, for example, the less 
number is 12, and the difference 8, then the greater 
number will be 20. 

385. Lastly, if beside the difference d, the greater 
number a be given, the other number b is found by sub
tracting the difference from the greater number, which 
gives b=a-d; for if the number a-d be taken from the 
greater number a, there remains d, which is the given 
difference. 

386. The connexion, therefore, among the numbers, a, 
b, d, is of such a nature as to give the three following 
results: 1st. d=a-b; 2d. a=b+d; 3d. b=a-d; and if 
one of these three comparisons be just, the others must 
necessarily be so also; therefore, generally, if z=x + y, it 
necessarily follows, that y=z-x, and x=z-y. 

387. With regard to these arithmetical ratios we must 
remark, that if we add to the two numbers a and b, any 
number c, assumed at pleasure, or subtract it from them, 
the diffel·ence remains the same; that is, if d is the 
difference between a and b, that number d will also be the 
difference between a+c and b+c, .and between a-c and 
b-c. Thus, for example, the difference between the 
numbers 20 and 12 being 8, that difference will remain 
the same, whatever number we add to, or subtract from, 
the numbers 20 and 12. 

388. The proof of this is evident: for if a-b=d, we 
have also (a+c)-(b+c)=d; and likewise (a-c)
(b-c)=d. 

389. And if we double the two numbers a and b, the 
difference will also become double; thus, when a-b=d, 
we shall have 2a-2b=2d; and generally, na-nb=nd. 
whatever value we give to n. 
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CHAPTER II. 

Of Arithmetical Proportion. 

390. When two arithmetical ratios, or relations, are 
equal, this equality is called an arithmetical proportion. 

Thus, when a-b=d, and p-q=d, so that the differ
ence is the same between the numbers p and q, as between 
the numbers a and b, we say that these four numbers form 
an arithmetical proportion; which we write thus, a-b= 
p-q, expressing clearly by this, that the difference between 
a and b is equal to the difference between p and q. 

391. An arithmetical proportion consists therefore of 
four terms, which must be such, that if we subtract the 
second from the first, the remainder is the same as when 
we subtract the fourth from the third; thus, the four 
numbers 12, 7, 9, 4, form an arithmetical proportion, 
because 12-7=9-4. 

392. When we have an arithmetical proportion, as a-b 
p-q, we may make the second and third terms chang'e 

places, writing a-p=b-q: and this equality will be no 
less true; for, since a-b=p-q, add b to both sides, and 
we have a=b +p-q: then subtract p from both sides, 
and we have a-p=b-q. 

In the same manner, as 12-7=9-4, so also 12-9= 
7-4.* 

393. We may in every arithmetical proportion put the 
second term also in the place of the first, if we make the 
same transposition of the third and fourth; that is, if a-b 
=p-q, we have also b-a=q-p; for b-a is the nega .. 
tive of a-b, and q-p is also the negative of p-q; and 
thus, since 12-7=9-4, we have also, 7-12=4-9. 

394. But the most interesting property of every arith
metical proportion is this, that the sum of the second and 
third term is always equal to the sum of the first and fourth. 
This property, which we must particularly consider, is ex
pressed also by saying that the sum of the means is equal 
to the sum of the extremes. Thus, since 12-7=9-4, 
we have 7+9=12+4; the sum being in both cases 16. 

<I: To indicate that those numbers form such a proportion, 
some authors write them thus: 12. 7 : : 9 . 4. 

K 
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395. In ol'der to demonstrate this principal property, 
let a-b=p-g; then if we add to both b+g, we have 
a + g=b + p; that is, the sum of the first and fourth 
terms is equal to the sum of the second and third: and, 
inversely, if four numbers, a, b, p, q, are such, that the 
sum of the second and third is equal to the sum of the first 
and fourth; that is, ifb+p=a+g, we conclude, without 
a possibility of mistake, that those numbers are in arith
metical proportion, and that a - b = P -g; for, since 
a+g=b+p, if we subtract from both sides b+q, we obtain 
a-b p-q. 

Thus, the numbers 18, 13, ] 5, 10, being such, that the 
sum of the means (13 + 15 =28) is equal to the sum of the 
extremes (18 + 10=28), it is certain that they also form 
an a1'ithmetical proportion; and, consequently, that 18-
13=15-10. 

396. It is easy. by means of this property, to resolve the 
following question. The first three terms of an arithmeti
cal proportion being given, to find the fourth? Let a, b, p, 
be the first three terms, and let us express the fourth by g, 
which it is required to determine: then a + q=b + p; by 
subtracting a from both sides, we obtain q=b+p-a. 

Thus, the fourth term is found by adding together the 
second and third, and subtracting the first from that sum. 
Suppose, for example, that 19,28, 13, are the three first 
given terms, the sum of the second and third is 41 ; and 
taking from it the first, which is 19, thel'e remains 22 for 
the fourth term sought, and the arithmetical proportion 
will be represented by 19-28= 13-22, or by 28-19=22 
-13, or, lastly, by 28-22= 19-13. 

397. When, in an arithmetical proportion, the second 
term is equal to the third, we have only three numbers; the 
property of which is this, that the first, minus the second, is 
equal to the second, minus the third; or that the difference 
between the first and second number is equal to the dif
ference between the second and third. The three numbers 
19, 15, 11, are of this kind, since 19-15= 15-11. 

398. Three such numbers are said to form a continued 
arithmetical proportion, which is sometimes written thus, 
I!): 15 : 11. Such proportions are also called arithmetical 
progressions, particularly if a greater number of terms 
follow each other according to the same law. 

An arithmetical progres;ion may be either increasing, or 
decreasing. The former distinction- is applied when the 
terms go on increasing; that is t9say, when the second ex
ceeds the first, and the third exceeds the second by the 
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same quantity; as in the numbers 4, 7, 10; and the de
creasin.q progression is that in which the terms go on 
always' diminishing by the same quantity, such as the 
numbers 9, 5, I. 

399. Let us suppose the numbers a, b, c, to be in arith
metical progression; then a-b=b-c, whence it follows, 
from the equality between the sum of the extremes and 
that of the means, that 2b=a +c; and if we subtract a 
from both, we have 2b-a=c. 

400. So that when the first two terms a, b, of an arith
metical progression are given, the third is found by taking 
the fir'st from twice the second. Let 1 and 3 be the first 
two terms of an arithmetical progression, the third will 
then be 2 x 3-1 =5; and these three numbers 1,3,5, 
give the proportion 

1-3=3-5. 
401. By following the same method, we may pursue the 

arithmetical progression as far as we please; we have only 
to find the fourth term by means of the second and third, 
in the !lame manner as we determined the third by means 
of the first and second. and so on. Let a be the first term, 
and b the second, the third will he 2b-a, the fourth 4b-
2a-b=3b-2a, the fifth 6b-4a-2b+a=4b-3a, the 
sixth, 8b-6a-3b +2a=5b-4a, the seventh 10b-8a-
4b+3a=6b-5a, &c. 

CHAPTER III. 

Of Arithmetical Progressions. 

402. vVe have already remarked, that a series of num
bers composed of any number of terms, which always in
crease, or decrease, by the same quantity, is called an 
arithmetical progression. 

Thus, the natural numbers written in their order, as 
I, 2, 3, 4, 5, 6, 7, 8,9, 10, &c. form an ar'ithmetical pro
gression, because they constantly increase by unity; and 
the series 25,22, 19, 16, 13, 10, 7, 4, 1, &c. is also sl1ch 
a progression, since the nUlllbers constantly decrease by 3. 

403. The number, or' quantity, by which the terms of an 
arithmetical progression become greater 01' less, is called the 
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difference; so that when the first term and the difference 
are given, we may continue the arithmetical progression to 
any length. 

For example, if the first term be 2, and the difference 3, 
we shall have the following increasing progression: 2, 5, 8, 
II, 14, 17,20,23,26,29, &c. in which each term is found 
by adding the difference to the preceding term. 

404. It is usual to write the natural numbers, ],2, 3,4, 
5, &c. above the terms of such an arithmetical progression, 
in order that we may immediately perceive the rank 
which any term holds in the progression; which numbers, 
when written above the terms, are called indices; thus, the 
above example will be written as follows: 

Indices. I 2 3 4 5 6 7 8 9 10 
Aritlt. Prog. 2,5, 8, II, 14, 17, 20, 23, 26,29, &c. 

where we see that 29 is the tenth term. 
405. Let a be t.he first term, and d the difference, the 

arithmetical progression will go on in the following order: 
1234 567 
a, a±d, a±2d, a+3d, a±4d, a±5d, a+6d, &c. 

according as the series is increasing, or decreasing; whence 
it appears that any term of the progression might be easily 
found, without the necessity of finding all the preceding 
ones, by means only of the first term a and the difference d; 
thus, for example, the tenth term will be a+9d, the hun
dredth term a±99d, and, generally, the nth term will be· 
a+(n-1)d. 

406. When we stop at any point of the progression, it 
is of importance to attend to the first and the last term, 
since the index of the last term will represent the number 
of terms. If, therefore, the first term be a, the difference 
d, and the number of terms n, we shall have for the last 
term a+(n-1)d, according as the series is increasing or 
decreasing; which is consequently found by multiplying 
the difference by the number of terms minus one, and add
ing, or subtracting, that product from the first term. Sup
pose, for example, in an ascending arithmetical progression 
of a hundred terms, the first term is 4, and the difference 
3; then the last term will be 99x3+4=301. 

407. When we know the first term a, and the last z, with 
the number of terms n, we can find the difference d; for, 
since the last term z=a+(n-l)d, if we subtract a from 
both sides, we obtain z-a=(n-1 )d. So that by taking 
the difference between the first and last term, we have the 
product of the difference multipli~.dby the number of terms 
minus 1; we have therefore only to divide z-a by n-] 
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in order to obtain the required value of the difference d, 

which will be z-a1. This result furnishes the following 
n-

rule: Subtract the first term from the last, divide the re
mainder by the number of terms minus 1, and the quotient 
will be the common difference; by means of which we 
may write the whole progression. 

408. Suppose, for example, that we have an increasing 
arithmetical progression of nine terms, whose first is 2, 
and last 26, and that it is required to find the difference. 
We must subtract the first term 2 f.'om the last 26, and 
divide the remainder, which is 24, by 9-1, that is, by 8; 
the quotient 3 will be equal to the difference required, and 
the whole progression will be : 

1234.'56789 
2,5,8, 11, 14, 17,20,23,26. 

To give'another example, let us suppose that the first 
term is 1, the last 2, the number of terms 10, and that the 
arithmetical progression, answering to these suppositions, 
is required; we shall immediately have for the difference 

l~ \ = t, and thence conclude that the progression is : 

1 2 3 4 5 6 7 8 9]0 
I, It, I~, I~, I-t-, I~, I~, Ii, Ii, 2. 

Another example. Let the first term be 2-t, the last term 
12f, and the number of terms 7; the difference will be 
12t-2-} lOt -.fi.1. -Ill d I h _ 7""':1 6 - 36 - 36' an consequent y t e pro 

gression: 
1234567 
2t,4i6,5tt, 7~, 9t, 10%%, 12t. 

409. If now the first term a, the last term z, and the dif
ference d, are given, we may from them find the number 
of terms n; for since Z - a = (n - I )d, by dividing both 

sides by d, we have z-;ia = n-I; also n being greater by 

z-a 
I than n-I, we have n = ---;r- + I; consequently, the 

number of terms is found by dividing the difference 
between the first and the last term, or z - a, by the dif
ference of the progression, and adding unity to the quotient. 

For example, let the first term be 4, the last 100, and the 
d'Jr h . 100-4 luerence 12, t e number of terms, Will be 12 + 1 =9 ; 
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and these nine terms will be, 
123456789 
4, 16, 28, 40, 52, 64, 76, 88, 100. 

SECT. III. 

If the first term be 2, the last 6, and the difference 1{-, the 

num ber of terms will be 1~ + 1 = 4; and these four terms 

will be, 
1 2 3 4 
2, 3{-, 41-, 6. 

Again, let the first term be 3{-, the last 7%. and the dif-
7.2.-3-!-

ference 1{, the number of terms will be 3 1 3 + 1 = 4; 

which are, 
{ 

3{-, 4i, 6%, 7%. 
410. It must be observed, however, that as the number 

of terms is necessarily an integer, if we had not obtained 
such a number for n, in the examples of the preceding 
article, the questions would have been absurd. 

Whenever we do not obtain an integer number for the 

value of z~a, it will be impossible to resolve the question; 

and consequently, in order that questions ofthis kind may 
be possible, z-a must be divisible by d. 

411. From what has been said, it may be concluded, 
that we have always four quantities, or things, to consider 
in an arithmetical progression: 

1st. The first term, a; 2d. The last term, z; 
3d. The difference, d; and 4th. The number of terms, n. 
The relations of these quantities to each other are such, 

that if we know three of them, we are able to determine 
the fourth; for, . 

1. If a, d, and 1', are known, we have z = a ± (n -l)d. 
2. If z, d, and n, are known, we have a = z - (n -1)d. 

z-a 
3. If a, z, and n, are known, we have d = --1; and 

n-
z-a 

4. If a, z, and d, are known, we have n = -a:- + I. 
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CHAPTER IV. 

Of the Summation of Arithmetical Progressions. 

412. It is often necessary also to find the sum of an 
arithmetical progl'ession. This might be done by adding 
all the terms togethel'; but as the addition would be very 
tedious, when the progression consisted of a great number 
of terms, a rule has been devised, by which the sum may 
be more readily obtained. 

413. We shall first consider a particular given progres
sion, in which the first term is 2, the difference 3, the last 
term 29, and the number of terms] 0; 

I 2 3 4 5 6 7 8 9 10 
2,5,8, 11, 14, 17,20,23,26,29. 

In this progression, we see that the sum of the first and 
last term is 31; the sum of the second and the last but 
one 31 ; the sum of the third and the last but two 31 ; and 
so on: hence we conclude, that the sum of any two terms 
equally distant, the one from the first, and the other from 
the last, is always equal to the sum of the fil'st and the 
last term. 

4] 4. The reason of this may be easily traced; for if we 
suppose the first to be a, the last z, and the difference d, 
the sum of the first and the last term is a + z; and the 
second term being a+d, and the last but one z-d, the sum 
of these two terms is also a + z. Farther, the thinl term 
being a + 2d, and the last but two z - 2d, it is evident 
that these two terms also, when added together, make 
a + z; and the demonstration may be easily extended to 
any other two terms equally distant fl'om the first and last. 

415. To determine, therefore, the sum of the progres
sion proposed, let us write the same progression, term by 
term, inverted, and add the corresponding terms together, 
as follows: 

2 + 5 + 8 + 11 + 14 + 17 + 20 + 23 + 26 + 29 
29+26+23+20+17+14+11+ 8+ 5+ 2 

31 +31 +31 +31 +31 +31 +:31 +31 +31 +31 
This series of equal terms is evidently equal to twice the 
sum of the given progression: now, the number of those 
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equal terms is 10, as in the progression, and their sum 
consequently is equal to 10 x 31 =310. Hence, as this 
sum is twice the sum of the arithmetical progression, the 
sum required must be 155. 

416. If we proceed in tIle same manner with respect to 
any arithmetical progression, the first term of which is a, 
the last z, and the number of terms n, writing under the 
given progression the same progression inverted, and 
adding term to term, we shall have a series of n terms, 
each of which will be expressed by a+ z; therefore the 
sum of this series will be n( a + z), which is twice the sum 
of the proposed arithmetical progression; the latter, there-

. n(a+z) 
fore, wIll be represented by 2 . 

417. This result furnishes an easy method of finding 
the sum of any arithmetical progression; and may be 
reduced to the following rule: 

Multiply the sum of the first and the last term by the 
number of terms, and half the product will he the sum of 
the whole progression. Or, which amounts to the same, 
multiply the sum of the first and the last term by half the 
number of terms. Or, multiply half the sum of the first 
and the last term by the whole number of terms. 

418. It will be necessary to illustrate this rule by some 
examples. 

First, let it be required to find the sum of the progres
sion of the natural numbet's, 1, 2, 3, &c. to 100. This 

. 100x 101 
w111 be by the first rule, 2 = 1 O}O 0 = 5050. 

If it were required to tell how many strokes a clock 
strikes in twelve hours; we must add together the num
bers 1, 2,3, &c. as far as 12; now this sum is found imme-

diately to be 12 ~ 13 = 6 x 13=78. Ifwe wished to know 

the sum of the same progression, continued to 1000, we 
should find it to be 500500; and the sum of this progres
sion, continued to 10000, would be 50005000. 

419. Suppose a person buys a horse, on condition that 
for the first naii he shall pay 5 pence, for the second 
8 pence, for the third 11 pence, and so on, always 
increasing 3 pence for each nail, the whole number of 
which is 32; required the purchase of the horse? 

In this question it is required to find the sum of an 
arithmetical progression, the first term of which is 5, the 
difference 3, and the number ,of terms 32; we must 
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therefore begin by determining the last term; which is 
found by the rule, in Articles 406 and 411, to be 5 + 
(31 X 3)=98; after which, the sum required is easily 

103 x32 
found to be 2 =103x 16; whence we conclude that 

the horse costs 1648 pence, or 6Z. 17s. 4d. 
420. Generally, let the first term be a, the difference d, 

and the number of terms n; and let it be required to find, 
by means of these data, the sum of the whole progression. 
As the last term must be a+ (n-l )d, the sum of the first 
and the last will be 2a± (n-l)d; and multiplying this 
sum by the number of terms n, we have 2na±n(n-l)d; 

the sum required therefore will be na± n( n;-l)d. 

Now, this formnla, if applied to the preceding example, 

or to a=5, d=3, and n=32, gives 5X32+32.~1.3 
= 160+ 1488=1648; the same sum that we obtained 
before. 

421. If it be required to add together all the natural 
numbers from 1 to n, we have, for finding this sum, the 
first term 1, the last term n, and the number of terms n; 

. . n2+n n(n+ 1) 
therefore the sum reqmred IS -2-= 2 . If we 

make n= 1766, the sum of all the numbers, from 1 to 
1766, will be 883, (half the number of terms,) multiplied 
by 1767=1560261. 

422. Let the progression of uneven numbers be pro
posed, such as 1, 3, 5, 7, &c. continued to n terms, and 
let the sum of it be required. Here the first term is 1, 
the difference 2, the number of terms n; the last term 
will therefore be 1+(n-l)2=2n-], and consequently 
the sum required =n2. 

The whole therefore consists in multiplying the number 
of terms by itself; so that whatever number of terms of 
this progression we add together, the sum will be always 
a square, namely the square of the number of terms; 
which we shall exemplify as follows: 

Indices, 1 2 3 4 5 6 7 8 9 10, &c. 
Progress. 1,3,5, 7, 9, 11, 13, 15, 17, 19, &c. 
Sum. I, 4, 9, 16, 25, 36, 49, 64, 81, 100, &c. 

423. Let the first term be I, the difference 3, and the 
number of terms n; we shall have the progression 1, 4, 7, 
]0, &c. the last term of which will be 1 + (n-I)3=3n-2; 
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wherefore the sum of the first and the last term is 3n-I, 
and consequently the sum of this progression is equal to 
n(3n-I) 3n2-n 

::l --2-; and if we suppose n=20, the sum will 

be 10 x 59=590. 
424. Again, let the first term be 1, the difference d, and 

the number of terms n; then the last term will be 1 + 
(n-I)d; to which adding the first, we have 2+(n-I)d, 
and multiplying by the number of terms, we have 2n + 
n(n-I)d; whence we deduce the sum of the progression 

n(n-I)d 
n+ 2 . 

And by making d successively equal to 1,2,3, 4, &c., 
we obtain the following particular values, as shewn in the 
subjoined Table. 

. n(n-I) n2+n 
If d = 1, the sum IS n + 2 = -2-

2n(n-l) 2 
d = 2, .......... n + 2 = n 

3n(n-I) 3n2-n 
d = 3, .. . , ....... n + 2 = -2-

4n(n-I) 2 
d = 4, .........• n + 2 = 2n - n 

5n(n-I) 5112-3n 
d=5, .......... n+ 2 = 2 

_ 6n(n-l) __ 2 
d - 6, .......... n + 2 -.3n -2n 

7n(n-I) 7n2 -5n 
d=7, .......... n+ 2 =-2-

8n(n-1) 2 
d = 8, .......... n + 2 = 4n -3n 

9n(n-l) 9n2 -7n 
d = 9, .......... n + 2 = 2 

_ . lOn(n-I)_ 2 
d-lO, .......... n+ '2 -5n-4n 

QUESTIONS FOR PRACTICE. 

1. Required the sum of an increasing arithmetical pJ'O
gression, having 3 for its first term., 2 for the common 
difference, and the numbeJ' of terms 20. Ans. 440. 

2. RequiJ'ed the sum of a' decreasing arithmetical 
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progression, having 10 for its first term, t for the com
mon difference, and the number of terms 21. Ans. 140. 

3. The clocks of Italy go on to 24 hours; how many 
strokes do they strike in a complete revolution of the 
index '/ Ans. 300. 

4. One hundred stones being placed on the ground in 
a straight .line, at the distance of a yard from each other, 
how far wIll a person travel who shall bring them one by 
one to a basket, which is placed one yard from the first 
stone? Ans. 5 miles and 1300 yards. 

CHAPTER V. 

Of Figurate, '* or Polygonal Numbers. 

425. The summation of arithmetical progressions, which 
begin by 1, and the difference of which is I, 2, 3, or any 

• The French translator has justly observ.ed, in his note at 
the conclusion of this chapter, that algebraists make a distinc
tion between figurate and polygonal numbers; but as he has 
not entered far upon this subject, the following illustration may 
not be unacceptable. 

It will be immediately perceived in the following Table, that 
each series is derived immediately from the foregoing one, 
being the sum of all its terms from the beginning to that place; 
and hence also the law of continuation, and the general term of 
each series, will be readily discovered. 

Natural 1,2,3, 4, 5, ...... ngeneralterm 
. n.(n+ 1) 

Triangular 1,3, 6, 10, 15,...... 2 

. " n.(n+ 1).(n+2) 
PyramIdal 1,4,10, ...,0, 35,...... 2.3 

Triangular-} 1 1 35 ° n.(n+l).(n+2).(n+3) 
'd I ' 5, 5, , 7 ..•... 2 3 4 pyraml a .. 

And, in general, the figurate number of any order m will be 
expressed by the formula, 

n.(n+ 1). (n+2) .(n+3) . .... . (n+m-l) 
1.2 . 3 . 4 m' 

Now, one of the principal properties of these numbers, and 
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other integer, leads to the theory of polygonal numbers, 
which are formed by adding together the terms of any 
such progression. 

426. Suppose the difference to be 1; then, since the 
first term is I also, we shall have the arithmetical pro
gression, I, 2, 3, 4, 5, 6, 7, 8, 9, 10, II, 12, &c. and if in 
this progression we take the sum of one, of two, of three, 
&c. terms, the following series of numbers will arise: 

1,3, 6, 10, 15, 21, 28, 36, 45, 55, 66, &c. 
for 1=1, 1+2=3,1+2+3=6,1+2+3+4=10, &c. 

Which numbers are called triangular, or trigonal num
bers, because we may always arrange as many points in 
the form of a triangle as they contain units, thus: 

1 3 6 10 15 

427. In all these triangles, we see how many points 
each side contains. In the first triangle, there is only one 
point; in the second there are two in each side; in the 
third there are three; in the fourth there are four, &c. : 
so that the triangular numbers, or the number of points, 
which is simply called the triangle, are arranged accord
ing to the number of points which the side contains, 
which number is called the side; that is, the third tri
angular number, or the third triangle, is that whose side 
has three points; the fourth, that whose side has four, 
and so on; which may be represented thus: 

which Fermat considered as very interesting, (see his notes on 
Diophantus, page 16), is this: that if from the nth term of any 
series the (n-l) term of the same series be subtracted, the re
mainder will be the nth term of the preceding series. Thus, in 

the third series above given, the nth term is n.(n+ ~.3 (n+2) ; 

consequently, the (n-l) term, by substituting (n-l) instead 
f . (n-I). n.(n+ 1) " 

o n, IS 2.3 ; and If the latter be subtracted from 

h r. h "d" n.(n-l) h" " h h t e ormer, t e remain er IS 2 ' w ICh IS tent term of 

the preceding order of numbers. The sarile law will be observed 
between two consecutive terms of anyone of these sums. 
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Side 

7riangl{ . 
428. A question therefore presents itself here, which is, 

how to determine the triangle when the side is given? 
and, after what has been said, this may be easily resolved. 

For if the side ben, the triangle will be 1 +2+3+4+ .• . n. 
N h f h· .. n2+n I ow, t e sum 0 t IS progreSSIOn IS-2-; consequent y 

the value of the triangle is n2
: n . * 

{
n= 1'1 { 1, 

Thus, if : _ ~: J the triangle is ~: 
~n =4, 10, 

and so on: and when n = 100, the triangle will be 5050. 

429. This formula 1/
2 t n is called the general formula of 

triangular numbers; because by it we find the triangular 
number, or the triangle, which answers to any side in
dicated by n. 

Th' b l' d' n(n+l) h' h I IS may e tranSlorme mto 2 ; w lC serves a so 

to facilitate the calculation; since one of the two numbers 
n, or n+ 1, must always be an even number, and con
sequently divisible by 2. 

So, if n = 12, the triangle is 12 ~ 13 =6 x 13=78; and 

if n = 15, the triangle is 15 ; 16 = 15 x 8 = 120, &c. 

430. Let us now suppose the difference to be 2, and we 
shall have the following arithmetical progression: 

1,3,5, 7,9, 11, 13, 15,17, 19,21, &c. 
the sums of which, taking successively one, two, three, 
four terms, &c. form the following series: 

1, 4, 9, 16,25, 36, 49, 64, 81, 100, 121, &c. 

* M. de Jotlcourt published at the Hague, in 1762, a Table 
of trigonal numbers answering to all the natural numbers from 
1 to 20000. Such Tables are found useful in facilitating a 
great number of arithmetical operalions, as the author shews in 
a very long introduction.-F. T. 
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the terms of which are called quadrangular numbers, or 
squares; since they represent the squares of the natural 
numbers, as we have already seen; and this denomination 
is the more suitable from this circumstance, that we can 
always form a square with the number of points which 
those terms indicate, thus: 

] 4 9 ]6 25 

431. We see he I·e, that the side of any square contains 
precisely the number of points which the square root in
dicates. Thus, for example, the side of the square 16 con
sists of 4 points; that of the square 25 consists of5 points; 
and, in general, if the side be n, that is, if the number of 
the terms of the progression, I, 8, 5, 7, &c. which we have 
taken, be expresEed by n, the square, or the quadrangular 
number, will be equal to the sum of those terms; that is 
to n2, as we have already seen, Article 422; but it is un
necessary to extend our consideration of square numbers 
any farther, having already treated of them at length. 

432. If now we call the difference 3, and take the sums 
in the same manner as before, we obtain numbers which 
are called pentagons, or pentagonal numbers, though they 
cannot be so well represented by points.* 

* It is not, however, that we are unable to represent, by 
points, polygons of any number of sides; but the rule which I 
am going to explain for this purpose seems to have escaped all 
the writers on algebra whom I have consulted. 

I begin with drawing a small polygon that has the number of 
sides required; this number remains constant for one' and the 
same series of polygonal numbers, and it is equal to 2 plus the 
difference of the arithmetical progression from which the series 
is produced. I then choose one of its angles, in order to draw 
from the angular point all the diagonals of this polygon. which, 
with the two sides containing the angle that has been taken, are 
to be indefinitely produced; after that, I take these two sides, 
and the diagonals of the first polygon on the indefinite lines, 
each as often as I choose; and draw, from the corresponding 
points marked by the compass, lines parallel to the sides of the 
first polygon, and divide them into as many equal parts, or by 
as many points as there are actually ilJ.,the diagonals and the 
two sides produced. This rule is ge~ral, from the triangle up 
to the polygon of an infinite number of sides: and the division 
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Indices, 1 2 3 4 5 6 7 8 9, &c. 
Arith. Prog. I, 4, 7, 10, 13, 16, 19, 22, 25, &c. 
Pentagon, 1,5,12,22,35,51,70,92,117, &c. 

the indices shewing the side of each pentagon. 
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433. I t follows from this, that if we make the side n, 
. 3n2-n n(3n - I) 

the pentagonal number will be -2- = 2 . 

Let, for example, n=7, the pentagon will be 70; and 
if the pentagon, whose side is 100, be required, we make 
n = 100, and obtain 14950 for the number sought. 

434. If we suppose the difference to be 4, we arrive at 
llexago'flat numbers, as we see by the following progressions: 

Indices, 1 2 3 4 5 6 7 8 9, &c. 
Arith. Prog. 1,5, 9, 13, 17,21,25, 29, 33, &c. 
Hexagon, 1, G, 15, 28, 45. 66, 91, 120, 153, &c. 

where the indices still shew the side of each hexagon. 
435. So that when the side is 'fI, the hexagonal number 

is 2n2 -n=n(2n-l); and we have farther to remark, that 
all the hexagonal numbers are also triangular; since, if 
we take of these last the first, the third, the fifth, &c. we 
have precisely the series of hexagons. 

436. In the same manner, we may find the numbers 
which are heptagoual, octagonal, &c. It will be sufficient 
therefore to exhibit the following Table of formulre for all 
numbers that are comprehended under the general name 
of polygonal numbel·s. 

Supposing the side to be represented by n, we have 
for the 

. n2+n n(n+ 1) 
Tl'langle .... -2- = 2 

2n2 +On q 

Square .•.. 2 =n". 

3n~-'fI n(311-1) 
v-gon...... 2 - 2 

4n2 -2n 2 2 I vI-gon . •. .. :t =2n -n=u( n- ). 

5n2 -3n n(5n-3) 
"II-gon ...• ~ - ~ 

of these figures into triangles might furnish matter for many 
curious considerations, and for elegant transformations of the 
general formulre, by which the polygonal numbers are expressed 
in this chapter; but it is unneces!jary to dwell on them at 
present.-F. T. 
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6n2 -4n ~ 
vlII-gon • • • • 2 =3n -2n=rt(3n-2). 

7n2-5n n(7n-5) 
lx,..gon...... 2 - 2 

8n~-6n 4 2 3 ,~ 3) x-gon •••••• 2 = n - n=n,'i:n- . 

9n2-7n n(9n-7) 
xI-gon...... 2 2 

lOn2-8n 2 
xII-gon..... 2 =511 -4n=n(5n-4). 

18n2-16n 2 
xx-gon ••• . • 2 =9n -8n=n(9n-8). 

23n2-21n n(23n-21) 
xxv-gon. • • • 2 = --2--

(m-2)n2-(m-4)n. 
m-gon •••• •• 2 

437. So that the side being n, the m-gonal number 
. (m-2)n2-(m-4)n 

wIll be represented by 2 ; whence we may 

deduce all the possible polygonal numbers which have 
the side n. Thus, for example, if the bigonal numbers 
were required, we should have m =2, and consequently 
the number sought = n; that is to say, the bigonal num
bers are the natural numbers, 1, 2, 3, &c.* 

If k 3 h n2 + n fi h . 1 we ma e m= ,we ave -2- or t e tnangu ar 

number required. 
Ifwe make m=4, we have the square number n2 , &c. 
438. To illustrate this rule by examples, suppose that 

the xxv-gonal number, whose side is 36, were required; we 

*' The general expression for the m-gonal number is easily 
derived from the summation of an arithmetical progression, 
whose first term is 1, common difference d, and number of terms 
n; as in the following series, viz. 1 + (1 +d) + (1 +2d) +, &c. 

. . (2+(n-l) .d)n 
(1 + (n-l ).d), the sum of which IS expressed by 2 ; 

butin all casesd=m-2, ther",fore substituting this value for d, the 
. 2n+(n2-n).(m-2) (m-2)n2-(m-4)n 

expressIOn becomes 2 2 

as in the formula. 
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look first in the Table for the xxv-gonal numbel', whose 
'd' d' . ~ d b 23n2 -21n Th k' Sl e IS n, an It IS loun to e 2 . en rna mg 

n=36, we find 14526 for the number sought. 
439. Question. A person bought a house, and he is asked 

how much he paid for it. He answers that the 365lh-gonal 
number of 12 is the number of crowns which it cost him. 

In order to find this number, we make m=365, and 
n= 12; and substituting these values in the general for
mula, we find for the price of the house 23970 crowns.* 

* This chapter is entitled "Of Figurate or Polygonal N um
bers:' It is not however without foundation that some alge
braists make a distinction between figurate numbers and poly
gonal numbers. For the numbers commonly called figurate are 
all derived from a single arithmetical progression, and each 
series of numbers is formed from it by adding together the terms 
of the series which goes before. On the other hand, every series 
of polygonal numbers is produced from a different arithmetical 
progression. Hence in strictness, we cannot speak of a single 
series of figurate numbers, as being at the same time a series of 
polygonal numbers. This will be made more evident by the 
following Tables. 

TABLE OF FIGURATE NUMBERS. 

Constant numbers ..... , . 1. 1. 1. 1. 1. 1. &c. 
Natural. .............. 1. 2. 3. 4. 5. 6. &c. 
Triangular .........•... I. 3. 6. 10. 15. 2 I. &c. 
Pyramidal .....•••..... 1. 4. 10. 20. 35. 56. &c. 
Triangular-pyramidal ..•• 1. 5. 15. 35. 7 O. 126. &c. 

TABLE OF POLYGONAL NUMBERS. 

Diff. of the progr. Numbers 
1 triangular .... I. 3. 6. 10. 15. &c. 
2 square ...... 1. 4. 9. 16. 25. &c. 
3 pentagon .... I. 5. 12. 22. 35. &c. 
4 hexagon ..... I. 6. 15. 28. 4:5. &c. 

Powers likewise form particular series of numbers. The first 
two are to be found among the figurate numbers, and the third 
among'the polygonal; which will appear by successively sub· 
stituting for a the numbers 1, 2, 3, &c. 

T ABLE OF POWERS. 

aO .. ............ I. I. 1. 1. I. &c. 
a1 .............. 1. 2. 3. 4. 5. &c. 
a2 •••••• •••••••.• 1. 4. 9. 16. 25. &c. 
a3 .............. 1. 8. 27. 64. 125. &c. 
a4 .............. 1. 16. 81. 256. 625. &c. 

The algebraists of the sixteenth and seventeenth centuries paid 
L 
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CHAPTER VI. 

Of Geometrical Ratio. 

440. The Geometrical ratio of two numbers is found by 
resolving the question, How many times is one of those 
numbers greater than the other? This is done by dividing 
the one by the other; and the quotient will express the 
ratio required. 

441. We have here three things to consider; 1st, the 
first of the two given numbers, which is called the antece
dent; 2dly, the other number, which is called the conse
quent; 3dly, the ratio of the two numbers, or the quotient 
arising from the division of the antecedent by the conse
quent. For example, if the relation of the numbers 18 
and 12 be required, 18 is the antecedent, 12 is the conse
quent, and the ratio will be -it = It; whence we see that 
the antecedent contains the consequent once and a half. 

442. It is usual to represent geometl-ical relation by two 
points, placed one above the other, between the antece
dent and the consequent. Thus, a : b means the geome
trical relation of these two numbers, or the ratio of a to b. 

We have already remarked that this sign is employed 
to represent division,"" and for this reason we make use of 
it here; because, in order to know the ratio, we must 
divide a by b; the relation expressed by this sign being 
read simply, a is to b. 

443. Relation therefore is expressed by a f.'action, whose 
numerator is the antecedent, and whose denominator is 
the consequent; but perspicuity requires that this fraction 
should be always reduced to its lowest terms: which is 
done, as we have already shewn, by dividing both the 
numerator and denominator by their greatest common 
divisor. Thus, the fraction H becomes t, by dividing both 
terms by 6. 

great attention to these different kinds of numbers and their 
mutual connexion, and they discovererl in them a variety of 
curious properties; but as their utility is not great, they are now 
seldom introduced into the systems of mathematirs.-F. T. 

'" It will be observed that we have made use of the symbol -7 
for division, as is now usually done ill 'books on this subject. 
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444. So that relations only differ according as their ratios 
are different; and there are as many different kinds of 
geometrical relations as we can conceive different ratios. 

The first kind is undoubtedly that in which the ratio 
becomes unity. This case happens when the two numbers 
are equal, as in 3 : 3 : : 4 : 4 : : a : a; the ratio is here 1, 
and for this reason we call it the relation of equality. 

Next follow those relations in which the ratio is another 
whole number. Thus, 4:2 the ratio is 2, and is called 
double ratio; 12: 4 the ratio is 3, and is called triple ratio; 
24 : 6 the ratio is 4, and is called quadruple ratio, &c. 

We may next consider those relations whose ratios are 
expressed by fractions; such as 12 : 9, where the ratio is 
t, or It; and 18: 27, where the ratio is t, &c. We may 
also distinguish those relations in which the consequent 
contains exactly twice, thrice, &c. the antecedent: such 
are the relations 6 : 12, 5: 15, &c. the ratio of which some 
call subduple, subtriple, &c. ratios. 

Farther, we call that ratio rational which is an expressible 
number; the antecedent and consequent being integers, 
such as 11 : 7, 8 : 15, &c. and we call that an irrational 
or surd ratio, which can neither be exactly expressed by 
integers nor by fractions, such as ..; 5 : 8, or 4: ..; 3. 

445. Let a be the antecedent, b the consequent, and d 
the ratio. We know already, that a and b being given, we 

find d= i-: if the consequent b were given with the ratio, 

we should find the antecedent a=bd, because bd divided 
by b gives d: and lastly, when the antecedent a is given, and 

the ratiod, we find the consequent b=~; for, dividing the 

antecedent a by the consequent a' we obtain the quo

tient d; that is to say, the ratio. 
446. Every relation a : b remains the same, if we mul

tiply or divide the antecedent and consequent by the same 
number, because the ratio is the same: thus, for example, 

let d be the ratio of a: b, we have d= i; now the ratio of 

the relation na : nb is also nba = £1, and that of the relation 
n 

a b. l'k . na d n : n IS I eWIse nb = . 

447. When a ratio has been reiluced to its lowest terms, 
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it is easy to perceive and enunciate the relation. For ex

ample, when the ratio. i has been reduced to the fraction 

.l!., we say a: b=p: q, or a: b::p: q, which is read, a is 
q 
to b as p is to q. Thus, the ratio of 6 : 3 being t, or 2, 
we say 6 : 3 : : 2 : 1. We have likewise 18: 12 : : 3 : 2, 
and 24: 18:: 4: 3, and 30: 45: : 2: 3, &c. But if the 
ratio cannot be abridged, the relation will not become 
more evident; for we do not simplify it by saying 9 : 7 : : 
9: 7. 

448. On the other hand, we may sometimes change the 
relation of two very great numbers into one that shall be 
more simple and evident, by reducing both to their lowest 
terms. Thus, for example, we can say, 28844 : 14422:: 
2: 1; 01',10566: 7044: : 3 : 2; or, 57600: 25200: : 16: 7. 

449. In order, therefore, to express any: relation in the 
clearest manner, it is necessary to reduce It to the smallest 
possible numbers; which is easily done, by dividing the 
two terms of it by their greatest common divisor. Thus, 
to reduce the relation 57600: 25200 to that of 16: 7, we 
have only to perform the single operation of dividing the 
numbers 57600 and 25200 by 3600, which is their greatest 
common divisor. 

450. It is important, therefore, to know how to find the 
greatest common divisor of two given numbers; but this 
requires a Rule, which we shall explain in the following 
chapter. 

CHAPTER VII. 

Of the Greatest Common Divisor of two given Numbers. 

451. There are some numbers which have no other com
mon divisor than unity; and when the numerator and 
denominator of a fraction are of this nature, it cannot be 
reduced to a more convenient form.* The two numbers 
48 and 35, for example, have no common divisor, though 
each has its own divisors; for which reason, we cannot 

'* In this case, the two numbers are said to be prime to each 
other. See Art. 66. 
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express the relation 48: 35 more simply, because the 
division of two numbers by 1 does not diminish them. 

452. But when the two numbers have a common divisor, 
it is found, and even the greatest which they have, by the 
following Rule: 

Divide the greater of the two numbers by the less; 
next, divide the preceding divisor by the remainder; what 
remains in this second division will afterwards become 
a divisor for a third division, in which the remainder of 
the preceding divisor will be the dividend. We must con
tinue this operation till we arrive at a division that leaves 
no remainder; and this last divisor will be the greatest 
common divisor of the two given numbers. 

Thus, for the two numbers 576 and 252. 
252) 576 (2 

504 

72) 252 (3 
216 

36) 72 (2 
72 

O. 
So that, in this instance, the greatest. common divisor 

is 36. 
453. It will be proper to illustrate this rule by some 

other examples; and, for this purpose, let the greatest 
common divisor of the numbers 504 and 312 be required. 

312) 504 (l 
312 

192) 312 (1 
192 

120) 192 (1 
120 

72) 120 (1 
72 

48) 72 (1 
48 

24) 48 (2 
48 

o 
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So that 24 is the greatest common divisor; and conse
quently the relation 504: 312 is reduced to the form 
21 : 13. 

454. Let the relation 625 : 529 be given, and the greatest 
common divisor of these two numbers be required. 

529) 625 (l 
529 

96) 5:29 (5 
480 

49) 96 (l 
49 

47) 49 (l 
47 

2) 47 (:23 
46 

1) 2 (2 
2 

O. 
Wherefore 1 is, in this case, the greatest common divisor, 

and consequently we cannot express the relation 625 : 529 
by less numbers, nor reduce it to simpler terms. 

455. It may be necessary, in this place, to give a demon
stration of the foregoing Rule. In order to this, let a be 
the greater, and b the less, of the given numbers; and let 
d be one of their common divisors; it is evident that a and 
b being divisible by d, we may also divide the quantities, 
a-b, a-2b, a-3b, and in general, a-nb by d. 

456. The converse is no less true: that is, if the num
bers band a-nb are divisible by d, the number a will 
also be divisible by d; for nb being divisible by d, we could 
not divide a-nb by d, if a were not also divisible by d. 

457. We observe farther, that if d be the greatest com
mon divisor of two numbers, band a-nb, it will also be 
the greatest common divisor of the two numbers a and b; 
for if a greater common divisor than d could be found for 
these numbers a and b, that number would also be a com
mon divisor of b and a-lib; and consequently d would not 
be the greatest common divisor of these two numbers: but 
we have supposed d to be the greatest divisor common to b 
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and a-nb; therefore d must also be the greatest common 
divisor of a and b. 

458. These things being laid down, let us divide, ac
cording to the rule, the greater number a by the less b ; 
and let us suppose the qnotient to be n; then the remain
del' will be a-Tlb,* which must necessarily be less than b; 
and this remainder a-nb having the same greatest com
mon divisor with b, as the given numbers a and b, we have 
only to repeat the division, dividing the preceding divisor 
b by the remainder a-rib; and the new remainder which 
we obtain will still have, with the preceding divisor, the 
same greatest common divisor, and so on. 

459: We proceed, in the same manner, till we arrive at 
a division without a remainder; that is, in which the re
mainder is nothing. Let therefore p be the last divisol', 
contained exactly a certain number of times in its divi
dend; this dividend will evidently be divisible by p, and 
will have the form mp; so that the numbers p and mp are 
both divisible by p: and it is also evident that they have 
no greater common divisor, because no uumber can ac
tually be divided by a number greater than itself; conse
quently, this last divisor is also the greatest common 
divisor of the g-iven numbers a and b. 

460. We will now give another example of the same 
rule, requiring the greatest common divisor of the num
hers 1728 and 2304. The operation is as follows: 

1728) 2304 (l 
1728 

576) 1728 (3 
1728 

O. 
Hence it follows that 576 is the greatest common divi

sor, and that the relation 1728 : 2304 is reduced to 3 : 4 ; 
that is to say, 1728 is to 2304 in the same relation as 3 is 
to 4. 

* Thus, b)a .... (n, the supposed quotient. 
nb 

a-nb 
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CHAPTER VIII. 

Of Geomet.rical Proportions. 

461. Two geometrical relations are equal when their 
ratios are equal; and this equality of two relations is 
called a geometrical proportion. Thus, for example, we 
write a : b = c : d, or a : b : : c : d, to indicate that the re
lation a : b is equal to the relation c : d; but this is more 
simply expressed by saying a is to bas c to d. The fol
lowing is such a proportion, 8 : 4 : : 12 : 6; for the ratio 
of the relation 8 : 4 is t, or 2, and this is also the l'atio of 
the relation 12: 6. 

462. So that a: b : : e : d being a geometrical proportion, 
the ratio must be the same on both sides, consequently 

i=~; and, reciprocally, if the fractions i=~, we have 

a: b:: e: d. 
463. A geometrical proportion consists therefore of four 

terms, such, that the first divided by the second gives the 
same quotient as the third divided by the fourth; and 
hence we deduce an important property, common to all 
geometrical proportions, which is, that the product of the 
first and the last term is always equal to the product of the 
second and third; or, more simply, that the product of 
the extremes is equal to the product of the means. 

464. In order to demonstrate this property, let us take 

the geometrical proportion a : b :: e : d, so that i = ~. 
Now, if we multiply both these fractions by b, we obtain 

a = ~, and multiplying both sides farther by d, we have 

ad =be; but ad is the product of the extreme terms, and 
be is that of the means, which two products are found to 
be equal. 

465. Reciprocally, if the fournumhers,a,b,e,d, are such, 
that the product of the two extremes, a and d, is equal to 
the product of the two means, b and e, we are certain that 
they form a geometrical proportion: for, since ad = be, we 
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have only to divide both sides by bd, which gives us :~ = 

be a e 
bd' or b = d' and consequently a : b : : e : d. 

466. The four terms of a geometrical proportion, as 
a: b : : e : d, may be transposed in different ways, without 
destroying the proportion; for the rule being always, that 
the product of the extremes is equal to the product of the 
means, or ad = be, we may say, 

Ist. b: a : : d: e; 2dly. a : e : : b : d; 
3dly. d: b:: e : a; 4thly. d : e :: b : a. 

467. Beside these four geometrical proportions, we may 
deduce some others from the same proportion, a : b : : e : d; 
for we may say, a+b : a : : e+d : e, or the first term, plus 
the second, is to the first, as the third, plus the fourth, is 
to the third; that is, a + b : a : : e + d : e. . 

We may farther say, the first, minus the second, is to 
the first, as the third, minus the fourth, ia to the third, or 
a-b : a : : e-d : e. For, if we take the product of the 
extremes and the means, we have ac-be=ae-ad, which 
evidently leads to the equality ad=be. 

And, in the same manner, we may demonstI'ate that a + 
b: b :: e+d: d; and that a-b : b : : c-d: d. 

468. All the proportions which we have deduced from 
a : b : : e : d may be represented generally as follows: 

ma+nb : pa+qb :: me+nd: pe+qd. 
For the product of the extreme terms is mpae+npbe+ 
mqad+nqbd; which, since ad=be becomes mpae+npbe 
+ mqbe + nqbd; also the product of the mean terms is 
mpae+mqbe+npad+nqbd; or, since ad=bc, it is mpae+ 
mqbe + npbe + nqbd: so that the two products are equal. 

469. It is evident, therefore, that a geometrical propor
tion being given, for example, 6 : 3 :: 10 : 5, an infinite 
number of others may be deduced from it. We shall, how
ever, give only a few: 

3:6::5:10; 6:lO::3:5; 9:6::15:10; 
3 : 3 : : 5: 5; 9: 15 : : 3 : 5; 9: 3 : : 15: 5. 

470. Since in every geometrical proportion the product of 
the extremes is equal to the product of the means, we may, 
when the three firat terms are known, find the fourth from 
them. Thus, let the three first terms be 24 : 15 : : 40 to 
the fourth term: here, as the product of the means is 600, 
the fourth term multiplied by the first, that is by 24, must 
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also make 600; consequently, by dividing 600 by 24 the 
quotient 25 will be the fourth term J'equired, and the whole 
proportion will be 24 : 15 : : 40 : 25. In general, there
fore, if the first three terms are a : b : : e; we put d for 
the unknown fourth letter; and since ad=be, we divide 

both sides by a, and have d= be; so that the fourth term 
a 

is be, which is found by multiplying the second term by 
a 

the third, and dividing that product by the first. 
471. This is the foundation of the celebrated Rule of 

Three in Arithmetic; for in that rule we suppose three 
numbers given, and seek a fourth, in geometrical propor
with those three; so that the first may be to the second, 
as the third is to the fourth. 

472. But here it will be necessary to pay attention to 
some particular circumstances. First, if in two proportions 
the first and the third terms are the same, as in a : b : : e: d, 
and a : f: : e : g, then the two second and the two fourth 
terms will also be in geometrical proportion, so that b : d: : 
f: g; for the first proportion bein~ transformed into this, 
a: e : : b : d, and the second into this, a: e : :f: g, it fol
lows that the relations b : d and f: g are equal, since each 
of them is equal to the relation a : c. Thus, for example, 
if 5 : 100: : 2 : 40, and 5 : 15: : 2 : 6, we must have 100 : 
40:: 15: 6. 

473. But if the two proportions are such, that the 
mean terms are the same in both, I say that the first terms 
will be in an inverse proportion to the fourth terms: that 
is, if a : b : : e : d, and f: b : : e : g, it follows that a : f: : 
g : d. Let the proportions be, for example, 24 : 8 : : 9 : 3, 
and 6 : 8 : : 9 : 12, we have 24 : 6 : : 12 : 3; the reason is 
evident; for the first proportion gives ad = be; and the 
second givesfg = be; therefore ad = 19, and a :1: : g : d, 
or a : g : : 1: d. 

474. Two proportions being given, we may always pro
duce a new one by separately multiplying the first term of 
the one by the first term of the other, the second by the 
second, and so on with respect to the other terms. Thus, 
the proportions a : b : : c : d, and e : 1: : g : h will furnish 
this, ae : ~f: : eg : dh; for the first giving ad=bc, and the 
second giving eh -fg, we have also adeh =befg; but now 
adeh is the product of the extremes, and brfg is the product 
of the means in the new proportion: so that the two pro
ducts being equal, the proportion is true. 
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475. Let the two proportions be 6 : 4 :: 15 : 10, and 
9: 12: : 15: 20, their combination will give the proportion 
6 x 9 : 4 x 12 : : 15 x 15 : 10 x 20, 

or 54 : 48 : : 225 : 200, 
or 9: 8:: 9 : 8. 

476. We shall observe, lastly, that if two products are 
equal, ad=bc, we may reciprocally convert this equality 
into a geometrical proportion; for we shall always have 
one of the factors of the first product in the same proportion 
to one of the factors of the second product, as the other fac
tor of the second product is to the other factor of the first 
product: that is, in the present case, a : c : : b : d, or a : 
b : : c: d. Let 3 x 8=4 x 6, and we may form from it this 
proportion, 8 : 4 : : 6 : 3, or this, 3 : 4 : : 6 : 8. Likewise, 
if 3 x 5= 1 x 15, we shall have 3 : 15 : : 1 : 5, or 5 : 1 :: 
15 : 3, or 3 : 1 :: 15 : 5. 

CHAPTER IX. 

Observations on tke Rules of Proportion and their Utility. 

477. This theory is so useful in the common occurrences 
of life, that scarcely any person can do without it. There 
is always a proportion between prices and commodities; 
and when different kinds of money are the subject of ex
change, the whole consists in determining their mutual 
relations. The examples furnished by these reflections 
will be very proper for illustrating the principles of propor
tion, and shewing their utility by the application of them. 

478. If we wished to know, for example; the relation 
between two kinds of money; suppose an old louis d' or 
and a ducat: we must first know the value of those pieces 
when compared with others of the same kind. Thus. 
an old louis being, at Berlin, worth 5 rixdollars and 
8 drachms, and a ducat being worth 3 rixdollars, we may 
reduce these two values to one denomination; either to 
rixdollars, which gives the proportion lL: ID: : 5-tR: 3R, 
or: : 16: 9; or to drachms, in which case we have lL: 
ID: : 128: 72: : 16: 9; which proportions evidently give 
the true relation of the old louis to the ducat; for the 
equality of the products of the extremes and the means 
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gives, in both cases, 9 louis = 16 ducats; and, by means of 
this comparison, we may change any sum of old louis into 
ducats, and vice versa. Thus, suppose it were required 
to find how many ducats there are in 1000 old louis, we 
have this proportion: 

Lou. Lou. Due. Due. 
As 9 : 1000: : 16 : 1777%, the number sought. 

If, on the contrary, it were required to find how many 
old louis d'or there are in 1000 ducats, we have the 
following proportion: 

Due. Due. Lou. 
As 16 : 1000 : : 9 : 562t louis. Ans. 

479. At Petersburgh the value of the ducat varies, and 
depends on the course of exhange; which course deter
mines the value of the ruble in stivers, or Dutch half
pence, 105 of which make a ducat. So that when the 
exchange is at 45 stivers per ruble, we have this pro
portion: 

As 45 : 105 : : 3 : 7 ; 
and hence this equality, 7 rubles=3 ducats. 

Hence again we shall find the value of a 
rubles; for 

Du. Du. Ru. 
As 3 : I : : 7 : 2t rubles; 

that is, I ducat is equal to 2t rubles. 

ducat III 

But if the exchange were at 50 stivers, the proportion 
would be, 

As 50 : 105 : : 10: 21 ; 
which would give 21 rubles = 10 ducats; whence 1 ducat 
=2-fo rubles. Lastly, when the exchange is at 44 stivers, 
we have 

As 44 : 105 :: I : 2H rubles: 
which is equal to 2 rubles, 381.~ copecks. 

480. It follows also from this, that we may compare 
different kinds of money, which we have frequently 
occasion to do in bills of exchange. 

Suppose, for example, that a person of Petersburgh 
has 1000 rubles to be paid to him at Berlin, and that he 
wishes to know the value of this sum in ducats at Berlin. 

The exchange is at 47t; that is to say, one ruble makes 
47-!- stivers; and in Holland, 20 stivers make a florin; 2t 
Dutch florins make a Dutch dollar: also the exchange of 
Holland with Berlin is at 142; that is to say, for 100 
Dutch dollars, 142 dollars are paid at Berlin; and lastly, 
the ducat is worth 3 dollars at Berlin. 

481. To resolve the question proposed, let us proceed 
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step by step. Beginning therefore with the stivers, 
since 1 ruble = 47t stivers, or 2 rubles = 95 stivers, we 
shall have 

Ru. Ru. Stiv. 
As 2 : 1000 :: 95 : 47500 stivers; 

then again, 
Stiv. Stiv. Flor.. 

As 20 : 47500 :: 1 : 2375 florins. 
Also, since 2t florins = 1 Dutch dollar, or 5 florins = 2 
Dutch dollars; we shall have 

Flor. Flor. D.D. 
As 5 : 2375 :: 2 : 950 Dutch dollars. 

Then, taking the dollars of Berlin, according to 
exchange, at 142, we shall have 

D.D. D.D. Dollars. 
As 100 : 950 :: 142 : 1349 dollars of Berlin. 

And lastly, 
Dol. Dol. Du. 

the 

As 3 : 1349 :: 1 : 449% ducats, 
which is the number sought. 

482. Now, in order, to render these calculations still 
more complete, let us suppose that the Berlin banker 
refuses, under some pretext or other, to pay this snm, and 
to accept the bill of exchange without five per cent 
discount; that is, paying only 100 instead of 105. In 
that case, we must make use of the following proportion. 

As 105 : 100 : : 449% : 428-H ducats; 
which is the answer under those conditions. 

483. We have shewn that six operations are necessary 
in making use of the Rule of Three; but we can greatly 
abridge those calculations by a rule which is called the 
.Rule of Reduction, or Double Rule of Three. To explain 
which, we shall first consider the two antecedents of each 
of the six preceding operations: 

Ist. 2 rubles 
2d. 20 stivers 
3d. 5 Dutch flor. 
4th. 100 Dutch doll. 
5th. 3 dollars. 
6th. 105 ducats 

95 stivers. 
1 Dutch florin. 
2 Dutch dollars. 
142 dollars. 
1 ducat. 
100 ducats. 

If we now look over the preceding calculations, we 
shall observe, that we have always multiplied the given 
sum by the third terms, or second antecedents, and 
divided the products by the first: it is evident, therefore, 
that we shall arrive at the same results by multiplying at 



158 ELEMENTS SECT. III. 

once the sum proposed by the product of all the third 
terms, and dividing by the product of all the first terms: 
or, which amounts to the same thing, that we have only 
to make the following proportion: As the product of all 
the first terms, is to the given number of rubles, so is the 
product of all the second terms, to the number of ducats 
payable at Berlin. 

484. This calculation is abridged still more, when 
amongst the first terms some are found that have common 
divisors with the second or third terms; for, in this case, 
we destroy those terms, and substitute the quotient arising 
from the division by that common divisor. The pre
ceding example will, in this manner, assume the following 
form. 

As (2 . 20 . 5 . 100 . 3 . 105) : 1000 : : (95 . 2 . 142 . 100): 
1000 . 95 . 2 . 142 . 100 d fi II" h 
2 . 20 . 5 . 100 . 3 . 105 ; an a ter cance mg t e common 
divisors in the numerator and denominator, this will 

b 10.19.142 2tL!L80 428 1 .fi.d t bl." ecome 3.21 = 03 = 03 Dca s, as elore. 

485. The method which must be observed in using the 
Rule of Reduction is this: we begin with the kind of 
money in question, and compare it with another which is 
to begin the next relation, in which we compare this 
second kind with a third, and so on. Each relation, 
therefore, begins with the same kind as the preceding 
relation ended with; and the operation is continued till 
we arrive at the kind of money which the answer 
requires; at the end of which we must reckon the frac
tional remainders. 

486. Let us give some other examples, in order to 
facilitate the practice of this calculation. 

If ducats gain at Hamburgh 1 per cent on two dollars 
banco; that is to say, if 50 ducats are worth, not 100, but 
101 dollars banco; and if the exchange between Ham
burgh and Konigsberg is 119 drachms of Poland; that is, 
if 1 dollar banco is equal to 119 Polish drachms: how 
many Polish florins are equivalent to 1000 ducats? 

It being understood that 30 Polish drachms make 
1 Polish florin, 

Here 

therefore, 

1 
100 

1 
30 

1000 :: 2 dollars banco 
101 dollars banco 
119 Polish drachms 

1 Polish florin; 
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(100.30) : 1000:: (2. 101. 119) : 1000 i~o .1~~. 119 = 

2 . 101 . 119 8010Q P l' h fl' A a = va 0 IS onns. ns. 

487. We will propose another example, which may 
still farther illustrate this method. 

Ducats of Amsterdam are brought to Leipsic, having in 
the former city the value of 5 flor. 4 stivers current; that 
is to say, 1 ducat is worth 104 stivers, and 5 ducats are 
worth 26 Dutch florins. If, therefore, the agio of the 
bank at Amsterdam is 5 per cent; that is, if 105 currency 
are equal to 100 banco; and if the exchange from Leipsic 
to Amsterdam, in bank money, is 133-t per cent; that is, 
if for 100 dollal's we pay at Leipsic 133-t dollars; and 
lastly, 2 Dutch dollars making 5 Dutch florins; it is 
required to determine how many dollars we must pay at 
Leipsic, according to these exchanges, for 1000 ducats? 

By the rule, 
5: 

105 
400 

5 
therefore, 

1000 :: 25 flol'. Dutch curro 
100 floI'. Dutch banco 
533 doll. of Leipsic 

2 doll. banco; 

As (5 . 105 . 400 . 5) 
1000 . 26 . 100 . 533 . 2 

5 . 105 .400 . 5 

1000 :: (26. 100 . 533 . 2) : 
4.26.533 26391 d 11 21 = '21- 0 ars, 

the number sought. 

CHAPTER X. 

Of Compound Relations. 

448. Compound Relations are obtained by multiplying 
the terms of two or more relations, the antecedents by the 
antecedents, and the consequents by the consequents; we 
then say, that the relation between those two products is 
compounded of the relations given. 

Thus the relations a: b, c : d, e : f, give the compound 
relation ace: bdf.* 

• Each of these three ratios is said to be one of the roots of 
the compound ratio. 
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489. A relation continuing always the f:ame, when we 
divide both its terms by the same number, in order to 
abridge it, ~e may greatly facilitate the above composition 
by comparmg the antecedents and the consequents, for 
the purpose of making such reductions as we perfOl"med in 
the last chapter. 

For example, we find the compound relation of the 
following given relations thus: 

Relations given. 

12 : 25, 28 : 33, and 55 : 56. 
Which, by cancelling the common divisors, becomes 

(12.28.55) : (25 . 33 .56) = 2 : 5 
So that 2 : 5 is the compound relation required. 
490. The same operation is to be performed, when it is 

required to calculate generally by letters; and tbe most 
remarkable case is that in which each antecedent is equal 
to the consequent of the preceding relation. If the given 
relations are 

a:b 
b : c 
c: d 
d: e 
e:a 

the compound relat.ion is 1 : 1. 
491. The utility of these principles will be perceived 

when it is observed, that the relation between two square 
fields is compounded of the relations of the lengths and 
the breadths. 

Let the two fields, for example, be A and B; A having 
500 feet in length by 60 feet in breadth; the length of B 
being 360 feet, and its breadth 100 feet; the relation of 
the lengths will be 500 : 360, and that of the breadths 
60 : 100. So that we have 

(500 . 60) : (360 . 100) =5 :6. 
Wherefore the field A is to the field B, as 5 to 6. 

492. Again, let the field A be 720 feet long, 88 feet 
broad; and let the field B be 660 feet long, and 90 feet 
broad; the relations will be compounded in the following 
manner: 

Relation of the lengths 
Relation of the .breadths 

720 : 660 
88 90 

and, by cancelling, the relation,6f A and B is 16: 15. 
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493. Farther, if it be required to compare two rooms 
with respect to the space, or contents, we observe, that that 
relation is compounded of three relations; namely, that 
of the lengths, breadths, and heights. Le,t there be, for 
example, a room A, whose length is 36 feet, breadth 16 
feet, and height 14 feet, and a room B, whose length is 42 
feet, breadth 24 feet, and heigllt 10 feet; we shall have 
these three relations: 

For the length 36: 42 
For the breadth 16 : 24 
For the height 14: 10 

And cancelling the common measures, these become 4 : 5. 
So that the contents of the room A, is to the contents of 
the room B, as 4 to 5. 

494. When the relations which we compound in this 
manner are equal, there result multi plicate relations. 
Namely, two equal relations give a duplicate ratio, or mtio 
of the squares; three equal relations produce the triplicate 
ratio, or ratio of the cubes; and so on. For example, the 
relations a : b and a : b give the compound relation a'l : b2 ; 

wherefore we say, that the squares are in the duplicate 
ratio of their roots. And the ratio a: b multiplied twice, 
giving the ratio a3 : b3 , we say that the cubes are in the 
triplicate ratio of their roots. 

495. Geometry teaches, that two circular spaces are in 
the duplicate relation of their diameters; this means, that 
they are to each other as the squares of their diameters. 

Let A be such a space, having its diameter 45 feet, and 
B another circular space, whose diameter is 30 feet; the 
first space will be to the second as 45 x 45 is to 3D x 30 ; 
or, compounding these two equal relations, 9 : 4. There
fore the two areas are to each other as 9 to 4. 

496. It is also demonstrated, that the solid contents of 
spheres are in the ratio of the cubes of their diameters: so 
that the diameter of a globe, A, being 1 foot, and the 
diameter of a globe, B, being 2 feet, the solid content of A 
will be to that of B, as 13 : 23 ; or as 1 to 8. If, therefore, 
the spheres are formed of the same substance, the latter 
will weigh 8 times as much as the former. 

497. It is evident that we may in this manner find the 
weight of cannon balls, their diameters, and the weight of 
one, being given. For example, let there be the ball A, 
whose diameter is 2 inches, and weight 5 pounds; and if 
the weight of another ball be require~, whose diameter is 
8 inches, we have this proportion, . 

23 : 83 : : 5 : 320 pounds, 
M 
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which gives the weight of the ball B : and for another ball 
C, whose diameter is 15 inches, we should have, 

23 : 153 : : 5 : 2109ilb. 

498. When the ratio of two fractions, as ~ : ~, is re

quired, we may always express it in integer numbers; for 
we have only to multiply the two fractions by bd, in order 
to obtain the ratio ad : be, which is equal to the othe,'; 

and from hence results the proportion ~ : ~: : ad: be. If, 

therefore, ad and be have common divisors, the ratio may 
be reduced to fewer tenllS. Thus * : -H : : (15.36) : (24.25) 
:: 9: 10. 

499. If we wished to know the ratio of the fractions 

~ and ~, it is evident that we should have ~: ~ :: b : a ; 

which is expressed by saying, that two fractions, which 
have unity for their numerator, are in the reciprocal, or 
inVe1'se ratio of their denominators: and the same thing is 
said of two f!"actions which have any common numerator; 

for ~ : ~ : : b : a. But if two fractions have their deno-

minators equal, as ~ : ~, they are in the direct ratio of the 
c c 

numerators; namely, as a : b. Thus, J.% : -f6 : : 6 : 3, or 
2 : I, and 17° : V : : 10 : 15, or 2 : 3. 

500. It has been observed, in the free descent of bodies, 
that a body falls about 16 English feet in a second, that in 
two seconds of time it falls from the height of64 feet, and 
in three seconds it falls 144 feet. Hence it is concluded, 
that the heights are to each other as the squares of the 
times; and, reciprocally, that the times are in the sub
duplicate ratio of the heights, or as the square roots of the 
heights.* 

It: therefore, it be required to determine how long a 
stone will be in falling from the height of 2304 feet; we 
have 16: 2304 : : I : 144, the square of the time; and 
consequently the time requi,'ed is 12 seconds. 

501. If it be required to determine how far, or through 

'*' The space, through which a heavy body descends, in the 
latitude of London, and in the first second of time, has been 
found by experiment to be 1611"2 English feet; but in calcula
tions where great accuracy is not required, the fraction may be 
omitted. 



CHAP. X. OF ALGEBRA. ]63 

what height, a stone will pass by descending for the space 
of an hour, or 3600 seconds; we must say, 

As 12 : 36002 :: 16 : 207360000 feet, 

the height required. 
Which being reduced is found equal to 39272 miles; and 

consequently nearly five times greater than the diameter 
of the earth. 

502. It is the same with regard to the price of precious 
stones, which are not sold in the proportion of their weight; 
every body knows that their prices follow a much greater 
ratio. The rule for diamonds is, that the price is in the 
duplicate ratio of the weight; that is to say, the ratio of 
the prices is equal to the square of the ratio of the weights. 
The weight of diamonds is expressed in carats, and a carat 
is equivalent to 4 grains; if, therefore, a diamond of one 
carat is worth 10 livres, a diamond of 100 carats will be 
worth as many times 10 livres as the square of 100 contains 
I; so that we shall have, according to the Rule of Three, 

As 1 : 10000 : : 10 : 100000 liv. Ans. 
There is a diamond in Portugal which weighs 1680 

carats; its price will be found, therefore, by making 

12 : 16802 : : 10 : 28224000 livres. 

503. The posts, or mode of travelling, in France, fur
nish sufficient examples of compound ratios; because the 
price is regulated by the compound ratio of the number 
of horses, and the number of leagues, or posts. Thus, for 
example, if one horse cost 20 sous per post, it is required 
to find how much must be paid for 28 horses for 4t posts. 

We write first the ratio of the hOl'ses ....•.•. 1: 28 
Under this ratio we put that of the stages ..•. 2: 9 

And, compounding the two ratios, we have 2: 252 
francs, or 42 crowns. Abridging the two terms, the rela
tion is, as I : 126. 

Again, If I pay a ducat for eight horses for 3 miles, how 
much must I pay for thirty horses for four miles? The 
calculation is as follows: 

8: 30 
3: 4 

By compounding these two ratios, and abridging, 
I : 5 : : 1 due. : 5 ducats; the sum required. 

504. The same composition occurs when workmen are to 
be paid, since those payments generally follow the ratio 
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compounded of the number of workmen and that of the 
days which they have been employed. 

If, for example, 25 sous per day be given to one mason, 
and it is required what must be paid to 24 masons who 
have worked for 50 days, we state the calculation thus: 

I : 24 
I : 50 

1 : 1200 : : 25 : 30000 sous, or 1500 francs. 
In these examples, five things being given, the rule 

which serves to resolve them is called, in books of arith
metic, The Rule of Fiv~, or Double Rule of Three. 

CHAPTER XI. 

Of Geometrical Progressions. 

505. A series of numbers, which are always becoming a 
certain number of times greater, or less, is called a geome
trical progression, because each term is constantly to the 
following one in the same geometrical ratio: and the num
ber which expresses how many times each term is greater 
than the preceding, is called the exponent, or ratio. Thus, 
when the fil'st term is I, and the exponent, or ratio, is 2, 
the geometrical progression becomes, 

Terms 1 2 3 4 5 6 7 8 9 &c. 
Prog. 1, 2, 4, 8, 16,32,64, 128,256, &c. 

The numbers 1, 2, 3, &c. always marking the place which 
each term holds in the progression. 

506. If we suppose, in general, the first term to be a, 
and the ratio b, we have the following geometrical pro
gression: 

1, 2, 3, 4, 5, 6, 7, 8 .... n. 
Prog. a, ab, ab2, ab3 , ab4 , ab5, ab6 , ab7 •••• abn - 1• 

So that, when this progression consists of n terms, the 
last term is abn - 1• We must, however, remark here, that 
if the ratio b be greater than unity, the terms increase con
tinually; ifb=l, the terms are all equal; lastly,ifbbe 
less than 1, or a fraction, the terms continually decrease. 
Thus, when a=l, and b=}, we have this geometrical 
progression: 
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1, t, -1-, -1, b, n, -h;, Ttll' &c. 
507. Here, therefore, we have to consider: 
I. The first term, which we have called a. 
2. The exponent, which we call b. 

165 

3. The number of terms, which we have expressed by n. 
4. And the last term, which, we have already seen, is 

ab-1 • 

So that, when the first three of these are given, the last 
term is found by multiplying the n-l power of b, or b"-I, 
by the first term a. 

If, therefore, the 50th t.erm of the geometrical progres
sion 1,2,4,8, &c. were required, we should have a=l, 
b=2, and n=50; consequently, the 50th term would be 
249 ; and as 29=5]2, we shall have 21°= 1024; where
fore the square of 210, or 2~0, = 1048576, and the square 
of this number, which is 1099511627776, =240. Multi
plying therefore this value of 240 by 29, or 512, we have 
249=562949953421312 for the 50th term. 

508. One of the principal questions which occurs on 
this subject, is to find the sum of all the terms of a geome
trical progression; we shall therefore explain the method 
of doing this. Let there be given, first, the following 
progression, consisting of ten terms: 

1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 

the sum of which we shall represent by s, so that 
s=1 +2+4+8+ 16+32+64+ 128+256+512; 

doubling both sides, we shall 11ave 
2s=2+4+8+ 16+32+64+ 128+256+512+ 1024; 

and subtracting from this the progression represented by s, 
there remains s= 1024-1 = 1023; wherefore the sum 
required is 1023. 

509. Suppose now, in the same progression, that the 
number of terms is undetermined, that is, let them be 
generally represented by n, so that the sum in question, or 

s, =1 +2+2~+23+24 .... 2"-1. 
If we multiply by 2, we have 

2s=2+2~+23+24+25 . ... 2"; 
then subtracting from this equation the preceding one, 
we have s=25-1; or, generally, s=2"-1. It is evident, 
therefore, that the sum required is found, by multiplying 
the last term, 2"-1, by the exponent 2, in order to have 
2", and subtracting unity from that product. 

510. This is made still more eVident by the following 
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examples, in which we substitute sllccessively for n, t.he 
numbers, 1,2,3,4, &c. 
I = I; 1 + 2 = 3; I + 2 + 4 = 7; 1 + 2 + 4 + 8 = 15 ; 
1+2+4+8+16=31; 1+2+4+8+16+32=32x2-
1:::;:63. 

511. On this subject, the following question is generally 
proposed. A man offers to sell his horse on the following 
condition; that is, he demands 1 penny for the first nail, 
2 for the second, 4 fOl' the third, 8 for the fourth, and so 
on, doubling the price of each succeeding nail. It is 
required to find the price of the horse, the nails being 32 
in number? 

This question is evidently reduced to find the slIm of 
all the terms of the geometrical progression 1, 2, 4,8, 16, 
&c. continued to the 32d term. Now, that last term is 
231 ; and, as we have already found 22°= 1048576, and 
21°= 1024, we shall have 220 x 21°=23°= 1073741824; and 
multiplying again by 2, the last term 231 =2147483648; 
doubling therefore this number, and subtracting unity from 
the product, the sum I'equired becomes 4294967295 pence; 
which being reduced, we have 17895697l. Is. 3d. for the 
price of the hOl·se. 

512. Let the ratio now be 3, and let it be required to 
find tile sum of the geometrical progression 1, 3, 9, 27, 
81, 243, 729, consisting of 7 terms. 

Calling the sum s as before, we have 
s=1 +3+9+27 +81 +243+729. 

And multiplying by 3, 
3s=3+9+27 +81 +243+729+2187. 

Then !lubtracting the former series from the latter, we have 
2s=2187 -1 =2186: so that the double of the sum is 
2186, alld consequently the sum required is 1093. 

513. In the same progression, let the number of terms 
be n, and the sum s; so that 

s=I +3+32 +33 +34 + ...•.•.. 3'z-I. 
If now we multiply by 3, we have 

3s=3+32 +33 +34 + ........ 3". 
Then subtracting from this series the value of s, as be-

3"-1 
fore, we shall have 2s=3"-I; therefore s= -2-' So 

that the sum required is found by multiplying the last 
term by 3, subtracting 1 from the product, and dividing 
the remainder by 2; as will appear, also, from the 
following particular cases: 
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(l x 3)-1 
1. . . . . . . . .. . . . . . . .. 2 1 

(3 x3)-1 
1 +3 . .• .. .• .• . . . . •• 2 4 

(3x9)-1 
1+3+9............ 2 - 13 

(3 x 27)-1 
1 +3+9+27........ ~ - 40 

(3 x 81)-1 
1 +3+9+27 +81.... ~ = 12l 

514. Let us now suppose, generally, the fil'st term to 
be a, the ratio b, the number of terms n, and their sum s, 
so that 

s=a+ab+ab2 +ab3 +ab4 + .... ... . ab"-l. 
If we multiply by b, we have 

bs=ab+ab2 +ab3 +ab4 +ab5 + ..•. . ab", 
and taking the difference between this and the above 
equation, there remains (b-l)s =ab"-a; whence we 

'1 d d h . d a.(b"-I) C easl y e uce t e sum reqUIre s = b-l . onse. 

quently, the sum of any geometrical progression is found 
by multiplying the last term by the ratio, or exponent of 
the progression, and dividing the difference between this 
product and the first term, by the difference between 1 
and the ratio.' 

515. Let there be a geometrical progression of seven 
terms, of which the first is 3; and let the ratio be 2: we 
shall then have a=3, b=2, and n:;=:7; therefore the last 
term is 3 x 26, or 3 x 64, = 192; and the whole progression 
will be 

3,6, 12,24,48,96, 192. 
Farther, if we multiply the last tel'm 192 by the ratio 

2, we have 384; subtracting the first term, there remains 
381 ; and dividing this by b,-l, or by 1, we have 381 for 
the sum of the whole progression. 

516. Again, let there be a geometrical pl'Ogression of 
six terms, of which the first is 4; and let the ratio be t : 
then the progression is 

4,6,9, 9..j, a;-, !l.p. 
If we multiply the last term by the ratio, we shall have 

"rY; and subtracting the first term -:·H·, the remainder 
is \/if ; which, divided by b-l =},gives 6%5 =83i for 
the sum of the series. . . 
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517. When the exponent is less than I, and, conse
quently, when the terms of the progression continually 
diminish, the sum of such a decreasing progression, 
carried on to infinity, may be accurately expressed. 

For example, let the fi"st term be I, the ratio -t, and 
the sum s, so that: 

s= 1 + t + i + t + --h- +:12 + i4 +, &c. 
ad infinitum. 

If we multiply by 2, we have 
2s=2+1+ ~+t+l+--h+3\+' &c. 

ad infinitum: and, subtracting the preceding progression, 
there remains s=2 fOl' the sum of the proposed infinite 
progression. 

518. If the first term be 1, the ratio t, and the sum s ; 
so that 

s=I + t + i + --h + -h +, &c. ad infinitum: 
Then multiplying the whole by 3, we have 

3s=3 + 1 +t +~ +-]7 +, &c. ad infinitum; 
and subtracting the value of s, there remains 2s = 3: 
wherefore the sum s = 1t. 

519. Let there be a progression whose sum is s, the 
first term 2, and the ratio t; ,,0 that 

s=2+t+~+H+Tsra+' &c. ad infinitum. 
Multiplying by 1, we have 

1s =1 +2+ t + % + -H-- + TVa +, &c. ad infinitum; 
and subtracting from this progression s, there remains 
-}s=t: wherefore the sum required is 8. 

520. If we suppose, in general, the first term to be a, 

and the ratio of the progression to be ~, so that this frac-
e 

tion may be less than 1, and consequently e greater 
than b; the sum of the progression, carried on ad 
infinitum, will be found thus: 

ab abz ab3 ab4 

Make s=a + - + -2 + -3- + -4- +, &c. 
c c c c 

Then multiplying by~, we shall have 
c 

b ab ab2 abs ab4 • , • 
-s = - + -2- + -3- + -4- +, &c. ad lllfimtum; 
c c c c c 

and subtracting this equation from the preceding, there 
b 

remams 0- -)s=a. 
c 
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Consequently, 8 = ~b = acb , by multiplying both the 
1-- c-

c 
numerator and denominator by c. 

The sum of the infinite geometrical progression proposed 
is, therefore, found by dividing the first term a by 1 minus 
the ratio; or by multiplying the first term a by the de
nominator of the ratio, and dividing the product by the 
same denominator diminished by the numerator of the 
ratio. 

521. In the same manner we find the sums oflrogres
sions, the terms of which are alteI'natelyaffecte by the 
signs + and -. Suppose, for example, 

ab ab2 ab3 ab" 
8=a- - + --::2 - -3 + -4 -, &c. c ~- c c 

Multiplying by ~, we have, 
c 

b ab ab2 ab3 ab4 
-8=---+--- &c. 
c c c2 c3 c4 ' 

And, adding this equation to the preceding, we obtain 
b 

(1 + -) 8 = a; whence we deduce the sum required, 
c 

a ac 
8=-1 b' or 8= c+b 

+-c 

522. It is evident, therefore, that if the first term a=t, 
and the ratio be t, that is to say, b=2, and c=5, we shall 
find the sum of the progression t + A + & + & + , 
&c. = 1; since, by subtracting the ratio from 1,- -there 
remains t, and by dividing the first term by that 
remainder, the quotient is 1. 

It is also evident, if the terms be alternately positive 
and negative, and the progression assume this form: 

t - -h + TV'-S - -M +, &c. 
that the sum will be 

a ..1-

--b=+=1-' 
1 + _ -s 

c 
523. Again: letthere be proposed the infinite progression, 

-to + Th + Tfloo + To~oo + Tlf"tfHo +, &c. 
The first term is here ..fo, and the ratio is T~; therefore 
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subtracting this last from 1, there remains 10' and, if we 
divide the first term by this fmction, we have t for the 
sum of the given progression. So that taking only one 
term of the progression, namely, .orb the error would 
be T10. 

And taking two terms, -to + Th, === T3030 , there would 
still be wanting Th to make the sum, which we have 
seen is t. 

524. Let there now be given the infinite progression, 
9 + 10 + Th + ngoo + TOm +, &c. 

The fir-st term is 9, and the ratio is T~. SO that 1 minus 

the ratio is 10; and 2. = 10, the sum required: which 
T\ 

series is expressed by a decimal fraction, th us, 9'9999999, &c. 

QUESTIONS FOR PRACTICE. 

1. A servant agreed with a master to serve him eleven 
years without any other reward for his service than the 
produce of one grain of wheat for the first year; and that 
product to be sown the second year, and so on from year 
to year till the end of the till1e, allowing the increase to 
be only in a tenfold proportion. What was the sum of 
the whole produce? Ans. 111111111110 grains. 

N. B. It is farther required, to reduce this number of 
grains to the proper measures of capacity, and then by 
supposing an average price of wheat to compute the value 
of the corns in money. 

2. A servant agreed with a gentleman to serve him 
twelve months, pl"Ovided he would give him a fal·thing 
for his first month's service, a penny for the second, and 
4d. for the third, &c. What did his wages amount to? 

Alls. 5825/. 8s. 5td. 
3. One Sessa, an Indian, having first invented the game 

of chess, shewed it to his prince, who was so delighted 
with it, that he promised him any reward he should ask; 
upon which Sessa requested that he might be allowed one 
grain of wheat for the first square on the chess board, two 
for the second, and so on, doubling continually, to 64, 
the whole number of squares. Now, supposing a pint to 
contain 7680 of those grains, and one quarter to be worth 
ll. 7s. 6d., it is required to compute the value of the 
whole sum of grains. Ans. 644814882961. 
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CHAPTER XII. 

Of Infinite Decimal Fractions. 

525. We have already seen, in logarithmic calculations, 
that Decimal FI'actions are employed instead of Vulgar 
Fractions: the same are also advantageously employed in 
other calculations. It will therefore be very necessary to 
shew how a vulgar fraction may be transformed into a 
decimal fraction; and, conversely, how we may express 
the value of a decimal, by a vulgaJ' fraction. 

526. Let it be requil'ed, in general, to change the fraction 

~, into a decimal. As this fraction expresses the quotient 

of the division of the numerator a by the denominator b, 
let us write, instead of a, the quantity a'OOOOOOO, whose 
value does not at all differ from that of a, since it contains 
neither tenth parts, hundredth parts, nor any other parts 
whatever. If we now divide the quantity by the number 
b, according to the common rules of division, observing 
to put the point in the proper place, which separates the 
decimal and the integers, we shall obtain the decimal 
sought. This is the whole of the operation, which we 
shall illustrate by some examples. 

Let there be given first the fraction ·h and the division 
in decimals will assume this form: 

2)1'0000000 -.1. 

0'5000000 - ~. 

Hence it appears, that -! is equal to 0·5000000 or to 
0'5; which is sufficiently evident, since this decimal 
fraction represents -fo' which is equivalent to t· 

527. Let now t be the given fraction, and we shall have, 
3)1'0000000 _ 1. 

0'33:3;3:333 - 3' 

This shews, that the decimal fraction, whose value is t, 
cannot, strictly, ever be discontinued, but that it goes on, 
ad infinitum, repeating always the number 3; which 
agrees with what has been ali'eady shewn, Art. 523; 
namely, that the fractions 

3 .:i..- Il- 3 & . d ,'.-1:' - 1. To + Too + Tooo + Toooo, c. a lnJ'nltum, - 3' 
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The decimal fraction which expresses the value of -l, is 
also continued ad infinitum; for we have 

3)2'0000000 0 

0'6666666 = 3 

Which is also evident from what we have just said, because 
i is the double of A, 

528. If t be the fraction proposed, we have 

4)1'0000000 _~ 
0'2500000 - 4,' 

So that i is equal to 0'2500000, or to 0'25: which is 
evidently true, since T\' or T20%' + T~O = rVo = i· 

In like manner, we should have for the fraction 'h 
4)3'0000000 -.i!. 

U'7UOOOOO -4, 

So that 1 =0'75: and in fact 
T~' orT'I.fo, + Ito = -il'o = 1· 

The fraction i is changed into a decimal fraction, by 
making 

Now, 1 +T~=1-. 

4)5'0000000 -..0 

l'~OOOOO -4 

529. In the same manner, -} will be found equal to 0'2 ; 
.g=0·4; *=0'6; 4=0'8; i= I ; t= 1'2, &c. 

When the denominator is 6, we find i=0'1666666, &c. 
which is equal to 0'666666-0'5: but 0'666666=~, and 
0'5=·1. wherefore 0'1666666=t-t; or t--i=t. 

We find, also, %=0'333333, &c.=t; but -i becomes 
0'5000000=t; also, %=0'833333=0'333333+0'5, that 
is to say. t+t; or %+-i=%. 

530. When the denominator is 7, the decimal fractions 
become more complicated. For example, we find t= 
0'142857; however, it must be observed that these six 
figures are continually repeated. To be convinced, there
fore, that this decimal fraction precisely expresses the value 
of ·h we may transform it into a geometrical progression, 
whose first term is T1tlo'+f,}o, the ratio being TO(i"t-ooo ; and 

132857 
consequently, the sum = Tl)O~OOO = -H·~"H~ (by mul-

1-1000000 
tiplying both terms by 1000000) =~. [See Art. 520.] 

531. We may prove, in a manne~ still more easy, that 
the decimal fraction, which we have'found, is exactly equal 
to 1-; for, by substituting for its.value the letter s, we have 
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s = 0'142857142857142857, &c. 
lOs = l' 42857142857142857, &c. 

100s = 14' 2857142857142857, &c. 
1000s= 142' 857142857142857, &c. 

10000s= 1428' 57142857142857, &c. 
100000s = 1428.5' 7142857142857, &c. 

1000000s = 142857' 142857142857, &c. 
Subtract s = O' 142857142857, &c. 

999999s = 142857' 

173 

And, dividing by 999999, we have s = -H%tH = +. 
Wherefore the decimal fraction, which was represented by 
s, is = +. 

532. In the same manner, f may be transformed into a 
decimal fraction, which will be 0'28571428, &c. and this 
enables us to find more easily the value of' the decimal 
fraction which we have represented by s; because 
0'28571428, &c. must be the double of it, and, conse
quently, = 28. N ow we have seen that 

100s = 14'28571428571, &c. 
So that subtracting 2s = 0'28571428571, &c. 

there remains 98s = 14 
wherefore s = ~t = -~-. 

We also find t = 0'42857142857, &c. which, according 
to our supposition, must be equal to 38; and we have 
found that 

lOs = 1'42857142857, &c. 
So that subtracting 38 = 0'42857142857, &c. 

we have 7s = 1, wherefore s =t. 
533. When a proposed fraction, therefore, has the de

nominator 7, the decimal fraction is infinite, and 6 figures 
are continually repeated; the reason of which is easy to 
perceive, namely, that when we continue the division, a 
remainder must return, sooner or later, which we have 
had already. Now, in this division, 6 different numbers 
only can form the remainder, namely, ],2, 3, 4, 5,6; so 
that, at least, after the sixth division, the same figures 
must return; but when the denominator is such as to 
lead to a division without remainder, these cases do not 
happen. 

534. Suppose now that 8 is the denominator of the 
fraction proposed; we shall find the following decimal 
fractions: 
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-1=0'125; i =0'25; * = 0'375; -t = 0'5; 
i = 0'625 ; * = 0'75; t = 0'875, &c. 

535. If the denominator be 9, we have 
i = 0'111, &c. t = 0'222, &c. i = 0'333, &c. 

And if the denominator be ] 0, we have Tlij = 0'1, T~ij = 
0'2, -lij = 0'3. This is evident from the nature of decimals, 
as also that Th = 0'01; frlij = 0'37; -h/,tij = 0'256 ; 
-dr!750 = 0'0024, &c. 

536. If 11 be the denominator of the given fraction, we 
shall have fr=0'0909090, &c. Now, suppose it were re
quired to find the value of this decimal fraction: let us 
call it s, and we shall have 

s = 0'090909, 
lOs = 0"909090, 

] OOs = 9'09090, 
If, therefore, we subtract from the last the value of s, we 
shall have 99s = 9, and consequently s = -h = -iT: thus, 
also, 

T\ =0'181818, &c, 
T\ = 0'272727, &c. 
-fT =0'545454, &c. 

537. There are a great number of decimal fractions, 
therefore, in which one, two, or more figures constantly 
recur, and which continue thus to infinity. Such fractions 
are curious, and we shall shew how their values may be 
easily found. * 

.. These recurring decimals furnish many interesting re
searches; I had entered upon them before I saw the present 
Algebra, and should perhaps have prosecuted my inquiry, had 
I not likewise found a Memoir in the Philosophical Transactions 
for 1769, entitled The Theory of Circulating Fractions. I shall 
content myself with stating here the reasoning with which I 
began. 

Let -i;- be any real traction irreducible to lower terms. And 

suppose it were required to find how many decimal places we 
must reduce it to, before the same terms will return again. 
In order to determine this, I begin by supposing that IOn 
is greater than d; if that were not the case, and only lOOn or 
I OOOn > d, it would be necessary to begin with trying to reduce 
IOn lOOn . n1 
"71,- or -d-' &c. to less terms, or to Ii fractIOn d1 ' 

This being established, 1 say that the same period can return 
only when the same remainder n returns in the continual division. 
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Let us first suppose that a single figure is constantly re
peated, and let us represent it by a, so that s=O·aaaaaaa. 
We have 

] Os = a·aaaaaaa 
and subtracting s=O·aaaaaaa 

a 
we have 9s = a; wherefol'e s = g' 

538. When two figures are repeated, as ab, we have 
s = O·ababab. Therefore 100s = ab'ababab; and if we 
subtract s f!'Om it, there remains 99s=ab; consequently 

ab 
s=99· 

When three figures, as abc, are fonnd repeated, we have 
s = O·abcabcabc; consequently, 1000s = abc'abcabc; and 
subtracting s from it, there remains 999s....:.abc; where

abc 
fore s = 999' and so on. 

Whenever, therefore, a decimal fraction of this kind 

Suppose that when this happens we have added s ciphers, and that 
q is the integral part of the quotient; then abstracting from the 

nxl~ n n 
point, we shall have -d-= q + d; wherefore q = d x (10' 

-1). Now, as q must be an integer number, it is required to 
n 

determine the least integer number for s, such that d x (10'-" 

10'-1 
1) or only that -d--may be an integer number. 

This problem requires several cases to be distinguished: the 
first is thftt in which dis a divisor of 10, or of 100, or of 1000, 
&c. and it is evident that in this case there can he no circulating 
fraction. For the second case, we shall take that in which d is 
an odd number, and not a factor of any power of 10; in this 
case, the value of s may rise to d -1, but frequently it is less, 
A third case is that in which d is even, and, consequently, with
out being a factor of any power of 10, has nevertheless a com
mon divisor with one of those powers: this common divisor can 

only be a number of the form 2'; so that if, :. =e, I say, the pe· 

riods will be the same as for the fraction ~, but they will not 

commence before the figure represented by c. This case comes to 
the same therefore with the second case l on which it is evident 
the theory depends.-F. T. 
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occurs, it is easy to find its value. Let there be given, for 
example, 0'296296: its value will be «f =f.r, by dividing 
both its terms by 37. 

This fraction ought to give again the decimal fraction 
proposed; and we may easily be convinced that this is the 
real result, by dividing 8 by 9, and then that quotient by 
3, because 27=3x9: thus, we have 

9) 8'000000 

3) 0'888888 

0'296296, &c. 
which is the decimal fraction that was proposed. 

539. Suppose it were required to rednce the fraction 

1 x 2 x 3 x 4 x 5 x ~ x 7 x 8 x 9 x 10' to a decimal. The 
operation would be as follows: 

2) 1'00000000000000 

3) 0'50000000000000 

4) 0'16666666666666 

5) 0'04166666666666 

6) 0'00833333333333 

7) 0'00138888888888 

8) 0'00019841269841 

9) 0'00002480158730 

10) 0'00000275573192 

0'00000027557319 
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CHAPTER XIII. 

Of the Calculation of Interest. * 

540. Weare accustomed to express the interest of any 
principal by per cents, signifying how much interest is an
nually paid for the sum of 100 pounds. And it is very 
usual to put out the principal sum at 5 per cent; that is, 
on such terms, that we receive 5 pounds interest fo\' every 
100 pounds principal. Nothing therefore is more easy 
than to calculate the interest for any sum; for we have 
only to say, according to the Rule of Three : 

As 100 is to 5, the rate per cent proposed, so is the prin
cipal of any other sum to the interest required. 

Let the principal, for example, be 860l., its annual 
interest, at 5 per cent, is found by this proportion: As 
100 : 5 : : 860 : 43, the interest. 

541. We shall not dwell any longer on examples of 
Simple Interest, but pass on immediately to the calculation 
of Compound Interest; in which the chief subject of in
quiry is, to what sum does a given principal amount, after 
a certain number of years, the interest being annually 
added to the principal. In order to resolve this qnestion, 
we begin with the consideration, that 1001. placed out at 
5 per cent, becomes, at the end of a year, a principal of 
105t.: therefore, let the principal be a; its amount, at the 
end of the year, will be found, by saying; As 100 is to 105, 
so is a to the amount required. 

Th . I05a _ 2 I a _ q 1 1 
at IS, 100 - 20 - 20 x a, or a + ]"0' a. 

* The theory of the calculation of interest owes its first im
provements to Leibnitz, who delivered the principal elements of 
it in the Acta Eruditorum of Leipsic for 1683. It was after
wards the subject of several detached dissertations written in 
a very interesting manner. It has been most indebted to those 
mathematicians who have cultivated political arithmetic; in 
which are combined, in a manner truly useful, the calculation of 
interest, and of probabilities, founded on the data furnished by 
the bills of mortality. Weare still in want of a good elemen
tary treatise of political arithmetic, though this extensive branch 
of science has been much attended to in England, France, and 
Holland.-F. T. 

N 
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542. So that, when we add to the original principal its 
twentieth part, we obtain the amount of the principal at 
the end of the first year: and adding to this its twentieth 
part, we know the amount of the given principal at the end 
of two years, and so on. It is easy, therefore, to compute 
the successive and annual increases of the principal, and 
to continue this calculation to any extent. 

543. Suppose, for example, that a principal, which is at 
present 10001., is put out at five per cent; that the interest 
is added every year to the principal; and that i.t were re
quired to find its amount at any time. As this calculation 
must lead to fractions, we shall employ decimals, but with
out canying them farther than the thousandth parts of a 
pound, since smaller parts do not at present enter into 
consideration. 

The given principal of 1000l. will be worth 
after I year. . . . . . . . .• 1050l. 

52'5, 

after 2 years •.......•. 1l02'5 
55'125, 

after 3 years .......... 1157'625 
57'88] , 

after 4 years .......... 1215'506 
60'775, 

after 5 years .......... 1276'281, &c. 
which sums are formed by always adding -115 of the pre
ceding principal. 

544. We may continue the same method, for any num
ber of years; but when this number is very great, the cal
culation becomes long and tedious; but it may always be 
abridged, in the following manner: 

Let the present principal be a, and since a principal of 
201. amounts to 211. at the end of a year, the principal a 
will amount to -H- . a at the end of a yeal': and the same 

principal will amount, the following year, to ;b:' a= 

(*)2. a.* Also, this principal of two years will amount to 
<-H-)3 . a, the year after: which will therefore be the princi
pal of three years; and still increasing in the same manner, 

* Thus, if r represent the amount of one pound at the end of 
a year, then 1 : r : : r: r2 will be the amount at the end of the 
next year; and r : r2 : : r2: r3 at the end of three years, and so on. 
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the given principal will amount to (H)4. a at the end of 
four years; to (·H)5 . a, at the end of five years; and after 
a century, it will amount to (~ 6 )100. a; so that, in general, 
(H)". a will be the amount of this principal, after n years; 
and this formula will serve to determine the amount of the 
principal, after any number of years. 

545. The fraction H, which is used in this calculation, 
depends on the interest having been reckoned at 5 per 
cent, and on t! being equal to Hi. But if the interest 
were estimated at 6 per cent, the principal a would amount 
to Ht . a, at the end of a year; to (H-&)2 . a, at the end 
of two years; and to H~n . a, at the end of n years. 

If the interest is only at 4 per cent, the principal a will 
amount only to (t-H)n. a after n years. 

540. When the principal a, as well as the number of 
years, is given, it is easy to resolve these formulre by loga
rithms. For if the question be according to our first sup
position, we shall take the logarithm of (HY'. a, which is 
= log. (t~)"+log.a; because the given formula is the 
product of (U)" and a. Also, as (til t is a power, we shall 
have log. (%!)"=n log. tTI-: so that the logarithm of the 
amount required is n log. til + lo.g. a; and farther, the 
logarithm of the fraction ~ 6 = log. 21 -log. 20. 

547. Let now the principal be 10001. and let it be re
quired to find how much this principal will amount to at 
the end of 100 years, reckoning the interest at 5 per cent. 

Here we have n= 100; and, consequently, the logarithm 
of the amount required will be 100 log. U + log. 1000, 
which is calculated thus: 

log. 21 = 1'3222193 
subtracting log. 20 = 1'3010300 

log. H = 00211893 
multiplying by ....•..... 100 

100 log.-H=2·1l89300 
add log. 1000 = 3'0000000 

which giveg 
the principal required. 

5'1189300, the logarithm of 

We perceive, from the characteristic of this logarithm, 
that the principal required will be a number consisting of 
six figures, and it is found to be 1315011. 

548. Again, suppose a principal of 34521. were put out 
at 6 per cent, what would it amount to at the end of 64 
years? 
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We have here a=3452, and n=64. Wherefore the 
logarithm of the amount sought is 

64 log. Po-+log. 3452, which is calculated thus: 
log. 53 = 1'7242759 

subtracting log. 50 = 1'6989700 

log. Po- = 0'02.53059 
multiplying by ............ 64 

64 log. H = 1'6195776 
add log. 3452 = 3-5380708 

which gives 5'1576484 
And taking the number of this logarithm, we find the 
amount required equal to 143763/_ 

549. When the number of years is very great, as it is 
required to multiply this number by the logarithm of a 
fraction, a considerable error might arise from the loga
rithms in the Tables not being calculated beyond 7 figures 
of decimals; for which reason it will be necessary to em
ploy logarithms carried to a greater number of figures, as 
in the following example. 

A principal of Il. being placed at 5 per cent, compound 
interest, for 500 years, it is required to find to what sum 
this principal will amount at the end of that period. 

We have here a=1 and n=500; consequently, the 
logarithm of the amount sought is equal to 500 log. H+ 
log. 1, which produces this calculation: 

log. 21 = 1'322219294733919 
subtracting log. 20 = 1'301029995663981 

log. U= 0-021189299069938 
multiply by .................... 500 

500 log. tt = 10'594649534969000, the logarithm 
of the amount required;* which will be found equal to 
393232000001. 

550. If we not only add the interest annually to the 
principal, but also increase it every year by a new sum b, 
the original principal, which we call a, would increase 
each year in the following manner: 

after 1 year, Ua+b, 
after 2 years, (U)2a+Ub+b, 
after 3 years, (tt)3a + (U)2b +Ub+b, 

'II< Here, the principal being 1, the log. of which is 0, there is 
no addition. 
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after 4 years, (H)4a+(H)3b+(H)2b+~~b+b, 
after n years, (~~ta + (HY'-lb + (H)n- 2b+ ... . Hb+b. 

This amount evidently consists of two parts, of which 
the first is (Hta; and the other, taken inversely, forms 
the series b+Hb+(-H-)2b+(*)3b+ .... (~b?-lb; which 
series is evidently a geomet"ical progression, the ratio of 
which is equal to ~ ~; and we shall therefore find its sum, 
by first multiplying the last term (H )n-1b by the exponent 
'H-; which gives (~ ~ )nb. Then, subtracting the first term 
b, there remains (fittb-b; and, lastly, dividing by the 
exponent minus], that is to say by }o, we shall find the 
sum required to be 20(* tb-20b; therefore the amount 
sought is, (fitYa+20(i-t)"b-20b=(~6)n x (a + 20b)-20b. 

551. The resolution of this formula requires us to calcu
late, separately, its first term (-H)n x (a+20b), which is 
n log. ~6 + log. (a+20b); for the number which answers 
to this logarithm in the Tables will be the first term; and 
if fl'om this we subtract 20b, we shall have the amount 
sought. 

552. A person has a principal of 1000l. placed out at 
five per cent, compound interest, to which he adds annually 
100l. beside the interest: what will be the amount of this 
principal at the end of twenty-five years? 

We have herea=1000; b=100; n=25; the operation 
is therefore as follows: 

log. -H- = 0'021 I 89299; multiplying by 25, 

we have 25 log. ~6 =0'5297324750 
log. (a+20b) = 3'4771213135 

And the sum = 4'0068537885. 

So that the first part, or the number which answel's to 
this logarithm, is 10159'1, and if we subtract 20b=2000, 
we find that the principal in question, after twenty-five 
years, will amount to 81591. 2s. 

5,1)3. Since, then, this principal of 1000l. is always in
creasing, and after twenty-five years amounts to 8159iITl. 
we may require, in how many years it will amount to 
1000000l. 

Let n be the number of years required: and, since a= 
1000, b= 100, the principal will be, at the end of n years, 
(Ht . (3000)-2000, which sum must make 1000000; 
from it therefore results this equation~ 

3000 . (fit)n - 2000 ;:e 1000000 ; 
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And adding 2000 to both sides, we have 
3000 . (H)" = 1002000. 

SECT. III. 

Then dividing both sides by 3000, we have (H )"=334. 
By the Table of logarithms, n log. H=log. 334; and 

dividing by log. -Hr, we obtain n = ~og. :~4. Now, log. 334 
og. 1f 

= 2'5237465, and log. H = 0'0211893; therefore n = 

2'5237465 d 1 l'f l' I h f h' 0'0211893; an , a8t y, 1 we mu tip y t e two terms 0 t IS 

fraction by 1000000, we shall have n=U-HH-H, = 119 
years, 1 month, 7 days; and this is the-time in which the 
principal of 100Q/. will be increased to 10000001. 

554. But if we supposed that a person, instead of an
nually increasing his principal by a certain fixed sum, 
diminished it, by spending a certain sum every year, we 
should have the following gradations, as the values of that 
principal a, year after year, supposing it put out at 5 pel' 
cent, compound interest, and representing the sum which 
is annually taken from it by b : 
after 1 year, it would be -Ha- b, 
after 2 years, (U)2a--Hrb-b, 
after 3 years, (-H)3a-(-H)2b-Ub-b, 
after n years, l-}-b-)"a-(H )"-lb-<ti )n-2b - •... (tlr)b-b. 

555. This pl'inciplll consists of two parts, one of which 
is (t-b-)" . a, and the other, which must be subtracted from 
it, taking the terms inversely, forms the following geo
metrical progression: 

b + (H)b + (-}-b-)2b + (t-A-)3/J + ...... (t!-)n-1b. 
Now we have already found (Art. 550.) that the sum 

of this progression is 20 <U)"b-20b ; if therefore, we 
subtract this quantity from (-HY' . a, we shall have for the 
principal required, after n years=(t!-)". (a-20b) +20b. 

556. We might have deduced this formula immediately 
from that of Art. 550. For, in the same manner as we an
nually added the sum b, in the former supposition; so, in 
the present, we subtract the same sum b every year. We 
have therefore only to put in the former formula, -b every 
where, instead of + b. But it must here be particularly re
marked, that if20b is greater than a,_ the first part becomes 
negative, and, consequently, the principal will continually 
diminish. This will be easily perceived; for if we annually 
take away from the principal mo/'e than is added to it by 
the interest, it is evident that this principal must continually 



CHAP. XIII. OF ALGEBRA. 183 

become less, and at last it will be absolutely reduced to 
nothing; as will appear from the following example. 

557. A person puts out a principal of 100000[. at 5 per 
cent interest; but he spends annually 60001.; which is 
more than the interest of his principal, the latter being 
only 50001.; consequently, the principal will continually 
diminish; and it is required to determine, in what time it 
will be all spent. 

Let us suppose the number of years to be 11, and since 
a= 100000, and b=6000, we know that after n years the 
amount of the principal will be - 20000(H)" + 120000, 
or 120000-20000(H)", where the factor, -20000, is the 
result of a-20b; or 100000-120000. 

So that the principal will become nothing, when 
20000(Ht amounts to 120000; or when 20000(H)"= 
120000. Now, dividing both sides by 20000, we have 
(Ht = 6; and taking the logarithm, we have n log. 

b l .v log. 6 (t!) = log. 6; then dividing y og. 20' n= [--Q-1' or 
og. 20 

07781513 
n= 0'0211893: and, consequently, n=36 years, 8 months, 

22 days; at the end of which time, no part of the principal 
will remain. 

558. It will here be proper also to shew how, from 
the same principles, we may calculate interest for times 
shorter than whole years. For this purpose, we make 
use of the formula (t!t. a already found, which expresses 
the amount of a principal, at 5 per cent, compound 
interest, at the end of n years; for if the time be less than 
a year, the exponent n becomes a fraction, and the calcu
lation is performed by logarithms as before. If, for 
example, the aIDount of a principal at the end of one day 
were required, we should make n=;rh; if after two days, 
n=ah, and so on. 

559. Suppose the amount of 1000001. for 8 days were 
required, the interest being at 5 per cent. 

Here a = 100000, and n = ah-, consequently, the 

amount sought is (tilYah X 100000; the logarithm of 

which quantity is log. (H)ai-s + log. 100000 =:a1-slog.H 
+ log. 100000. Now, log. t! = 0'0211893, which, multi
plied by "3-h-' gives 0'0004644, to which adding 

log. 100000=5'0000000, the sum is 5'0004644. 

The natural number of this logarithm is found to be 
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100107. So that, subtracting the principal, 100000 from 
this amount, the interest, for eight days, is 107l. 

560. To this subject belongs also the calculation of the 
present value ofa sum of money, which is payable only 
after a term of years. For as 201., in ready money, 
amounts to 21l. in a year; so, reciprocally, a sum of 211., 
which cannot be received till the end of one year, is 
really worth only 20/. If, therefore, we express, by a, 
a sum whose payment is due at the end of a year, the 
present value of this sum is Ha; and therefore to find the 
present worth of a principal a, payable a year hence, we 
must multiply it by H; to find its value two years before 
the time of payment, we multiply it by (~ V2; and in 
general, its value, n yea,·s before the time of payment, 
w.ill be expressed by (H)"a. 

561. Suppose, for example, a man has to receive for 
five successive years, an annual rent of 1001. and that he 
wishes to give it up for ready money, the interest being at 
5 per cent; it is required to find how much he is to receive. 

Here the calculations may be made in the following 
manner: 
For lOOt. due after 1 year, he receives 95·239 

after 2 years .......... 90·704 
after 3 years .........• 86·385 
after 4 years .......... 82·272 
after 5 years .......... 78·355 

Sum of the 5 terms = 432·955 

So that the possessor of the rent can claim, in ready 
money, only 432·955/. 

562. If such a rent were to last a greater number of 
years, the calculation, in the manner we have performed 
it, would become very tedious; but in that case it may be 
facilitated as follows: 

Let the annual rent be a, which commencing at present, 
and lasting n years, will be actually worth 

a+(H)a+(H)2a +(%{)3a +(H)4a + ••••. . (H)na. 
This is a geometrical progression, and the whole is reduced 
to finding its sum. We therefore multiply the last term 
by the exponent, the product of which is (~ vn+la; then, 
subtracting the first term, there remains (~ V,,+la-a ; and, 
lastly, dividing by the exponent minus 1, that is, by --h, 
or, which amounts to the same, multiplying by -21, we 
shall have the sum required, 

-21. (H),'+1. a +21a, or, 2la-2l. (t¥-Y,+l. a; 



CHAP. XIlI. OF ALGEBRA. 185 

and the value of the second term, which it is required to 
subtract, is easily calculated by logarithms. 

QUESTIONS FOR PRACTICE. 

1. What will 375l. lOs. amount to in 9 years at 6 per 
cent, compound interest? Ans. 634l. 8s. 

2. What is the interest of ll. for one day, at the rate of 
5 per cnd? Ans. 0'0001369863 parts of a pound. 

3. What will 2561. lOs. amount to in 7 years, at the 
rate of 6 per cent, compound interest? Ans. 3851. 13s. 7td. 

4. What will 563l. amount to in 7 years and 99 days, 
at the rate of 6 per cent, compound interest? Ans. 860/. 

5. What is the amount of 400[. at the end of 3t years, 
at 6 per cent, compound interest? Ans. 490t. 11s. 7td. 

6. What will 320l. lOs. amount to in 4 years, at 5 per 
cent, compound interest? Ans. 3891. 11 s. 4-!d. 

7. What will 650/. amount to in 5 years, at 5 per cent, 
compound interest? Ans. 829/. lIs. 7td. 

8. What will 5501. 1O.~. amount to in 3 years and 6 
months, at 6 per cent, compound interest? Ans. 675/. 6s. 5d. 

9. What will 151. lOs. amount to in 9 years, at 3t per 
cent, compound interest? Ans. 211. 2s. 4td. 

10. What is the amount of 5501. at 4 per cent, in 7 
months? Ans. 562l. 16s. 8d. 

11. What is the amount of 100/. at 7'37 per cent, in 
9 years and 9 months? Ans. 2001. 

12. If a principal x be put -out at compound interest 
for x years, at x per cent, required the time in which it 
will gain x. Ans. 8'49824 years. 

13. What sum, in ready money, is equivalent to 6001. 
due 9 months hence, reckoning the interest at 5 per cent? 

Ans. 578t. 6s. 3id. 
14. What sum, in ready money, is equivalent to an 

annuity of 701. to commence 6 years hence, and then to 
continue for 21 years at 5 per cent? Ans. 669/. 14s. 0id. 

15. A man puts out a sum of money, at 6 per cent, to 
continue 40 years; and then both principal and interest 
are to sink. What is that per cent, to continue for ever? 

Ans. 52 per cent. 
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SECTION IV. 

OF ALGEBRAIC EQUATIONS, AND THE RESOLUTION OF THEM. 

CHAPTER I. 

Of the Solution of Problems in general. 

563. The principal object of Algebra, as well as of all 
the other branches of Mathematics, is to determine the 
value of quantities that were before unknown; and this is 
obtained by consideJ'ing attentively the conditions given, 
which are always expressed in known numbers. For this 
reason, Algebra has been defined, The science which 
teaches how to determine unknown quantities by means of 
those that are known. 

564. The above definition agrees with all that has been 
hitherto laid down: for we have always seen that the 
knowledge of certain quantities leads to that of other 
quantities, which before might have been considered as 
unknown. 

Of this, Addition will readily furnish an example; for, 
in order to find the sum of two or more given numbers, 
we have to seek for an unknown number, which shall be 
equal to those known number's taken together. In Sub
traction we seek for a number which shall be equal to 
the difference of two known numbers. A multitude of 
other examples are presented by Multiplication, Division, 
the Involution of powers, and the Extraction of roots ; the 
q-uestion being always reduced to finding, by means of 
known quantities, other quantities which are unknown. 

565. In the last section, also, different questions were 
resolved, in which it was required to determine a number 
that could not be deduced from the knowledge of other 
given number's, except under certain conditions. All 
those questions were reduced to fiJ:Hling, by the aid of' 
some given numbers, a new nun;ilier, which should have 
a cel·tain connexion with them; and this connexion was 
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determined by certain conditions, or properties, which 
were to agree with the quantity sought. 

566. In Algebra, when we have a question to resolve, 
we represent the number sought by one of the last letters 
of the alphabet, and then consider in what manner the 
given conditions can form an equality between two 
quantities. This equality is represented by a kind of 
formula, called an equation, which enables us finally to 
determine the value of the number sought, and conse
quently to resolve the question. Sometimes several 
numbers are sought; but they are found in the same 
manner by equations. 

567. Let us endeavour to explain this farther by an 
example. Suppose the following question, or problem, 
was proposed: 

Twenty persons, men and women, dine at a tavern; the 
share of the reckoning for one man is 8 shillings, for one 
woman 7 shillings, and the whole reckoning amounts to 
71. 5s. Required the number of men and women 
separately? 

In order to resolve this question, let us suppose that the 
number of men is =x; and, considering this number as 
known, we shall proceed in the same manner as if we 
wished to try whether it corresponded with the conditions 
of the question. Now, the number of men being = x, 
and the men and women making together twenty persons, 
it is easy to determine the number of the women, having 
only to subtract that of the men from 20, that is to say, 
the number of women must be 20-x. 

But each man spends 8 shillings; therefore x number 
of men must spend 8x shillings. And since each woman 
spends 7 shillings, 20-x women must spend 140-7x 
shillings. So that adding together 8x and 140-7x, we see 
that the whole 20 persons must spend 140 +x shillings. 
Now, we know already how much they have spent; 
namely, 7/. 5s. or 145s.; there must be an equality, there
fore, between 140+x and 145; that is to say, we have 
the equation 140 +x= 145, and thence we easily deduce 
x=5, and consequently 20-.x=20-5=15; so that the 
company consisted of 5 men and 15 women. 

568. Again, Suppose twenty persons, men and women, 
go to a tavern; the men spend 24 shillings, and the women 
as much: but it is found that the men have spent 1 shil
ling each more than the women. Required the number 
of men and women separately? 
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Let the number of men be represented by x. 
Then the women will be 20-x. 

SECT. IV. 

Now, the x men having spent 24 shillings, the share of 

each man is 24. The 20-x women having also spent 24 
x 

shillings, the share of each woman is 2024 :t'-

But we know that the share of each woman is oneshilIing 
less than that of each man; if, therefore, we subtract 1 from 
the share of a man, we must obtain that of a woman; and 

ponsequently :4 _ 1 = 2024 x' This, therefore, is the 

equation, from which we are to deduce the value of x. This 
value is not found with the same ease as in the preceding 
question; but we shall afterwards see that x=8, which 
value answers to the equation; for 2,l - 1, or 1f = * in
cludes the equality 2=2. 

569. It is evident, therefore, how essential it is, in all 
problemA, to consider the circumstances of the question at
tentively, in order to deduce from it an equation that shaH 
express by letters the numbers sought, or unknown. After 
that, the whole art consists in resolving those equations, 
or deriving from them the values of the unknown num
bers; and this shall be the subject of the present section. 

570. We must remark, in the first place, the diversity 
which subsists among the questions themselves. In some, 
we seek only for one unknown quantity; in others, we 
have to find two, or more; and, it is to be observed, with 
regard to this last caEle, that, in order to determine them 
all, we must deduce from the circumstances, or the con
ditions of the problem, as many equations as there are 
unknown quantities. 

571. It must have already been perceived, that an equa
tion consists of two parts separated by the sign of equality, 
=, to shew that those two quantities are equal to one an
other; and we are often obliged to perform a great number 
of transformations on those two parts, in order to deduce 
from them the value of the unknown quantity: but these 
transformations must be all founded on the following prin
ciples; namely, That two equal quantities remain equal, 
whether we add to them, or subtract from them, equal 
quantities; whether we multiply them, or divide them, by 
the same number; whether we raise them both to the same 
power, or extract their roots of the $RIDe degree; or lastly, 
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whether we take the logarithms of those quantities, as we 
have already done in the preceding section. 

572. The equations which are most easily resolved, are 
those in which the unknown quantity does not exceed the 
first power, after the terms of the equation have been pro
perly a'Tanged; and these are called simple equations, or 
equations of the first degree. But if, after having reduced 
an equation, we find in it the square, or the second power, 
of the unknown quantity, it is called an equation of tlte 
second degree, which is more difficult to resolve. Equations 
of the tltird degree are those which contain the cube of the 
unknown quantity, and so on. We shall treat of all these 
in the present section. 

CHAPTER II. 

Of tlte Resolution of Simple Equations, or Equations of tlte 
First Degree. 

573. When the number sought, or the unknown quantity, 
is represented by the letter x, and the equation we have 
obtained is such, that one side contains only that x, and the 
other simply a known number, as, for example, x=25, the 
value of x is already known. We must always endeavour, 
therefore, to arrive at such a form, howe vel' complicated 
the equation may be when first obtained: and, in the 
course of this section, the rules shall be given, and ex
plained, which serve to facilitate these reductions. 

574. Let us begin with the simplest cases, and suppose, 
first, that we have arrived at the equation x + 9 = 16. 
Here we see immediately that x=7: and, in general, if 
we have found x + a = b, where a and b expl'ess any 
known numbers, we have only to subtract a from both 
sides, to obtain the equation x=b-a, which indicates the 
value of x. 

575. If we have the equation x-a=b, we must add 
a to both sides, and shall obtain the value of x=b +a. 
We must proceed in the same manner, if the equation 
have this form, x-a=a2 + I: for we shall immediately 
find x=a2 +a+ 1. 

In the equation x-8a=20-6a, we find 
x=20-6a+8a, or x=20+2a. 
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And in this, x+6a=20+3a, we have 
x=20+3a-6a, or x=20-3a. 

SECT. IV. 

576. If the original equation have this form, x - a + 
b=c, we may begin by adding a to both sides, which will 
give x + b =c + a; and then subtracting b from both 
sides, we shall find x = c +a - b. But we might also 
add + a - b at once to both sides; and thus obtain im~ 
mediately x=c+a-b. 

So likewise in the following examples: 
If x-2a+3b=0, we have x=2a-3b. 
If x-3a+2b=25+a+2b, we have x=25+4a. 
If x-9 +6a=25+2a, we have x=:34-4a. 
577. When the given equation has the form ax=b, we 

only divide the two sides by a, to obtain x = ~. But if the 
a 

equation have the form ax+b-c=d, we must first make 
the terms that accompany ax vanish, by adding to both 
sides - b + c; and then, dividing the new equation ax= 

d-b+c 
d - b + c by a, we shall have x = . 

a 
The same value of x would have been found by sub~ 

tracting + b -c from the given equation: that is, we 
should have had, in the same form, 

d-b+c 
ax = d - b + c, and x = . Hence, 

a 
If2x+5=17, we have 2x=12, and x=6. 
If 3x-8=7, we have 3x= 1.5, and x=5. 
If 4x - 5 - 3a = 15 + 9a, we have 4x = 20 + 12a, 

and consequently x=5 + 3a. 

578. When the first equation has the form:: =b, we 
a 

multiply both sides by a, in order to have x = abo 

But if it is:' + b - c = d, we must first make ::=d 
a a 

- b + c; after which we find 
x=(d -b + c)a=ad-ab + ac. 

I.et tx-3=4, then tx=7, and x= 14. 
Let tx - 1 + 2a = 3 + a, then tx = 4 - a, and x= 

12-3a. 
x x 

Let --1-1 =a, then--l =a + 1, and x = a2 - 1. 
a- a-

579. When we have arrived· at such an equation as 



CHAP. 11. OF ALGEBRA. 191 

a; = c, we first multiply by b, in order to have ax =bc, 

and then dividing by a, we find x = bc. 
a 

If ~x _ c =d, we begin by giving the equation this 

form, a; = d + C; after which, we obtain the value of 

bd+bc 
ax = bd + bc, and then that of x = ---. 

a 

Let %x - 4 = I, then %x = 5, and 2x = 15; whence 
x=1f, =7t· 
If ix+t=5, we have ix =5 -t =%; whence 3x=I8, 

and x=6. 
580. Let us now consider a case, which may frequently 

occur; that is, when two or more terms contain the letter 
x, either on one side of the equation, or on both. 

If those terms are all on the same side, as in the equa-
tionx+tx+5=11, we havex+tx=6; or3x=12; and 
lastly, x=4. 

Let x + tx + tx = 44, be an equation, in which the 
value of x is reqUIred. If we first multiply by 3, we have 
4x + tx = 132; then multiplying by 2, we have Ilx = 
264; wherefore x=24. We might have proceeded iu a 
more concise manner, by beginning 'with the reduction of 
the three terms which contain x to the single term l."tX; 
and then dividing the equation Vx=44 by II. This 
would have given tx=4, and x=24, as before. 

Let %x - ix + {x =] . We shall have, by reduction, 
'!\x=I, or 5x=12, and x=2f. 

And, generally, let ax - bx + cx = d; which is the 
same as (a-b+c)x=d, and, by division, we derive x= 

d 
a-b+c· 

581. When there are terms containing x on both sides 
of the equation, we begin by making such terms vanish 
from that side from which it is most easily expunged; that 
is to say, in which there are the fewest terms so involved. 

If we have, for example, the equation 3x+2=x+ 10, 
we mUllt first subtract x from both sides, which gives 2x+ 
2= 10; wherefore 2x=8, and x=4. . 

Let x + 4 = ,20 - x; here it is ,.eVident that 2x + 4 = 
20; and consequently 2x= 16, and x=8. 
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Let x+8=32-3x, this gives us 4x+8=32; or 4x= 
24, whence x=6. 

Let 15-x=20-2x, here we shall have 
15 +x=20, and x=5. 

Let 1 +x=5-tx; this becomes I +ix=5, or ix=4 ; 
therefore 3x=8; and lastly, x=t=2%. 

If t--tx=~-tx, we must add tx, which gives t= 
-t +T\X; subtracting t, and transposing the terms, there 
remains T'ix=t; then multiplying by 12, we obtain x=2. 

If It-%x=t+tx, we add %x, which gives 1t=t+ 
ix; then subtracting t, and transposing, we have ix= It, 
whence, by multiplying by 6 and dividing by 7, we de
duce x=I-h=H. 

582. Ifwe have an equation in which the unknown num
ber x is a denominator, we must make the fraction vanish 
by multiplying the whole equation by that denominator. 

Suppose that we have found 100 -8= 12, then, adding 
x 

8, we have 100 = 20; and multiplying by x, it becomes 
x 

100=20x; lastly, dividing by 20, we find x=5. 
Dx+3 

Let now --1- = 7; here, multiplying by x - 1, we 
x-

have 5x+3=7x-7 ; and subtracting 5x, there remains 
3 =2x-7; then adding 7, we have 2x= 10; whence 
·x=5. 

583. Sometimes, also, radical signs are found in equations 
of the first degree. For example: A number x, below 100, 
is required, such, that the square root of 100- x may be 
equal to 8 ; or .;(l00-x)=8. The square of both sides 
will give 100-x=64, and adding x, we have 100=64 
+x: whence we obtain x=100-64=36. 

Or, since 100-x=64, we might have subtracted 100 
from both sides: which would have given-x= -36; or, 
multiplying by-I, x=36. 

584. Lastly, the unknown number x is sometimes found 
as an exponent, of which we have already seen some 
examples; and, in this case,' we must have recourse to 
logarithms. 

Thus, when we have 2z =512, we take the logarithms of 
both sides; whence we obtain x log. 2 = log. 512; and 

dividing by lug. 2, we find x = lj~~.5~2. The Tables then 
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. 2'7092700 
gl"e x -- - ~r 0 9 'U or x - 9 " - U';3u10300 - 3OTo3 , -. 
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Let 5 x 32~ - 100 = 305; we add 100, which gives 5 x 
32~ = 405; dividing by 5, we have 32~ = 81; and taking 
the logarithms, 2x log. 3=log. 81, and dividing by 2 log. 

log. 81 _ log. 81 . 
3, we have x = Of 3' or x- L 9' whence '" og. og. 

_ 1'!:J084850 _ L9 (Ul4.J0 0 - 2 
x - ().!:J542425 - 9-S42423" - • 

QUESTIONS FOR PRACTICE. 

1. If x - 4 + 6 = 8, then will x = 6. 

2. If 4x - 8 = 3x + 20, then will x = 28. 

3. If a.T = ab - a, then will x = b - 1. 

4. If2x+4=16, then will x=6. 

3cZ 

5. Ifax + 2ba = 3cz, then will x = - - 2b. 
a 

6. If ~ =5+3, then will x=16. 

7. lf2; -2=6+4, then willx=18. 

8. Ifa- '!..=c, then willx=_b_ 
x a-c 

9. If 5x - 15 = 2x + 6, then will x = 7. 

10. If 40 - 6x - 16 = 120 - I4x, then will x = 12. 

II. If ~ - g + ~ = 10, then will x=24. 

12. 
x-3 x x+ 19 . 

If -2- + 3" = 20 - -2-' then wIll x = 23-1. 

13. If v'tx + 5 = 7, then will x = 6. 

2a2 
14. Ifx+ v'(a2 +xZ)= 2 ,then willx=av't· 

v'(a +X2) 
a . 6-3a 

15. If 3ax + 2 - 3 = bx - a, then wIll x = 6a-2b' 

16. If v'(l2+x)=2+ v'x, then willx=4. 

y+ 1 y+2 y+3 . 
17. If -2- + -3- = 16 - -4-' then wIll y = 13. 

o 
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2a . a 
18. If.v:.c + .v(a + x)= .v (a+x) , then will x = 3' 

19. If .v (aa + xx) = t' (b4 + x4), then will 
b4 _a4 

x=.v 2a2 . 
b2 

20. If x+a= .va2+x.v(b2+x2), then will X= 4a -a. 

128 216 . 
21. If 3.t:-4 = 5x-6' then will x=12. 

42x 35x . 
22. If --2 = -3' then Will x = 8. x- x-

45 57 . 
23. If 2x+3 = 4x-5' then will x = 6. 

x2 -12 x2 _4 . 
24. If -3- = -4-' then will x = 6. 

25. If615x-7x3 = 48x, then will x=9. 

CHAPTER III. 

Of the Solution of Questions relating to tlte preceding 
Chapter. 

585. Question 1. To divide 7 into two such parts that 
the greater may exceed the less by 3. 

Let the greater part be x, then the less will be 7 - x ; 
so that x = 7 - x + 3, or x = 10 - x. Adding x, we have 
2x = 10; and dividing by 2, x = 5. 

The two parts therefore are 5 and 2. 
Question 2. It is required to divide a into two parts, so 

that the greater may exceed the less by b. 
Let the greater part be x, then the other will be a-x; 

so that x = a - x + b. Adding x, we have 2x::::: a + b ; 

d d· 'd' b 2 a+b an IVI mg y ,x = ~. 

Another method of solution. Let.the greater part = x; 
which as it exceeds the less by b, it is evident that this is less 
than the other by b, and therefote must be =X ~b. Now, 
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these two parts, taken together, ought to make a; so that 
2x - b = a; adding b, we have 2x = a + b, wherefore 

x = a ~ b, which is the value of the greater part; and that 

. a+b a+b 2b a-b 
of the less wIll be -2- - b, or --Z - 2' or -2-' 

586. Question 3. A father leaves 1600 pounds to be 
di vided among his three sons in the following manner: 
viz. the eldest is to have 200 pounds more than the 
second, and the second 100 pounds more than the 
youngest. Required the share of each. 

Let the share of the third son be x 
Then the second's will be ....• . x+ 100; and 
The first son's share ......... . x+300. 

Now, these three sums together make 16001.; we have, 
therefore, 

3x+400=1600 
3x=1200 

and x= 400 
The share of the youngest is 400l. 
That of the second is ...... 500/. 
That of the eldest is ....•. 700/. 

587. Question 4. A father leaves to his four sons 86001. 
and, according to the will, the share of the eldest is to be 
double that of'the second, minus 1001.; the second is to 
receive three times as much as the third, minus 2001.; 
and the third is to receive four times as much as the 
fourth, minus 300t. What are the respective portions of 
these four sons? 

Call the youngest son's share x 
Then the third son's is . . .. 4x- 300 
The second son's is ...•.• 12x-1100 
And the eldest's ....•..... 24x-2300 

Now, the sum of these four shares must make 8600t. 
We have, therefore, 4Ix-3700=8600, or 

41x=12300, and x=300. 
Therefore the youngest's share is 300/. 
The third son's .•...•...••.. , 9001. 
The second's .........•..... . 2500l. 
The eldest's ............... .49001. 

588. Question 5. A man leaves 11000 crowns to be 
divided between his widow, two sons, and three daughters. 
He intends that the mother should receive twice the share 
of' a son, and that each son should receive twice as much 
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as a daughter. Required how much each of them is to 
receive. 

Suppose the share of each daughter to be x 
Then each son's is consequently ••••••. • 2x 
And the willow's ..•.•••.•...••••••• • 4x 

The whole inheritance, therefore, is 3x + 4x + 4x; or Ilr 
=11000, and, consequently, x=lOOO. 

Each daughter, therefore, is to receive 1000 crowns; 
So that the three receive in all .....••. 3000 
Each son receives 2000; 
So that the two sons receive .......... 4000 
And the mother receives .......•.... 4000 

Sum 11000 crowns. 
589. Question 6. A father intends by his will, that his 

three sons should share his property in the following 
manner: the eldest is to receive 1000 crowns less than 
half the whole fortune; the second is to receive 800 
crowns less than the third of the whole; and the third is 
to have 600 crowns less than the fourth of the whole. 
Required tIle sum of the whole fortune, and the portion 
of each son. 

Let the fortune be expressed by x: 
The share of the first son is ix-lOOO 
That of the second .....•.. . -}x- 800 
That of the third .•.....•.. tx- 600 

So that the three sons receive in all ~x+-}x+tx-
2400, and this sum must be equal to :c. We have, there
fore, the equation -B-x - 2400 =x; and subtracting x, 
there remains T~x-2400=0; then adding 2400, we have 
-i2"x=2400; and, lastly, multiplying by 12, we obtain 
x=28800. 

The fortnne, thel'efore, consists of28800 crowns; of which 
The eldest son receives 13400 crowns 
The second .••....... 8800 
And the youngest . . . .. 6600 

28800 crowns. 
590. Question 7. A father leaves four sons, who share 

his property in the following manner: the first takes the 
half of the fortnue, minus 30001.; the second takes the 
third, minus 10001.; the third takes exactly the fourth of 
the property; and the fourth takes 60Ql. and the fifth part 
of the property. What was the w.h6le fortune, and how 
much did each son receive? ' 
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Let the whole fortune be represented by x: 

Then the eldest son will have tx-3000 
The second ••..•.....•.•.•. tx -1000 
The third •.•.•••.......•• ix 
The youngest •.••••...•.•.. tx+ 600 

197 

And the four will have received in all -}x + tx + ix + 
tx - 3400, which must be equal to x. 

Whence results the equation ·Hx-3400=x; then sub
tract.ing x, we have Ux-3400=O; adding 3400, we obtain 
itx=3400; then dividing by 17, we have "lox = 200 ; and 
multiplying by 60, gives x= 12000. 

The fortune therefore consisted of 12000[. 
The first son received 3000 
The second ..••.•.. 3000 
The third .•.•...... 3000 
And the fourth .••..• 3000 

591. Question 8. To find a number such, that if we 
add to it its half, the sum exceeds 60 by as much as the 
number itself is less than 65. 

Let the number be represented by x : 
Then x + tx- 60=65-x, or tx-60=65-x. Now, 

by adding x, we have tx - 60 = 65; adding 60, we have 
tx = 126; dividing by 5, gives tx = 25; and multiplying 
by 2, we have x=50. 

Consequently, the number sought is 50. 
592. Question 9. To divide 32 into two such parts, that 

if the less be divided by 6, and the greater by 5, the two 
quotients taken together may make 6. 

Let the less of the two parts sought be x; then the 

greater will be 32-x. The first, divided by 6, gives ij; 
and the second, divided by 5, gives 32;:X. Now ij + 

325 x =6: so that multiplying by 5, we have ix+32-

x = 30, or - tx + 32 = 30; adding tx, we have 32 = 
30+tx; subtracting 30, there remains 2=tx; and lastly, 
multiplying by 6, we have x = 12. 

So that the less part is 12, and the greater part is 20. 
593. Question 10. To find such a number, that if mul

tiplied by 5, the product shall be as much less than 40 as 
the number itself is less than 12. 

Let the number be x; which is less than 12 by 12~x; 
then taking the number x five times, we have 5x, which is 
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less than 40 by 40-5x, and this quantit.y must be equal 
to 12-x. 

We have, therefore, 40 - 5x = 12 - x. Adding 5x, 
we have 40=12+4x; and subtracting 12, we obtain 
28=4x; lastly, dividing by 4, we have x=7, the number 
sought. 

594. Question 11. To divide 25 into two such parts, 
that the greater may be equal to 49 times the less. 

Let the less part be x, then the greater will be 25-x; 
and the latter divided by the former ought to give the 

quotient 49: we have therefore 25-x = 49. Multiplying 
x 

by x, we have 25-x=49x; adding x, we have 25=50x; 
and dividing by 50, gives x=t. 

The less of the two numbers is t, and the greater is 24t; 
dividing therefore the latter by t, or multiplying by 2, we 
obtain 49. 

595. Question 12. To divide 48 into nine parts, so 
that every part may be always t greater than the part 
which precedes it. 

Let the first, or least part be x, then the second will be 
x+t, the third x+ I, &c. 

Now, these parts form an arithmetical progression, 
whose first term is x; thel'efore the ninth and last term 
will be x+4. Adding those two terms together, we have 
2x+4; multiplying this quantity by the number of terms, 
or by 9, we have 18x + 36; and dividing this product by 2, 
we obtain the sum of all the nine parts =9x + 18; which 
ought to be equal to 48. We have, therefore, 9x+ 18= 
48; subtracting 18, there remains 9x=30; and dividing 
by 9, we have x=3t. 

The first part, therefore, is 3t, and the nine parts will 
succeed in the following order: 

123456789 
3t + 3i + 4t + 4i + .5t + 5i + 6t + 6i + 7 t· 

Which together make 48. 

596. Question 13. To find an arithmetical progression, 
whose first term is 5, the last term 10, and the entire 
sum 60. 

Here we know neither the difference nor the number of 
terms; but we know that the first and the last term would 
enable us to express the sum of the progression, provided 
only the number of terms were given . We shall therefore 
suppose this number to be x, and express the sum of the 
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. b 15x W k I hI' . 0 progressIOn y 2' e now a so, t at t liS sum IS 6 ; 

15x 
so that "2-=60; ortx=4, andx=8. 

Now, since the number of terms is 8, if we suppose the 
difference to be z, we have only to seek for the eighth term 
upon this supposition, and to make it equal to 10. The 
second term is 5+z, the third is 5+2z, and the eighth is 
5 + 7 z; so that 

5+7z= 10 
7z= 5 

and z= t 
The difference of the progression, therefore, is t. and 

the number of terms is 8; consequently, the progression is 

12345678 
5+5t+6++7t+7~+8-t+9f+ 10, 

the sum of which is 60. 
597. Question 14. To find such a number, that if 1 be 

subtracted f!'Om its double, and the remainder be doubled, 
from which if 2 be subtracted, and the remainder divided 
by 4, the number resulting from these operations shall be 
1 less than the number sought. 

Suppose this number to be x; the double is 2x; sub
tracting 1, there remains 2x-l; doubling this, we have 
4x-2; subtracting 2, there remains 4x-4; dividing by 
4, we have x-I; and this must be 1 less than x; so 
that 

x-l=x-l. 

But this is what is called an identical equation; and 
shews that x is indeterminate; or that any number what
ever may be substituted for it. 

598. Question 15. I bought some ells of cloth at the 
rate of 7 crowns for 5 ells, which I sold again at the rate 
of 11 crowns for 7 ells, and I gained 100 crowns by the 
transaction. How much cloth was there? 

Supposing the number of ells to be x, we must first see 
how much the cloth cost by the following proportion: 

As 5 : x : : 7 : 7; the price of the ells. 

This being the expenditure; let us now see the receipt: 
in order to which, we must make tiie following proportion: 
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E. c. E. 
As 7 : II : : x: V x crowns; 

and this receipt ought to exceed the expenditure by 100 
crowns. We have, therefore, this equation: 

1-,/1: =ix+ 100. 
Subtracting }x, there remains -Isx = 100; therefore 6x = 
3500, and x = f>83t. 

There were, therefore, 583t ells bought for 8I6i crowns, 
and sold again for 916% crowns; by which means the pro
fit was 100 crowns. 

599. Question 16. A person buys 12 pieces of cloth for 
}401.; of which two are white, three are black, and seven 
are blue: also, a piece of the black cloth costs two pounds 
more than a piece of the white, and a piece of the blue 
cloth costs three pounds more than a piece of the black. 
Required the price of each kind. 

Let the price of a white piece be x pounds; then the 
two pieces of this kind will cost 2x; also, a black piece 
costing x +2, the three pieces of this colour will cost 3x +6 ; 
and lastly, as a blue piece costs x+5, the seven blue pieces 
will cost 7 x + 35: so that the twelve pieces amount in all 
to I2x+41. 

Now, the known price of these twelve pieces is 140 
pounds; we have, therefore, I2x +41 = 140, and I2x = 
99; wherefore x = 8t. So that 

A piece of white cloth costs 8tl. 
A piece of black cloth costs lOtI. 
A piece of blue cloth costs 13tl. 

600. Question 17. A man having bought some nutmegs, 
says that three of them cost as much more than one penny, 
as four cost him more than two pence halfpenny. Re
quired the price of the nutmegs. 

Let x be the excess of the price of three nutmegs above 
one penny, or four farthings. Now, if three nutmegs cost 
x + 4 farthings, four will cost, by the condition of the 
question, x + 10 farthings; but the price of three nutmegs 
gives that of four in another way, namely, by the Rule of 
Three. Thus, 

4x+ 16 
3:x+4::4: 3 

4x+16 
So that -3--=x+lO; or, 4.1,'+16=3.1,'+30; there-

fore x+ 16= 30, and x = 14. 
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Three nutmegs, therefore, cost 4]d., and four cost 6d. : 
wherefore each costs ltd. 

601. Question 18. A certain person has two silver cups, 
and only one cover for both. The first cup weighs 12 
ounces; and if the cover be put on it, it weighs twice as 
much as the other cup: but when the other cup has the 
cover, it weighs three times as much as the first. Required 
the weight of the second cup, and that of the cover. 

Suppose the weight of the cover to be x ounces; then 
the first cup being covered, it will weigh x + 12; this 
weight being double that of the second, the second cup 
must weigh tx+6; and, with the cover, it will weigh 
x+tx+6, or tx+6; which weight ought to be the triple 
of 12; that is, three times the weight of the first cup. 
We shall therefore have the equation tx+6=36, or 
tx=30; so that tx=IO and x=20. 

The cover, therefore, weighs 20 ounces, and the second 
cup weighs 16 ounces. 

602. Question 19. A banker has two kinds of change: 
there must be a pieces of the first to make a crown; and b 
pieces of the second to make the same. Now, a person 
wishes to have c pieces for a crown. How many pieces of 
each kind must the banker give him 1 

Suppose the banker gives x pieces of the first kind; it 
is evident that he will give c-x pieces of the other kind; 

but the x pieces of the first are worth:: crown, by the pro
a 

portion a : x : : 1 : ~; and the c-x pieces of the second 
a 

c -3,' 
kind are worth -b- crown, because we have b: c-x: : 1 : 

c-x x c-x 
-b-' So that a + -b- = I; 

bx 
or - + c - x = b; or bx + ac - ax = ab ; 

a 

or, rather bx - ax = ab - ac; 

ab-ac a(b-c) 
whence we have x= b ,or x= b ; -a -a 

consequently, c-x, the pieces of the second kind, 

t b bc-ab b(c-a) 
mus e = b-a = b-a . 
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b k h 1" • a(b-c). f h The an er must t erelOre gIve b-a pleceso t efirst 

kind, and b~c-a) pieces of second kind. 
-a 

Remark.-These two numbers are easily found by the 
Rule of Three, when it is required to apply the results 
which we have obtained. Thus, to find the first we say, 

b-a: a: : b-c: a~b-c); and the second number is found 
-a 

bee-a) 
thus; b-a: b : : c-a: b . 

-a 
It ought to be observed also, that a is less than b, and 

that c is less than b; but at the same time greater than a, 
as the nature of the case requires. 

603. Question 20. A banker has two kinds of change; 
10 pieces of one make a CI'own, and 20 pieces of the 
other make a crown; and a person wishes to change a 
crown into 17 pieces of money: how many of each sort 
must he have? 

We have here a=lO, b=20, and c=17, which furnishes 
the following proportions: 

First, 10: 10: : 3 : 3, so that the number of pieces of the 
first kind is 3. 

Secondly, 10: 20: : 7: 14, and the number of the second 
kind is 14. 

604. Question 21. A father leaves at his death several 
children, who share his property in the following manner: 
namely, the first receives a hundred pounds, and the tenth 
part of the remainder; the second recei\'es two hundred 
pounds, and the tenth part of' the remainder; the third 
takes three hundred pounds, and the tenth part of what 
remains; and the fourth takes four hundred pounds, and 
the tenth part of what then remains; and so on. And it 
is found that the property has thus been divided equally 
among all the children. Required how much it was, how 
many children there were, and how much each received? 

This question is rather of a singular nature, and there
fore deserves particular attention. In order to resolve it 
more easily, we shall suppose the whole fortune to be z 
pounds; and since all the children receive the same sum, 
let the share of each be x, by which means the number of 

children will be expressed by~. Now, this being laid 
x 

down, we may proceed to the solution of the question, as 
follows: 
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Sum or Order of \ 
prnpel'ty to the 
be divided. children. 

z 1st 

z- X 2d 

z-2x 3d 

z-3x 4th 

z-4x 5th 

z-5x 6th 

OF ALGEBRA. 203 

Portion of each. Differences. 

=100 z-100 
x + 10 

--200 z-x-200 100 x - 100 
x + \0 1 - 10 =0 

X=300+z-~~-300 100_x-100 0 
10 

X=400+Z-3~;;-400 IOO_x--;~OO=O 

-500 z-4x-500 100 x -100_ 
x- + 10 - 10 - 0 

z-5x-600 
x=600+ 10 and so on. 

We have inserted, in the last column, the differences 
which we obtain by subtracting each portion from that 
which follows; but all the portions being equal, each of the 
differences must be = O. As it happens also, that all these 
differences are expressed exactly alike, it will be sufficient 
to make one of them equal to nothing, and we shall have the 

equation 100 - x-;.~OO o. Here, multiplying by 10 we 

have 1000 - x - 100 = 0, or 900 - x=O; and, conse
quently, x=900. 

We know now, therefore, that the share of each child 
was 900: so that taking anyone of the equations of the 
third column, the first for example, it becomes, by substi-

tuting the value of x, 900 = 100 + z-ll~O, whence we 

immediately obtain the value of z; for we have 
9000 = 1000 + z -100, or 9000=900 + z; 

z 
therefore z=8100; and consequently -=9. 

x 
So that the number of children was 9; the fortune left 

by the father was 8100 pounds; and the share of each 
child was 900 pounds. 

QUESTIONS FOR PRACTICE. 

1. To find a number, to which if there be added a half, a 
third, and a fourth of itself, the sum will be 50. Ans. 24. 
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2. A person being asked what his age was, replied that 
i- of his age multiplied by T\ of his age gives a product 
equal to his age. What was his age? Ans. 16. 

3. The sum of 660/. was raised for a particular purpose 
by four persons, A, B, C, and D; B advanced twice as 
much as A ; C as milch as A and B together; and D as 
much as Band C. What did each coutribute? 

Ans. 60/., 1201., 180/., and 3001. 
4. To find that number whose t part exceeds its i part 

by 12. Ans. 144. 
5. What sum of money is that whose t part, i part, 

and t part, added together, Mhall amount to 94 pounds? 
A.ns. 120/. 

6. In a mixture of copper, tin, and lead, one half of the 
whole minus 16lbs. was copper; one-third of the whole 
minus 121bs. tin; and one-fourth of the whole plus 4lbs. 
lead: what quantity of each was there in the composition? 

Ans. 1281bs. of copper, 841bs. of tin, and 761hs. oflead. 
7. A bill of 120l. was paid in guineas and moidores, and 

the number of pieces of both sorts was just 100; to find 
how many there were of each. Ans.50. 

8. To find two numbers in the proportion of 2 to 1, so 
that if 4 be added to each, the two sums shall be in the 
proportion of 3 to 2. Ans. 4 and 8. 

9. A trader allows 100l. per annum for the expenses of 
his family, and yearly augments that part of his stock, which 
is not so expended, by a third part of it ; at the end of three 
years, his original stock was doubled: what had he at first? 

Ans. 1480/. 
10. A fish was caught whose tail weighed 9lbs. His 

head weighed as milch as his tail and t his body; and his 
body weighed as much as his head and tail: what did the 
whole fish weigh? Ans. 721bs. 

11. One has a lease for 99 years; and being asked 
how much of it was already expired, answered, that two
thirds of the time past was equal to four-fifths of the time 
to come: required the time past. Ans. 54 years. 

12. It is required to divide the number 48 into two such 
parts, that the one part may be three times as much above 
20, as the other wants of 20. Ans. 32 and 16. 

13. One rents 25 acres of land at 7 pounds 12 shillings 
per annum: this land consisting of'two sorts, he rents the 
better sort at 8 shillings per acre, and the worse at 5: re
quired the number of acres of the better sort. 

Ans. 9 of the better. 
14. A certain cistern, which would be filled in 12 
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minutes by two pipes running into it, would be filled in 
20 minutes by one alone. Required in what time it 
would be filled by the other alone. Ans. 30 minutes. 

15. Required two numbers, whose sum may be s, and 

I . . b A as d bs t lelr proportIOn as a to . ns. --b' an --b. 
a+ a+ 

16. A privateer, running at the rate of 20 miles an hour, 
discovers a ship 18 miles off making way at the rate of 8 
miles an hour: it is demanded how many miles the ship 
can run before she will be overtaken? A ns. 72. 

17. A gentleman distributing money among some poor 
people, found that he wanted lOs. to be able to give 5s. to 
each; therefore he gives 4s. only, and finds that he has 5s. 
left: required the number of shillings and of poor people. 

Ans. 15 poor, and 65 shillings. 
18. There are two numbers whose sum is the 6th part 

of their product, and the greater is to the less as 3 to 2. 
Required those numbers. Ans. 15 and 10. 

N. B. This question may be solved by means of one 
unknown letter. 

19. To find three numbers, so that the first, with half 
the other two, the second with one-third of the other two, 
and the third with one-fourth of the other two, may be 
equal to 34. Ans. 26,22, and 10. 

20. To find a number consisting of three places, whose 
digits are in arithmetical progression: if this number be 
divided by the sum of its digits, the quotients will be 48 ; 
and if from the number 198 be subtracted, the digits will 
be inverted. Ans. 432. 

21. To find three numbers, so that t the first, t of the 
second, and 1 of the third, shall be equal to 62: t of the 
first, i of the second, and t of the third, equal to 47; and 
i of the first, t of the second, and i of the third, equal to 
38. Ans. 24, 60, 120. 

22. If A and B, together, can perform a piece of work 
in 8 days; A and C together in 9 days; and Band C in 
10 days; how many days will it take each person, alone, 
to perform the same work? Ans. 14-:H-, 17-H-, 23iT. 

23. What is that fraction which will become equal to t, if 
an unit be added to the numerator; but on the contrary, if 
an unit be added to the denominator, 1t will be equal to i? 

Ans. I%-. 
24. The dimensions of a certain rectangular floor are 

such, that if it had been 2 feet broader, and 3 feet longer, 
it would have been 64 square feet larger; butifit had been 
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3 feet broader and 2 feet longer, it would then have been 
68 square feet larger: required the length and breadth of 
the floor. Ans. Length 14 feet, and breadth 10 feet. 

25. A hare is 50 leaps before a greyhound, and takes 
4 leaps to the greyhound's 3; but two of the greyhound's 
leaps are as m tlch as three of the hare's: how many leaps 
must the greyhound take to catch the hare? Ans. 300. 

CHAPTER IV. 

Of the Resolution of two or more Equations of the First 
Degree. 

605. It frequently happens that we are obliged to intro
duce into algebraic calculations two or more unknown 
quantities, represented by the letters x, y, z: and if the 
question is determinate, we are brought to the same num
ber of equations as there are unknown quantities; from 
which it is then required to deduce those quantities. As 
we shall consider, at present, those equations only which 
contain no powers of an unknown quantity higher than 
the first, and no products of two or more unknown quan
tities, it is evident that all those equations have the form 

az+by+cx=d. 
606. Beginning therefore with two equations, we shall 

endeavour to find from them the value of x and y: and, 
in order that we may consider this case in a general 
manner, let the two equations be, 

ax+by=c; andfx+gy=h; 
in which, a, b, c, andf, g, h, are known numbers. It is 
required, therefore, to obtain, from these two equations, 
the two unknown quantities x and y. 

607. The most natural method of proceeding will readily 
present itself to the mind; which is, to determine, from both 
equations, the value of one of the unknown quantities, as 
for example x, and to consider the equality of those two 
values; for then we shall have an equation, in which the 
unknown quantity y will be found by itself, and may be 
determined by the rules already given. Then, knowing 
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y, we shall have only to substitute its value in one of the 
quantities that express x. 

608. According to this rule, we obtain from the first 

. c-by d h "-qy equatIOn, x = -a-' ,an from t e second, x = f : 
then putting these values equal to each other, we have this 
new equation: 

c -by _ It-g.ll. 
-a---Y-' 

multiplying by a, the product is c - by = ahj~,qy; and 

then by f, the product is fc-fby=ah-agy; adding agy. 
we havefc-fby+agy=ah; subtractingjc, gives-fby+ 
agy=ah-fc; or (ag-bf)y=ah-fc; lastly, dividing by 
ag-bf, we have 

ah-fc 
y= ag-bf 

In order now to substitute this value of y in one of the 
two values which we have found of x, as in the first, where 

c -by aM - bcf 
x = --, we shall first have - by = - bj ; 

a ag-

h b aM - bef acg - bef - aM + bef 
w ence c - 'Y = c- b;/! ' = b;-/-, . ag- 'J ag- 'J 

acq -abh d d· ·d· b c-by eg -M 
=' b~£ ; an, lVl mg y a, x = -- = b~.j!· 

~-'J a ~-'J 

609. Question 1. To illustrate this method by examples, 
let it be proposed to find two numbers, whose sum may be 
15, and difference 7. 

Let us call the greater number x, and the less y: then 
we shall have 

x+y= 15, and x-y=7. 
The first equation gives 

x=15-y, 
and the second, x= 7 +y; 
whence results this equation, 15 - Y = 7 +y. So that: 
15=7 +2y; 29'=8, and y=4; by which means we find 
x=ll. 

So that the less number is 4, and the greater is II. 
610. Question 2. We may also generalise the preceding 
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question, by requiring two numbers, whose sum may be a, 
and the difference b. 

Let the greater of the two numbers be expressed by x, 
and the less by y; we shall then have x + y = a, and 
x-y=b. 

Here the first equation gives x=a-y, and the second 
x=b+y. 

Therefore, a - !J = b + y; a = b + 2y; 2!J = a - b ; 
a-b 

lastly, y = -2-' and, consequently, 

a-b a+b 
x=a-y=a- -2- = -2-' 

Thus, we find the greater number, or x, is a ;b, and 

. a-b 
the less, or y, IS -2-; or, which comes to the same, x = 

ta + ,tb, and y = ta -tb. Hence we derive the following 
theorem: When thesum of any two numbers is a, and their 
difference is b, the greater of the two numbel"s will be 
equal to half the sum plus half the difference; and the 
less of the two numbers will be equal to half the sum 
minus half the difference. 

611. We may resolve the same question in the following 
manner: 

Since the two equations are, 
x+y=a, and 
x-y=b; 

if we add the one to the othel", we have 2x=a + b. 

a+b 
Therefore x = -2-' 

Lastly, subtracting the same equations from each other, 
we have 2y=a-b; and therefore 

a-b 
y=-2-' 

612. Question 3. A mule and an ass were carrying 
burdens amounting to several hundred weight. The ass 
complained of his, and said to the mule, I need only one 
hundred weight of your load, to make mine twice as 
hpavy as YOlll"S; to which the mule answered, But if you 
give me a hundred weight of yours, J shall be loaded three 
times as much as you will be. How many hundred 
weight did each carry? 
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Suppose the mule's load to be x hundred weight, and 
that of the ass to be y hundred weight. If the mule gives 
one hundred weight to the ass, the one will have y + 1, 
and thel'e will remain for the other x-I; and since, in 
this case, the ass is loaded twice as much as the mule, we 
have y+ 1=2x-2. 

Farther, if the ass gives a hundred weight to the mule, 
the latter has x+l, and the ass retains y-l; but the 
burden of the former being now three times that of the 
latter, we have x+ 1=3y-3. 

Consequently our two equations will be, 
y+l=2x-2, and x+l=3y-3. 

From the first, x= y;3, and the second gives x=3y-

4; whence we have the new equation y;3 =3y-4, which 

gives y= V: this also determines the value of x, which 
becomes z,}. 

The mule therefore carried 2t hundred weight, and the 
ass 2} hundred weight. 

613. When there are three unknown numbers, and as 
many equations; as, for example, 

x+y-z= 8, 
x+z-y= 9, 
y+z-x=10; 

we begin, as before, by deducing a value of x from each, 
and have, from the 

lst x=8+z-y; 
2d x=9+y-z; 
3d x=y+z-lO. 

Comparing the first of these values with the second, 
and after that with the third, we have the following 
equations: 

8+z-y=9+y-z, 
8+z-y=y+z-1O. 

Now, the first gives 2z-2y=1, and, by the second, 
2y= 18, or y=9; if therefore we substitute this value of 
y in 2z-2y= 1, we have 2z-18= 1, or 2z= 19, so that 
Z =9t; it remains, therefore, only to determine x, which 
is easily found ==8t. 

Here it happens, that the letter z vanishes in the last 
equation, aud that the value of y is found immediately; 
but if this had not been the case, we should have had 

P 
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two equations between z and y, to be resolved by the pre
ceding rule. 

614. Suppose we had found the three following equa
tions: 

3x+5y-4z=25, 
5x-2y+3z=46, 
3y+5z- x=62. 

If we deduce from each the value of x, we shall have 
from the 

1 t 25-5y+4z 
s x= 3 ' 

2d _ 46 +2y-3z 
x- 5 ' 

3d x= 3y+5z+62. 
Comparing these three values together, and first the 

third with the first, 
25-5y+4z 

we have 3y+5z-62= 3 ; 

multiplying by 3, gives 9y + 15z - 186 = 25 - 5y + 4z ; 
so that 9y+ 15z=211-5y+4z, 
and 14y+ 11z=211. 

Comparing also the third with the second, 
46+2y-3z 

we have 3y+5z-62= 5 ' 

or 46+2y-3z=15y+25z-31O, 
which, when reduced, becomes '356=13:'1 +28z. 

We shall now deduce, frorr. these two new equations, 
the value of y : 

1st 14y+ 11z=211; or 14y =211-1 h, 

d 211-11z 
an y= 14 . 

2d ]309 + 28z=356 ; or 13y=356-28z, 
356-28z 

and y= 13 . 

These two values form the new equation 
211-11z 356-28z h 

14 - 13 ,w ence, 

2743-143z=4984-392z, or 249z=2241 , and z=9. 
This value being substituted in one of the two equations 

of y and z, we find y=8; and, lastly, a similar substitu
tion in one of the three values of x will give x=7. 
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615. If there were more than three unknown quantities 
to determine, and as many equations to resolve, we should 
proceed in the same manner; but the calculations would 
often prove very tedious. 

It is proper, therefore, to remal'k, that, in each particular 
case, means may al ways be discovered of greatly facilitating 
the solution; which consist in intJ'oducing into the cal
culation, beside the principal unknown quantities, a new 
unknown quantity arbitrarily assumed, such as, for ex
ample, the sum of all the rest; and when a person is a 
little accustomed to such calculations, he easily perceives 
what is most propel' to be done.'" The following examples 
may serve to facilitate the application of these artifices. 

616. Question 4. Three persons, At B, and c, play to
gether; and, in the first game, A loses to each of the other 
two, as much money as each of them has. In the next 
game, B loses to each of the other two, as much money as 
they then had. Lastly, in the third game, A and B gain 
each, from c, as much money as they had before. On 
leaving off, they find that each has an equal sum, namely, 
24 guineas. Required, with how much money each sat 
down to play? 

Suppose that the stake of the first person was x, that of 
the second y, and that of the third z: also, let us make 
the sum of all the stakes, or x+.y+z=s. Now, A losing 
in the first game as much money as the other two have, 
he loses s-x (for he himself having had x, the two others 
must have had s-x); therefore there will remain to him 
2x-s; also B will have 2y, and c will have 2z. 

So that, after the first game, each will have as follows: 
A=2x-s, B=2y, and c=2z. 

In the second game, B, who has now 2y, loses as much 
money as the other two have, that is to say, s-2y; so 
that he has left 4y-s. With regard to the other two, 
they will each have double what they had; so that after 
the second game, the three persons have as follows: A = 
4x-2s, B=4y-s, and c=4z. 

In the third game, c, who has now 4z, is the loser; he 
loses to A, 4x-2s, and to B, 4y-s; consequently, after 
this game, they will have: 

'/« M. Cramer has given, at the end of his Introduction to the 
Analysis of Curve Lines, a very excellent rule for determining 
immediately, and without the necessity of passing through the 
ordinary operations, the value of the unknown quantities of such 
equations, to any number.-F. T. 
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A=8x-4s, B=8y-2s, and c=8z-s. 
Now, each having at the end of this game 24 guineas. 

we have three equations, the first of which immediately 
gives x, the second y, and the third z; farther, s is known 
to be 72, since the three persons have in all 72 guineas at 
the end of the last game; but it is not necessary to attend 
to this at first; since we have 

1st 8x-4s=24, or 8x=24+4s, or x=3 +ts; 
2d ~y-2s=24, or 8y=24+2s, or y=3+!-s; 
3d 8z- s=24,or8z=24+ s,orz=3+ts; 

and adding these three values, we have 

x+y+z=9+!-s. 
So that, since x+y+z=s, we have s=9+!-s; and, 

consequently, is=9, and s=72. 
If we now substitute this value of s in the expressions 

which we have found for x, y. and z, we shall find that 
before they began to play, A had 39 guineas, B 21, and 
C ]2. 

This solution shews, that, by means of an expression for 
the sum of the three unknown quantities, we may over
come the difficulties which occur in the ordinary method. 

617. Although the pl'eceding question appears difficult 
at first, it may be resolved even without algebra, by pro
ceeding inversely. For since the players, when they left 
off, had each 24 guineas, and, in the third game, A and B 
doubled their money, they must have had before that last 
game, as follows : 

A=12, B=12, and c=48. 
In the second game, A and c doubled their money; so 

that before that game they had, 
A=6, B=42, and c=24. 

Lastly, in the first game, A and c gained each as much 
money as they began with; so that at first the three per
sons had: 

A=39, B=21, c=12. 
The same result as we obtained by the former solution. 

618. Question 5. Two persons owe conjointly 29 pis
toles; they have both money, but neither of them enough 
to enable him, singly, to discharge this common debt: the 
first debtor says therefore to the second, If you give me t 
of your money, I ciw immediately pay the debt; and the 
second answers, that he also could discharge the debt, if 
the other would give him 1- of his money. Required, how 
many pistoles each had? 
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Suppose that the first has x pistoles, and that the second 
has .11 pistoles, 

Then we shall first have, x+%y=29; 
and also, y+tx=29. 

The first equation gives x=29--tY, 

116-4y 
and the second x = . . 

:3 ' 

so that 29 _ ~ _ 1]6-4.11 3Y - 3 . 

From which equation, we obtain .11= 14t; 
Therefore x= 19-!.-. 

Hence the first person had 19} pistoles, and the second 
had 14t pistoles. 

(J19. Question 6. Three brothers bought a vineyard 
for a hundred guineas. The youngest says, that he could 
pay for it alone, if the second gave him half the money 
which he had; the second says, that if the eldest would 
give him only the third of his money, he could pay for the 
vineyard singly; lastly, the eldest asks only a fourth part 
of the money of the youngest, to pay for the vineyard 
himself. How much monev had each '{ 

Suppose the first had x g~lineas; the second, .11 guineas; 
the third, z guineas; we shall then have the three follow~ 
ing equations: 

x+ty=100; 
y+}z =100; 
z+ix =100; 

two of which only give the value of x, namely, 

]st x=100-ty, 
3d x=400-4z. 

So that we have the equation, 
100 -ty = 400 -4z, or 4z -ty = 300, which must be 

combined with the second, in order to determine .11 and x. 
Now, the second equation was, y + -!rz = 100: we there
fore deduce from it y= 100-{z; and the equation found 
last being 4z-ty=:300, we have y=8z-600. The final 
equation, therefol"e, becomes 

100--!rz=8z-600; so that 8-!.-z=700, or ~5z=700, and 
z=84. Consequently, 

y=IOO-28=72, and x=G4. 

The youngest therefore had 64 guineas, the second had 
72 guineas, and the eldest had 84 guineas. 
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620. As, in this example, each equation contains only 
two unknown quantities, we may obtain the solution re
quired in an easier way. 

The first equation gives y=200-2x, so that y is de
termined by x; and if we substitute this value in the 
second equation, we have 

200-2x +-tz= 100; therefore -tz=2x-100, 
and z=6x-300. 

So that z is also determined by x; and if we introduce 
this value into the third equation, we obtain 6x-300 + 
ix= 100, in which x stands alone, and which, when re
duced to 25x-1600=0, gives x=64. Consequently, 

y=200-128=72, and z=384-300=84. 

621. We may follow the same method, when we have 
a greater number of equations. Suppose, for example, 
that we have in general; 

x 
l. U+-=l1, 

a 

z 
3. y + -=n, 

e 

2. x+i = n, 

or, destroying the fractions, these equations become, 

l. au+x=an, 2. bx+y=bn, 
3. ey + z=en, 4. dz+u=dn. 

Here, the first gives immediately x=an-au, and, this 
value being substituted in the second, we have abn-abu 
+y=bn; so that y=bn-abn+abu; and the substitution 
of this value, in the third equation, gives ben-aben + abeu 
+z=en; therefore 

z=cn- ben + aben-abeu. 

Substituting this in the fourth equation, we have 
edn-bedn+abedn-abedu+u=dn. 

So that dn-edn + bedn-abcdn=abedu-u, 
or (abed-I). u=abedn-bedn +edn-d1t; whence we have 

abedll-bedn+edn-dn n. (abed-bed + cd-d) 
u= abed-I - abed-l 

And, consequently, by substituting this value of u in the 
equation, x=an-au, we have 

abedn-aedn + adn - an 
X= abed-l -

n. (abed-aed+ad-a 
abed-l • 
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abedn - alldn + abll - bn n • (abed - abd + ab - b) 
y= abed-1 = abed-1 • 

abedn - abe1/. + ben - en n. (abed - abe + be - e) 
% = abed-1 - abed-1 

abedn - bedn + edn - dn n . (abed - bed + ed - d) 
U = abcd-l - abcd-l 

622. Question 7. A captain has three companies, one 
of Swiss, another of Swabians, and a third of Saxons. He 
wishes to storm with part of these troopR, and he promises 
a reward of 901 crowns, on the following condition; 
namely, that each soldier of the company, which assaults, 
shall receive 1 crown, and that the rest of the money shall 
be equally distributed among the two other companies. 
Now, it is found, that if the Swiss make the assault, each 
soldier of the other companies will receive half-a-crown; 
that if the Swabians assault, each of the others will 
receive i of a crown; and, lastly, if the Saxons make the 
assault, each of the others will receive -i of a crown. 
Required the number of men in each company 1 

Let us suppose the number of Swiss to be x, that of 
Swabians y, and that of Saxons z. And let us also make 
x + y + z = s, because it is easy to see, that, by this, we 
abridge the calculation considerably. If, therefore, the 
Swiss make the assault, their number being x, that of the 
other will be s-x: now, the former receive 1 crown, and 
the latter half-a-crown ; so that we shall have, 

x+is-tx =901. 
I n the same manner, if the Swabians make the assault, 

we have 
y + is - iY = 901. 

And, lastly, if the Saxons make the assault, we have 
z + -is - -iz = 901. 

Each of these three equations will enable us to deter
mine one of the unknown quantities, x, y, and z; 

For the first gives x = 1802 - s, 
the second 2y = 2703 - s, 
the third 3z = 3604 - s. 

And if we now take the values of 6x, 6y, and 6%, and 
write those values one above the other, we shall have 

6x = 10812 - 6s, 
6y = 8109 - 3s, 
6z = 7208 - 2s, 

and, by addition, 68=26129 7 118; or 17s=26129; 
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SO that s = 1537; which is the whole number of soldiers. 
By these means we find, 

x = 1802 - 1537 = 265 ; 
2y = 2703 - 1537 = 1166, or y = 583; 
3x == 3604 - 1537 = 2067, or z = 689. 

The company of Swiss therefore was 265 men; that of 
Swabians, 583; and that of Saxons, 689. 

CHAPTER V. 

Of the Resolution of Pure Quadratic Equations. 

023. An equation is said to be of the second degree, 
when it contains the square, or the second power, of the 
unknown quantity, without any of its higher powers; and 
an equation, containing likewise the third power of the 
unknown quantity, belongs to cubic equations, and its 
resolution requires particular rules. 

624. There are, therefore, only three kinds of terms in 
an equation of the second degree: 

1. The terms in which the unknown quantity is not 
found at all, or which is composed only of known numbers. 

2. The terms in which we find only the first power of 
the unknown quantity. 

3. The terms which contain the square, or the second 
power, of the unknown quantity. 

So that x representing an unknown quantity, and the 
letters a, b, c, d, &c. the known quantities, the terms of 
the first kind will have the form a, the terms of the second 
kind will have the form bx, and the terms of the third 
kind will have the form cx2• 

625. We have already seen, how two or more terms of 
the same kind may be united together, and considered as 
a single term, 

For example, we may consider the formula 
ax2 - bx2 + cx2 as a single term, representing it thus, 
(a-b+c)x2; since, in fact, (a ..... b +c) is a known 
quantity. 

And also, when such terms are found on both sides of 
the sign =, we have seen how they may be brought to 
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one side, and then reduced to a single term. Let us take, 
for example, the equation, 

2x~-3x+4=5x2-8x + II; 
we first subtract 2.172 , and there remains 

-3x+4=3x2 -8x+lI; 
then adding 8.17, we obtain, 

5x+4=3x2 +1I; 
lastly, subtracting II, there remains 3.172 = 5.17 - 7. 

626. We may also bring all the terms to one side of the 
sign =, so as to leave zero, or 0, on the other; but it must 
be remembered, that when terms are transposed from one 
side to the other, their signs must be changed. 

Thus, the above equation may assume this form, 3,r-
5.17 + 7 = 0; and, for this reason also, the following 
general formula represents all equations of the second 
degree; 

ax'l. + bx ± c = o. 
in which the sign ± is read plus or minus, and indicates, 
that such terms as it stands before may be sometimes 
positive, and sometimes negative. 

627. Whatever, therefore, be the original form of a 
quadratic equation, it may always be reduced to this 
formula of three terms. If we have, for example, the 
equation, 

ax+b ex+f 
cx+d = gx+h' 

we may, first, destroy the fractions; multiplying, for this 
purpose, by cx + d, which gives 

cex'l. + cfx + edx + fd 
ax + b = ..L..k ,and then by gx+k, we have 

gx, 
agx'l. + bgx + akx + bk = cex'l. + cfx + edx + fd, 

which is an equation of the second degree, reducible to 
the three following terms, which we shall transpose by 
arranging them in the usual manner: 

ag } x'l. + { ! !~} .17+ { + bk } = o. 
-ce - cf -fd 

-ed 
We may exhibit this equation also in the following 

form, which is still more clear: 
(ag - ce}x2 + (bg +.uk - cf- ed)x + bk -fd= O. 
628. Equations of the second degree. in which all the 

three kinds of terms are found, are called complete, and the 
resolution of them is attended with greater difficulties; for 
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which reason we shall first consider those in which one of 
the terms is wanting. 

Now, if the term X Z were not found in the equation, it 
would not be a quadratic, but would belong to those of 
which we have already treated; and if the term, which 
contains only known numbers, were wanting, the equation 
would have this form, (lX£ ± bx = 0, which, being divisible 
by x, may be reduced to ax ± b = 0, which is likewise a 
simple equation, and belongs not to the present class. 

629. But when the middle term, which contains the 
first power of x, is wanting, the equation assumes this 
fOI'lTI, axZ ± c = 0, or ax2 = + c; as the sign of c may be 
either positive or negative. 

We shall call such an eq nation a pure equation of the 
second degree, and the resolution of it is attended with 
no difficulty; for we have only to divide by a, which 

gives x 2 = ~; and taking the square root of both sides, 
a 

x = v' ~; by which means the equation is resolved. 
a 

6;~0. But there are three cases to be considered here. 

In the first, when ~ is a square number (of which we can 
a 

therefore really assign the root) we obtain for the value 
of x a rational number, which may be either integral, or 
fractional. For example, the equation x 2 = 144, gives 
x= 12. And x2 =-fe;, gives x=t. 

The second case is, w hen ~ is not a square, in which 
a 

case we must therefore be contented with the sign v'. 
If, for example, x2 = 12, we have x = v'12, the value of 
which may be determined by appl'Oximation, as we have 
already shewn. 

The third case is that in which ~ becomes a negative 
a 

number: the value of x is then altogether impossible and 
imaginary; and this result proves that the question, which 
leads to such an equation, is in itself impossible. 

631. We shall also observe, before proceeding farther, 
that whenever it is required to extract the square root 
of a number, that root, as we have already remarked, 
has always two values, the one positive and the other 
negative. Suppose, for example, we have the equation 
X Z = 49, the value of x will be not only + 7, but also - 7, 
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which is expressed by x = + 7. So that all those ques
tions admit of a double answer; but it will be easily 
perceived that in several cases, as those which relate to a 
certain number of men, the negative value cannot exist. 

632. In such equations, also, as ax2 = bx, where the 
known quantity c is wanting, there may be two values 
of x, though we find only one if we divide by x. In the 
equation x 2 = 3x, for example, in which it is required to 
assign such a value of x, that x 2 may become equal to 3x. 
This is done by supposing x = 3, a value which is found 
by dividing the .equation by x; but, beside this value, 
there is also another, which is equally satisfactory, namely, 
x = 0; for then x 2 = 0, and 3x = O. Equations therefOl'e 
of the second degree, in general, admit of two solutions, 
whilst simple equations adnJit only of one. 

We shall now illustrate what we have said with regard 
to pure equations of the second degree by some examples. 

633. Question 1. Required a number, the half of which 
multiplied by the third, may produce 24. 

Let this number be x; then by the question ix, mul
tiplied by tx, must give 24; we shall therefore have the 
equation tx2 = 24. 

Multiplying by 6, we have x 2 = 144; and the extraction 
of the root gives x= + 12. We put ± ; for if x= + 12, 
we have tx=6, and tx=4: now, the product of these 
two numbers is 24; and if x=-12, we have tx=-6, 
and tx= -4, the product of which is likewise 24. 

634. Question 2. Requit'ed a number such, that being 
increased by 5, and diminished by 5, the product of the 
sum by the difference may be 96. 

Let this number be x, then x+5, multiplied by x-5, 
must give 96; whence results the equation, 

x 2 -25 =96. 
Adding 25, we have x 2 = 121; and extracting the root, 

we havex=ll. Thus x+5=16,alsox-5=6; and, 
lastly, 6 X 16 = 96. 

635. Question 3. Required a number snch, that by 
adding it to 10, and subtracting it from 10, the sum, mul
tiplied by the difference, will give 51. 

Let x be this number; then 10 +x, multiplied by lO-x, 
must make 51, so that lOO-x2 =51. Adding X2, and 
subtracting 51, we have x 2=49, the square root of which 
gives x=7. 

636. Question 4. Three persons, who had been playing, 
leave off; the first, with as many times 7 crowns, as the 
second has 3 crowns; and the second, with as many 
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times 17 crowns, as the third llas 5 crowns. Farther, if 
we multiply the money of the first by the money of the 
second, and the money of the second by the money of the 
third, and, lastly, the money of the third by that of the 
nrst, the sum of these three products will be 3830%. How 
much money has each? 

Suppose that the first player haf! ;1: crowns; and since 
he has as many times 7 crowns as the second has 3 crowns, 
we know that his money is to that of the second in the 
ratio of 7 : 3. 

We shall therefore have 7 : 3 : : x : fx., the money of t.he 
second player. 

Also, as the money of the second player is to that of the 
third in the ratio of 17 : 5, we shall have 17 : 5 : : fx : -l-['gX, 
the money of the third player. 

Multiplying x, or the money of the first. player, by fx, 
the money of the second, we have the product fxQ: then, *x, the money of the second, multiplied by the money of 
the third, or by -li\x, gives 8~X2; and, lastly, the money 
of the third, or T1..f9X, multiplied by x, or the money of the 
first., gives -l-hxz. Now, the sum of these three products 
is +X2 + i-hx2 + T1..f93;2; and reducing these f'"flctions to the 
same denominator, we nnd their sum l'Hx2, which must 
be equal to the number 3830%. 

We have therefore, -ffixz= 3830%. 
So that, multiplying by 3, ls532lx2=] 1492, and 1521x2 

being equal to 9572836, di.viding by ]521, we have x Z= 
95T7_li'-t 6; and taking its root, we find x= 3%%4. This 
fraction is reducible to lower terms, if we divide by 13; so 
that x= 21-8 = 79t; and hence we conclude, that +x =34, 
and -r-f9X = 10. 

The first player therefore has 79t crowns, the second has 
34 crowns, and the third 10 crowns. 

Remark. This calculation may be perfiJrmed in au easier 
manner; namely, by taking the factors of the numbers 
which present themselves, and attending chiefly to the 
squares of those factors. 

It is evident, that 507 = 3 x 169, and that 169 is the 
square of 13; then, that 833 = 7 xl] 9, and 119 = 7 x 

17: therefore ~ 7x :~~X2= 3830%, and if we multiply by 3, 

9 x 169 2 
we have 17 x 49x = 11492. Let us resolve this nurn-

be," also into its factors; and we readily perceive, that 
the first is 4; that is to say, that 11492 = 4 x 2873. 
Farther, 2873 is divisible by 17, so that 2873= 17x 169. 
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Consequently, our equation will assume the following form, 

i 7x x1~~x2 = 4 x 17 x 169, which, divided by 169, is re~ 
9 

duced to 17 x 49x2=4 x 17; multiplying also by 17 x 49, 

d d' 'd' b 9 h 4 x 289 x 49. h' h 11 an IVl mg y , we ave X2 == 9 ,10 W IC a 

the factors are squares; whence we have, without any 
, 2x17x7 

further calculatIOn, the root x = 3 . = 9. 18 = 79t, as 

before. 
637. Question 5. A company of merchants appoint a 

factor at Archangel. Each of them contributes for the 
trade, which they have in view, ten times as many Cl'owns 
as there are partners; and the profit of the factor is fixed 
at twice as many cmwns, per cent, as there are partners. 
Also, if Tio part of his tutal gain be multiplied by 2~, it 
will give the number of partners. That number is required. 

Let it be x; and since each partner has contributed lOx, 
the whole capital is lOx2 , Now j for every hundred crowns, 
the factor gains 2x, so that with the capital of lOx2 his 
profit will be -}x3. The no part of his gain is :;-hx3; 
Illultiplying by 2~, or by ~, we have ill1JX3, or n:,x3, 

and this must be equal to the number of partners, or x. 
We have, therefore, the equation 9. ~ sx3 = x, or :r;3 = 

225x; which appears, at first, to be of the third degree; 
but as we may divide by x, it is reduced to the quadratic 
x 2=225; whence x=15. 

So that there are fifteen partners, and each contributed 
150 crowns. 

QUESTIONS FOR PRA.CTICE. 

1. To find a number, to which 20 being added, alld 
from which 10 being subtracted, the square of the sum, 
added to twice the square of the remainder, shall be 17475. 

Ans.75. 
2. What two numbers are those, which are to one an

other in the ratio of 3 to 5, and whose squares, added 
together, make 1666? Ans. 21 and 35. 

3, The sum 2a, and the sum of the squares 2b, of two 
numbers being given; to find the numbers, 

. Ans. a- .,J(b-a2), and a+ ./(b--a2 ), 
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4. To divide the number 100 into two such parts, that 
the sum of their square roots may be 14. Ans. 64 and 36. 

5. To find three such numhers, that the sum of the first 
and second, multiplied into the third, may be equal to 63; 
and the sum of the second and third, multiplied into the 
first, may be equal to 28; also, that the sum of the first 
and third, multiplied into the second, may be equal to 55. 

Ans. 2, 5,9. 
6. ·What two numbers aJ'e those, whose sum is to the 

greater as 11 to 7; the difference of their squares being 
132? Ans. 14 and 8. 

CHAPTER VI. 

Of tlte Resolution of Mixed Equations of tlte Second 
Degree. 

638. An equation of the second degree is said to be 
mixed, or complete, when three terms are found in it; 
namely, that which contains the square of the unknown 
quantity, as axz ; that, in which the unknown quantity is 
found only in the first power, as bx; and, lastly, the term 
which is composed of only known quantities. And since 
we may unite two or more terms of the same kind into one, 
and bring all the terms to one side of the sign =, the 
general form of ami xed equation of the second degree will be 

axZ± bx±c=O. 
In this chapter, we shall shew how the value of x may 

be derived from such equations: and it will be seen, that 
thel'e are two methods of obtaining it. 

639. An equation of the kind that we are now consider
ing may be reduced, by division, to such a form, that the 
first term will contain only the square, x Z, of the unknown 
quantity x. We shall leave the second term on the same 
side with x, and transpose the known term to the other 
side of the sign =. By these means our equation will 
assume the form of xZ±px= ±q, in which p and q repre
sent any known numbers, positive or negative; and the 
whole is at present reduced to determining the tme value 
of x. We shall begin by remarking, that if ;rZ + px were 
a real square, the resolution would be attended with no 
difficulty, hecause it would only be required to take the 
sq uare root of both sides. 



CHAP. VI. OF ALGEBRA. 223 

640. But it is evident that x£+px cannot be a square; 
since we have already seen, (Art. 307.) that if a root con
sists of two terms, for example, x+n, its 8quare always 
contains three terms, namely, twice the product of the two 
parts, beside the square of each part; that is to say, the 
square of x+n is x~+2nx+n2. Now, we have already on 
one side x£ + px; we may, therefore, consider x~ as the 
square of the first part of the root, and in this case px 
must represent twice the product of x, the first part of the 
root, by the second part: consequently, this second part 
must be ip, and in fact the square of x+ip, is found to be 

x£ +pX+-tp2. 
641. Now, x£+pX+ip2 being a real square, which has 

for its root x+ip, if we resume our equation x£+px=q, 
we have only to add ip£ to both sides, which gives us 
x£ + px + ip£ = q + ip£, the first side being actually a 
square, and the other containing only known quantities. 
If, therefore, we take the square root of both sides, we 
find x + }p = .v'(ip2 + q); subtracting ip, we obtain 
x = - ip + .v' (ip~ + q); and, as every square root may 
be taken either affirmatively or negatively, we shall have 
for x two values expressed thus: 

x = - ip ± .v'(tp2 + q). 
642. This formula contains the rule by which all quad

ratic equations may be resolved; and it will be proper to 
commit it to memory, that it may not be necessary, every 
time, to repeat the whole operation which we have gone 
through. We may always arrange the equation in such a 
manner, that the pure square X2 may be found on one side, 
and the above equation have the form x~ = - px +.q, where 
we see immediately \hat x = - ip ± .v'(.i-p£ + q). 

643. The general rule, therefore. which we deduce from 
that, in OI'der to resolve the equation x£ = - px + q, is 
founded on this consideration; 

That the unknown quantity x is equal to half the coeffi
cient, or multiplier of x on the other side of the equation, 
plus or minus the square root of the square of this number, 
and the known quantity which forms the third term of the 
equation. 

Thus, if we had the equation X2 = 6x + 7, we should 
immediately say, that x = 3 ± .v' (9 + 7) = 3 + 4, whence 
we have these two values of x, namely, x = 7, and x = - 1. 
In the same manner, the equation x£=IOx-9, would 
give x - 5 ± .v' (25 - 9) = 5 ± 4, that is to say, the two 
values of x are 9 and 1. 

644. This rule will be still better understood, by distin-
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guishing the following cases: I. When p is an even num
ber; 2. When p is an odd number; and 3. When p is a 
fractional number. 

I st, Let p be an even nnmber, and the equation such, 
that x2=2px+q; we shall, in this case, have 

x=p+ .j(p2+q). 
2d, Let p be an odd number, and the equation x 2 = 

px + q; we shall here have x = ip ± .j(-!-1'2 + q); and 
p2+4q 

since -!-p2 + q = 4 ,we may extract the square root of 

the denominator, and write 
'~l + .j(p2+4q) _ P ± .j(p2+4q) 
X- 2 P- 2 - 2 . 

3d, Lastly, if p be a fraction, the equation may be re
solved in the following manner. Let the equation be ax2 = 

bx C 
bx + c, or x 2 = - + -, and we shall have, by the rule, 

a a 

b (bZ C) b2 C b2 +4ac 
x = 2a ±.j 4a2 + -;; . Now, 4a~ + -;; = 4a2 ,the de-

nominator of which is a square j so that 
b ± .j ( b2 + 4ac) 

.1' = 2a . 

645. The other method of resolving mixed quadratic 
equations is, to transform them into pure equations; which 
is done by substitution: for example, in the equation x 2= 
px + q, instead of the unknown quantity x, we may write 
another unknown quantity y, such that x = y + ip; by 
which means, when we have determined y, we may imme
diately find the value of x. 

If we make this substitution of y + tp instead of x, we 
have x2 = y2 + PY + -!-p2,andpx = py + 1-p2; conseqnently, 
our equation will become 

y2+py+ -!-p2=py + tp2 + q; 
which is first reduced, by subtracting py, to 

y2 + ip2 = tp2 + q ; 

and then, by subtracting ip2, to y2=tp2 + q. This is a pure 
quadratic equation, which immediately gives 

y= ± .j(-!-p2+ q). 

Now, since x=y+ 1£1', we have 

x=1£p±.j(tp2+q), 
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as before. It only remains, therefore, to illustrate this 
rule by some examples. 

646. Question 1. Thert' are two numbers; the one 
exceeds the other by 6, and their product is 91 : what are 
those numbers? 

If the less be x, the other will be x+6, and their pro
duct x2 +6x=91. Subtracting 6x, there remains x2 = 
91-6x, and the rule gives 

x= -3± ..1(9 +91)= -3+ 10; so that x =7, or 
x=-13. 

The question therefore admits of two solutions; 
By the one, the less number x=7, and the greater x + 

6=13. 
By the other, the less number' x= -13, and the greater 

x+6=-7. 
647. Question 2. To find a number such, that if 9 be 

taken from its square, the remainder may be a number, 
as much greater than 100, as the number itself is less 
than 23. 

Let the number sought be x. We know that x 2 -9 
exceeds 100 by x 2 -109: and since x is less than 23 by 
2:3-x, we have this equation 

x 2 -109=23-.T. 
Therefore x 2 = -x + 132; and, by the rule, 

x=-t± v(-}+132)=-t+ V(5·P)=-t±V. So that 
x=ll, or x=-12. 

Hence, when only a positive number is required, that 
number will be 11, the square of which minus 9 is 112, 
and consequently greater than 100 by 12, in the same 
manner as 11 is less than 23 by 12. 

648. Question 3. To find a number such, that if we 
multiply its half by its third, and to the product add half 
the number required, the result will be 30. 

Supposing the number to be x, its half, multiplied by its 
third, will give iX2; so that iX2+tx=30; and multiply
ing by 6, we have x 2 +3x=180, or x2 = -3x+ 180; which 
gives x=-t± ..1(%+ 180)=-t±V· 

Consequently, either x= 12, or x= -15. 
649. Question 4. To find two numbers, the one being 

double the other, and such, that if we add their sum to 
their product, we may obtain 90. 

Let one of the numbers be x, then the other will be 2x; 
their product also will be 2x2 , and if we add to this 3x, 
or their sum, the new sum ought to make 90. So that 
2x2 + 3x=90; or 2x2=90-3x; whence .7:2 = - tx + 45, 
and thus we obtain 

Q 
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x=~{± ";(T9-o+45)=-{±¥. 
Consequently, x=6, or x=-7t. 

650. Question 5. A horse-dealer bought a horse for a 
certain number of crowns, and sold it again for 119 
crowns, by which means his profit was as much per cent 
as the horse cost him; what was his first purchase? 

Suppose the horse cost.1: crowns; then, as the dealer 
gains x per cent, we have this proportion: 

x 2 
AslOO:x::x: 100; 

2 

since therefore he has gained 1~0' and the horse originally 
2 

cost him x crowns, he must have sold it for x + ]~O; 
X2 

therefore x+ 100 = 119; and subtracting x, we have 
2 

1~0 = - x+ 119; then multiplying by 100, we obtain 

X2 = - 100 x + 11900. Whence, by the rule, we find 
x=-50± ";(2500+ 11900) = -50± ..;14400= -50+ 
120=70. 

The horse therefore cost 70 crowns, and since the horse
dealer gained 70 per cent when he sold it again, the profit 
must have been 49 crowns. So that the horse must have 
been sold again for 70 + 49, that is to say, for 119 crowns. 

651. Question 6. A person buys a certain number of 
pieces of cloth: he pays for the first 2 crowns, for the 
second 4 crowns, for the third 6 crowns, and in the !'lame 
manner always 2 crowns more for each following piece. 
Now, all the pieces together cost him 11 0 crowns: how 
many pieces had he ? 

Let the number sought be x; theIl, by the question, the 
purchaser paid for the different pieces of cloth in the 
following mannel' : 

for the I, 2, 3, 4, 5 . . • . .. x pieces 
he pays 2, 4, 6, 8, 10 .•.... 2x crowns. 

it is therefore required to find the sum of the arithmetical 
progression 2 + 4 + 6 + 8 + 10+ ......•. 2x; which consists 
of x terms, that we may deduce from it the price of all the 
pieces of cloth taken together. The rule which we have 
already given for this operation requires us to add the last 
term to the first; and the sum is 2x + 2; which must be 
multiplied by the number of terms x, and the product will 
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be 2x2 +2x; lastly, if we divide by the difference 2, the 
quotient will be X2 + x, which is the sum of the pro
gression; so that we have;r2 +x=11O; thereforex2=
x+ 110, and x=-t+ v'(-1+ 110)= -t+ V = 10. 

Hence, the number of pieces of cloth is 10. 
652. Question 7. A person bought several pieces of 

cloth for 180 crowns; and if he had received for the sam~ 
sum 3 pieces more, he would have paid 3 crowns less for 
each piece. How many pieces did he buy? 

Let us represent the number sought by x; then each 

piece will have cost him 180 crowns. Now, if the pur-
x 

chaser had x + 3 pieces for 180 crowns, each piece would 

h 180 d· h· . . 1 h ave cost --3 crowns; an smce t IS prIce IS ess t an 
x+ 

the real price by three crowns, we have this equation, 
180 = 180 _ 3 

x+3 x . 

Multiplying by x, we obtain ~~; = 180-3x; dividing 

b 60x 
y 3, we have --.j = 60-x; and again, multiplying by x+.j 

x+3, gives 60x=180+57x-·x2 ; therefore adding X2, we 
shall have x2 +60x=180+57x; and sllbtracting60x,we 
shall have x2=-3x+180. 

The rule consequently gives, 
x=-1+ v'Ci+ 180), or x= -1'+ V =12. 

He therefore bought, for 180 crowns, 12 pieces of cloth 
at 15 crowns the piece; and if he had got 3 pieces more, 
namely, 15 pieces for 180 crowns, each piece would have 
cost only 12 crowns; that is to say, 3 crowns less. 

653. Question 8. Two merchants enter into partnership 
with a stock of 100 pounds; one leaves his money in the 
partnership for three months, the other leaves his for two 
months, and each takes out 99 pounds of capital and 
profit. What proportion of the stock did they separately 
furnish? 

Suppose the first partner contributed x pounds, the 
other will have contributed 100-x. Now, the former 
receiving 991., his profit is 99-x, which he has gained in 
three months with the principal x; and since the second 
receives also 991., his profit is x-I, which he has gained 
in two months with the principal 100-x; it is evident 
also, that the profit ofthis second partner would ha.ve been 
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3x2 3, ifhe had remained three months in the partnership: 

and as the profits gained in the same time are in propor
tion to the principals, we have the following proportion, 

3x-3 
x: 99-x :: 100-x : -2-' 

And the equality of the product of the extremes to that 
of the means, gives the equation, 

3x2 -3x 
2 =9900-199x+x2; 

then multiplying this by 2, we have 
3x2 - 3x = 19800-398x + 2X2; and subtracting 2x2 , we 
obtain x2-3x= 19800 - 398x. Adding 3x, gives x2 = 
19800-395x; then by the rule, 
X= - 3%5 + .J(156.f26 + 79{OO) = - 3%5 + 4tS = 9.f 
=45. 

The first partner therefore contributed 45l. and the 
other 55l. The first having gained Mi. in three months, 
would have gained in one month 18l.; and the ~econd 
having gained 441. in two months, would have gained 22l. 
in one month: now these profits agree; for if, with 451., 
18l. are gained in one month, 22l. will be gained in the 
same time with 551. 

654. Question 9. Two girls carry 100 eggs to market; 
the one had more than the other, and yet the sum which 
they both received for them was the same. The first says 
to the second, if I had had your eggs, I should have 
received 15 pence. The other answers, if I had had 
yours, I should have received 6i pence. How many eggs 
did each carry to market 1 

Suppose the first had x eggs; then the second must 
have had 100-x. 

Since, therefore, the former would have sold 100-x 
eggs for 15 pence, we have the following proportion: 

15x 
(IOO-x) : 15 : : x: IOO-x' 

Also, since the second would have sold x eggs for 61-
pence, we readily find how much she got for 100-x eggs, 
thus: 

• •• U) • 2000-20x 
As x . (IOO-x) .. a' ::Jx 

Now, both the girls received the same money; we have 
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. 15x 2000-20x . 
consequently the equatIOn, 100-x - 3x ' whIch, 

reduced, becomes 25x~ = 200000-4000x; and, lastly, 
x 2 = -160x+8000; 

whence we obtain 
x=-80 + .;(6400+8000) =-80+ 120=40. 

So that the first girl had 40 eggs, the second had 60, 
and each received 10 pence. 

655. Question 10. Two merchants sell each a certain 
quantity of silk; the second sells 3 ells more than the 
first, and they received together 35 crowns. Now, the 
first says to the second, I should have got 24 crowns for 
your silk: the other answers, And I should have got for 
yours 12 crowns and a half. How many ells had each? 

Suppose the first had x ells; then the second must have 
had x + 3 ells; also, since the first would have sold x + 3 

24x 
ells for 24 crowns, he must have received --3 crowns for 

x+ 
his x ens. And, with regard to the second, since he would 
have sold x ells for I2~ crowns, he must have sold his 

2f)x+75 
x +3 ells for 2x ; so that the whole sum they re-

ceived was 
24x 25x+75 
--3 + 2 = 35 crowns. x+ x 

This equation becomes x 2 = 20x-75; whence we have 
x=lO± ';(100-75) =10 ±5. 

This question admits of two solutions: accol'ding to 
the first, the first merchant had 15 ells, and the second 
had 18; and since the former would have sold 18 ells for 
24 crowns, he must have sold his 15 ells for 20 crowns. 
The second, who would have sold 15 ells for 12 crowns 
and a half, must have sold his ] 8 ells for 15 crowns; so 
that they actually received 35 crowns for their commodity. 

According to the second solution, the fil'st merchant 
had five ells, and the other 8 ells; and since the first 
would have sold 8 ells for 24 crowns, he must have 
received 15 crowns for his 5 ells; also since the second 
would have sold 5 ens for 12 crowns and a half, his 8 ells 
must have produced him 20 crowns; the sum being, as 
before, 35 crowns. 
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CHAPTER VII. 

Of the Extraction of the Roots of Polygonal Numbers. 

656. We have shewn, in a preceding chapter,* how 
polygonal numbers are to be found; and what we then 
called a side, is also called a root. If, therefore, we 
represent the root by x, we shall find the following 
expressions for all polygonal numbers: 

• • X2+X 
the Ill-gon, or tTlangle, IS -2-' , 

the Iv-gon, or square, ... . x 2, 

3x2_x 
the v~gon . . . . • • . • . . . • • . 2 ' 

the vI-gon ........•• , . . 2X2_X, 

5x2-3x 
the vII-gon •.......•.•. 2 ' 

the vIII-gon .••....•... . 3x2 -2x, 
7x2-5x 

the Ix-gon . . . • . . • . • . . • . 2 ' 

the x-gon .•.•••....... . 4x2-3x, 
(n-'2)x2-(n-4)x 

the n-gon . • • . . . . . • . . . . . 2 . 

657. We have already shewn, that it is easy, by means 
of these formulre, to find, for any given root, any polygonal 
number required: but when it is required reciprocally to 
find the side, or the root of a polygon, the number of 
whose sides is known, the operation is more difficult, and 
always reqllil'es the solution of a quadratic equation; on 
which account the subject deserves, in this place, to be 
separately considered. In doing this, we shall proceed 
regularly, beginning with the triangular numbers, and 
passiug from them to those of a greater number of angles. 

658. Let thet'efore 91 be the given triangular number, 
the side or root of which is required. 

If we make this root =.x, we must have 
X2+X 
~ = 91; or x 2 + x = 182, and x2 = - X + 182; 

consequently, 

• Chap. 5, Sect. III. 
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x= -t + -yI(i + 182)= -t + -yI(7-p) = -t + 'l..j = 13; 
from which we conclude, that the triangular root required 

is 13; for the triangle of 13, or x2 ;x, is 91. 

659. But, in general, let a be the given triangular num
ber, and let its root be required. 

X2+X 
Here, if we make the root = x, we have -2- = a, or x 2 

+x=2a; therefore, X Z = - x + 2a, and, by the rule for 
solving Quadratic Equations [Art. 641.J x= -t +-yI 

( 1 2) _ -1+-yI(8a+l) 4+ a, or x- 2 . 

This result gives the following rule: To find a triangular 
root, Multiply the given triangular number by 8, add 1 
to the product, extract the root of the sum, subtract 1 from 
that root, and lastly, divide the remainder by 2. 

660. So that all triangular numbers have this propel'ty ; 
namely, if we multiply them by 8, and add unity to the 
product, the sum is always a square; of which the follow
ing small Table furnishes some examples: 

Triangles 1, 3, 6, 10, 15, 21, 28, 36, 45, 55, &c. 
8 times + 1 = 9,25,49,81, 121, 169,225,289,361,441, &c. 

If the given number a does not answer this condition, 
we conclude, that it is not a real triangular number, or 
that no rational root of it can be assigned. 

661. According to this rule, let the triangular root of 
210 be required. We shall have a=21O, and 8a+l= 
1681, the square root of which is 41; whence we see, tbat 
the number 210 is really triangular, and that its root is 

41-21 __ 20. B 'f4 . h t' I ut I were gIven as t e nangu ar num-

ber, and its root were required, we should fiud it = 

-yl3~ _ t. and cousequently irrational. However, the tri-

angles of this root, -yl3~ - t. may be found in the follow

ing manner: 

. -yl33-1 2 17--yl33 . 
Smce x = 2 ' we have x = 2 ,and addmg 
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'\133-1 
x = 2 to it, the sum is x2 + X = 1.f = 8. Conse-

quently, the triangle, or the triangular number, x2 ;x =4. 

662. The quadrangular numbers being the same as 
squal'es, they occasion no difficulty. For, supposing the 
given quadl'ang-ular number to be a, and its required 
root x, we shall have x 2=a, and consequently, x=./a; 
so that the square root and the quadrangular root are the 
same thing. 

663. Let us now proceed to pentagonal numbers. 
Let 22 be a number of this kind, and x its root; then, by 

3x2 -x 
the third formula, we have 2 = 22, or 3x2 -x=44 ; 

or X2=tX+V; from which we obtain, 
_1 (J 4-4) - ] + ./(529) -.1. U -4' d x-6 +./ 36+ 3 ,orx- 6 -6+ 6 - ,an 

consequently 4 is the pentagonal root of the number 22. 
664. Let the following question be now proposed; the 

pentagon a being given, to find its root. 
Let this root be x, and we have the equation, 

3x2-x 2a 
--2- =a, or 3x2 -x=2a, or X2=tX+ 3; by means of 

h · 1 • d 2a I . w lC 1 we tin x=t+ ./(i~+ 3)' tIat IS, 

1+ ./(24a+ 1) . 
X= 6 . Thel'efore, when a IS a real pentagon, 

24a + 1 must be a square. 
Let 330, for example, be the given pentagon, the root 

'11 b _ 1 + ./ (7921) _ 1 + 89 - 15 
WI e x - 6 - -6- - . 

665. Again, let a be a given hexagonal number, the 
root of which is required. 

If we suppose it =x, we shall have 2x2 - x = (t, or 
x 2 =tx + ta; and this gives 

-.1.+. I( L+.1. )_ 1+ ,y'(8a+l) x-4, v T6 2 a - 4 . 

So that, in order that a may be really a hexagon, 8a + I 
must become a square; whence we see, that all hexagonal 
numbers are contained in triangular numbers; but it is 
not the same with the roots. 
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For example, let thlOl hexagonal number be 1225, its 
. 1+ .j9801 1+99 

root wIll be X= 4 = -4-= 25. 

666. Suppose a an heptagonal number, of which the 
root is required. 

5x2-3x 
Let this root be x, then we shall have 2 = a, or 

x2=-,tx+-}a, which gives, 
L . I( L .i.) 3+ .j(40a+9) 

X=TO+'II TOO+.;a = 10 ; 

therefore the heptagonal numbers have this property, that 
if they be multiplied by 40, and 9 be added to the pro
duct, the sum will always be a square. 

Let the heptagon, for example, be 2059; its root will 

be found =X= 3+ .ji~2369) = 3~~87 = 29. 

667. Let us suppose a an octagonal number, of which 
the root x is required. 

We shall here have 3x2-2x=a, or x2=tx+}a, whence 
1+ .j(3a+ I) 

resultsx=}+.j(!+}a)= 3 . 

Consequently, all octagonal numbers are such, that if 
multiplied by 3, and unity be added to the product, the 
sum is constantly a square. 

For example, let 3816 be an octagon; its root will be 
1 + .j 11449 1 + 107 

x= 3 - 3 36. 

668. Lastly, let a be a given n-gonal number, the root 
of which it is required to assign; we shall then, by the 
last formula, have this equation: 

(n-2)x~-(n-4)x a, or (n - 2)X2 - (n - 4)x= 2a; 
2 

2 _ (n-4)x 2a. 
consequently, x - - 2 + --2' whence, 

n- n-
11-4 (n-4)2 2a 

X= 2(n-2) + .j(4(n-2)2 + n-2)' or 
n-4 (n-4)2 8(n-2)a 

X= 2(n-2) + "/(4(n-2)2+ 4(n-2)2)' or 

n-4+ .j(8(n-2)a+(n-4)2) 
x= 2(n-2) . 
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This formula contains a general rule for finding all the 
possible polygonal roots of given numbers. 

For example, let there be given the xXIv-gonal num
ber, 3009: since a is here =3009 and n=24, we have 
n-2=22, and n-4=20; wherefore the root, or 

= 20+ ';(529584+400) 20+728 -17 
x, 44 H - . 

CHAPTER VIII. 

Of the Extraction of the Square Roots of Binomials. 

669. By a binomial* we mean a quantity composed of 
two parts, which are either both affected by the sigu of the 
square root, or of which one, at least, contains that sign. 

For this reason 3 + .; 5 is a binomial, and likewise 
.; 8 + .; 3; and it is indifferent whether the two terms be 
joined by the sign+or by the sign -. So that 3-';5, 
and 3 + .; 5 are both binomials. 

670. The reason that these binomials deserve particular 
attention is, that in the resolution of quadratic equations 
we are always brought to quantities of this form, when 
the resolution cannot be performed. For example, the 
equation ,7;2=6x-4 gives x=3+ ';5. 

It is evident, thereforf', that such quantities must often 
occur in algebraic calculations; for which reason, we have 
already carefully shewn how they are to be treated in the 
ordinary operations of addition, subtraction, multiplication, 
and division: but we have not been able till now to shew 
how their square roots are to be extracted; tbat is, so far 
as that extraction is possible; for wben it is not, we mllst 
be satisfied witb affixing to the quantity another radical 
sign. Thus, the square root of 3 + .; 2 is written 
';3+.;2; or ';(3+ ';2). 

671. It must here be observed, in the first place, that the 

'" In Algebra we generally give the name binomial to any 
quantity composed of two terms; but Euler has thought proper 
to confine this appellation to those expressions which the French 
analysts call quantities partly commensurable, and partly in
commensurable.-F. T. 
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squares of such binomials are also binomials of the same 
kind; in which also one of the terms is always rational. 

For, if we take the square of a + ..; b, we shall obtain 
(a2+b)+2a";b. If therefore it were required reciprocally 
to take the root of the quantity (aZ + b) +2a"; b, we should 
find it to be a+ .j b; and it is undoubtedly much easier to 
form an idea of it in this manner, than if we had only put 
the sign..; before that quantity. In the same manner, if 
we take the square of..; a +..; b, we find it (a + b) + 
2";ab; therefore, reciprocally, the square root of (a+b)+ 
2..; ab will be .j a + .j b, which is likewise more easily nn
del'stood, than if we had been satisfied with putting the 
sign ..; before the quantity. 

672. It is chiefly required, therefore, to assign a cha
racter, which may, in all cases, point out whether such a 
square root exists or not; for which purpose we shall 
begin with an easy quantity, requiring whether we can 
assign, in the sense that we have explained, the square 
root of the binomial 5 + 2"; 6. 

Suppose, therefore, that this root is ..; x + ..; y; the 
square of it is (x+y)+2";xy, which must be equal to 
the quantity 5 + 2.j 6. Consequently, the rational part 
I + Y must be equal to 5, and the irrational part 2 ..; xy 
must be equal to 2";6; which last equality gives ";:ry= 
..;6. Now, since x + y = 5, we have y = 5 - x, and 
this value substitnted in the equation xy=6, produces 
5x - x2 = 6, or x2 = 5x - 6; therefore, x =t+..; (¥
~i)=t+t=3. So that x=3, and y=2; whence we 
conclude, that the square root of 5 + 2"; 6 is ..; 3 + .j 2. 

67:3. As we have here found the two equations, x+y=5, 
and xy=6, we shall give a particular method for obtain
ing the values of:r and y. 

Since x+y=5, by squaring, x2 +2xy + y2 = 25; and 
as we know that x2 - 2xy + y2 is the square of x -y, let 
us subtract from x2+2xy+y2=25, the equation xy=6, 
taken four times, or 4xy=24, in order to have x2-2xy+ 
y2= 1 ; whence by extraction we have x-y= 1; and as 
x+y=5, we shall easily find x;:::3, and y=2: where
fore, the square root of 5 + 2"; 6 is .j 3 + ..; 2. 

674. Let us now consider the general binomial a + ..; b, 
and supposing its square root to be ..; x + .j y, we shall 
have the equation (x +y) + 2"; xy = a + ..; b; so that 
x + y = a, and 2..; xy ;::: .j b, or 4xy = b; subtracting 
this square f"om the square of the eqllation x+y=a, that 
is, from x2 + 2xy + y2 = a2, there remains X2 - 2xy + 
y2=a2_b, the square root of which is x-y= ";(a2-b). 
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a +.j (a 2 -b) 
Now, x+y=a; we have therefore x=~~2-~' 

a- .j(a2 _b) 
and y = 2 ; consequently, the square root re-

. . (a+ l(a2 _b) (a- l(a2 _b» 
qUlred ofa+ .jbls.j v 2 +.j v 2 . 

675. We admit that this expression is more complicated 
than if we had simply put the radical sign .j before the 
given binomial a+.jb, and written it .j(a+.jb): but 
the above expression may be greatly simplified when the 
numbers a and b are such, that a2-b is a square; since 
then the sign .j, which is under the radical, disappears. 
We see also, at the same time, that the square root of the 
binomial a + .j b cannot be conveniently extracted, except 
when a2 -b=c2 ; in this case, the square root required 

. a+c a-c b'f b b 1! 
IS .j (~) + .j(~2-): ut I a2 - e not a perlect 

square, we cannot express the square root of a + .j b mOI"e 
simply, than by putting the radical sign .j before it. 

676. The condition, thel"efore, which is requisite, in order 
that we may express the square root of a binomial a + .j b 
in a more convenient form, is, that a2-b be a square; and 
if we represent that square. by c2, we shall have for the 

. . a+c a-c W 
square root III questIOn .j(~2-)+ .j(-2-). e must 

farther remark, that the square I'oot of a - .j b will be 

a+c a-c) f, b . h' f, 1 .j(-2-)- .j(-2- ; or, y squarmg t IS ormu a, we get 

a2 _c2 

a-2.j(-4-); now, since c2 =a2 _b, or a2 _c2=b, the 

. b 2.j b 
same square IS found =a-2.j 4 = a - -2-=a-.j b. 

677. When it is required, therefore, to extract the 
square root of a binomial, as a± .j b, the rule is, Subtract 
from the square (a2) of the rational part the square (b) of 
the irrational part, take the square root of the remainder, 
and calling that root c, write for the root required, 

.. a+c) + I(a-c) 
..;( 2 - v 2 . 

678. If the square root of 2 + .j 3 were required, we 
should have a =2 and .j b = .j 3; wherefore a2 - b= 
c2=4-3= 1; so that, by the formula just given, the 
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. 2+1 2-1 
root sought wIll be ';-2- =+= ';--r = ';1-+ .;t· 

Let it be required to find the square root of the binomial 
11 +6.;2. Here we shall have a= 11, and.; b=6.;2; 
consequently, b=36 x 2=72, and a2-b=49, which gives 
c=7; and hence we conclude, that the square root of 
11 + 6.;2 is .;9 + ';2, or 3 + ';2. 

Required the square root of 11 +2';30. Here a=ll, 
and .; b = 2 ';30; consequently, b = 4 x 30 = 120, 
a2-b= 1, and c= 1; therefore the root required is 
';6+ ';5. 

679. This rule ·also applies, even when the binomial 
contains imaginary, or impossible quantities. 

I"et there be proposed, for example, the binomial 1 + 
4';-3. First, we shall have a=1 and .;b=4';-3, 
that is to say, b = - 48, and a2 -b=49; therefore 
c=7, and consequently the square root required is ';4+ 
.; -3=2+.; -3. 

Again, let there be given -t + t.; -3. First, we 
have a=-t; ';b=i';-3, and b=-lx-3=--!-; 
whence a2-b = t + i = 1, and c= I; and the result 

required is .; i + .; - -!- = t + ';;;3, or t + t.; -3. 

Another remarkable example is that in which it is re
quired to find the square root of 2.; -1. As there is here 
no rational part, we shall have a =0. Now,'; b =2'; -1, 
and b=-4; wherefore a2-b=4, and c=2; conse
quently, the square root required is .; 1 + .; -1 = 1 + 
.; -1 ;. and the square of this quantity is found to be 
1+2';-1-1=2';-1. 

680. Suppose now we have such an equation as X2= 
a+'; b, and that a2_b=c2 ; we conclude from this, that 

a+c a-c . 
the value of X= .; (-2-)+ .; (-2-)' WhICh may be useful 

in many cases. 
For example, if x2 = 17 + 12.;2, we shall have x=3 + 

.;8=3+2';2. 
681. This case occurs most frequently in the resolution 

of equations of the fourth degree, such as x4 =2ax2 +d. 
For, if we suppose x2=y, we have X4=y2, which reduces 
the given equation to y2=2ay+d, and from this we find 
y=a+ ';(a2 +d), therefore, x2=a± ';(a2+d), and con
sequently we have another evolution to perform. Now, 
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since ./b=./(a2 +d), we haveb=a'J.+d,anda~-b=-d; 
if, therefore, ...... d is a square, as c'J., that is to say, d= _c2, 

we may assign the root required. 
Suppose, in reality, that d= -c!!; or that the proposed 

equation of the fourth degree is x'=2ax!i- c2, we shall then 
a+c a ...... c 

find that x =./ (-2-)+ ./ (--r)' 

682. We shall illustrate what we have just said by some 
examples. 

1. Required two numbers, whose product may be 105, 
and whose squares may together make 274. 

Let us represent those two numbers by x and y; we shall 
then have the two equations, 

xy=105 
x'J.+ y2:::::274. 

Th fi · 106 d h' 1 f b' b erst gIves Y= -, an t IS va ue 0 Y emg su -
:t 

stituted in the second equation, we have 
1052 

x2 + --=274. 
x 2 

Wherefore .x4 + 1052 = 274x2 , or x'=274x2 -1052. 
If we now compare this equation with that in the pre

ceding article, we have 2a = 274, and _c2 = - 1052 ; 

consequently, c=105, and a:::::137. We therefore find 

_ 1(137+105) (137 ...... 105)~1l+4 x- 'V 2 +./ 2 - -' 

Whence x=15, or x=7. 1n the fl.rst case, y=7, and in 
the second case,!J= 15; whence the two numbers sought 
are 15 and 7. 

683. It is proper, however, to observe, that this calcula
tion may be performed much more easily in another way. 
For, since x2+2xy+y2 and x2_2xy+y2 are squares, and 
since the values of x2 + y2 and of xy are given, we have 
only to take the double of this last quantity, and then to add 
and subtract ~t from the first, as follows: x2 +y'J.=274; 
to which if we add 2xy=21O, we have 

x2+2xy+y2=484, which gives x+y=22. 
But subtracting 2xy, there remains x2-2xy+y2=64, 

whence we find x'--y=8. 
So that 2x=30, and 2y= 14; consequently, x= 15, and 

y=7. 
The following general question is resolved by the same 

method. 
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2. Required two numbers, whose product may be m, 
and the sum of the squares n. 

If those numbers are presented by x and y, we have the 
two following equations: 

xlf==m 
3;2 +y2=n. 

Now, 2xy = 2m being added to x2 + y2~ n, we have 
x2+2xy+y2=n+2m, and consequently, 

x+y= v'Cn+2m). 
But subtracting 2xy, there remains x2 --.2xy+y2=n __ 

2m, whence we get x-y= v'Cn-2m); we have, thel'e
fore, x= tv'Cn+2m)+tv'Cn-2m); and 

y=iv'Cn +2m)- tv'(n-2m). 
684. 3. Required two numbers, such, that their product 

may be 35, and the difference of their squares 24. 
Let the greater of the two numbers be x, and the less 

y: then we shall have the two equations, 
xy=35, 
x2 _y2 =24; 

and as we have not the same advantages here, we shall 
proceed in the usual manner. The first equation gives 

y = 35, and, substituting this value of y in the second, we 
x 

have x2 - 12:5 = 24. Multiplying by x il , we have 
x 

:r-1225=24x2; or x4=24x2 + 1225. Now, the second 
member of this equation being affected by the sign +, we 
cannot make use of the formula already given, because 
having c2 = -1225; c would become imaginary. 

Let us therefore make X2=Z; we shall then ha,'e 
z2=24z+ 1225, whence we obtain 

z=12± v'(144+ 1225) orz=12±37; 
consequently, x~= 12±37; that is to say, either =49, or 
=-25. 

If we adopt the first value, we have x=7, and y=5. 
The second value gives .:r= v' -25; and, since xy=35 j 

35 1225 
we have y= 2~ = v' -25 = v' - 49. v'- 0 -

685. We shall conclude this chl1.pter with the following 
question. 

4. Required two numbers, such, that their sum, their 
pl'oduct, and the difference of their squares; may be all 
equal. 



240 ELEMENTS SECT. IV. 

Let x be the greater of the two numbers, and y the less; 
then the three following expressions must be equal to one 
another: namely, the sum, x + y; the product, xy; and 
the difference of the squares, x2_y2. If we compare the 
first with the second, we have .,&+y=xy; which will give 

a value of x: for y = xy - x = x (y - 1), and x = ~l ; y-

consequently, x +y=1-I +y= y21' and xy= y2 1 ; 
y- y- y-

that is to say, the sum is equal to the product; and to this 
also the difference of the squares ought to be equal. Now, 

y2 !/+2y3 
we have x2_y2= ---- _y2= - ; so that 

y2_2y+ I y2_2y+ 1 
2 

making this equal to the quantity found, ~1' we have 
y-

yll _!/+2yl d' 'd' b 2 h 1 
y-l = y2_2y+ 1; IVI mg y y, we ave y-I = .. 

_y2+2y . . 
2 2 1; and multlplymg by y2_2y+ I, or (y_l)2, 

y - y+ 
we have y-l=-y2+2y; consequently, y2=y+1; 

which gives y = i ± v'(-l + 1) =t+ 'IIi; or y= 1±2v'5, 

and since x = Y l' we shall have, by substitution, and 
y-

. h' -\15+1 
usmg t e sIgn +, X= -\15-1' 

In order to remove the surd quantity from the denomi
nator, multiply both terms by -\15+ 1, and we obtain 

6+2'11'5 3+-\15 
x= 4 =-2-' 

Therefore the greater of the numbers sought, or x, 

3+'11'5 1+-\15 
= --2-; and the less, y, = 2 

Hence their sum x+y=2+ '11'5; their product X!J = 
7 +3'11'5 d. 3+ '11'5 2 + ..; 5; and since ;c2 2' an y- = --2-' we 

have also the difference of the squares xll_yll=2+ '11'5, 
being all the same quantity. 

686. As this solution is very long, it is proper to remark 
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that it may be abridged. In order to which, let us begin 
with making the sum x + y equal to the difference of the 
squares x2_y2; we shall then have X+y=X2_y2; and 
dividing by x+y, because x2_y2 = (x+y) x (X-y), we 
find 1 =x-y, and x=y+l. Consequently, x+y=2y 
+ 1, and x2_y2 = 2y+ 1; farther, as the product xy, or 
y2+ y , must be equal to the same quantity, we have y2+ y 
= 2y + 1, or y2=y + 1, which gives, as before, y= 
1 + v'5 

2 
687. The preceding question leads also to the solution 

of the following. 
5. To find two numbers, such, that their sum, their 

product, and the sum of their squares, may be all equal. 
Let the numbers sought be represented by x and y; 

then there must be an equality between x+y, xy, and 
X2+y2. 

Comparing the first and second quantities, we have 

x + y = xy, whence x = ~1; consequently, xy, and y-
y2 

x+y = --1' Now, the same quantity is equal to X2+y2; 
y-

so that we have 
2 y2 Y +y2= __ 

y2_2y+ 1 y-1' 

Multiplying by y2_ 2y + 1, the product is 
y4 _ 2.1j3 + 2y2 = y3 _ y2, or y4 = 3y 3 _ 3y 2 ; 

and dividing by y2, we have y2 = 3y - 3; which gives 
3+ v'-3 

Y = t ± v'(t-3) = 2 ; consequently, 

1+v'-3 3+v'-3 
Y -1 = 2 ,whence results x = 1 + v' _ 3; and 

multiplying both terms by 1- v' -3, the result is 

6-2v' -3 3- v' -3 
X= 4 ,or 2 . 

3- v'-3 
Therefore the numbers sought are x = 2 ' and 

3+ v'-3 y = 2 ,the sum of which is x + .'IJ = 3, their 

• 2 3-3v'-3 d product xy=3; and lastly, smce x = 2 ,an 

R 
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'l 3+3 v -3 h !J = 2 ,t e sum of the squares X 2 +!J2=3, all 

the same quantity as required. 
688. We may greatly abridge this calculation by a 

particular artifice, which is applicable likewise to other 
cases; and which consists in expressing the numbers 
sought by the sum and the difference of two letters, 
instead of representing them by distinct letters. 

In our last question, let us suppose one of the numbers 
sought to be p +q, and the other p-q, then their sum 
will be 2p, their product will be p2_q2, and the sum of 
their squares will be 2p2+2q2, which three quantities 
must be equal to each other; therefore making the first 
equal to the second, we have 2p = p2_ q2, which gives 
q2 = p2_2p. 

Substituting this value of q2 in the third quantity 
(2p2+2q2), and comparing the result 4p2_4p with the 
first, we have 2p = 4p2 - 4p, whence p = f. 

v - 3· Consequently, q2 = p2 - 2p = - 1-, and q = 2 ' 

3+ v-3 
so that the numbers sought are p +q = 2 ,and 

3- v-3 
p -q = 2 ' as before. 

QUESTIONS FOR PRACTICE. 

1. What two numbers are those, whose difference is 15, 
and half of their product equal to the cube of the less? 

Ans. 3 and 18. 
2. To find two numbers whose sum is 100, and product 

2059. Ans. 71 and 29. 
3. There are three numbers in geometrical progression: 

the sum of the first and second is 10, and the difference of 
the second and third is 24. What are they? . 

Ans. 2, 8, and 32. 
4. A merchant having laid out a certain sum of money 

in goods, sells them again for 241. gaining as much per 
cent as the goods cost him: required what they cost him. 

Ans.20/. 
5. The sum of two numbers is a, their product b. Re

quired the numbers. 
a a2 

Ans. 2 + v( -b+ 4)' and 

a a2 

2 =+= v(-b+ "4)' 
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6. The sum of two numbers is a, and the SlIm of their 
squares b. Required the numbers. 

a 2b-a2 

Ans. 2 + .; (-4-)' and 

a _ I (2b-a1.) 
2+"'-4-' 

7. To divide 36 into three such parts, that the second 
may exceed the first by 4, and that the sum of all their 
squares may be 464. Ans. 8, 12, 16. 

8. A person buying 120 pounds of pepper, and as many 
of ginger, finds that for a crown he has one pound more 
of ginger than of pepper. Now, the whole price of the 
pepper exceeded that of the ginger by six crowns: how 
many pounds of each had he for a crown? 

Ans. 4 of pepper, and 5 of ginger. 
9. Requir'ed three numbers in continual proportion, 60 

being the middle term, and the sum of the extremes being 
equal to 125. Ans. 45, 60, 80. 

10. A person bought a certain number of oxen for 80 
guineas: if he had received 4 mOl'e for the same money, 
he would have paid one guinea less for each. What was 
the number of oxen? Ans. 16. 

II. To divide the number 10 into two such parts, that 
their product being added to the sum of their squares, 
may make 76. Ans. 4 and 6. 

12. Two travellers, A and B, set out from two places, 
rand .0., and at the same time; A from r with a design to 
pass through .0., and B from A to travel the same way: 
after A had overtaken B, they found on computing their 
travels, that they ;had both together travelled 30 miles; 
that A had passed through .0. four days before, and that B, 
at his rate of travelling, was a journey of nine days 
distant from r. Required the distance between the places 
rand .0., Ans. 6 miles. 
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CHAPTER IX. 

Of the Nature of Equations of the Second Degree. 

689. What we have already said sufficiently shews, 
that equations of the second degree admit of two solu
tions; and this property ought to be examined in every 
point of view, because the nature of equations of a higher 
degree will be very much illustrated by such an examina
tion. We shall therefore retrace, with more attention, 
the reasons which render an equation of the second degree 
capable of a double solution; since they undoubtedly will 
exhibit an essential property of those equations. 

690. We have already seen, indeed, that this double 
solution arises from the circumstance that the square root 
of any number may be taken either positively, or nega
tively; but, as this principle will not easily apply to 
equations of higher degrees, it may be proper to illustrate 
it by a distinct analysis. Taking, therefore, for an 
example, the quadratic equation, x2 = 12.7:-35, we shall 
give a new reason for this equation being resolvible in 
two ways, by admitting for x the values 5 and 7, both of 
which will satisfy the terms of the equation. 

69l. For this purpose it is most convenient to begin 
with transposing the terms of the equation, so that one of 
the sides may become 0; the above equation consequently 
takes the form 

x2 -12x+35=0; 
and it is now required to find a number such, that, if we 
substitute it for x, the quantity x 2-12x + 35 may be really 
equal to nothing; after which, we shall have to shew how 
this may be done in t.wo different ways. 

692. Now, the whole of this consists in clearly shewing, 
that a quantity of the form x2 -12x + 35 may be considered 
as the product of two factors. Thus, in reality, the 
quantity of which we speak is composed of the two factors 
(x - 5) x (x - 7); and since the above quantity must 
become 0, we must also have the product (x-5) x (x-7) 
= 0; bu.t a product, of whatever number of fa<;tors it is 
composed, becomes equal to 0, only when one of those 
factors is reduced to o. This is a fundamental principle, 
to which we must pay particular attention, especially 
when equations of higher degrees are treated of. 

693. It is therefore easily understood, that the product 
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(x - 5) x (x-7) may become 0 in two ways: first, when 
the first factor x-5 = 0; and also, when the second factor 
x-7=O. In the first case, x=5, in the second x=7. 
The reason is therefore very evident, why such an equa
tion xZ-12x+35=O, admits of two solutions; that is to 
say, why we can assign two values of x, both of which 
eq ually satisfy the terms of the equation; for it depends 
upon this fundamental principle, that the quantity x 2 _ 

12x + 35 may be represented Ly the product of two 
factors. 

694. The same circumstances are found in all equations 
of the second degree: for, after having brought the terms 
to one side, we find an equation of the following fOl'm 
x2 -ax+ b=O, and this formula may be always considered 
as the product of two factors, which we shall represent by 
(x-p) x (x-q), without considering what nnmbers the 
letters p and q represent, or whether they be negative or 
positi ve. Now, a" this product must be = 0, from the 
nature of our equation, it is evident that this may happen 
in two cases; in the first place, when x= p; and in the 
second place, when x=q ; and these are the two values of 
x which satisfy the terms of the equation, 

695. Let us here consider the nature of these two 
factors, in order that the ttlultiplication of the one by 
the other may exactly produce x2-ax+b. By actually 
multiplying them, we obtain x 2 _( p + q)x + pq; which 
quantity must be the same asxz-ax+b, therefore we have 
evidently p+q=a, and pq=b. Hence is deduced this 
vel'y remarkable property; that in every equation of the 
form x 2 -ax + b=O, the two values of x are such, that 
their sum is equal to a, and their product equal to b: it 
therefore necessarilv follows, that, if we know one of the 
values, the other al~o is easily found. 

696. We have at present COllsidered the case, in which 
the two values of x are positive, and which requires the 
second term of the equation to have the sign -, and the 
third term to have the sign +. Let us also consider 
the cases, in which either one or both values of x become 
negative. The first takes place, when the two factors of 
the equation give a product of this form, (x-p) x (x+q); 
for then the two values of x are x = p, and x = - q; and 
the equation itself becomes 

x 2 +(q-p)x-pq=0 ; 
the second term having the sign + whell q is greater 
than ", and the sign - when q is less than p; lastly, the 
third term is always negative, .. 
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The second case, in which both values of x are negative, 
occurs when the two factors are 

(x+p) x (x+q); 
for we shall then have x= -p, and x= -q; the equation 
itself therefore becomes 

x 2 +(p +q) x+pq=O. 
in which both the second and third terms are affected by 
the sign +. 

697. The signs of the second and the third terms con
sequently shew us the nature of the roots of any equation 
of the second degree. For let the equation be x 2 • ••• ax 
.... b=O. If the second and third terms have the sign +, 
the two values of x are both negative; if the second term 
have the sign -, and the thil'd term +, both values are 
positive: lastly, if the third term also have the sign -, 
one of the values in question is positive. But, in all cases 
whatever, the second term contains the sum of the two 
values, and the third term contains their product. 

698. After what has been said, it will be easy to form 
equations'ofthe second degree containing any two given 
values. Let there be required, for example, an equation 
such, that one of the values of x may be 7, and the other 
-3. We first form the simple equations x=7, and 
x= -3; whence, x-7=O, and x+3=0; these give us 
the factors of the equation required, which consequently 
becomes x 2-4x-2l =0. Applying here, also, the above 
rule, we find the two given values of x ; forifx2 =4x+2l, 
we have, by completing the square, &c. x=2± .;25=2 
±5; that is to say, x=7, or x= -3. 

699. The values of x may also happen to be equal. Sup
pose, for example, that an equation is required, in which 
both values may be 5. Here the two factors will be (x-5) 
x (x-5), and the equation sought will be x2 -lOx + 25=0. 
In this equation, x appears to have only one value; but it 
is because x is twice found = 5, as the common method of 
resolution shews; for we have x2 = lOx-25; wherefore 
x=5± .;0=5±0, that is to say, x is in two ways = 5. 

700. A very remarkable case sometimes occurs, in which 
both values of x become imaginary, or impossible; and it is 
then wholly impossible to assign any value for x, that would 
satisfy the terms of the equation. Let it be proposed, for 
example, to divide the number 10 into two parts, such 
that their product may be 30. If we call one of those 
parts x, the other will be lO-x, and their product will be 
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lOx-x2 =30; wherefore x2 = lOx-30, and x=5± v -5, 
which, being an imaginary number, shews that the ques
tion is impossible. 

701. It is vel'Y important, therefore, to discover some 
sign, by mean" of which we may immediately know whether 
an equation of the second degree be possible or not. 

Let us resume the general equation x2 -ax+b=0. We 
shall have x2 =ax - b, and x =ta± v (-i-a2 - b). This 
shews, that if b be greater than ta2 , or 4b greater than a2 , 

the two values of x al'e always imaginary, since it would be 
required to extract the square root of a negative quanttty ; 
on the contrary, if b be less than ta2 , or even less than 0, 
that is to say, if it be a negative number, both values will 
be possible or real. But, whether they be real or imaginary, 
it is no less true, that they are still expressible, and al ways 
have this pl'Operty, that their sum is equal to a, and their 
product equal to b. Thus, in the equation x2 -6x+ 10=0, 
the sum of the two values of x must be 6, and the product 
of these two values must be 10; now, we find, l. x= 
3 + v ~ 1, and 2. x=3- v -1, quantities whose sum is 
6, and the product 10. 

702. The expression which we have just found may like
wise be represented in a manner more general, and so as 
to be applied to equations of this form, jx2±gx+h=0; 
for this eq nation gives 

2 __ gx h __ 9 ( g2 h) 
x - + 7 - J' and x - + 2j ± v 4f2 - J ,or ...... 

+g+ vCq2-4flt) 
x = - 2j . ; whence we conclude, that the two 

values are imaginary, and consequently, the equation im
possible, when 4fh is greater than g2; that is to say, when, 
in the equationjx2~gx+lt=O, four times the product of 
the first and the last term exceeds the square of the second 
term: for the product of the first and the last term, taken 
four times, is 4fltx2, and the square of the middle term is 
g2x2; now, if 4fhx2 be greatel' than g2x2, 4fh is also greater 
than g2, and, in that case, the equation is evidently im
possible; but in all other cases, the equation is possible, 
and two real values of x may be assigned. It is true, they 
are often irrational; but we have already seen, that, in 
such cases, we may always find them by approximation: 
whereas no approximations can take place with regard to 
imaginary expressions, sLlch as v -5; for 100 is as far 
from being the value of that root, as 1, or any other number. 

703. We have farther to observe, that any quantity of 
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the second degree, x2 ±ax±b, must always be resolvible 
into two factors, such as (x±p) x (x±q). For, if we 
took three factors, such as these, we should come to a 
quantity of the third degree; and taking only one such 
factor, we should not exceed the first degree. It is there
fore certain, that every equation of the second degree 
necessarily contains two values of x, and that it can neither 
have more nor less. 

704. We have already seen, that when the two factor!:! 
are found, the two values of x are also known, since each 
facttlr gives one of those values, by making it equal to O. 
The converse also is true, viz. that when we have found 
one value of x, we know also one of the factors of the 
equation; for if x=p represents one of the values of x, 
in any equation of the second degree, x-p is one of the 
factors of that equation; that is to say, all the terms hav
ing heen brought to one side, the equation is divisible by 
x - p; and farther, the quotien t expresses the other factor. 

705. In order to illustrate what we have now said, let 
there be given the equation x2+4x-21=0, in which 
we know that x=3 is one of the values of x, because 
(3x3)+(4x3)-21=0; this shews, thatx-3is one of 
the factors of the equation, or that x2 +4x-21 is divisible 
by x-3, which the actual division proves. Thus, 

x-3) x2 +4x-21 (x+7 
x 2 _3x 

7x-21 
7x-21 

O. 
So that the other factor is x + 7, and our equation is re

presented by the product (x-3) x (x+7)=0; whence ~he 
two values of x immediately follow, the first factor givmg 
x=3, and the other x= -7. 

CHAPTER X. 

Of Pure Equations of the Third Degree. 

706. An equation of the third degree is said to be pure, 
when the cube of the unknown quantity is equal to a known 
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quantity, and when neither the square of the unknown 
quantity, nor the unknown quantity it8elf, is found in the 
equation j so that 

a 
x3=125; or, more generally, x3=a, x3= b' &c. 

are equations of this kind. 
707. It is evident how we are to deduce the value of 

x from such an equation, since we have only to extract the 
cube root of both sides. Thus, the equation w=125 
gives x=5, the equation x3=a gives x=tta, and the 

equation :1,.3 = i gives x=tti' or x= ~:. To be able, 

therefore, to resolve such equations, it is sufficient that 
we know how to extract the cube root of a given number. 

708. But in this mannel', we obtain only one value for 
x: and since every equation of the second degree has two 
values, there is reason to suppose that an equation of the 
third degree has also more than one value. It will be de
serving our attention to investigate this; and, if we find 
that in such equations, x must have several values, it will 
be necessary to determine those values. ' 

709. Let us consider, for example, the equation x 3=8, 
with a view of deducing from it all the numbers, whose 
cubes are, respectively, S. As x=2 is undoubtedly such a 
number, what has heen said in the last chapter shews that 
the quantity x3-S=O, must be divisible hy x-2: let us 
therefore perform this division. 

x-2) x3 _S (x!l+2x+4 
x3 -2xll 

2x2 _8 
2x2-4x 

4x-8 
4x-8 

O. 

Hence it follows, that oUr equation, x3 ..... 8=0, may he 
represented by these factors j 

(x--2) x (x!l+2x+4)=0. 
710. Now; the question is, to know what number we are 

to substitute instead of x, in order that x3 =S, or that 
x 3-8=0 j and it is evident that this condition is an
swered, by supposing the product which we have just now 
found equal to 0: but this happens; not only when the first 
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factor x-2=0, which gives us x=2, but also when the 
second factor 
x2+2x+4=0. Let us, therefore, make 
x2+2x+4=0; then we shall have x2= -2x-4, and 
thence x= -] ± .,; -3. 

711. So that beside the case, in which x=2, which cor
responds to the equation x 3=8, we have two other values 
of x, the cubes of which are also 8; and these are, 

x= -1 + .,; -3, and x= -1-"; -3, as will be evident, 
by actually cubing these expressions; 

-1+";-3 
-1+";-3 

1-"; -3 
-";-3-3 

-2-2"; -3 square 
-1+ ";-3 

2+2";-3 
+2";-3+6 

8. cube. 

-1-";-3 
-1-.,;-3 

1 +";-3 
+ .,;-3-3 

-2+2",-3 
-1- ",-3 

2-2";-3 
+2",-3+6 

8. 

It is true, that these values of x are imaginary, or Im
possible; but yet they deserve attention. 

712. What we have said applies in general to every 
cubic equation, such as x 3=a; namely, that beside the 
value x=Zja, we shall always find two other values. 
To abridge the calculation, let us suppose V a=c, so 
that a=c3, our equation will then assume this form, 
X 3 _C3=0, which will be divisible by x-c, as the actual 
division shews: 

x-c) X3 _C3 (X2+CX+C2 
X3 _CX2 

0. 

Consequently, the equation in question may be repre
sented by the product (x-c) x (,xl!+cx+c2 )=0, which 
is in fact =0, not only when x-c=O, or x=c, but also 
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when x 2 +cx+c2 =0. Now, this expression contains two 
other values of x; for it gives 

c c2 
x 2 = -cx-c2, and x = - '2 ± v'(4 _c2), or ...•.....••• 

-c+ v' -3c2 -c±cv'-3 
x= 2 ; that is to say, x = 2 

-1± v' -3 
= 2 xc. 

713. Now, as c was substituted for ~a, we conclude, 
that every equation of the thil,d degree, of the form x 3 =a, 
furnishes three values of x expre8sed in the following 
manner: 

1. x=~a, 
-1 + v'-3 

2, x= 2 x~a, 

-1-v'-3 
3. X= 2 x~a. 

This shews, that every cube root has three different 
values; but that one only is real, or possible, the two others 
being impossible. This is the more remarkable, since every 
square root has two values, and since we shall afterwards 
see, that a biquadratic root has four different values, that a 
fifth root has five values, and so on. 

In ordinary calculations, indeed, we employ only the 
first of those values, because the other two are imaginary; 
as we shall shew by some examples. 

714. Question 1. To find a number, whose square, 
multiplied by its fourth part, may produc~ 432. 

Let x be that number; the product of X2 multiplied by 
ix must be equal to the number 432, that is to say, ix3 = 
432, and x 3 = 1728; whence. by extracting the cube root, 
we have x= 12. 

The number sought therefore is 12; for its square 144, 
multiplied by its fourth part, or by 3, gives 432. 

715. Question 2. Required a number such, that if we 
divide its fourth power by its half, and add 14-1- to the 
product, the sum may be 100. 

Calling that number x, its fourth power will be X4; 

dividing by the half, or tx, we have 2x3 ; and adding to 
that 14-1-, the sum must be lOO. We have therefore 2x3 

+14i=100; subtracting 14-t, there remains 2X3=3_p; 
dividing by 2, gives .:t,3= s_p, and extracting the cube 
root, we find x=t. 

716. Question 3. Some officers being quartered in a 
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country, each commands three times as many horsemen, 
and twenty times as many foot~soldiers, as there are 
officers. Also a horseman's monthly pay amounts to as 
many florins as there are officers, and each foot~soldier 
receives half that pay; the whole monthly expense is 
13000 florins. Required the number of officers. 

If x be the number required, each officer will have 
under him ;3x horsemen and 20x foot-soldiers. So that the 
whole number of horsemen is 3x2, and that of foot~ 
soldiers is 20X2. 

Now, each horseman receiving x florins per month, and 
each foot-soldier receiving tx florins, the pay of the horse
men, each month, amounts to 3x3 , and that of the foot
soldiers, to lOx3 ; consequently, they all together receive 
l3x3 florins, and this sum must be equal to 13000 florins: 
we have therefore 13x3 = 13000, or x 3= 1000, and x = 10, 
the number of officel's required. 

717. Question 4. Several merchants enter into part
nership, and each contributes a hundred times as many 
sequins as there are partners: they send a factor to Venice, 
to manage their capital, who gaim, for every hundred 
sequins, twice as many sequins as there are partners, and 
he returns with 2662 sequins profit. Required the num
ber of partners. 

If this number be supposed =X, each of the partnel's 
will have furnished 100x sequins, and the whole capital 
must have been 100xz ; now, the profit being 2x for 100, 
the capital must have produced 2x3 ; so that 2x3 =2662, 
or x 3 = 1331 ; this gives x= 11, which is the numbel' of 
partners. 

718. Question 5. A country girl exchanges cheeses for 
hens, at the rate of two cheeses for three hens; which hens 
lay each t as many eggs as there are cheeses. Farther, 
the girl sells at market nine eggs for as many sous as each 
hen had laid eggs, receiving in all 72 sous; how many 
cheeses did she exchange? 

Let the number of cheeses =x, then the number of 
hens, which the girl received in exchange, will be ix, and 
each hen laying tx eggs, the number of eggs will be=tx2. 
Now, as nine eggs sell for tx sous, the money which -lxz 
eggs produce is 2\X\ and iTx3=72. Consequently, 
x 3 = 24 x 72 = 8 x 3 x 8 x 9 = 8 x 8 x 27 = 1728; whence 
x= 12; that is to say, the girl exchanged twelve cheeses 
for eighteen hens. . 
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CHAPTER XI. 

Of the Resolution of Complete Equations of tlte Third 
Degree. 

719. An equation of the third degree is called complete, 
when, beside the cube of the unknown quantity, it con
tains that unknown quantity itself, and its square: so that 
the general fOl'mula for the5e equations, bringing all the 
terms to one side, is 

ax3 ± bx2 ± cx ± d = O. 
And the purpose of this chapter is to shew how we are 

to derive from such equations the values of x, which are 
also called the roots of the equation. We suppose, in the 
first place, that every such equation has three roots; since 
it has been seen, in the last chapter, that this is true even 
with regard to pure equations of the same degree. 

720. We shall first consider the equation x~ - 6x2 + 
llx-6=0; and, since an equation of the second degree 
may be considered as the product of two factors, we may 
also represent an equation of the third degree by the pro
duct of three factors, which are in the present instance, 

(x-I) X (x-2) x (x-3)=O; 
since, by actually multiplying them, we obtain the given 
equation; for (x-I) x (x -2) gives x2 -3x +2, and 
multiplying this by x - 3, we obtain x 3 -6x2 + 11x -6, 
which are the given quantities, and which must be = 0. 
Now, this happens when the product (x-I) x (x-2) x 
(x-3)=0; and, as it is sufficient for this purpose, that 
one of the factors become = 0, three different cases may 
give this result, namely, when x-I =0, or x= I ; secondly, 
when x-~=o, or x=2; and thirdly, when x-3=0, or 
x=3. 

We see immediately also, that if we substituted for x, 
any number whatever beside one of the above three, 
none of the three factors would become equal to 0; and, 
consequently, the product would no longer be 0: which 
proves that our equation can have no other root than these 
three. 

721. If it were possible, in every other case, to assign 
the three factors of such an equatioh in the same manner, 
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we should immediately have its three roots. Let us, there
fore, consider, in a more general manner, these three 
factors, x-p, x-q, x-r. Now, if we seek their product, 
the first, multipliet} by the second, givesx2 -(p+q)x+pq, 
and this product, multiplied by x-r, makes 

x3 _(p + q + r)x2 + (pq + pr + qr)x-pq1·. 
Here, if this formula must become =0, it may happen in 

three cases: the first is that, in which x-p=O, or x=p ; 
the second is, when x - q = 0, or x = q; the third is, 
when x-r=O, or x=r. 

722. Let us now represent the quantity found, by the 
equation x3 - ax2 + bx - c = 0. It is evident, in order 
that its three roots may be x=p, x=q, x=r, that we 
must have, 

1. a=p+q+r, 
2. b pq +pr+qr, and 
3. c=pqr. 

We perceive, from this, that the second term of the 
equation contains the sum of the three roots; that the 
third term contains the sum of the products of the roots 
taken two by two; and lastly, that the fourth term consists 
of the product of all the three roots multiplied together. 

From this last property we may deduce an important 
truth, which is, that an equation of the third degree can 
have no other rational roots than the divisors of the last 
term; for, since that term is the product of the three 
roots, it must be divisible by each of them: so that when 
we wish to find a root by trial, we immediately see what 
numbers we are to use.* 

For example, let us consider the equation, x3 =x+6, 
or x3 -x-6=0. Now, as this equation can have no 
other rational roots than numbers which are factors of the 
last term 6, we have only 1, 2, 3, 6, to try with, and the 
result of these trials will be as follows: 

Ifx=l, we have 1-1-6=-6. 
If x=2, we have 8-2-6=0. 
If x=3, we have 27-3-6= 18. 
If x=6, we have 216-6-6=204. 

Hence we see, that x=2 is one of the roots of the given 
equation; and, knowing this, it is easy to find the other 

"* We shall find in the sequel, that this is a general property 
of equations o! ~ny dimensions; and as this trial requires us to 
know all the dlVlsors of the last term of the eq nation, we may for 
this purpose have recourse to the Table, Art. 66. 
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two; for x=2 being one of the roots, x-2 is a factor of 
the equation, and we have only to seek the other factor by 
means of division as follows: 

x-2) x3~x-6 (x2+2x+3 
x 3 -2x2 

3x-6 
3x-6 

o. 
Since, therefore, the formula is represented by the pro

duct (x-2) x (x2+2x+3), it will become =0, not only 
when x-2=0, but also wheu x2+2x+3=O: and, this 
last factor gives x2 +2x=-3; consequently, 

x=-I±.J-2; 

and these are the other two roots of our equation, which 
are evidently impossible, or imaginary. 

723. The method which we have explained, is applicable 
only when the first term x 3 is multiplied by 1, and the 
other terms of the equation have integer coefficients; 
therefore, when this is not the case, we must begin by a 
preparation, which consists in transforming the equation 
into another form having the condition required; after 
which, we make the trial that has been already mentioned. 

Let there be given, for example, the equation 
x3_3x2 + VX--i=O. 

As this contains fourth parts, let us make x =~, which 

will give 
y3 3y2 lly 
"8 -"""4 +8- 1 =0, 

and, multiplying by 8, we shall obtain the equation 
y3_6y2 + IIy-6=0, 

the roots of which are, as we have already seen, y = 1, 
y= 2, y=3 ; whence it follows, that in the given equation, 
we have x=t, x= 1, x=t. 

724. Let there be an equation, where the coefficient of 
the first term is a whole number but not 1, and whose last 
term is 1; for example, 

6x3-IIx2 +6x-I=0. 
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Here, if we divide by 6, we shall have x3 _ yx2 +x--1-=O; 
which equation we may clear of fractions, by the method 
just explained. 

Fh-st, by making x = ~, we shall have 

y3 lly2 Y 1 • 

2J6- 216 +6- 6 =0, 

and multiplying by 216, the equation will become 
!l- IIy2 + 36y - 36 = 0. But as it would be tedious 
to make trial of all the divisors of the number 36, and 
as the .last term of the original equation is I, it is better 

I 
to suppose, in this equation, x = -; for we shall then 

z 
6 II 6 

have z3 - Z2 +:z - I = 0, which, multiplied by Z3, 

gives 6 - lIz + 6z2 - Z3 = 0, and transposing all the 
terms, Z3 - 6x2 + lIz - 6 = 0: where the roots are z = 1, 
z = 2, z = 3; whence it follows that in our equation 
x = J, x = t. x = t. 

725. It has been observed in the preceding articles, that 
in order to have all the roots in positive numbers, the signs 
plus and minus must succeed each other alternately; by 
means of which the equation takes this form. 

x3 _ax2 + bx-c=O, 
the signs changing as many times as t.here are positive 
roots. If an the three roots had been negative, and we had 
multiplied together the three factors x+p, x+q, x+r, all 
the terms would have had the sign plus, and the form of 
the equation would have been x3 + ax2 + bx + c = 0, 
in which the same signs follow each other three times; 
that is, the or.mber of negative roots. 

We may conclude, therefore, that as often as the signs 
change, the equation has positive roots; and that as often 
as the same signs follow each other, the equation has 
negative roots. This remark is very important, because 
it teaches us whether the divisors of the last term are to 
be . taken affirmatively or negatively, when we wish to 
make the trial which has been mentioned. 

726. In order to illustrate what has been said by an ex
ample, let us consider the equation x 3 +x2 _34x+56=0, 
in which the signs are changed twice, and in which the same 
sign returns but once. Here we conclude that the equation 
has two p08itive roots, and one negative root; and as these 
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roots must be divisors of the last term 56, they must be 
included in the numbers ± 1,2,4, 7, 8, 14,28,56. 

Let us, therefore, make x = 2, and we shall have 8 + 
4 - 68 + 56 = 0; whence we conclude that x = 2 is a 
positive root, and that therefore x - 2 is a divisor of the 
equation; by means of which we easily find the two other 
roots: for, actually dividing by x-2, we have 

X' - 2) Xl + x 2 - 34x + 56 (X2 + 3x - 28 
x 3 -2x2 

3x2 -34x 
3x2 _ 6x 

-28x+56 
-28x + .56 

O. 
And making the quotient X2 +3x-28=0, we find the 

two other roots; which will be 
x = -1 ±..; (~ + 28) = - t + Y ; that is, x = 4; or 
x = - 7; and taking into account the root found before, 
namely, x = 2, we clearly perceive that the equation has 
two positive, and one negative root. We shall give some 
examples to render this still more evident. 

727. Question 1. There are two numbers, whose dif
ference is 12, and whose product multiplied by their sum 
makes 14560. What are those numbers? 

Let x be the less of the two numbers, then the greater 
will be x+12, and their product will be x2+12x, ~'hich 
multiplied by the sum 2x+ 12, gives 

2x3 + 36x2 + 144x= 14560; 
and dividing by 2, we have 

x 3 + 18x2 + 72x=7280. 

Now, the last term 7280 is too great for us to make 
trial of all its divisors; but as it is divisible by 8, we shall 
make x=2y, because the new equation, 8y3 + 72y2 + 144y 
=7280, after the substitution, being divided by 8, will be
come y3+9:!l + 18y=91O; to solve which, we need only 
try the divisors 1,2,5,7, 10, 13, &c. of the number 910: 
where it is evident, that the first three, 1, 2, 5, are too 
small; beginning therefore with supposing y=7, we im
mediately find that number to be one of the roots; for the 
substitution gives 343 + 441 + 126 = !HO. It follows, 
therefore, that x= 14; and the two other roots will be 
found by dividing y3+9y2+18!(~910 by y-7, thus: 

s 
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y-7) y1+9y2+ 18y-91O (y2+ 16y+ 130 
y3_7y2 

16y2 + 18y 
16y2-112y 

130y-910 
130y-910 

O. 

Supposing now this quotient y2 + 16y + 130=0, we shall 
have y 2+16y= -130, and thence 
y = - 8±..; -66; a proof that the other two roots are 
impossible. 

The two numbers sought are therefore 14, and (14 + 
12)=26; the product of which, 364, multiplied by their 
sum, 40, gives 14560. 

728. Question 2. To find two numbers whose difference 
is 18, and such, that their sum multiplied by the difference 
of their cubes, may produce 275184. 

Let x be the less of the two numbers, then x+ 18 will 
he the greater; the cube of the first will be x 3 , and the 
cube of the second 

x3 + 54x2 + 972x + 5832 ; 
the difference of the cubes 

54x2+972x+ 5832 = 54(X2 + 18x+ 108), 
which multiplied by the sum 2x+ 18, or 2(x+9), gives 
the product 

108(x3 + 27x2 +270x+972)=275184. 
And, dividing by ] 08, we have 

x 3 + 27 x 2 + 270x + 972=2548, or 
x3 + 27 X2 + 270x= 1576. 

Now, the divisors of 1576 are 1,2,4, 8, &c. the first 
two of which are too small; but if we try x = 4, that 
number is found to satisfy the terms of the equation. 

It remains, therefore, to divide by x-4, in order to 
find the two other roots; which division gives the quotient 
x2 +31x+394; making therefore 

x2 +31x= - 394, we shall find 
x = - :y ± ..; (9,P _ 15'; 6) ; 

that is, two imaginary roots. 
Hence the numbers sought are 4, and (4+ 18)=22. 
729. Question 3. Required two numbers whose dif

ference is 720, and such, that if the'less be multiplied by 
the square root of the greater, the product may be 20736. 
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If the less be represented by x, the greater will evidently 
be x+720; and, by the question, 

xv' (x+720) = 20736 = 8.8.4. 8l. 
Squaring both sides, we have 

X2(X+ 720) = x3 + 720x2 =82 .82 .42 • S12. 
Let us now make x =8.1f; this supposition gives 

S3.1/ + 720. 82.112=82.82.42 .81 Q; 
and dividing by 8\ we have .y3 + 90.112 = 8 . 42 .812. 
Farther, let us suppose y=2z, and we shall have 
8z3+4. 90z2 =8. 42 • S12; or, dividing by 8, 

z3+45z2=42 .812 • 

Again, make z=9u, in order to have, in this last equa
tion, 93u3 + 45. 92u2 = 42 .94, because dividing now by 93, 

the equation becomes u3 + 5u2=42 • 9, or 
u2 (u+5)=16.9=144; where it is obvious, that u=4; 
for in this case u2= 16, and u +5=9: since, therefol'e, 
u=4, we have z=36, .11=72, and x=576, which is the 
less of the two numbers sought: so that the gn'ater is 
1296, and the square root of this last, or 36, multiplied 
by the other number 576, give 20736. 

730. Remark. This question admits of a simple solu·· 
tion; for since the square root of the greater number, mul
tiplied by the less, must give a product equal to a given 
number, the greater of the two numbers must be a square. 
If, therefore, from this consideration, we suppose it to be 
X2, the other number will be x2-720, which being mul
tiplied by the square root of the greater, or by x, we have 
x3-720x=20736=64.27.12. 

If we make x=4'y, we shall have 
64.113_720.4.11=64.27. 12, or 
y3-45y=27.12. 

Supposing, farther, 'y=3z, we find 
27z3 -135z = 27.12; or, dividing by 27, Z3 - 5z = 12, 
or z3-5z·-12=0. The divisors of 12 are 1, 2, 3,4, 6, 
12: the first two are too small; but the supposition of 
z = 3 gives exactly 27 - 15 - 12 = O. Consequently, 
z = 3, .11= 9, and x = 36; whence we conclude, that the 
greater of the two numbers sought, or x 2, = 1296, and that 
the less, or x2-720, = 576, as before. 

731. Question 4. There are two numbel's, whose dif
ference is 12; and the product of this difference by the 
sum of their cubes is 102144. What are the numbers? 

Calling the less of the two numbers x, the greater will 
be x + 12: also the cube of the first is x\ and of the second 
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x 3 +36x2 +432x+1728; the product also or the sum of 
these cubes by the difference 12, is 

12(2x3+36x2 +432x+ 1728)= 102144; 
and, dividing successively by 12 and by 2, we have 

x 3 + 18x2+216x+864=4256, or 
xJ + 18x2 +216x=3392=8 .8.53. 

If now we substitute x=21j, and divide by 8, we shall 
have y3+9y 2+54y=8 .. 53=424. 

Now, the divisors of 424 are I, 2, 4, 8, 53, &c. 1 and 2 
are evidently too small; but if we make y=4, we find 
64 + 144 + 216 =424. So that y = 4, and x = 8; 
whence we conclude that the two numbers sought are 8, 
and (8 + 12)=20. 

732. Question 5. Several persons form a partnership, 
and establish a certain capital, to which each partner adds 
ten times as many pounds as there are persons in the 
company: they gain 6 plus the number of partners pel' 
cent; and the whole profit is 392 pounds. Required how 
many partners there are? 

Let x be the number required; then each partner will 
have furnished lOx pounds, and conjointly lOx2 pounds; 
and since they gain x + 6 per cent, they will have gained 

with the whole capital x 3 i06x2 , which is equal to 392 

pounds. 
We have, therefore, x3 + 6x2 = 3920; consequently, 

making x=2y, and dividing by 8, we have 
y3 + 3y2=490. 

Now, the divisors of 490 are 1, 2, 5, 7, 10, &c. the first 
three of which are too small; but if we suppose y= 7, we 
have 343+147=490; so thaty=7, andx=14. 

There are therefore fourteen partners, and each of them 
put 140 pounds into the common stock. 

733. Question 6. A company of merchants have a com
mon stock of 8240 pounds; and each contributes to it 
forty times as many pounds as there are partners; with 
which they gain as much per cent as there are partners. 
Now, on dividing the profit, it is found, after each has 
received ten times as many pounds as there are persons in 
the company, that there still remains 224/. Required the 
number of merchants? 

If x be made to represent the number, each will have 
contributed 40x to the stock; consequently, all together 
will have contributed 40x2, which makes the whole stock 
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=40x2 + 8240. N ow, with this sum they gain x per cent; 
so that the whole gain is 

40x3 + 8240x _ L 3 + 8 U -.2. 3 + 4 1 2 
100 100 - lOX 10 X - r,x 5" x. 

From which sum each receives lOx, and consequently they 
all together receive lOx2 , leaving a remainder of 224; the 
profit must therefore have been IOx2+224, and we have 
the equation 

2x3 412x _ 10 2 224 
5+ 5 - x+ . 

Multiplying by 5 and dividing by 2, we have x 3 +206x 
=25x2 + 560, or x 3-25x2 + 206x-560=0: the first form 
of the equation, howevel', will be more convenient for 
trial. Here the divisors of the last term are 1, 2, 4, 5, 7, 
8, 10, 14, 16, &c., and they must be taken positively; 
because in the second form of the equation the signs vary 
three times, which shews that all the three roots are 
positive. 

Here, if we first try x= 1, and x=2, it is evident that 
the first side will become less than the second. We shall 
therefore make trial of other divisors. 

When x=4, we have 64+824=400+560, which does 
not satisfy the terms of the equation. 

If x=5, we have 125+1030=625+560, which like
wise does not succeed. 

But if x=7, we have 343+ 1442=1225+560, which 
answers to the equation; so that x=7 is a root of it. 
Let us now seek for the other two, by dividing the second 
form of our equation by x-7. 

x-7) x 3 _ 25x2 + 206x-560 (x2-18x + 80 
x3 _ 7x2 

-18x2 +206x 
-18x2 + 126x 

80x-560 
80x-560 

O. 
Now, making this quotient equal to nothing, we have 

x2 - 18x + 80 = 0, or x 2 - 18x = - 80; which gives 
x = 9 + 1, so that the two other roots are x = 8, or 
x=10. 

This question therefore admits of three answers. Accord
ing to the first, the number of merchants is 7; according 
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to the second, it is 8; and, according to the third, it is 
10. The fonowing statement shews, that all these will 
answer the conditions of the question: 

· 7 8 
------

· 280 320 

N urn ber of merchants ...•..•...• 

Each contributes 40x2 ••••••••••• 

In all they contribute 40x2 ••••••• 

The original stock was ..•....•. 

--.---
· · 

The whole stock is 40x2 + 8240 ..• · 
With this capita] they gain as much} 

per cent as there are partners .. 

Each takes from it ...••....•... 

1960 
8240 

---
10200 
---

714 
---

70 

2560 
8240 

-~-

10800 
---

864 
---

80 

10 
---

400 
---

4000 
8240 

---
12240 
---

1224 

---
100 

---------
So that they all together take lOx!! 490 640 1000 

---------
There remains therefore •......... 224 224 224 

CHAPTER XII. 

Of tlte Rule of Cardan, or of Scipio Ferreo. 

734. When we have removed fractions from an equation 
of the third degree, according to the manner which has 
been explained, and none of the divisors of the last term 
are found to be a root of the equation, it is a certain proof, 
not only that the equation has no root in integer numbers, 
but also that a fractional root cannot exist; which may be 
proved as follows. 

Let there be given the equation x3-ax2 +bx-c=0, 
in which, a, b, c. express integer numbers. If we suppose, 
for example, x = t, we shall have V - -£a + tb - c =0. 
Now here, the first term alone has 8 for the denominator; 
the others being either integer numbers, or numbers di
vided by 4, or by 2, and therefore cannot make 0 with the 
first term. The same thing happens with every other 
fraction. 
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735. As in those fractions the roots of the equation are 
neither integer num bel's nor fractions, they are irrational, 
and, as it often happens, imaginary. The manner, there
fore, of expressing them, and of determining the radical 
signs which affect them, forms a very important point, and 
deserves to be carefully explained. This method, called 
Cardan's Rule, is ascribed to Cardan, or more properly to 
Scipio Perreo, both of whom lived some centuries since.* 

736. In order to understand this rule, we must first 
attentively consider the nature of a cube, whose root is a 
binomial. 

Let a + b be that root; then the cube of it will be 
a3 + 3a2b + 3ab2 + b3 , and we see that it is com posed of the 
cubes ofthe two terms of the binomial, and beside that, of 
the two middle terms, 3a2b +3ab2, which have the com
mon factor 3ab, multiplying- the other factor, a + b; that is 
to say, the two terms contain thrice the product of the two 
terms of the binomial, multiplied by the sum of those terms. 

737. Let us now suppose x=a + b; taking the cube of 
each side, we have x 3 =a3 +b3 +3ab (a+b): and, since 
a+b=x, we shall have the equation, x 3 =a3 +b·3 +3abx, 
or x 3 =3abx+a3 +b3, one of the roots of which we know 
to be x=a+b. Whenever, therefore, such an equation 
occurs, we may assign one of its roots. 

For example, let a=2, and b=3; we shall then have 
the equation x3=18x+35, which we know with certainty 
to have x=5 for one of its roots. 

738. Farther, let us now suppose a3 -p, and b3 =q; we 
shall then have a+~p and b=~q, consequently, ab=~pq; 
therefore, whenever we meet with an equation of the form 
x 3 =3x ~pq + P + q, we know that one of the roots is 
~p+~q. 

Now, we can determine p and '], in such a manner, that 
both 3~pq and p + q may be quantities equal to determin
ate numbers; so that we can always resolve an equation 
of the third degree, of the kind which we speak of. 

739. Let, in general, the equation x 3 -fx+9 be pro
posed. Here, it will be necessary to comparefwith 3~pq, 
and 9 with p + q; that is, we must determine p and q in 

.. This rule when first discovered by Scipio Perreo was only 
for particular forms of cubics; but it was afterwards generalised 
by Tartalea and Cardan. See Montucla's Hist. Math.; also 
Dr. Hutton's Dictionary, article Algebra; and Professor Bonny
castle's Introduction to his Treatisf;J on Algebra, Vol. I. pp. 
XII.-XV. 
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such a manner, that 3Z;pq may become equal to f, and 
p + q=9; for we then know that one of the roots of our 
equation will be x=Z;p+Z;q. 

740. We have therefore to resolve these two equations, 

3~pq=f, 
p+q=g. 

The first gives 3'I~q -t. or pq _f3 - 1 f3 and v - 3' - 27 -21 , 

4pq = 1.,rf3. The second equation, being squared, gives 
p2+2pq+q2=g2; if we subtract from it 4pq=1rf3, we 
have p2_2pq+q2=g2_ -!rP, and taking the square root 
of both sides, we have 

p-q= .j(g2_1rP)· 
Now, since p+q=g, we have, by aduingp+q to one side 
of the equation, and its equal, g, to the other, 2p=g + .j 
(g2--fi'rP); and, by subtractingp-q from p+q, we have 
2q=g-.j (g2_ 1"fP); consequently, 

P -g+ .j(g2--l'r,{3) and q _g_.j(g2_1rP) 
- 2 ' - 2 . 

741. In a cubic equation, therefore, of the form x 3= 
fx+g, whatever be the numbersfandg, we have always 
for one of the roots 

x~ ( e.g + .j ~P) ) + ~ ( (g- .j g; - 17 P) ) ; 

that is, an irrational quantity, containing not only the sign 
of the square root, but also the sign of the cube root; and 
this is the formula which is called the Rule of Cardan. 

742. Let us apply it to some examples, in order that its 
use may be better understood. 

Let x3=6x+9. First, we shall havef=6, and g=9; 
so that g2=81,P=216, -!rP=32; then 
g2_ -!7P=49, and .j (g2_ -!7P)=7. Therefore, one of 
the I'oots of the gi\Oen equation is 

x=~C;7)+~C 2 7)=~1f +~%=~8+~1= ..•• 

2+ I =:3. 
743. Let there be proposed the equation x3 =3x+2. 

Here, we shall havef=3 and g=2; and consequently, 
g2=4,f3=27, and 2\f3=4; which gives 
.j (g2_ -!7P) =0 ; whence it follows, that one of the roots 

is x=~(2;0)+~C2 2 0)=1+1=2. 
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744. It often happens, however, that though such an 
equation has a rational root, that root cannot be found by 
the rule which we are now considering. 

Let there be given the equation x3=6x+40, in which 
x=4 is one of the roots. We haveheref=6andg=40; 
farther, 92 = 1600, and -tr f3=32; so that 
92 _ --tTP = 1568, and,.; (92 _ --t7P)=,,; 1568 = .••..•.. 
,.;(4 .4 .49 .2)=28,.;2; consequently one of the roots 
will be 

3 (40+28";2) 3 (40-28""'2) 
x=~ 2 +~ 2 M 

x=Z/(20+14'\1'2) +~ (20-14'\1'2); 
which quantity is really =4, although, upon inspection, we 
should not suppose it. In fact, the cube of 2 + '\1'2 being 
20+ 14'\1'2, we have, reciprocally, the cube root of 20+ 
]4'\1'2 equal to 2+ '\1'2; in the same manner, ~(20-
14'\1'2)=2-,.;2; wherefore our root x=2+'\1'2+ 
2- '\1'2=4.* . 

745. To this rule it might be objected, that it does not 
extend to all equations of the third degree, because the 
square of x does not occur in it; that is to say, the second 
term of the equation is wanting. But we may remark, 
that every complete equation may be transformed into 
another, in which the second term is wanting, which will 
thel'efore enable us to apply the rule. 

To prove this, let us take the complete equation x 3 -

6x2 + Ilx-6=0: where, if we take the third of the 
coefficient 6 of the second term, and make x-2=y, we 
shall have x=y +2, and x2=!l +4y +4. 

Consequently, X 3=y3+6y2+ 12y+ 8 
-6x2 = -6y2_24y-24 

llx= lly+22 
-6= -6 

or, x3-6x2 +llx-6=y3 * y * 
We have, theI'efore, the equation y3_y=0, the reaolu-

.. We have no general rules for extracting the cube root of 
these binomials, as we have for the square root; those that have 
been given by various authors all lead to a mixed equation of the 
third degree similar to the one proposed. However, when the 
extraction of the cube root is possible, the sum of the two radi
cals which represent the root of the equation, always becomes 
rational; so that we may find it immediately by the method 
explained, Art. 722.-F. T. 
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tion of which is evident; since we immediately perceive 
that it is the product of the factors 

y(y2_1)=y (y+ 1) x (y-l)=O. 
If we now make each of these factors =0, we have 

l{y±O, 2{y= -I, 3{y=1, 
x=2, x= 1, x=3, 

that is to say, the three roots which we have already found. 
746. Let there now be given the general equation of the 

third degree, afI+ax2+bx+c=0, of which it is required 
to destroy the second term. 

For this purpose, we must add to x the third of the co
efficient of the second term, pl'eserving the same sign, 
and then write for this sum a new letter, as for example y, 
so that we shall have x + ta = y, and x=y - ta; whence 
results the following calculation: 

x=y-ta, x2=y2-tay+-}a2, 
and x3= y3_ay2 + ta2y- i-.ya3; 

Consequently, 
x3 = y3 _ ay2 + ta2y - +ra3 

ax2 = ay2 - ta2y + ~a3 
bx= by-tab 
c= c 

or, y3_(ta2-b) y+na3-tab+c=0, 
an equation in which the second term is wanting. 

747. We are enabled, by means of this transformation, 
to find the roots of all equations of the third degree, 
as the following example will shew. 

Let it be proposed to resolve the equation 
x3_6x2 + 13x-12=0. 

Here it is first necessary to destroy the second term; for 
which purpose, let us make x-2=y, and then we shall 
have x=y+2, X2=y2+4y+4, and X3=y3+6y2+ 12y+8; 
therefore, 

x3=y3+6y2+12y+ 8 
-6x2= -6y2_24y-24 
13x = 13y+26 

-12 = -12 
which gives y3+y-2=0; or '!/= -y+2. 

And if we compare this equation with the formula (Art. 
741) x3=jx+g, we havef -1, and g=2; wherefore, 
g2=4, and i'-.yj'3=-tr; also, g2-trP=4+tr=t;.,2, 

4.v'2I" 
and .v'(g2- t-.yP) = .v' V,l = --r-; consequently, 
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2+4..121 2-4..121 

Y = V ( 2 9) + V ( 2 9), or 

Y=V(I+ 2~21) +V(l-2~21), or 

y=V (9+ 2~21) +V( 9-2~21 ) 

_3 (27+6.v 21 ) 3 (27-6.,121) 
y--:j 27 +-:j 27 or 

y =tV(27 +6.;21) + W(27 - 6 .v21); and it remains 
to substitute this value in x=y + 2. 

748. In the solution of this example, we have been 
brought to a quantity doubly irrational; but we must not 
immediately conclude that the root is irrational: because 
the binomials 27±6J21 might happen to be real cubes; 
and this is the case here; for the cube of 
3+ .;21 . 216+48.v21 . 

2 bemg 8 = 27 + 6'; 21, It follows that 

. 3+ .v21 
the cube root of 27 + 6.v 21 IS 2 ' and that the cube 

root of27-6';21 is 3-t21 . Hence the value which 

we found for Y becomes 

_1(3+';21) 1(3-';21)_.1. .1.-1 Y-a 2 +3 2 -2+2-' 
Now, since y=l, we have x=3 for one of the roots of the 
equation proposed, and the other two will be found by 
dividing the equation by x-3. 

x-3) x3-6x2 +13x-12 (x2-3x+4 
x3 -3x2 

4,r-12 
4x-12 

O. 

Also making the quotient x2-3x +4=0, we have 
x2=3x-4; and 
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X -.lI.+ ./(.9.._ U)-.lI.+ .1_1.._ 3±..;-7. 
-2-'V 40 40 -2-'V 4- 2 ' 

which are the other two roots, but they are imaginary. 
749. It was, however, by chance, as we have remarked, 

that we were able, in the preceding example, to extract the 
cube root of the binomials that we obtained, which is the 
case only when the equation has a rational root; conse
quently, the rules of the preceding chapter are more easily 
employed for finding that root. But when there is no 
rational root, it is, on the other hand, impossible to express 
the root which we obtain in any other way, than according 
to the rule of Cardan; so that it is then impossible to apply 
reductions. For example, in the equation x 3=6x+4, we 
have! 6 and 9=4; so that x=V(2+2";-I)+V(2-
2"; -I), which cannot be otherwise expressed.* 

• In this example, we have -h /3 less than g2, which is the 
well-known irreducible case; a case which is so much the more 
remarkable, as the three roots are then always real. We cannot 
here make use of Cardan's formula, except by applying the 
methods of approximation, such as transforming it into an 
infinite series. In the work spoken of in the Note, Art. 40, 
Lambert has given particular Tables, by which we may easily 
find the numerical values of the roots of cubic equations, in the 
irreducible as well as the other cases. For this purpose we may 
also employ the ordinary Tables of Sines. See the Spherical 
Astronomy of Mauduit, printed at Paris in 1765. 

In the present work of EULER, we are not to look for all that 
might have been said on the direct and approximate resolutions 
of equations. He had too many curious and important objects, 
to dwell long upon this; but by consulting ['Histoire des Ma
tMmatiques, l'Algebre de M Clairaut, le Cours de MatMma
tiques de M. Bezout, and the latter volumes of the Academical 
Memoirs of Paris and Berlin, the reader will obtain all that is 
known at present concerning the resolution ofEqllations.-F. T. 

For a clear and explicit investigation of the method of solving 
Cubic Equations by the Tables of Sines, &c. the reader is also 
referred to Bonnycastle's Trigonometry; from which the follow
ing formulre for the solution of the different cases of cubic equa
tions are extracted. 

1. x 3 + px - q = O. 

Put i(~)t = tan. z, and ~' (tan. (450 - tz)) = tan. u; 

Then x = 2 ..; ~ X cot. 2 u. Or, putting 

Log. i + 10 - t log. ~ = log. tan. z, and 
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QUESTIONS FOR PRACTICE. 

1. Given y3+30y=117, to determine y. Ans. y=3. 
2. Given y3-36y=91, to find the value of y. 

AT/s. y=7. 
3. Given y3 + 24y=250, to find the value of y. 

Ans. y=5·05. 

t (log. tan. (45°-lz)+20)=log. tan. u, 

Then log. x = t log. ~ + log. cot. 2 u - 10. 

2. x3 + px + q = O. 

Put ~(~) t = tan. z, and V (tan. (45°-jz) ) = tan. u, 

Then x = - 2"; S X cot. 2 u. Or, putting 

Log. ~ + 10 - i log. ~ = log. tan. z, and 

t (log. tan. (45° - !z) + 20) = log. tan. u, 
4p 

Then log. x = 10 - t log. "3 - log. cot. 2 u. 

3. x3 - px - q = O. 

This form has 2 cases, according as ~ (~) t is less, or greater 

than 1. 

In the 1st case, put ~(~ )! = cos. z. 

And V (tan. (45° - iz) = tan. u; 

Then x = 2 ..;~ X cosec. 2 u. Or, putting 

p I q 10 + t log. '3 - og. 2" = log. cos. z, and 

t(log. tan. (450 - tz) + 20) = log. tan. u; 

Then log. x = 10 + log. ~ - log. sin. 2 u. 

In the 2d case, put ~ (~}! = cos. z, and x will have the 

3 following values: 
p z 

x = + 2 ..; '3 X cos. '3 

x = - 2 ..;~ X cos. (600 - i) 
p (' z) x = - 2 ..; '3 X cos. , 60° + 3" or, 



270 ELEMENTS SECT. IV. 

4. Given .1l-3y4_2y2_8=0, to find y. Arts. y=2. 
5. Given y 3+3y2+9y=13, to determiney. 

Ans. y=l. 
6. Given x3-6x= -9, to find the value of x . 

.A.m. x=-3. 

4p z 
Log. x= t log. "3 + log. cos. 3 - 10, 

Log. x = tlog. ! + log. cos. (60°- i) - 10, 

Log. x =tlog. 4: + log. cos. (60° + i) - 10, 

Taking the value of x, answering to log. x, positively in the 
first equation, and negatively in the two latter. 

4. x3 - px + q = O. 
This form, like the former, has also two cases, according as 

~(~)t is less, or greater than 1. 

In the 1st case, put ~ (~)! = cos. z, 

And V (tan. (450 - tz) ) = tan. u, as before; 

Then x = - 2 "'~ cosec. 2 u. Or, putting 

p q 
10 + t log. 3 - log. 2" = log. cos. z, and 

j-{log. (tan. 450 - tz) + 20} = log. tan. u; 

Then, - log. x = 10 + log. 4: - log. sin. 2 u. 

In the 2d case, put ~(~)t = cos. z, and x will have the 

3 following values: 
p z 

x= -2 "'3 X cos' 3 

x= + 2"~ X cos. (600-~) 

x= + 2 "'~ X cos. (60° +~). Or, 
4p z 

Log. x = tlog'"3 + log. cos. 3 - 10, 

Log. x =tlog. t + log. cos. (60°-i) -10, 

Log. x =t log. t + log. cos. ( 60° + ~) - 10, 
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7. Given x3-6x2 + 10x=8, to find x. AlIs. x=4. 
8. Given p3_1.pp= 1*0, to find p. Arts. p=8t. 
9. Given x3 _ yx=H, to find x. AlI". x=2i. 

lO. Given !/-19y=30, what is the value of y? 
AlIs. y=5. 

Taking the value of x, answering to log. x, negatively in the 
first equation, and positively in the two latter. 

As an example of this mode of solution, in what is usually 
called the Irreducible Case of Cubic Equations, 

Let x3 - 3x = I, to find its 3 roots. 

Here ~ (~)t = t (f)t = t = .5 = cos. 60° = e, hence 

x = 2";~ X cos. i = 2 cos. 20° = 1'8793852 

x = - 2 ..;~ X cos. ( 60° - i) = - 2cos. 40°=-1'5320888 

x = -2";~ X cos. (60°+ i )=-2 cos. 80°= -0'3472964. 

Also, let x3 - 3x = - 1, to find its 3 roots. 

Here, as before, ~ (~)! = .5 = cos. 60° = z, hence 

x = - 2 ..;~ X cos. ~ = -::- 2 cos. 20° = - 1'8793852 

x = - 2 ..;~ X cos. ( 60° -~) = 2 cos. 40° = 1'5320888 

x = - 2 ..;~ X cos. ( 60° + i) = 2 cos. 80° = 0'3472964. 

Where the roots are the negatives of those of the first case. 
For the mode of investigating these kinds of formulre, see, 

in addition to the references already given, Cagnoli, Traite de 
Trigon. and Article Irreducible Case, in the Supplement to Dr. 
Hutton's Mathematical Dictionary. 
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CHAPTER XIII. 

Of the Resolution of Equations of the Fourth Degree. 

750. When the highest power of the quantity x rises to 
the fourth degree, we have equations of tlte fourth degree; 
the general form of whicli is 

X4 +ax3 + bx2 +cx + d=O. 
We shall, in the first place, consider pure equations of 

the fourth degree; the expression for which is simply 
X4 = f; the root of which is immediately found by 
extracting the biquadrate root of both sides, since we 
obtain x = t; f 

751. As X4 is the square of X2, the calculation is greatly 
facilitated by beginning with the extraction of the square 
root: for we shall then have x2='; f; and, taking the 
square root again, we have x= t; f; so that t; f is nothing 
but the square root of the square root off. 

For example, if we had the equation X4 = 2401, we 
should immediately have x2=49, and then x=7. 

752. It is true this is only one root; and as there are 
always three roots in an equation of the third degree, so 
there are four roots in an equation of the fourth degree: 
but the methods which we have explained will not enable 
us to assign those four roots. For, in the above example, 
we have not only x2~49, but also X2 = -49; now, the 
first value gives the two roots x=7, and x=-7, and the 
second value gives x = .; -49 = 7'; -1, and x = -.; 
- 49 = -7'; -1; which are the four biquadrate roots 
of 2401. The same also is true with respect to otLer 
numbers. 

753. Next to these pure equations, we shall consider 
others, in which the second and fourth terms are wanting, 
and which have the form X4+ fX2+g=O. These may be 
resolved by the rule for equations of the second degree; 
for if we make x2 =y, we have y2+fy+g=O, or 
y2= - fy-g, whence we deduce 

y= _{-j± .;o.f2_g ) = ( - f ± ';~f2_4g)). 

Now, X2=y; so that x=±.; (-f± ';2(P-4g ) , III 

which the double signs ± indicate all the four roots. 
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754. But whenever the equation contains all the terms, it 
may be considered as the product of four factors. In fact, 
if we multiply these four factors together, (x - p) x 
(x -q) x (x - r) X (x -s), we get the product X"
(p + q + r + s )X3 + (pq + pr + ps + qr + 'is + rs )X2 
- (pqr + pqs + prs + qrs)x + pqrs; and this quantity 
cannot be equal to 0, except when one of these four factors 
is =0. Now, that may happen in four ways; 

1. when x=p ; 2. when x=q ; 
3. when x=r; and 4. when x=s. 

Consequently, these are the four roots ofthe equation. 
755. Ifwe consider the above formula with attention, we 

observe, in the second term, the sum of the four roots 
multiplied by-x3 ; in the third term, the sum of all the 
possible products of two roots, multiplied by x2 ; in the 
fourth term, the sum of the products of the roots combined 
three by three, multiplied by - x; lastly, in the fifth term, 
the product of all the four roots multiplied together. 

756. As the last term contains the product of all the roots, 
it is evident that such an equation of the fourth degree can 
have no rational root, which is not a divisor of the last term. 
This principle, therefore, furnishes an easy method of de
termining all the rational roots, when there are any; since 
we have only to substitute successively for x all the divisors 
of the last term, till we find one which satisfies the terms of 
the equation; and having found such a root (for example, 
x-p), we have only to divide the equation by x-p, after 
having brought all the terms to one side, and then suppose 
the quotient=O. We thus obtain an equation of the third 
degree, which may be resolved by the rules already given. 

757. Now, for this purpose, it is absolutely necessary 
that all the terms should consist of integers, and that the 
fit'st should have only unity for the coefficient; whenever, 
therefore, any terms contain fractions, we must begin hy 
destroying those fractions; and this may always be done by 
substituting, instead of x, the quantity y, divided by a num
ber which contains all the denominators of those fractions. 

For example, if we have the equation 
x4_tx3 + tx2 -ix+-h=O, 

as we find here fractions which have for denominators 2, 3, 

and multiples of these numbers, let us suppose .1'= ~, and 

we shall then have 
y4 ty3 ty2 i-Y _ 
64-&+~-6 + T~-O, 

T 
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an equation, which, multiplied by 64 , becomes 
y4_3y3+ 12y2-162y+72=0. 

SECT. IV. 

If we now wish to know whether this equation has 
rational roots, we must write, instead of y, the divisors of 
72 successively, in order to see in what cases the formula 
would really be reduced to O. 

758. But as the roots may as well be positive as nega
tive, we must make two trials with each divisor: one, 
supposing that divisor positive; the other, considering it 
as negative. However, the following Rule will frequently 
enable us to dispense with this. 

Whenever the signs + and - succeed each other re
gularly, the equation has as many positive roots as there 
are changes in the signs; and as many times as the same 
sign recurs without the other intervening, so many nega
tive roots belong to the equation.* 

Now, our example contains four changes of the signs, and 
no succession; so that all the roots aloe positive: and we have 
no need totake any of the divisors of the last term negatively. 

759. Let there be given the equation 
x4+2x3 -7x2 -8x+ 12=0. 

"\Ve see here two changes of signs, and also two successions; 
whence we conclude, with certainty, that this equation 
contains two positive, and as many negative roots, which 
must all be divisors of the number 12. Now, its divisors 
being 1, 2, 3, 4, 6, 12, let us first try x= + 1, which 
actually produces 0; therefore one of the roots is x= 1. 

If we next make x = - 1, we find + 1 - 2 - 7 + 8 + 
12 =21 - 9 = 12: so that x = - 1 is not one of the roots 
of the equation. Let us now make x=2, and we again 
find the quantity=O; consequently, another of the roots is 
x=2; but x = - 2, on the contrary, is found not to be a 
root. If we suppose x = 3, we have 81 + 54 - 63 - 24 
+ 12=60, so that the supposition does not answer; but 
x = - 3, giving 81 - 54 - 63 + 24 + 12=0, this is 
evidently one of the roots sought. Lastly, when we try 
x= -4, we likewise see the equation reduced to nothing; 
so that all the four roots are rational, and have the fol
lowing values: x = 1, x =2, x = - 3, and x = -4; and 

* This Rule is general for equations of all dimensions, provided 
there are no imaginary roots. The French ascribe it to Des
cartes, the English to Rarriot; but the general demonstration 
of it was first given by M. l'Abbe de Gua. See the Memoires 
de l'Academie des Sciences de Par/,$, for 1741.-F. T. 
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according to the Rule given above, two of these roots are 
positive, and the two others are negative. 

760. But as no root could be determined by this method, 
when the roots are all irrational, it was necessary to devise 
othel' expedients for expressing the roots whenever this 
case OCCUI'S; and two different methods have been dis
covered for finding such roots, whatever be the nature of 
the equation of the fourth degree. 

But before we explain those general methods, it will be 
proper to give the solution of some particular cases, which 
may frequently be applied with great advantage. 

761. When the equation is such, that the coefficients of 
the terms succeed in the same manner, both in the direct 
and in the inverse order of the terms, as happens in the 
following equation ;* 

x4+mx3+nxZ+mx+ 1 =0; 
or in this other equation, which is more general: 

x4+max3+na2x2+ma~x+a4=0 ; 
we may always consider such a formula as the product of 
two factors, which are of the second degree, and are easily 
resolved. In fact, if we represent this last equation by 
the product 

(xz+pax+a2 ) x (xz+qax+a2 ) =0, 
in which it is required to determine p and q in such a 
manner, that the above equation may be obtained, we 
shall find, by perfol'ming the multiplication, 

X4+(p +q)ax3 + (pq+2)U2X2 +(p +q)a3x+a4=0; 
and, in order that this equation may be the same as the 
former, we must have, 

1. p +q=m, 
2. pq + 2=n, 

and, consequently, pq = n - 2. 

"* These equations may be called reciprocal, for they are not 

at all changed by substituting.!. for x. From this property it 
x 

follows, that if a, for instance, be one of the roots, !. will be one 
a 

likewise; for which reason such equations may be reduced to 
others of a dimension one-half less. De Moivre has given, in 
his Miscellanea Analytica, page 71, general formulre for the re
duction of such equations, whatever be their dimension.-F, T. 

See also Wood's Algebra; the Complement des EUmens 
d'Algebra, by Lacroix; and Waring's Medit. Algeb. chap. iii. 
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Now, squaring the first of those equations, we have 
p2 + 2pq + q2 = m2; and if from this we subtract the 
second, taken four times, or 4pq=4n-8, there remains 
p2_2pq+q2=m2_4n+8; and taking the square root, 
we find p_q=';(m'1._4n + 8); also, p+q=m; we 
shall therefore have, by addition, 2p=m+ ';(m2-4n+8), 

m+ ';(m2-4n+8) . 
or p = 2 ; and by subtractlOn, 

m- ';(m2-4n+8) 
2q=m- ';(m2-4n+8), or q= 2 . 

Having therefore found p and q, we have only to suppose 
each factor=O, in order to determine the value of x. The 
first gives X2 + pax+a2 = 0, or x2 = -pax - a2, whence 

we obtain x= _ p; + .; (P~2 _ a2), 

or x = - P2a +fa';(p2-4). 

The second factor, x2 +qax+a2, gives x=- q; + fav 

(q2_4); and these are the four roots of the given equation. 
762. To render this more clear, let there be given the 

equation a;4 - 4x3 - 3x2 - 4x + 1 = O. We have here 
a = 1, m=-4, n =- 3; consequently, m2 -4n+8=36, 
and the square root of this quantity is = 6; therefore 

-4+6 -4-6 
P = 2 = 1, and q = 2 = - 5; whence re-

sult the four roots, 
-1+ ';(-3) 

1st and 2d, x= -t±t.; -3= - 2 ; and 

3d and 4th, x=t±t';21 _ 5±:j21; that is, the 

four roots of the given equation are: 
-1 + .;-3 -1-';-3 

1. x = 2 ,2. x = 2 ' 

3.x=5+:j21, 4. x= 5-;21. 

The first two of these roots are imaginary, or impos
sible; but the last two are possible; since we may ex
press'; 21 to any degree of exactness, by means of de
cimal fractions. In fact, 21 being the same with 
21'00000000, we have only to extract the square root, 
which gives.; 21 =4'5825. 
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Since, therefore, .J 21 =4'5825, the third root is very 
nearly x=4'7912, and the fourth, x=O·2087. It would 
have been easy to have determined these roots with still 
more precision: for we observe that the fourth root is very 
nearly T\' or -h which value will answer the equation with 
sllfficieut exactness. In fact, if we make x=t, we find 
.r:b--T!S---Z\--t + 1 =-e;Ys-. We ought however to have 
obtained 0, but the difference is evidently not great. 

763. The second case in which such a resolution takes 
place, is the same as the first with regal'd to the coefficients, 
but differs from it in the signs; for we shall suppose that 
the second and the fourth terms have different signs; 
such, for example, as the equation 

X4 + max3 + na2x2 - ma3x + a4 =0, 
which may be represented by the product, 

(xl+pax-a~) X (x2+qax-a2)=0. 
For the actual multiplication of these factors gives 
X4 + (p + q)ax3 + (pq - 2)a2x2 - (p + q)a3x + a4, 

a quantity equal to that which was given, if we suppose, 
in the first place, p +q = m, and in the second place, 
pq -2 = n, or pq =n + 2; because in this manner the 
fourth terms become equal of themselves. If now we 
square the first equation, as before (Art. 761), we shall 
have p2+2pq+q2=m2; and if from this we subtract the 
second, taken foul' times, or 4pq=4n + 8, there will re
main p2 _ 2pq + q2 = m2 - 4n - 8; the square root of 
which is p-q= .J(m2 -4n-8), and thence, by adding 
p + q=m, we obtain 

m + .J (m2-4n-8) 
p= 2 ; and,bysubtractingp+q, ... 

m- v'(m2-4n-8) 
q = 2 . Having therefore found p and q, 

we shall obtain from the. first factor (as in Art. 761) the 
two roots x=-ipa±tav'(p2+4), and from the second 
factor the two roots x=-tqa±tav'(q2+4); that is, we 
have the fOUl' roots of the proposed equation. 

764. Let there be given the equation 
x4 -3 . 2x3 +3. 8x + 16=0. 

Here we have a = 2, m = - 3, and n =0; so that 
v'(m2 -4n-8)=1, =p-q; and, consequently, 

-3+1 -3-1 
P = 2 = - 1, and q = 2 = - 2. 

Thel'efOl'e the first two roots are x= 1 ± v' 5, and the 
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last two are x=2± v8; so that the four roots sought 
will be, 

1. x=1+v5, 2. x=1-v5, 
3. x=2+ v8, 4. x=2- v8. 

Consequently, the four factors of our equation will be 
(x - 1 - v 5) x (x - 1 + v 5) x (x - 2 - v 8) x 
(x - 2 + v 8), and their actual multiplication produces 
the given equation; for the first two being multiplied to
gether, give x2 - 2x-4, and the other two give x2-4x 
-4; now, these products, multiplied together, make,x4 
- 6x3 + 24x + 16, which is the same equation that was 
proposed. 

CHAPTER -XIV. 

Of tlte Rule of Bombelli for reducing tlte Resolution of 
Equations of tlte Fourth Degree to t'tat of Equations of 
tlte Third Degree. . 

765. We have already shewn how equations of the 
third degree are resolved by the rule of Cardan; so that 
the principal object, with regard to equations of the fourth 
degree, is to reduce them to equationl! of the third degree. 
For it is impossible to resolve, generally, equations of the 
fourth degree, without the aid of those of the third; since, 
when we have determined one of the roots, the others 
always depend on an equation of the third degree. And 
hence we may conclude, that the resolution of equations 
of higher dimensions presupposes the resolution of all 
equations of lower degrees. 

766. It is now some centuries since Bombelli, an 
Italian, gave a rule for this purpose, which we shall 
explain in this chapter.* 

Let there be given the general equation of the fourth 
degree, ,x4 + ax3 + bx2 + cx+d=O, in which the letters 
a, b, c, d, represent any possible numbers; and let us 
suppose that this equation is the same as 

(x2+tax+p)2-(qx+r)2=O; 
in which it is required to determine the letters p, q, and r, 

"" This rule rather belongs to Louis }<'errari. It is improperly 
called the Rule of Bombelli, in the same manner as the rule 
discovered by Scipio Ferreo has been ascribed to Cardan.-F. T. 
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in order that we may obtain the equation proposed. By 
squaring, and ordering this new equation, we shall have 

x4+ax3+ta2xQ+apx +p2 
2pX2 -2qrx-r2 

_q2XZ. 
Now, the first two terms are already the same here as 

in the given equation; the third term requires us to make 
-~a£+2p-q2= b, which gives q2=ta2 +2p-h; the fourth 
term shews that we must make ap-2qr = c, 01' 2qr = ap 
-c; and, lastly, we have for the last term ]12-r2 = d, or 
r 2 = p2_d. We have therefore three equations which 
will give the values of p, q, and r. 

767. The easiest method of deriving those values from 
them is the following: if we take the first equation four 
times, we shall have 4qZ = a2 +8p-4h; which equation, 
multiplied by the last, r2 = p2_d, gives 

4q2r2 = 8p3 + (a2 -4h)p2-8dp-d(aZ-4h). 
Farther, if we square the second equation, 2qr = ap-c, 

we have 4q2rZ=a2pz-2acp+c2• So that we have two 
values of 4q2rZ, which, being made equal, will furnish the 
equation 

8p3 +(a2 _ 4h )p2_ 8dp -d (a2 -4h) = aZp2-2acp + c2 ; 

or, bringing all the terms to one side, and' arranging, 
8p3_4hp2+(2ac-8d)p-(a2d+4hd-c2) = 0, 

an equation of the third degree, which will always give 
the value of p by the rules already explained. 

768. Having therefore determined three values of p by 
the given quantities a, h, c, d, when it was required to find 
only one of those values, we shall also have the values of 
the two other letters q and r; for the first equation will 

give q = ..;'(ta2 +2p-h), and the second gives r = a~-c. 

Now, these three values being determined for each gi~en 
case, the four roots ofthe proposed equation may be found 
in the following manner. 

This equation having been reduced to the form 
(x2+tax+p)2-(qx+r)2=0, we shall have 

(x2+tax +p)2 = (qx+r)2, 
and, extracting the root, x2+tax+p = qx+r, or x2+tax 
+p = -qx-r. The first equation gives x2 = (q-ta)x
p+r, from which we may find two roots; and the second 
equation, to which we may give the form x2=-(q+ta)x 
- p - r, will furnish the two otherr()ots. 
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769. Let us illustrate this rule by an example, and 
suppose that the equation 

x4-1Ox3 +35x2 -50x+24=0 
was given. If we compare it with our general formula 
(at the end of Art. 767), we have a = - 10, b = 35, 
e = -50, d = 24; and, consequently, the equation which 
must give the value of p is 

8p 3 - 140p2 + 808p - 1540 = 0, or 
2p 3 - 35p 2 + 202p - 385 = O. 

The divisors of the last term are I, 5, 7, II, &c.; the 
first of which does not answer; but making p = 5, we get 
250-875 + 1010-385 = 0, so that p = 5; and if we 
farther suppose p = 7, we get 686-1715 + 1414-385 = 0, 
a proof that p = 7 is the second root. It remains now to 
find the third root; let us therefore divide the equation by 
2, in order to have p3_ Sfp2+ 101p- 31-5 = 0, and let us 
consider that the coefficient of the second term, or Sf, 
being the sum of all the three roots, and the first two 
making together 12, or ¥" the third must necessarily 
be V. 

We consequently know the three roots required. But 
it may be observed that one would have been sufficient; 
because each gives the same four roots for our equation 
of the fourth degree. 

770. To prove this, let p = 5; we shall then have, hy 
the formula, ../(la2 +2p-b), q= ../(25+10-35)=0, 

d -50+50 N h' b' d . d an r = 0 =~. ow, not mg emg etermme 

by this, let us take the third equation, 
r2 = p2_d = 25-24 = I, 

so that r = ] ; our two equations of'the second degree will 
then be, ]. X2 = 5x-4, 2. x2 = 5x-6. 

Th fi . h 5+3 erst gIves t e two roots x = t± ../~, or x = ~, 
that is to say, x= 4, and x = 1. 

Th d .. • 5±I 
e secon equatIOn gIves x = 1 ± ../ l = -2-' 

that is to say, x = 3, and x = 2. 

But suppose now p = 7, we shall have 
-70+50 

q=../(25+ 14-35)=2, and r=:--4-- =-5, 
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whence result the two equations of the second degree, 
1. x2=7x-I2, 2. x2 =3x-2; 

h fi . 7+ 1 
t e rstglvesx=t±../·h orx = "2' 
so that x = 4, and x = 3; the second furnishes the root 

_.3.+./~_3±I 
X- 2 -v 4. -~, 

and, consequently, x = 2, and x = 1 ; therefore. by this 
second supposition, the same four roots are found as by 
the first. 

Lastly, the same roots are found, by the third value 
of p, = y; for, in this case, we have 

ap-c -55+50 
q=../(25+11-35)=I, and r=-2-= 2 = 

- t; so that the two equations of tte second degree 
become, 

Whence we obtain from the first, x=3+../ 1; that is to 
say, x=4, and x=2; and from the second, x=2+../ 1 ; 
that is to say, x=3, and x= 1, which are the same roots 
that we originally obtained. 

771. Let there now be proposed the equation 

x4-I6x-12=0, 
in which a=O, b=O, c=-I6, d=-I2; and our equa
tion of the third degree will be 

8p3+96p-256=0, or p3+ I2p-32=0, 

and we may make this equation still more simple, by 
writing p=2t; for we have then 

8t3 +24t-32=0, or t3+3t-4=0. 

The divisors of the last term are 1, 2, 4; whence one of 
the roots is found to be t= 1; therefore p=2, q= ../4=2, 
and r = l..f = 4. Consequently, the two equations of the 
second degree are 

x2=2x+2, and x2=-2x-6; 
which give the roots 

x=1 ± ../3, and x=-I+ ../-5. 

772. We shall endeavour to render this resolution still 
more familiar, by a repetition of it in the following 
example. Suppose there were given the eqnation 
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x4 -6x3 + 12x2-12x+4=O, 
which must be contained in the formula 

(x2_3x+p)2_ (qx+r)2=O, 

SECT. IV. 

in the former part of which we have put -3x, because 
-3 is half the coefficient, -6, of the given equation. 
This formula being expanded, gives 

x4 -6x3 +(2p+9-q2)x2 -(6p+2qr)x +p2_ r2=O; 
which, compared with our equation, there will result from 
that comparison the following equations: 

1. 2p+9 -qz=12, 
2. 6p+2qr=12, 
3. pZ_ r2= 4, 

The first gives q2=2p-3 ; 
the second, 2qr=12-6p, or qr=6-3p; 
the third, r2=p2_4. 

Multiplying r2 by qZ, and p2_4 by 2p-3, we have 
q2r2=2p3_3p2_8p + 12; 

and if we square qr, and its value, 6-3p, we have 
q2r2=36_36p+9p2 ; 

so that we have the equation, 
2p3_ 3p2_ 8p + 12=9p2-36p +36, or 
2p3-12p2+28p-24=O, or 
p3_ 6p2+14p-12=O, 

one of the roots of which is p=2; and it follows that 
q2=1, q=l, and qr-r=O. Therefore our equation will 
be (x2-3x + 2)2=X2, and its square root will be x 2-3x 
+2=±x. If we take the upper sign, we have x2 =4x 
-2; and taking the lower sign, we obtain X2 = 2x-2, 
whence we derive the four roots x=2± ..;2, and X= 1 
±";-1. 

CHAPTER XV. 

Of a new Method of resolving Equations of the Fourth 
Degree. 

773. The rule of Bombelli, as we have seen, resolves 
equations of the fourth degree by means of an equation of 
the third degree; but since the invention of that Rule, 
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another method has been discovered of performing the 
same resolution: and, as it is altogether different from the 
first, it deserves to be separately explained.* 

77 4. We will suppose that the root of an equation of 
the fourth degree has the form, X= vP+ vq+ vr, in 
which the letters p, g, r, express the roots of an equation 
of the third degree, such as, Z3_ fZ2+gz-h=O; so that 
p+q+r=f; pq+pr+qr=g; and pqr=h. [Art. 722.] 
This being laid down, we square the assumed formula, 
x= v1' + V q + vr, and we obtain 

x2=p+q+r+2 v pq+2 v 1'r+2vqr; 
and, since p+q+r=f, we have 

x2 - f = 2 V pq + 2 V pr + 2 v qr. 
We again take the squares, and find 
x4-2fx2 + J2=4pq +4pr+4qr + 8 Vp2qr+ 8 vpq2rt 8 Vpqr2. 
Now, 4pq+4pr+4qr=4g; so that the equation becomes 
:r4 - 2fx2 + P - 4g = 8 V pqr x (v l' + v q + v r); but 
vp+ v q+ vr=x, and pqr = h, or vpqr = v h; where
fore we arrive at this equation of the fourth degree, 
X4 - 2fx2 - 8x v It + P + f2-4g = 0, one of the roots of 
which is X= vP+ vq+ vr; and in which 1', q, and r, 
are the roots of the eq nation of the third degree, 

z3-fz2+ gz-h=0. 
775. The equation of the fourth degree, at which we 

have arrived, may be considered as general, although the 
second term X3y is wanting; for we shall afterwards shew, 
that every complete equation may be transformed into 
anothel', from which the second term has been taken 
away. 

Let there be proposed the equation x4 _ax2-bx_c=0, 
in order to determine one of its roots. We will first com
pare it with the formula, x4-2x2-8xvh+f2_4g=O, in 
OJ'der to obtain the values of f, g, and Il; and we shall 
have, 

a 
1. 2f = a, and, consequently f = 2; 

b2 

2. 8 v h = b, so that It = 64 ; 

3. P - 4g= -c, or ( asf=;), :2 -4g+c=0, 

or ~a2 + e=4g; consequently, g= Tlr;a2 + te . 

.. This method was the invention of Euler himself. He has 
explained it in the sixteenth volume of the Ancient Commen
taries of Petersburg.-F. T. 
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776. Since, therefore, the eqnation 
x4 -ax2 -bx-e = 0, 

gives the values of the letters j, g, and h, so that 
j = -la, g = T7;a2 + -le, and II = 6\b2, or .j h = ib, 

we form from these values the equation of the third degree 
z3_jz2+gz-h=0, in order to obtain its roots by the 
known rule. And if we suppose those roots, l. z=p, 
2. z=q, 3. z=r, one of the roots of our equation of the 
fourth degree must be, by the supposition, Art. 774, 

x=.jp+.jq+.jr. 

777. This method appears at first to furnish only one 
root of the given equation; but if we consider that every 
sign .j may be taken negatively, as well as positively, we 
immediafely perceive that this formula contains all the 
four roots. 

Farther, if we chose to admit all the possible changes 
of the signs, we should have eight different values of x, 
and yet four only can exist. But it is to be observed, that 
the product of those three terms, or • ./pqr, must be equal 
to .j h= ib, and that if ib be positive, the product of the 
terms .jp, .j q, .jr, must likewise be positive; so that all 
the variations that can be admitted are reduced to the 
four following: 

l. x= ";p+"; q+ ";r, 
2.x= ";p-.jq-.jr, 
3. x= -.jp+.jq-.jr, 
4. x= -.jp-";q+";r. 

In the same manner, when ib is negative, we have only 
the four following values of x : 

l. x= .jp+";q-.jr, 
2. x= ";p-";q+.jr, 
3. x= -";p+.jq+.jr, 
4. x= -.jp-.jq-";r. 

This circumstance enables us to determine the four roots 
in all cases; as may be seen in the following example. 

778. Let there be proposed the equation of the fourth 
degree, x4 -25x2 +60x-36=0, in which the second 
term is wanting. Now, if we compare this with the 
general formula, we have a=25, b= -60, and e=36; 
and after that, 

j = 21, 9 = ry'lc; +9= .\%-Q, and h= 6\b2= 2-£-5 ; 
by which means our equation of the third degree becomes, 
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Z3_ ¥Z2+ V'-!z- 2i5 =0. 

First, to remove the fractions, let us make z = ~; and we 

u3 25u2 769u 225 . . 
shall have 64 - 32 + 64 - 4 = 0, and multIplYlOg 

by the greatest denominator, we obtain 
u3-50u2 + 769u -3600 = O. 

We have now to determine the three roots of this equa
tion; which are all three found to be positive; one of them 
being u=9: then dividing the equation by u-9, we find 
the new equation u2 -41u+400=0, or u2=41u-400, 
which gives 

41+9 
u= V ± ';(Htl - 1 I!j0)= 2 ; 

so that the three roots are u=9, u= 16, and u=25. 
u 

Consequently, as z = 4 the roots are 

1. z=-i-, 2. z=4, 3. z= ¥. 
These, therefore, are the values of the letters p, q, and r ; 

that is to say, P=-i-, q=4, and r= ¥. Now, if we con
sider that .; pqr= .; h = - l.f, and that therefore this 
value = tb is negative, we must, agreeably to what has 
been said with regard to the signs of the roots .; p, .; q, 
and ';r, take all those three roots negatively, or take 
only one of them negatively; and consequently, as 
.;p=t, ';q=2, and ';r=t, the four roots of the given 
equation are found to be: 

1. x= t+2-t=l, 
2. X= -i-2+t=2, 
3. x= -t+2+t=3, 
4. X= -t-2-t-=-- -6. 

From these roots are formed the four factors, 
(x-I) x (x-2) x (x-3) x (x+6)=0. 

The first two, multiplied together, give x2 -3x+2; the 
product of the last two is x2 +3x-18; again multiplying 
these two products together, we obtain exactly the equa
tion proposed, x4-25x2 +60x-36. 

779. It remains now to shew how an equation of the 
fourth degree, in which the second term is found, may be 
transformed into another, in which that term is wanting: 
for which we shall give the following Rule.* 

* An investigation of this rule may be seen in Maclaurin's 
Algebra, Part II. chap. iii. 
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Let there be proposed the general equation y4+ ay3+ 
by'l.+cy+d=O. If we add to y the fourth part of the 
coefficient of the second term, or -ta, and write, instead of 
the sum, a new letter x, so that y+ia=x, and conse
quently y=x- ia: we shall have 

y'1.=x2- tax +T~a'l., y3=X3_i-ax'1. +-f~~x--ha3, 
and, lastly, as follows: 

y4 = x4 _ax3 + ia2x'1.--&;a3x+ 216a4 
ay3 = ax3_ i-a2x2 + i-r,a3x- -ha4 
by'l. = bx'1. - iabx + T~a2b 
cy = ex - iac 
d - d 

Or, x4+0 

We have now an equation from which the second term 
is taken away, and to which nothing prevents us from ap
plying the rule before given for determining its fonr roots. 
After the values of x are found, those of y will easily be 
determined, since y=x--ta. 

780. This is the greatest length to which we have yet 
arrived in the resolution of algebraic equations. All the 
pains that have been taken in order to resolve equations 
of the fifth degree, and those of higher dimensions, in the 
same manner, or, at least, to reduce them to inferior 
degrees, have been unsuccessful: so that we cannot give 
any general rules for finding the roots of equations, which 
exceed the fourth degree. 

The only success that has attended these attempts has 
been the resolution of some particular cases; the chief of 
which is that, in which a rational root takes place; for 
this is easily found by the method of divisors, because we 
know that such a root must be always a factor of the last 
term. The operation, in other respects, is the same as that 
we have explained for equations of the third and fourth 
degree. 

781. It will be necessary, however, to apply the rule of 
BombeIli to an equation which has no rational roots. 

Let there be given the equation y4_8y3+14y2+ 
4y-8=0. Here we must begin with destroying the 
second term, by adding the fourth of its coefficient to y, 
supposing y-2=x, and substituting in the equation, instead 
of y, its new value x + 2, and, instead of y'l., its value x2 + 4x 
+4. Doing the same with regard to y3 and.!l, we shall have, 
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,!/=x4 +8x3 +24x2+32x+ 16 
_8y3= -8x3-48x2-96x-64 
14y2= 14x2 +56x+56 
4y = 4x+ 8 

-8 = - 8 

x4+0 -lOx2 - 4x+ 8=0. 

287 

This equation being compared with our general formula, 
gives a=10, b=4,c=-8; whence we conclude, that 
j= 5, 9 = t;, It =-!-, and ../ It =i; that the product ../pqr 
will be positive; and that it is from the equation of the 
third degree, z3-5z~+Vz--!-=0, that we are to seek 
for the three roots p, q, r.-(Art. 774, 775.) 

782. Let us first remove the fractions from this equation, 

by making z = ;, and we shall thus have, after multiply

ing by 8, the equation u3-lOu2 + 17u-2=0, in which 
all the roots are positive. Now, the divisors of the last 
term are 1 and 2; if we try u=l, we find 1-10+17-
2=6; so that the equation is not reduced to nothing; but 
trying u=2, we find 8-40+34-2=0, which answers to 
the equation, and shews that u=2 is one of the roots. The 
two others will be found by dividing by u-2, as usual; 
then the quotient u2-8u+ 1=0 will give u2=8u-l, and 
u=4+../ 15. And since z =tu, the three roots of the 
equation of the third degree are, 

I, z=p=l, 
4+ ../15 

2, z=q= 2 

4-../15 
3, z=r = 2 . 

783. Having therefore determined p, q, r, we have also 
their square roots; namely, ../p=l, 

../q= ../(8+;../15)*, and ../r= ../(8-22../15). 

'*' This expression for the square root of q is obtained by mul

tiplying the numerator and denominator of 4 + t 15 by 2, and 

extracting the root of the latter, in order to remove the surd: 
Th 4+ .;15 2 8+2../15 d ../(8+2';15) 

us, 2 X = 4 ; an ../ 4 • • • • • • 

';(8 +2'; 15) 
- 2 
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But we have already seen (Art. 675, 676), that the 
square root of a±"; b, when ";(a2 -b)=c, is expressed 

by ";(a± ";b)=..;(a;c) ±..; (a 2 C): so that, as in 

the present case, a=8, and ..; b=2..; 15; consequently, 
as b=60, and c= ";(a2-b)=2, we have 

..;(8+ 2 ..;15)=..; (a;c)= ..;5+ ..;3, and v' (a 2 C) = 

..;(8-2";15)=";5- ";3. Hence, we have ";p = 1, 
";5+..;3 ..;5-..;3 . 

..; q = 2 ' and ..; r = 2 ; wherefore, SlUce 

we also know that the product of these quantities is posi
tive, the four values of x will be : 

1. x=";p+";q+";r=l+ ";5+";3;";5-";3 

=1 + ";5, 
- 15-. /3-. /5+ 13 

2. x=";p-";q-..;r=l+ 'V 'V 2 'V 'V 

=1 + ";5, 
..;5+ ";3- ";5+..;3 

3. x=-";p+";q-";r=-I+ 2 

= -1+ ";3, 
- ..;5 - ..;3 + ..;5 - ..;3 

4. x= -1";p-..;q+..;r= -] +. 2 

= -1-..;3. 
Lastly, as we have y=x+2, the four roots of the given 

equation are: 
1. y=3+..;5, 
3. y=I+..;3, 

2.y=3 -..;5, 
4 .. y=1 -..;3. 

QUESTIONS FOR PRACTICE. 

1. Given z4-4z3-8z +32=0, to find the values of z. 
Ans. 4, 2, -1+..;-3, -1-..;-3. 

2. Given y4-4y3-3y2-431 + 1 =0, to find the values 
-1+..;-3 5+..;21 

ofy. Ans. -2 ,and -2 

3. Given x4 -3x2-4x=3, to find the values of x. 
A 1±..;13 d- 1±..;-3 

ns. 2 ' an 2 . 
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CHAPTER XVI. 

Of the Resolution of Equations by Approximation. 

784. When the roots of an equation are not rational, and 
can only be expressed by radical quantities, or when we 
have not even that resource, as is the case with equations 
which exceed the fourth degree, we must be satisfied with 
determining their values by approximation; that is to 
say, by methods which are continually bringing us nearer 
to the true va!Qe, till at last the error being very small, it 
may be neglected. Different methods of this kind have 
been proposed, the chief of ,vhich we shall explain. 

785. The first method which we shall mention supposes 
that we have already determined, with tolerable exactness, 
the value of one root; that we know, for example, that 
such a value exceeds 4, and that it is less than 5. In this 
case, if we suppose this vallle=4+p, we are certain that 
p expresses a iraction. Now, as p is a fraction, and con
sequently less than unity, the square of p, its cube, and, in 
general, all the higher powers of p, will be much less with 
respect to unity; and, for this reason, since we require 
only an approximation, they may be neglected in the cal
culation. When we have, therefore, nearly determined 
the fraction p, we shall know more exactly the root 4 + p ; 
from that we proceed to determine a new value still more 
exact, and continue the same process till we come as near 
the truth as we desire.* 

786. \Ve shall illustrate this method first by an easy 
example, requil'ing by approximation the root of the 
equation x 2 =20. 

Here we perceive, that x is greater than 4, and less than 
5; making, therefore,x=4+p, we shall havex2 =16+ 
8p + p2=20; but as p2 must be very small, we shall neg
lect it, in order that we may have only the equation 16 + 

'* This is the method given by Sir Is. Newton at the beginning 
of his" Method of Fluxions." When investigated, it is found sub
ject to different imperfections; for which reason we may with 
advantage substitute the method given by M. de la Grange, in 
the Memoirs of Berlin for 1768 and 1 767.-F. T. 

This method has since been published by De la Grange, in a 
separate Treatise, where the suhject is discussed in the usual 
masterly style of this author. 

u 
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8p = 20, or 8p = 4. This gives p = t, and x = 4t, 
which already approaches nearer the true root. If, there
fore, we now suppose x=4t+p'; we are sure that p' ex
presses a fraction much smaller than before, and that we 
may neglect p'2 with great propriety. We have, there
fore, x2=20-!-+9p'=20, or 9p'=--!-; and consequently, 
p' = --if;; therefore X=4t--r6=4ii· 

And if we wished to approximate still nearer to the true 
value, we must make x=4H+p", and should thus have 
x~ = 20TiY6 + 8-Hp" = 20; so that 811-p" = - T2~6' 
or 322p"=-Tth=-i-o' and 

1 
p = - 36 x 322 = - TTh2 : 

therefore x=4ii-TTh2=4-fT4}g1z, a value which is so 
near the truth, that we may consider the error as of no 
importance. 

787. Now, in order to generalise what we have here laid 
down, let us suppose the given equation to be x 2=a, and 
that we previously know x to be greater than n, but less 
than n + 1. If we now make x = n + p, p must be a 
f!'action, and p2 may be neglected as a very small quantity, 
so that we shall have x2=n2+2np=a; or 2np=a-n2, 

a-n2 a-n2 n2+a 
andp = 2n; consequently, x = n + ----zn-=~. 

Now, if n approximated towards the true value, this new 

1 n2 + a '11 . I d b b va ue ----zn- WI approximate muc 1 nearer; an , y su -

stituting it for 71, we shall find the result much nearer the 
truth; that is, we shall obtain a new value, which may again 
be substituted, in order to approach still nearer; and the 
same operation may be continued as long as we please. 

For example, let x 2 =2; that is to say, let the square 
root of 2 be required; and as we already know a value suf
ficiently near, which is expressed by n, we shall have a still 

n2 +2 
nearer value of the root expressed by 2n. Let, therefore, 

1. n= 1, and we shall have x=t, 
2. n = t, and we shall have x = B-, 
3. n =H-, and we shall have x = H ~. 

This last value approaches so near ,.;2, that its square 
H-H-H differs from the number 2 only by the small 
quantity T661464' by which it exceeds it. 

788. We may proceed in the same manner, when it is 
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required to find by approximation cube roots, biquadrate 
roots, &c. 

Let there be given the equation of the third degree, 
x3=a; or let it be proposed to find the value of tJa. 

Knowing that it is nearly n, we shall suppose x=n + p ; 
neglecting p2 and p3, we shall have x 3 = n3 + 3n2p = a; so 

a-n3 
that 3n2p = a_n3 , and p= 3fi2; whence 

2n3 +a 
x=(n+p)=~. 

If, therefore, n is nearly = ~a, the quantity which we have 
now found will be much nearer it. But for still greater 
exactness, we may again substitute this new value for n, 
and so on. 

For example, let x 3 =a=2; and let it be required to 
determine ~2. Here, if n is nearly the value of the num-

2n3 +2 . 
ber sought, the formula 3T Will express that number 

still more nearly; let us therefore make 
1. n= 1, and we shall have x=-}, 
2. n = -}, and we shall have x = -H-, 
3. n =H, and we shall have x =t-H~H~§~. 

789. This method of approximation may be employed, 
with the same success, in finding the roots of all equations. 

To shew this, suppose we have the general equation of 
the third degree, x3 +ax2 +bx+c=0, in which n is very 
nearly the value of one of the roots. Let us make 
x=n-p; and, since p will be a fraction, neglecting the 
powers of this letter, which are higher than the first de
gree, we shall have x2=n2-2np, and x 3 =n3_3n2p; whence 
we have the equation n3 - 3n2p + an2 - 2anp + bn -
bp + c = 0, or n3 + an2 + bn + c = 3n2p + 2anp + bp 

n3 +an2 + bfl +c d 
= (3n2 + 2an + b)p; so that p = 3n2+2an+b' an 

( n~+an2+bn+c) 2n3+an2-c 
x - n - - This value, 

- ::3n2+2an+b - 3n2 +2an+b' 
which is more exact than the first, being substituted for n, 
will furnish a new value still more accurate. 

790. In order to apply this operation to an example, let 
x 3 + 2X2 + 3x - 50 = 0, in which a = 2, b = 3, and 
c= -50. If n is supposed to be nearly the value of one 

2n3+2n2+50 . . 
of the roots, x = 3 2 4 3' WIll be a value stdl nearer 

n + n+ 
the truth. 
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Now, the assumed value of x=3 not being far from the 
true one, we shall suppose n=3, which gives us x=ii-; 
and if we were to substitute this new value instead of n, 
we should find another still more exact. 

79 1. We shall give only the following example, for equa
tions of higher dimensions than the third. 

Let x5=6x + 10, or x5 -6x-1O=0, where we readily 
perceive that I is too small, and that 2 is too great. Now, 
if x=n be a value not far from the true one, and we 
make x=n+p, we shall have x5=n5 +5n4p; and, conse
quently, 

n5 +5n4p=6n+6p+ 10; or 5n4p-6p=6n+ 1O-n5 

And p(5n4 -6)=6n+ 1O_n5 • 

6n + 1O-n5 4n5 + 10 
Whereforep = 54 6 ,and x(=n+p) = 54 6· 

Tt - n-

If we suppose n= 1, we shall have x = l~ = - 14; this 

value is altogether inapplicable, a cil'cumstance which 
arises from the approximated value of n having been taken 
much too small. We shall therefore make n=2, and 
shall thus obtain x = 1.,(48 = H, a value which is much 
nearer t.he trut.h. And if we were now to substitute for n, 
the fraction -H, we should obtain a still more exact value 
of the root x. 

792. Such is the most usual method of finding the roots 
of an equation by approximation, and it applies success
fully to all cases. 

We shall however explain anot.her method,'*' which de
serves attention, 011 account of the facility of the calculation. 
The foundation of this method consists in determining for 
each equation a series of numbers, as a, b, c, &c. such, that 
each term of the series, divided by the preceding, may 
express the value of the root with so much the more ex
actness, according as this series of numbers is carried to a 
greater length. 

* The theory of approximation here given is founded on the 
theory of what are called recurring series, invented by M. de 
Moivre. This method was given by Daniel Bernoulli, in vol. iii. 
of the Ancient Commentaries of Petersburg. But Euler has 
here presented it in rather a different point of view. Those 
who wish to investigate these matters may consult chapters 13 
and 17 of vol~ i. of our author's Introd. in Anal. Infin.; an ex
cellent work, in which several subjects treated of in this first 
Part, beside others equally connected with pure mathematics, 
are profoundly analysed and clearly explained.-F. T. 



CHAP. XVI. OF ALGEBRA. 293 

Suppose we have already got the terms p, q, r, s, t, &c. 

9.. must express the root x with tolerable exactness; that is 
p 

to say, we have 9.. = x nearly. We shall have also 
p 

T 
- = x,* and the multiplication of the two values will 
q 

give!:. = x 2• Farther, as ~ = x, we shall also have 
p T 

~ = x 3 ; then, since! = x, we shall have! = x4, and 
p s p 
so on. 

793. For the better explanation of this method, we shall 
begin with an equation of the second degree, x2 = x + I, 
and shall suppose that in the above series we have found 

the terms p, q, T, s, t, &c. Now, as '1 = x, and :. = X2, 
P P 

we shall have the equation:' = '1 + I, or q + p = r. And 
p p 

as we find, in the same manner, that s=r+q, and t=s 
+ r; we conclude that each term of our series is the sum 
of the two preceding terms; so that having the first two 
terms, we can easily continue the series to any length. 
With regard to the first two terms, they may be taken at 
pleasure: if we therefore suppose them to be 0, I, our 
series will be 0, 1, 1,2, 3, 5,8, 13,21,34,55,89, 144, &c. 
and such, that if we divide any term by that which imme
diately precedes it, we shall have a value of x so much 
nearer the true one, according as we have chosen a term 
more distant. The error, indeed, is very great at first, 
but it diminishes as we advance. The series of those 
values of x, in the order in which they are always approxi
mating towards the true one, is as follows: 

x= h -h t, t, t, t, ~', tt, tt, ti, U, IN, &c. 
If, for example, we make x = th we have x2 = tH, 

and H- + ] = ffi, in which the error is only Tt9' Any 
of the succeeding terms will render it still less. 

~'94. Let us also cousider the equation X2 = 2x + 1 ; 

and since, in all cases, x = 9.., and x 2 = !:., we shall have 
p p 

* It must only be understood here that!:' is nearly equal to x. 
q 
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~ = 2g + I, or T = 2g + p; whence we infer that the 

~oubfe of each term, added to the preceding, will give the 
following. If, therefore, we begin again with 0, 1, we 
shall have the series, 

0, 1, 2, 5, 12, 29, 70, 169,408, &c. 
Whence it follows, that the value of x will be expressed 

still more accurately by the following fractions: 
x = !, t, t, 1"52 , H. t%, !.,fif, 1U, &c. 

which, consequently, will always approximate nearer and 
nearer the true value of x = 1 + ..; 2; so that if we 
take unity from these fractions, the value of ";2 will be 
expressed more and more exactly by the succeeding 
fractions: 

i, ·h t, ·h ii, -H, ·H, tn, &c. 
For example, t-S- has for its square H&t, which differs 

only by 4loo from the number 2. 
795. This method is no less applicable to equations, 

which have a greater number of dimensions. If, for 
example, we have the equation of the third degree ;x3 = x~ 

+2x + 1, we must make x = 9.., x2 =~, and x3 =~; we 
p p p 

shall then have s=r+2q+p; which shews how, by means 
of the three terms p, g, and T, we are to determine the 
succeeding term, s: and, as the beginning is always 
arbitrary, we may form the series, 

0,0, I, 1,3,6, 13, 28,60, 129,* &c. 
from which result the following fractions for the approxi
mate values of x: 

x = %, !, ·h t, 1, y, H-, t%, W, &c. 
The first of these values would be very far from the 

truth; but if we substitute in the equation U, or ¥, 
instead of x, we obtain 

x 3 = Wi', and W + \0 + 1 = ¥N, 
in which the error is only N\. 

796. It must be observed, however, that all equations 
are not of such a nature as to admit the application of 
this method; and particularly, when the second term is 
wanting, it cannot be made use of. For example, let 

x2=2; if we wished to make x = 9.., and x2 = ~, we should 
p p 

'/I< So that, taking r=60 in the series, s, the succeeding term, 
= (r) 60 + (2q) 56 + (p) 13 = 129. 
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have ~ = 2, or r = 2p, that is to say, r = Oq + 2p, whence 
p 

would result the series 
1, 1, 2, 2, 4, 4, 8, 8, 16, 16, 32, 32, &c. 

from which we can draw no conclusion, because each 
term, divided by the preceding, gives always x = 1, or 
x = 2. But we may obviate this inconvenience by 
making x = y-l; for by these means we have y2_2y 

+ 1 =2; and if we now make y = '1, and y2 = ~, we shall 
p p 

o?tain the same approximation that has been already 
given. 

797. It would be the same with the equation x 3 = 2. 
This method would not furnish such a series of numbers 
as would express the value of ~2. But we have only to 
suppose x=y-l, in order to have the equation y3_3y2 
+ 3y - 1 = 2, or y3 = 3y2 - 3y + 3; and then making 

y = '1, y2 = ~, and y3 = ~, we have s = 3r - 3q + 3p, by 
p P P 

means of which we see how three given terms determine 
the succeeding term. 

Assuming then any three terms for the first, for example 
0, 0, I, we have the following series: 

0, 0, I, 3, 6, 12, 27, 63, 144, 324, &c. 
The last two terms of this series give y=i--H-, and x={. 

This fraction approaches sufficiently near the cube root 
of2; for the cube ofi is tH, and that of 2= W; the 
difference, therefore, is only -14. 

798. We must farther observe, with regard to this 
method, that when the equation has a rational root, and 
the beginning of the period is chosen such, that this root 
may result from it, each term of the series, divided by 
the preceding term, will give the root with equal accuracy. 

To shew this, let there be given the equation x2 =x+2, 
one of the roots of which is x = 2; as we have here, for 
the series, the formula r = q +2p, if we take 1,2, for the 
first two terms, we have the series I, 2, 4, 8, 16,32,64, &c. 
a geometrical progression, whose exponent = 2. The 
same property is proved by the equation of the third 
degree, x 3 = X2 + 3x + 9, which has x = 3 for one of the 
roots. If we suppose the leading terms to be 1, 3, 9, we 
shall find, by the formula, s = r + 3q + 9p, and the series 
1,3, 9, 27, 81,243, &c. which is likewise a geometrical 
progression. 
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799. But if the beginning of the series exceed the root, 
we shall not approximate towards that root at all; for 
when the equation has more than one root, the series 
gives by approximation only the greatest: and we do not 
find one of the less roots, unless the first terms have been 
properly chosen for that purpose. This will be illustrated 
by the following example. 

Let there be given the equation x2=4x-3, whose two 
roots are x = 1, and x=3. The formula for the series is 
r=4q-3p, and if we take 1, 1, for the first two terms of 
the series, which consequently expresses the least root, we 
have for the whole series, 1, I, 1, 1, 1, 1, I, 1, &c. but 
assuming for the leading terms the numbers 1, 3, which 
contain the greatest root, we have the series, J, 3, 9, 27, 
81,243, 729, &c. in which all the terms express precisely 
the root 3. Lastly, if we assume any other beginning, 
provided it be such that the least term is not comprised 
in it, the series will continually approximate towards the 
greatest root 3; which may be seen by the following 
series: 

Beginning, 
0, 1, 4, 13, 40, 121, 364, &c. 
1, 2, 5, 14, 41, 122, 365, &c. 
2, 3, 6, 15, 42, 123, 366, 1095, &c. 
2, 1,-2,- Il,-38,-1l8,-362,-1091,-3278, &c. 

in which the quotients of the division of the last terms by 
the preceding always approximate towards the greater root 
3, and never towards the less. 

800. We may even apply this method to equations 
which go on to infinity. The following will furnish an 
example: 

XOO=X OO-1 +XOO-2+XOO-3+XOO-4+, &c. 

The series for this equation must be such, that each term 
may be equal to the sum of all the preceding; that is, we 
must have 

1, 1, 2, 4, 8, 16, 32, 64, 128, &c. 

whence we see that the greater root of the given equation 
is exactly x=2; and this may be shewn in the following 
manner. If we divide the equation by x oo , we shall have 

1 =! + -.!.. + -.!.. + -.!.. + &c. 
X x 2 x 3 x4 ' 

a geometrical progression, whose sum is found = ~1; so 
x-
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1 
that 1 = --' multiplying therefore by x-I,. we have 

x-I' 
x-l=I, and x=2. 

801. Beside these methods of determining the roots of 
an equation by approximation, some others have been 
invented, but they are all either too tedious, or not suffi~ 
ciently general.* The method which deserves the preference 

'" This remark does not apply to the method of finding the 
roots of equations of all degrees, and however affected, by The 
Rule of Double Position. In order, therefore, that the present 
chapter might be more complete, we shall explain this method as 
briefly as possible. 

Substitute in the given equation two numbers, as near the 
true root as possible, and observe the separate results. Then, as 
the difference of these results is to the difference ofthe two num~ 
bers; so is the difference between the true result, and either of 
the former, to the respective correction of each. This being 
added to the number when too small, or subtracted from it 
when too great, will give the true root nearly. 

The number thus found, with any other that may be sup
posed to approach still nearer to the true root, may be assumed 
for another operation, which may be repeated, till the root shall 
be determined to any degree of exactness that may be re
quired. 

Having ascertained by a few trials, or by inspecting a Table 
of roots and powers, that x is more than 4, and less than 5, let 
us substitute these two numbers in the given equation, and cal
culate the results. 

By the, ~rst {~2 l~ 
suppoSitIOn x3 = 64 

---

fx - 5 
By the s~~ond. x2 = 25 

suppositIOn Lx3 = 125 

84 •...•• Results ............... 155 

Differences 

155 
84 

7] 

5 
4 

I 

100 true result. 
84 

16 

Then, As 71 I . . 16: '2253 + 
Therefore 4 + '2253, or 4'2253 approximates nearly to the 

true root. 
If now 4'2, and 4-3, be taken as the a$sumed numbers, and 

substituted in the given equation, we shall obtain the value of 
x = 4-264 very nearly, the error being only '027552256. 
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to all others, is that which we explained first; for it applies 
successfully to all kinds of equations: whereas the others 
often require the equation to be prepared in a certain 
manner, without which it cannot be employed; and of this 
we have seen a proof in different examples. 

QUESTIONS FOR PRACTICE. 

1. Given x3+2x2 -23x-70=0, to find x. 
Am. x=5·13450. 

2. Given x3-15x2 +63x-50=0, to find x. 
Ans. x= 1'028039. 

3. Given x"-3x2 -75x=10000, to find x. 
Ans. x = 10'2615. 

4. Given r'+2x'+3x3 +4x2 +5x=54321, to find x. . 
Ans. x = 8'4144. 

5. Let 120x3 + 3657x2-38059x = 8007115, to find x. 
Ans. x = 34'6532. 

END OF PART I. 
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PART II. 
CONTAINING THE ANALYSIS OF INDETERMINATE 

QU ANTITIES. 

CHAPTER I. 

Of the Resolution of Equations of the First Degree whiclt 
contain more than one unknown Quantity. 

ARTICLE I. 

IT has been shewn, in the First Part of these Elements, 
how one unknown quantity is determined by a single equa
tion, and how we may determine two unknown quantities 
by means of two equations, three unknown quantities by 
three equations, and so on; so that there must always be 
as many equations as there are unknown quantities to 
determine, at least when the question itself is determinable. 

When a question, therefore, does not furnish as many 
equations as there are unknown quantities to be deter
mined, some of these must remain undetermined, and 
depend on our will; for which reason, such questions are 
said to be indeterminate; forming the subject of a parti
cular branch of Algebra, which is called Indeterminate 
Analysis. 

2. As in those cases we may assume any numbers for 
one, or more unknown quantities, they also admit of 
several solutions: but, on the other hand, as there is 
usually annexed the condition, that the numbers sought 
are to be integer and positive, or at least rational, the 
number of all the possible solutions of those questions is 
greatly limited: so that often there are very few of them 
possible; at other times, there may be an infinite number, 
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but such as are not readily obtained; and sometimes 
also, none of them are possible. Hence it happens, 
that this part of analysis frequently requires artifices 
entirely appropriate to it, which are of great service in 
exercising the judgment of beginndrs, and giving them 
dexterity in calculation. 

3. To begin with one of the easiest questions. Let it 
be required to find two positive, integer numbers, the sum 
of which shall be equal to 10. 

Let us represent those numbers by x and y; then we 
have x + y = 10; and .'1: = 10 - y, where.y is so far only 
determined, that this letter must represent an integer 
and positive number. We may therefore substitute for 
it all integer numbers from 1 to 10: but since x must 
likewise be a positive number, it follows, that y cannot be 
taken greater than 10, for otherwise x would become 
negative; and if we also reject the value of x=O, we 
cannot make y greater than 9; so that only the following 
solutions can take place: 

Ify=l, 2, 3,4,5,6,7,8,9, 
then x = D, 8, 7, 6, 5, 4, 3, 2, 1. 

But, the last four of these uine solutions being the same 
as the first four, it is evident, that the question really 
admits only of five different solutions. 

If three numbers were required, the sum of which 
might make 10, we should have only to divide one of the 
numbers already found into two parts, by which means 
we should obtain a greater number of solutions. 

4. As we have found no difficulty in this question, we 
will proceed to others, which require different con
siderations. 

Question 1. Let it be required to divide 25 into two 
parts, the one of which may be divisible by 2, and the 
other by 3. 

Let one of the parts sought be 2x, and the other 
3'y; we shall then have 2x + 3y = 25; consequently, 
2x = 25-3y; and, dividing by 2, we obtain 

25-3'y 
x = 2 ; whence we conclude, in the first place, that 

3y must be less than 25, and consequently, that .Y is less 
than 8. Also, if from this value of x, we take out as 
many integers as we possibly can, that is to say, if we 
divide by the denominator 2, we shall havex= 12-y+ 

1 ;.Y ; whence it follows, that l-y, OJ" rather 'y- 1, must 
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be divisible by 2. Let us, therefore, make y-I ='2z; 
and we shall have y=2z+ 1, so that 

x = I2-2z-1-z = 11-3z. 
And, since y cannot be greater than 8, we must substi

tute any numbers for z which would render 2z + 1 greater 
than 8; consequently, z must be less than 4, that is to say, 
z cannot be taken greater than 3, for which reasons we 
have the following answers: 

If we make z = 0 I z = 1 z = 2 
we have y = 1 Y = 3 Y = .5 
and x = 11 x = 8 x = 5 

Hence, the two parts of 25 sought, are 

z= 3, 
1J = 7, 
·x=2. 

(2x+3y) = 22+3; 16 +9; 10+ 15; or 4+21. 
5. Question 2. To divide 100 into two such parts, that 

the one may be divisible by 7, and the other by 11. 
.Let 7x be the first pal't, and Ily the second. Then we 

must have 7x+ 11.11= 100; and, consequently, 
x _ 100 -Ily _ 98 + 2 -7.11 - 4.'1 -14- u + 2 - 4y. 

- 7 - 7 -.7 7' 
wherefore 2-4y, or 4y-2, must be divisible by 7. 

Now, if we can divide 4y-2 by 7, we may also divide 
its half, 2y-l, by 7.* Let us therefore make 2!J-l=7z, 
or 2;y=7z+1, and we shall have x=I4-y-2z; but, 
since 2y = 7z + 1 =6z + z + 1, we shall have 

z+1 
!J = 3z +~. Let us therefore make z + 1 = 2u, or 

z=2u-I; which supposition gives!J=3z+u; and, con
sequently, we may substitute for u every integer number 
that does not make x or.'If negative. Now, as!J becomes 
= 7u-3, and x= 19-11u, the first of these expressions 
shews that 7u must exceed 3; and, according to the 
second, 11u mllst be less than 19, or u less than 1:-1: so 
that u cannot be 2; and since it is impo<;sible for this 
number to be 0, we must have u= 1: which is the only 
value that this letter can have. Hence, we obtain x = 8, 
and y = 4; and the two parts of 100 which were required, 
are 56, and 44. 

2-4y 4y-2 
'II< For-7-' ,or-7-, being a whole number, and 4 and 2 

not being divisible by 7, the numerator, 4y-2, and its half, 
2y-l, must necessarily be either 7, or some multiple of 7 : 
and it may be observed, that, if any number divides the whole 
of another number, and also a part of it, it will likewise divide 
the remaining part. 
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6. Question 3. To divide 100 into two such parts, that 
dividing the first by 5, there may remain 2; and dividing 
the second by 7, the remainder may be 4. 

Since the first part, divided by 5, leaves the remainder 
2, let us suppose it to be 5x + 2; aud, for a similar 
reason, we may represent the second part by 7'y+4: we 
thus have 5x+7'y+6=100, or 5x=94-7'y=90+4-5'y 

4-2y 
-2y; whence we obtain x = 18-y+ -5-' Hence it 

follows, that 4-2y, or 2y-4, or the half y-2, must be 
divisible by 5. For this reason, let us make y-2 = 5z, 
or y = 5z +2, and, as 5x+ 7y = 94, we shall have x = 16 
-7z; whence we conclude, that 7z must be less than 16, 
and z less than 1..,p, that is to say, z cannot exceed 2. 
The question proposed, therefore, admits of three answers: 

1. z = 0 gives x = 16, and !J = 2; whence the two parts 
are 82 and 18. 

2. z = 1 gives x=9, and y = 7; and the two parts are 
47+53. 

3. z=2 gives x = 2, and y = 12; and the two parts are 
12+88. 

7. Question 4. Two women have together 100 eggs: 
one says to the other; When I count my eggs by eights, 
there is an overplus of 7. The second remarks, If I count 
mine by tens, I find the same overplus of 7. How many 
eggs had each? 

As the number of eggs belonging to the first woman, 
divided by 8, leaves the remainder 7; and the number of 
eggs belonging to the second, divided by 10, gives the 
same remainder 7; we may express the first number by 
8x + 7, and the second by lOy + 7; so that 8x + 10.1/ + 14 
= 100, or 8x=86-10y, or4x=43-5y=40+3-4y-y. 
Consequently, if we make y-3 =4z, so that '!I = 4z+3, 
we shall have x=1O-4z-3-z=7-5z; whence it 
follows, that 5z must be less than 7, or z less than 2; that 
is to say, we have the two following answers: 

1. z=O gives x=7, and 'y=3; so that the first woman 
had 63 eggs, and the second 37. 

2. z = 1 gives x = 2, and y = 7; therefore the first 
woman had 23 eggs, and the second had 77. 

8. Question 5. A company of men and women spent 
1000 sous at a tavern. The men paid each 19 SOllS, and 
each woman 13. How many men and women were there? 
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Let the number of men be x, and that of the women y, 
we shall then have the equation, 19x+ 13y = 1000; or 

13y=1000-19x=988+12-13x-6x; and 
12-6x 

y=76-x+ ---ya ; 
whence it follows, that 12-6x, or 6x-12, or x-2, the 
sixth part of that number must be divisible by 13. If, 
therefore, we make x-2 = 13z, we shall have x = 13z +2, 

and y=76-13z-2-6z, or y=74-19z; 
which shews that z must be less than t-&, and, conse
quently, less than 4; so that the four following answers 
are possible: 

1. z = ° gives x = 2, and y = 74; in which case there 
were 2 men and 74 women; the former paid 38 sous, and 
the latter 962 sous. 

2. z = 1 gives the number of men x = 15, and that of 
women y = 55; so that the former spent 285 sous, and 
the latter 715 sous. 

3. z = 2 gives the number of men x = 28, and that of 
the women y=36; therefore the former spent 532 sous, 
and the latter 468 sous. 

4. z=3 gives x=41, and y=17; so that the men spent 
779 sous, and the women 221 sous. 

9. Question 6. A farmer lays out the sum of 1770 
crowns in purchasing horses and oxen; he pays 31 crowns 
for each horse, and 21 crowns for each ox. How many 
horses and oxen did he buy? 

Let the number of horses be x, and that of oxen y; we 
shall then have 31x+21y=1770, or 

21y=1770-3Ix= 1764+6-21x-10x; or 

y=84-x+ 6-;!.OX. Therefore 1Ox-6, and likewise its 

half 5x-3, must be divisible by 21. If we now suppose 
5x-3=21z, we shall have 5x=2lz+3, and hence y=84 
-x-2z. But, since 

2lz+3 z+3 
x = --5- =4z + -5-' we must also make z+3 = 5u; 

which gives z=5u-3, x=21u-12, and 
y=84-21u+ 12-10u+6=102-31u; 

hence it follows, that u must be greater than 0, and yet 
less than 4, which furnishes the following answers : 
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1. It= 1 gives the number of horses x=9, and that of 
oxen y=71; wherefore the former cost 279 crowns, and 
the latter 1491 ; in all, ] 770 crowns. 

2. u = 2 gives x = 30, and y = 40; so that the horses 
cost 930 crowns, and the oxen 840 crowns, which together 
make 1770 crowns. 

:3. u=3 gives the number of the horses x=5I, and that 
of the oxen y=9; the former cost 1581 crowns, and the 
latter 189 crowns; which together make 1770 crowns. 

10. The questions which we have hitherto considered 
lead all to an equation of the fOI·m ax + by = c, in which 
a, b, and c, represent integer and positive numbers, and 
in which the values of x and y must likewise be integer 
and positive. Now, if b is negative, and the equation has 
the form ax- by=c, we have questions of quite a different 
kind, admitting of an infinite number of answers, which 
we shull treat of before we conclude the present chapter. 

The simplest questions of this sort are such as the 
following. Required two numbers, whose difference may 
be 6. If, in this ca!le, we make the less number x, and 
the greater y, we must have y - x = 6, and y =6 + x. 
Now, nothing prevents us from substituting, instead of x, 
all the integer numbers possible, and whatever number 
we assume, y will always be greater by 6. Let us, for 
example, make x = 100, we have y = 106; it is evident, 
therefore, that an infinite number of answers are possible. 

II. Next follow questions, in which c = 0, that is to 
say, in which ax must simply be equal to by. Let there 
be required, for example, a number divisible both by 5 
and by 7. If we write N for that number, we shall first 
have N = 5x, since N must be divisible by 5; and farther, 
we shall have N=7y, because the number must also be 
divisible by 7. We shall therefore have 5x = 7y, and 

x = ~. Now, since 7 cannot be divided by 5, Y must be 

divisible by 5: let us therefore make y=5z; and we have 
x=7z; so that the number sought (N) will be =35z; and 
as we may take for z, any integer number whatever, it is 
evident that we can assign for N an infinite number of 
values; such as ~ 

35, 70, 105, 140, 175,210, &c. 

If, beside the above condition, it were also required that the 
numbel· N be divisible by 9, we should first have N=35z, 
as before, and should farther make N = 9u. In this 



CHAP. I. OF ALGEBUA. 305 

manner, 35z=9u, and u= 3~z; where it is evident that z 

must be divisible by 9 ; therefore let z=9s ~ we shall then 
have u=35s, and N the number sought =315s. 

12. We find more difficulty when c is not = O. For 
example, when 5x=7y +3, the equation to which we are 
led, and which requires us to seek a number N such, that 
it may be divisible by 5, and if divided by 7, may leave the 
remainder 3: for we must then have N=5:r, and also 
N=7'y+3, whence results the equation 5x=7'y+3; and, 
consequently, 

X _ 7'y+ 3 _ ~1!+2'y+3 _y + ~¥+3 
- 5 - 5 - -5-' 

2y+3 
If we make 2y+3=5z, or z= -5-' we have x=y+z. 

Now, because 2,Y+3=5z, or 2y=5z-3, we have 

5z-3 z-3 
y = -:r-' or 'y=2z + -2-' 

If, therefore, we farther suppose z-3=2u, we have 
z=2u+3, and y=5u+6, and 

x=.y+z= (5u+6) + (2u+3)=7u+9. 
Hence, the num ber sought, N =35u + 45; in which equation 
we may substitute for u not only all positive integer num
bers, but also negative numbers; for, as it is sufficient that 
N be positive, we may make u= -1, which gives N= 10; 
the other values are obtained by continually adding 3.5 ; 
that is to say, the numbers sought are 10, 4;:), 80, 115, 
] 50, 185, 220, &c. 

13. The solution of questions of this sort depends on the 
relation of the two numbers by which we are to divide; 
that is, they become more or less tedious, according to the 
nature of those divisors. The following question, for 
example, admits of a very short solution: 

Required a number which, divided by 6, leaves the 
remainder 2; and divided by 13, leaves the remainder 3. 

Let this number be N. First, N = 6x+2, and then 
N = 13y + 3; consequently, 6x + 2 = 13y + 3, and 
6x = 13'y + 1 ; hence, 

x= 13y + I = 2!J7 + Y + I 
(j 6 ' 

and if we make .y + 1 = 6z, or .y=6z- 1, we obtain 
x=2y+z= 13z-2; whence we have for the number 

x 
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sought N=78z-1O; therefore, the question admits of the 
following values of N; viz. 

N=G8, 14G, 224, 302, 380, &c. 

which numbers form an arithmetical progre8sion, whose 
difference is 78=6 x 13. So that if we know one of the 
valueE', we Illay easily find all the rest; for we have only 
to add 78 continually, or to subtract that number, as long 
as it is possible, when we seek for small numbers. 

14. The following question furnishes an example of a 
longel· and more tedious solution. 

Question 8. To find a number N, which, when divided 
bv 39, leaves the remainder 16; and such also, that if it 
be divided by 56, the remainder Illay be 27. 

In the first place, we have N=39p+ 16; and in the 
second, N=56q+27; so that 

39p+ 16=5Gq+27, or 39p=56q+ 11, and 

56q+ 11 17q+ 11 . 
p= 39 =q+ 39 =q+r, by makmg 

r= 17q
3tll . So that 39r=17q+ll, and 

39r-11 5r-ll . 
q= 17 = 2r+ 17 =2r+s, by makmg 

5r-11 
s = 17 ,or 17s=5r-11; whence we get 

17s+ 11 2s+ II . 
r= .5 =3s + .5 =3s+t, by makmg 

2s+ 11 t = .5 ,or 5t=2s+ 11 ; whence we find 

5t-11 t -11 . 
s = 2 = 2t+ ~ =2t+u, by makmg 

t -11 
u= -2-; whence t=2u+ II. 

Having now no longer any fractiol1l", we may take u at 
pleasure, and then we have only to trace back the follow
ing values: 

t = 2u+ 11, 
s =2t +u= 5u+ 22, 
r=3s +t=17u+ 77, 
q=2r +s =39u+ 176, 
p= q+r=.56u+253, 
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and, lastly, N=39 X 56u +9883.* And the least pos
sible value of N is found by making u= -4; for by this 
supposition we have N=1l47: and if we make u=x-4, 
we find 

N=2184x-8736+9883; or N=2184x+ 1147; 
which numbers form an arithmetical progression, whose 
first term is 1147, and whose common diffel'ence is 218.4 ; 
the following being some of its leading terms: 

1147, 3331, 5515, 7699, 9883, &c. 
H,. We shall subjoin some other questions by way of 

practice. 
Question 9. A company of men and women club to

gether for the payment ofa reckoning: each man pays 25 
livres, and each woman 16 livres; and it is found that all 
the women together have paid 1 livre more than the men. 
How many men and women were there? 

Let the number of women be p, and that of men q; then 
the women will have expended 16p. and the men 25q; so 
that 16p=25q+ 1, and 

_ 25q + I _ 9q + 1 _ 1_ 
p- 16 -q + -W-q + r, or £6r-9q+l, 

16r-l 7r-l 
q= 9 =r + -9- =r+s, or 9s=7r-l, 

9s + 1 2s+ 1 
r= 7 = s + -7- =s +t, or 7t=2s+ 1, 

7t - 1 t - 1 , 
s = 2 =3t + -2- =3t+u, or, cancellmg 3t 

on both sides of the equation, 2u=t-l, and t=2u+1. 
We shall therefore obtain, by tracing back Oul' substi

tutions, 
t =2u+ 1, 
s=3t+u= 7u+ 3, 
T= s+t= 9u+ 4, 
q= r+s=16u+ 7, 
p= q +r=25u + II. 

So that the number of women was 25u + 1 I, and that of 
men was 16u + 7 ; and in these formul~ we may substitute 

* As the numbers 176 and 25.'3 ought, respectively, to be 
divisible by 39 and 56 ; and as the former ought, by the question, 
to leave the remainder 16, and the latter 27, the sum 988.'3 is 
formed by multiplying 176 by 56, and adding the remainder 27 
to the product: or by multiplying 25.'3 by .'39, and adding the 
remainder 16 to the product, Thus, 

(176x56)+27=9883; and (253x39)+16=9883, 
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for u any integer numbers whatevel'. The least results, 
therefore, will be as follow: 

Number of women, 11, 36,61, 86, 111, &c. 
--- of men, 7,23,39,55, 71, &c. 

According to the first answer, or that which contains the 
least numbers, the women expended 176 livres, and the 
men 175 livres; that is, one livre less than the women. 

16. Question 10. A person buys some horses and oxen: 
he pays 31 crowns per horse, and 20 crowns for each ox; 
and he finds that the oxen cost him 7 crowns more than the 
horses. How many oxen and horses did he buy? 

Ifwe suppose p to be the number of the oxen, and q the 
number of the horses, we shall have the following equation: 

3]q+7 11q+7 
p= 20 =q+ 20 =q +r, or 20r = l1q+7, 

20r-7 9r - 7 
lIs = q= 11 =r+ II =r+s, or 

l1s+7 28 + 7 9t= r= 9 s+ 9 =s + t, or 

9t -7 t - 7 
2u= s = -2-=4t+ 2 =4t+u, or 

whence t ..•... = 2u+ 7, and, consequently, 
s =4t+u= 9u+28, 
r= s+t= llu+35, 
q= r+8=20u+63, number of horses, 
p= q+r=31u+98, number of oxen. 

9~-7, 

2s+7, 

t-7, 

Whence, the least positive values of p and q are found 
by making u= -3; those which are greater succeed in the 
following arithmetical progressions: 

Number of oxen, p=5, 36, 67, 98, 129, 160, ]91, 222, 
253, &c. 

Number of horses, q=3, 23,43,63,83, 103, 123, 143, 
163, &c. 

17. If now we consider how the letters p and q, in this 
example, are determined by the succeeding letters, we shall 
perceive that this determination depends on the ratio of the 
numbers 31 and 20, and particularly on the ratio which we 
discover by seeking the greatest common divisor of these 
two numbers. In fact, if we perform this operation, 



CHAP. I. OF ALGEBRA. 

20) 31 (1 
20 

II) 20 (1 
11 

9) 11 (1 
9 

2) 9 (4 
8 

1) 2 (2 
2 

0, 
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it is evident that the quotients are found also in the suc
cessive values of the letters p, q, r, s, &c. and that they are 
connected with the first letter to the right, while the last 
always remains alone. We see, farther, that the number 
7 occurs only in the fifth and last equation, t=2u+7, 
and is affected by the sign +, because the number of this 
equation is odd; for if that number had been even, we 
should have obtained -7. This will be made more evi
dent by the following Table, in which we may observe the 
decomposition of the numbers 31 and 20, and then the 
determination of the values of the letters p, q, r, &c. 

31=lx20+11 p=lxq+r 
20=lx11+ 9 q=lxr+s 
l1=lx 9+ 2 r=lxs+t 
9=4x 2+ 1 s=4xt+u 
2=2x 1+ 0 t=2xu+7. 

18. In the same manner we may represent the example 
in Art. 14. 

56=lx39+17 
39=2x 17+ 5 
17=3x 5+ 2 
D=2x 2+ 1 
2=2x 1+ 0 

p=lxq+r 
q=2xr+s 
r=3xs+l 
s=2xt+u 
t =2xu+ll. 

19. And, in the same manner, we may analyse all ques
tions of this kind. For, let there be given the equation 
bp=aq+n, in which a, b, and n, IJ,re known numbers; 
then, we have only to proceed as,we should do to find the 
greatest common divisor of the humbers a and b, and we 
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may immediately determine p and q by the succeeding 
letters, as follows: 

a=Ab +e (p=Aq+r 
b= Be +d q=Br +s 

Let e = Cd + e and we shall r = Cs + t 
d=De +J find s =Dt+u 
e = EJ + 9 t = Eu + v 
J=Fg +0 u=Fv ±n. 

We have only to observe farther, that in the last eqnation, 
the sign + must be prefixed to n, when the number of 
equations is odd; and that, on the contrary, we must take 
-n, when the number is even: by these means, the ques
tions which form the subject of the present chapter may be 
readily answered, of which we shall give some examples. 

20. Question ] 1. Required a number, which, being 
divided by II, leaves the remainder 3; but being divided 
by 19, leaves the remainder 5. 

Call this number N; then, in the first place, we have 
N = I1p+3, and in the second, N = 19q+5; therefore, 
we have the equation lJp=19q+2, which furnishes the 
following Table: 

19=1xll+8 p= q+r 
ll=Ix 8+3 q= r+s 
8=2x 3+2 r=2s+t 
3=Ix 2+1 s= t+u 
2=2x 1+0 t =2u+2, 

where we may assign any value to u, and determine by it 
the preceding letters successively. We find, 

t ...... = 2u+ 2 
s= t+11= 3u+ 2 
r=2s+t= 8u+ 6 
q= r+s=llu+ 8 
p= q+r=I9u+I4; 

whence, taking u = II, we obtain the number sought 
N=llp +3= 1l(l9u+ 14) +3 = 209u+ 157; therefore 157 
is the least number that can express N, or satisfy the terms 
of the question .... 

2l. Question 12. To find a number N such, that if we 
divide it by 11, there remains 3, and if we divide it by 19, 
there remains 5; and farther, if we divide it by 29, there 
remains 10. 

The last consideration requires that N =29p + 10; and 
as we have already performed the calculation (in the last 

'II< Because, in this case, u=O. 
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question) for the two others, we must, in consequence of 
that result, have N=209u + 157, instead of' which we shall 
write N=209q+ 157; so that 

29p + IO = 209q + 157, or 29p = 209q + 147; 
whence we have the following Table: 

209 = 7 x 29+6; [P = 7q+r, 
29=4x 6+5; h l' q=4r +8, 

6 -1 r,+l' werelorel - +t - x D, r_ 8 , 

5=5x 1+0; 8=5t-147. 
And, if we now reh'ace these steps, we have 

8 •••••• = 5t - 147, 
r = 8 + t = 6t - 147, 
q =4r +8 = 29t- 735, 
P = 7'1 +r = 209t - 5292. 

So that N=6061 t-153458:* and the least number is 
found by making t=26, which supposition gives N=4128. 

22. It is necessary, however, to observe, in order that 
an equation of the form bp=aq+n may be resolvible, that 
the two numbers a and b must have no common divisor; 
for, otherwise, the question would be impossible, unless 
the number n had the same common divisor also. 

If it were required, for example, to have 9p = 15q + 2 ; 
since 9 and 15 have the common divisor 3, which is not a 
divisor of2, it is impossible to resolve the question; because 
9p - 15q being always divisible by 3, can never become 
= 2. But if in this example n = 3, or n = 6, &c. the 
question would be possible: for it would be sufficient first 
to divide by 3; since we should obtain 3p =5q + 1, an 
equation easily resolvible by the rule already given. It is 
evident, therefore, that the numbers a, b, ought to have 
no common divisor, and that our rule cannot apply in any 
other case. 

23. To prove this still more satisfactorily, we shall con
sider the equation 9p= 15q + 2 according to the usual 
method. Here we find 

15q+2 6q+2 
p= 9 = q+ -9- = q+r; so that 

9r= 6q+2, or 6q=9r-2; or 
91'-2 3r-2 

q = -6- = r + -6- = r + 8; so that 3r - 2 = 68, 

'* That is, - 5292 x 29 = - 153468; to which if the re
mainder + 10 required by the question be added, the sum is 
-153458. 
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6s+2 , 
or 3r=6s+2: consequently, r= ---:r- = 2s+1-' 

Now, it is evident, that this can never become an integer 
number, because s is necessarily an integer; which shews 
the impossibility of snch questions. '* 

CHAPTER II. 

Of the Rule which is called Regula Creci, for determining 
by means of two Equations, three or more Unknown 
Quantities. 

24. In the preceding Chapter, we have seen how, by 
means of a single equation, two unknown quantities may 
be determined, so far as to express them in integer and 
positive numbers. If, therefore, we had two equations, in 
order that the question may be indeterminate, those equa
tions must contain more than two unknown quantities. 
Questions of this kind occur in the common books of 
arithmetic; aud are resolved by the rule called Regula 
C(]Jci, Position, or The Rule of False; the foundation of 
which we shall now explain, beginning with the following 
example: 

25. Question 1. Thirty persons, men, women, and child
ren, spend 50 crowns in a tavern; the share of a man is 
3 crowns, that of a woman 2 crowns, and that of a child is 
1 crown: how many persons were there of each class? 

If the number of men be p, of women q, and of children 
r, we shall have the two following equations: 

1. p+ q+r=30, and 
2.3p+2q+1'=50, 

from which it is required to find the value of the three 
letters p, q, and r, in integer and positive numbers. The 
first equation gives r = 30 - P - q; whence we imme
diately conclude that p + q must be less than 30; and, 
substituting this value of r in the second equation, we have 
2p + q + 30 = 50 ; so that q = 20 - 2p, and p + q = 

* See the Appendix to this chapter, at Art. 3. of the Additions 
by De la Grange. 
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20-p, which evidently is also less than 30. Now, as we 
may, in this equation, assume all numbers for p which do 
not exceed 10, we shall have the following eleven answers: 
the number of men p, of women q, and of children r, 
being as follow: 

p= 0, I, 2, 3, 4, 5, 6, 7, 8, 9, 10; 
q = 20, 18, 16, 14, 12, 10, 8, 6, 4, 2, 0; 
r = 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20; 

and, if we omit the first and the last, there will remain 9. 
26. Question 2. A certain person buys hogs, goats, 

and sheep, to the number of 100, for 100 crowns; the 
hogs cost him 3t crowns a-piece; the goats, It crown; and 
the sheep, t a crown. How many had he of each? 

Let the number of hogs be p, that of the goats q, and 
of the sbeepr, then we shall have the two following 
equations: 

I. P + q + r = 100, 
2. 3tp+ Itq+tr= 100; 

the latter of which being multiplied by 6, in order to 
remove the fractions, becomes, 21p +8q+3r= 600. Now, 
the first gives T= lOO-p-q; and if we substitute this 
value' of r in the second, we have 18p + 5q = 300, or 

18p 
5q = 300 - 18p, and q= 60 - 5; consequently, 18p 

must be divisible by 5, and therefore, as 18 is not divisible 
by 5, P must contain 5 as a factor. Ifwe therefore make 
p=58, we obtain q=60-188, and r=138+40; in which 
we may assume for the value of 8 any integer number 
whatever, provided it be such, that q does not become 
negative: but this condition limits the value of 8 to 3; so 
that if we also exclude 0, there can only be three answers 
to the question; which are as follow: 

When 8 = 1, 2, 3, 

{
p = 5, 10, 15, 

We have q=42, 24, 6, 
r =53, 66, 79. 

27. In forming such examples for practice, we must 
take particular care that they may be possible; in order 
to which, we must observe the following particulars: 

Let us represent the two equations, to which we were 
just now brought, by 

1. x+ y+ z=a, and 
2. !x+g!l+}tz=b, 

in wbichj,g, h, as well as a and b, are given numbel's. 



314 ELEMENTS PART II. 

Now, if we suppose that among the numbersf, 9, and n, 
the first, f, is the greatest, and h the least, since we have 
fx+ fy+fz, or (x+y+z)j fa, (because x+y+z= a) 
it is evident, thatfx+fy+fz is greater than fx +9y+hz ; 
consequently,fa must be greater than b, or b must be less 
than fa. Farther, since hx+hy+ltz, or (x+y+z)h=ha, 
and Ilx + hy + lIz is undoubtedly less than fx + 9Y + hz, 
ha must be less than b, or b must be greater than ha. Hence 
it follows, thatifb be not less than fa, and also greater than 
Ita, the question will be impossible: which condition is 
also expressed, by saying that b must be contained between 
the limits fa and ha; and care must also be taken that it 
may not approach either limit too nearly, as that would 
render it impossible to determine the other letters. 

In the preceding example, in which a=100,j-3.t, and 
h=t, the limits were 350 and 50. Now, if we suppose 
b=51, instead of 100, the equations will become 

x+y+z=100, and 3{-x+ Ity+{-z=51; 
or, removing the fractions, 21x+8y+3z=306; and if 
the first be multiplied by 3, we have 3x+3y+3z=300. 
Now, subtracting this equation from the other, there re
mains 18x+5y=6 ; which is evidently impossible, because 
x and y must be integer and positive numbers.* 

28. Goldsmiths and coiners make great use of this rule, 
when they propose to make, from three or more kinds 
of metal, a mixture of a given value, as the following ex
ample will shew. 

Question 3. A coiner has three kinds of silver, the first 
of 7 ounces, the second of 5t ounces, the third of 4{
ounces, fine per marc;t and he wishes to form a mixture 
of the weight of 30 mares, at 6 ounces: bow many mares 
of each sort must be take? 

If he take x mares of the first kind, y mares of the 
second, and z mares of the third, be will have x+y+z= 
30, which is the first equation. 

Then, since a marc of the first sort contains 7 ounces of 
fine silver, the x mares of tbis sort will contain 7x ounces 
of such silver. Also, the y mares of the second sort will 
contain 5}y ounces, and the z mares of the third sort will 
contain 4{-z ounces, of fine silver; so that the whole mass 
will contain 7x+5{-y+4{-z ounces of fine silver. As this 
mixture is to weigh 30 mares, and each of these mares must 
contain 6 ounces of fine silver, it follows that the Whole mass 

'Ii< Vide Article 22. t A marc is eight ounces. 
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will contain 180 ounces of fine silver; and thence results 
the second equation, 7x+5ty+4tz=180, or 14x+ lly+ 
9z=360. If we now subtract from this equation nine 
times the first, or 9,x+9y+9z=270, there remains 5,x+ 
2y=90, an equation which must give the values of,x and 
y in integer numbers; and with regard to the value of z, 
we may derive it from the first equation z=30-,x-y. 
Now, the former equation gives 2y=90-5,x, and 

y = 45 - 5;; therefore, if ,x = 2u, we shall have y = 45 

- 5u, and z = 3u-15; which shews that u must be 
greater than 4, and yet less than 10. Consequently, the 
question admits of the following solutions: 

If u= 5, 6, 7, 8, 9, 

{
,x = 10, 12, 14, 16, 18, 

Then y = 20, 15, 10, 5. 0, 
z = 0, 3, 6, 9, 12. 

29. Questions sometimes occur, containing more than 
three unknown quantities; but they are also resolvible in 
the same manner, as the following example will shew. 

Question 4. A person buys 100 head of cattle for 100 
pounds; viz. oxen at 10 pounds each, cows at 5 pounds, 
calves at 2 pounds, and sheep at 10 shillings each. How 
many oxen, cows, calves, and sheep, did he buy? 

Let the number of oxen be p, that of the cows q, of calves 
r, and of sheep s. Then we have the following equations: 

1. p+ q+ r+ s=100; 
2. IOp+5q+2r+ts= 100; 

or, removing the fractions, 20p + 10q + 4r+s = 200; 
then subtracting the first equation from this, there remains 
19p+9q+3r=100; whence 

3r = 100-19p-9q, and 
r = 33 + t -6p-ip-3q; or 

I-p 
r= 33- 6p-3q+ -3-; 

whence 1-p, or p - I, mnst be divisible by 3; therefore 
if we make 

p - 1 = 3t, we have 

p = 3t + 1 
q=q 
r = 27 - 19t - 3q 
s = 72 + 2q + 16t ; 
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whence it follows, that 19t+3q must be less than 27, and 
that, provided this condition be observed, we may give 
any value to x and t. We have therefore to consider the 
following cases: 

1. Ift=O 
we havep = 1 

q=q 

2. If t = 1 
p= 4 
q= q 

r= 27-3q 
s - 72+2q 

r= 8-3q 
s = 88+2q. 

W ecannot make t = 2, because r would then become 
negative. 

Now, in the first case, q cannot exceed 9; and, in the 
second, it cannot exceed 2; so that these two cases give 
the following solutions, the first giving the following ten 
answers: 

1. 2. 3. 4. 5. 6. 7. 
p= 1 1 1 1 ] 1 1 
q= 0 1 2 3 4 5 6 
r = 27 24 21 18 15 12 9 
s = 72 74 76 78 80 82 84 

8. 9.10. 
1 1 1 
789 
630 

86 88 90 
Aud the second furnishes the three following answers: 

1. 2. 3. 
p= 4 4 4 
q= 0 1 2 
r = 8 5 2 
s = 88 90 92 

There are, therefore, in all, thirteen answers, which are 
reduced to ten if we exclude those that contain zero, or O. 

30. The method would still be the same, even if the 
letters in the first equation were multiplied by given 
numbers, as will be seen from the following example. 

Question 5. To find three.such integer numbers, that if 
the first be multiplied by 3, the second by 5, and the third 
by 7, the sum of the products may be 560; and if we 
multiply the first by 9, the second by 25, and the third 
by 49, the sum of the products may be 2920. 

If the first number be x, the second y, and the third z, 
we shall have these two equations, 

1. 3x+ 5y+ 7z= 560 
2. 9x+25y+49z=2920. 

And here, if we subtract three times the first, or 9x + 15y + 
21z= 1680, from the second, there remains lOy + 28z 
= 1240, dividing by 2, we have 5y + 14z = 620; whence 
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we obtain y = 124- 1!z : so that z must be divisible by 

5. If therefore we make z = 5u, we shall have y = 
124-14u; which values of y and z being substituted in 
the first equation, we have 3x-35u + 620=560 ; or 3x= 

35u 
35u - 60, and X= 3 - 20; therefore we shall make 

u = 3t, from which we obtain the following answer, 
x= 35t - 20, Y = 124 - 42t, and z = 15t, in which we 
must substitute for t an integel' number greater than 0 
and less than 3: so that we are limited to the two 
following answers: 

If{ t = I,} we have{X = 15, Y = 82, z =15. 
t = 2, x = 50, Y = 40, z = 30. 

CHAPTER III. 

OJ Compound Indeterminate Equations, in which one 
of the Unknown Quantities does not exceed the First 
Degree. 

31. We shall now proceed to indeterminate equations, 
in which it is required to find two unknown quantities, 
one of them being multiplied by the other, or raised to a 
power higher than the first, whilst the other is found only 
in the first degree. It is evident that equations of this 
kind may be represented by the following general 
expression: 
a+bx+cy+dx2 + exy +jx3 +gx2y + hX4 + kx3y + , &c. = O. 
As in this equation y does not exceed the first degree, that 
letter is easily determined; but here, as before, the values 
both of x and y must be assigned in integer numbers. 

We shall consider some of those cases, beginning with 
the easiest. 

32. Question 1. To find two such numbers, that their 
product added to their sum may be 79. 

Call the numbers sought x and y: then we must have 
xy+x+y= 79; so that xy+y =79-x, and 

79-x 1 80 bId'" fi h' h y= x+l = - + x+l' yactua IVlSlOn, rom w IC 

we see that x+ 1 must be a divisor of80. Now, 80 having 
several divisors, we shall also have several values of x, as 
the following Table will shew: 
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The divisors of 80 are 1 2 4 5 8 10 16 20 40 80 

therefore X= 0 1 3 4 7 9 15 19 39 79 
and y = 79 39 19 15 9 7 4 3 1 0 

But as the answers in the bottom line are the same as 
those in the first, inverted, we have, in reality, only the 
five following; viz. 

x = 0, 1, 3, 4, 7, and 
g = 79, 39, 19, 15, 9. 

33. In the same manner, we may also resolve the 
general equation x!J + ax + by = c; for we shall have 

b d c-ax d' 'd' b xy + tg=c-ax, an g = x+b' or, IVI mg c-ax y 

ab+c x+b, g=-a + --b-; that is to say, x+b must be a 
x+ 

divisor of the known number ab +c; so that each divisor 
of this number gives a value of x. If we therefore make 
ab+c=fg, we have 

g= igb -a; and supposing x+b=f, orx=f-b, it is 
x+ 

evident that g=g-a; and, consequently, that we have 
also two answers for every method of representing the 
number ab+c by a product, such as Ig. Of these two 
answers, one is x = f-b, and g =g-a; and the other 
is obtained by making x+b =g, in which case x=g-b, 
andg=f-a. 

If, therefore, the equation xg + 2x + 3y = 42 were 
proposed, we should have a = 2, b = 3, and c= 42; con-

48* 
sequentIy,g = --3 - 2. Now, the number 48 may be 

x+ 
represented in several ways by two factors, as fg: and in 
each of those cases we shall always have either x = f -3, 
and y=g-2; or else x=g-3, and g=f-2. The 
analysis of this example is as follows: 

Factors 1 X 48 I 2 X 24 3 X 16 4 X 12 6 X 8 

~. '!I x '!I x '!I x '!I 
------

Numbers -2 46 -1 22 0 14 1 10 3 6 
or 45 -1 21 0 13 1 9 2 5 4 

34. The equation may be expressed still more generally, 
by writing mxy = ax + bg + c; where a, b, c, and m, are 

;\< Thatisab+c=6+42=48. 
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given numbel's, and it is required to find integers for x 
and y that are not known. 

ax+e 
If we first separate y, we shall have y = mx-b; and 

removing x from the numerator, by multiplying both sides 
by m, we have 

max + me me + ab b d' .. 
my= b = a + b' Y IVlSlOn. mx- mx-

We have here a fraction whose numerator is a known 
number, and whose denominator must be a divisor of that 
number; let us therefore represent the numerator by a 
product of two factors, as fg (which may often be done in 
several ways) and see if one of these factors may be com
pared with mx-b, so that mx-b f. Now, for this 

purpose, since x= f+ b, J+b must be divisible by m; 
m 

and hence it follows, that out of the factors of me +ab, we 
can employ only those which are of such a nature, that, 
by adding b to them, the sums will be divisible by m. 
We shall illustrate this by an example. 

Let the equation be 5xy = 2x + 3y + lB. Here, we 
have 

2x+lB IOx+90 96 
y = 5x- 3' and 5y = 5x- 3 = 2 + 5x-3; 

it is therefore required to find those divisors of 96 which, 
added to 3, will give sums divisible by 5. Now, if we 
consider all the divisors of 96, which are 1, 2, 3, 4, 6, 8, 
12, 16, 24, 32,48, 96, it is evident that only these three 
of them, viz. 2, 12, 32, will answer this condition. 

Therefore, 
1. If 5x - 3 = 2, we obtain 5y = 50, and 

consequently x = 1, and y = ]0. 
2. 1f5x - 3 = 12, weobtain5y = 10, and 

consequently x = 3, and y = 2. 
3. If5x - 3 = 32, we obtain 5y = 5, and 

consequently x = 7, and y = 1. 

35. As in this general solution we have 
me+ab 

my - a = mx-b' 

it will be proper to observe, that if a number, contained in 
the formula me+ab, have a divisor ofthe form mx-b, the 
quotient in that case must necessarily be contained in the 
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formula m.1} - a: we may therefore express the number 
mc+ab by a product, such as (mx-b) x (my-a). FOI' 
example, let m = 12, a = 5, b = 7, and c = 15, and we 

mc+ab 215 
have, for m1/-a = b' 12.IJ-5 = -12 7' - mx- x-

Now, the divisors of 215 are 1, 5,43, 215; and we 
must select from these such as are contained in the 
formnla 12x - 7; or such as, by adding 7 to them, the 
sum may be divisible by 12; but 5 is the only divisor that 
satisfies this condition; so that 12x-7 = 5, and 12y-5 
=43, In the same manner, as the first of these eqnations 
gives x = 1, we also find y, in integer numbers, from the 
other, namely, .'1/ = 4, this property is of the greatest 
importance with regard to the theory of numbers, and 
therefore deserves particular attention. 

36, Let ns now consider also an equation of this kind, 
x.IJ+X2 = 2x+3y+29. First, it gives us 

2x-x2 +29 b d' . . 1 26 d Y = 3' or, y IVISlOn, y= -x- + ---;:); an x- X-u 

y +x + 1 = 263 : so that x-3 must be a divisor of 26; 
x-

and, in this case, the divisors of26 being 1,2,13,26, we 
obtain the three following answers: 

1. x - 3 = 1, or x = 4; so that 
y + x + 1 =:9 + 5 = 26, and.'If =21 ; 

2, x - 3 = 2, or .r = 5; so that 
y + x + 1 = Y + 6 = 13, and y = 7; 

3. x - 3 = 13, or x = 16; so that, if 
y + x + I = Y + 17 = 2, Y must be = -15. 

This last value, being negative, must be omitted; 
and, for the same reason, we cannot include the case, 
x - 3 = 26. 

37. It would be unnecessary to analyse any more of 
these formulre, in which we find only the first power of y, 
and higher powers of x; for these cases occur but seldom; 
and, besides, they may always be resolved by the method 
which we have explained. But when yalso is raised to 
the second power, or to a degree still higher, and we wish 
to determine its value by the above rules, we obtain 
radical signs, which contain the second, or higher powers 
of x; and it is then necessary to find such values 
of x, as will destroy the radical signs, or the irrationality, 
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Now, the great art of Indeterminate Analysis consists in 
rendering those surd, or incommensurable formulre 
rational: the methods of performing which will be 
explained ill the following chapters.* 

QUESTIONS FOR PRACTICE. 

1. Given 24x= 13y + 16, to find x and y in whole num-
bers. Ans. x=5, and y=8. 

2. Given 87x+256y=1541O, to find the least value of 
x, and the greatest of y, in whole positive numbers. 

Ans. x=30, and y= 12800. 
3. What is the number of all the possible values of x,y, 

and z, in whole numbers, in the equation 5x + 7y + 
Ilz=224? AilS, 60. 

4. How many old guineas at 21s. 6d.; and pi stoles at 
17s. will pay lOOt. ? and in how many ways can it be done? 

Alls. Three different ways; that is, 
18, 62, 105 pistoles, and 78, 44, 10 guineas. 

5. A man bought 20 birds for 20 pence; consisting of 
geese at 4 pence, quails at td. and larks at td. each; how 
many had he of each? 

Ans. 3 geese, 15 quails, and 2 larks. 
6. A, B, and C, and their wives P, Q, and R, went to 

market to buy hogs; each man and woman bought as many 
hogs, as they gave shillings for each; A bought 25 hogs 
more than Q, and B bought 11 more than P. Also each 
man laid out three guineas more than his wife. Which 
two persons were respectively, man and wife? 

Ans. Band Q, C and P, A and R. 
7. To determine whether it be possible to pay 100l. in 

guineas and moidores only? Ans. It is not possible. 
S. lowe my friend a shilling, and have nothing about 

me but guineas, and he has nothing but louis d'ors, valued 
at 17s. each; how must I acquit myself of the debt? 

Ans. I must pay him 13 guineas, and he must give 
me 16 louis d'ors. 

9. In how many ways is it possible to pay 10001. with 
CI'owns, guineas, and moidores only? Ans. 70734. 

10. To find the least whole number, which being 
divided by the nine whole digits respectively, shall leave 
no remainders. Ans. 2520. 

'" See the Appendix to this chapter, at Art. 4, of the Addi
tions by De la Grange. 

y 
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CHAPTER IV. 

On tke Method of rendering Surd Quantities of tke form 
v' (a + bx + cx2) Rational. 

38. It is required in the present case to determine the 
values, which are to be adopted for x, in order that the 
formula a+bx+cx2 may become a real square; and, 
consequently, that a rational root of it may be assigned. 
Now, the letters a, b, and c, represent given numbers; and 
the determination of the unknown quantity depends chiefly 
on the nature of these numbers; there being many cases 
in which the solution becomes impossible. But even when 
it is possible, we must content ourselves at first with being 
able to assign rational values for the letter x, without re
quiring those values also to be integer numbers; as this 
latter condition produces researches altogether peculiar. 

39. We suppose here that the formula extends no far
ther than the second power of x; the higher dimensions 
require different methods, which will be explained in their 
proper places. 

We shall observe first, that if the second power were not 
in the formula, and c were =0, the problem would be at
tended with no difficulty; for if v'(a+bx) were the given 
formula, and it were required to determine x, so that a + bx 
might be a square, we should only have to make a+b.r=y2, 

whence we should immediately obtain X= y2 b a. Now, 

whatever number we substitute here for y, the value of x 
would always be such, that a + bx would be a square, and 
consequently, v' (a + hx) would be a rational quantity. 

40. We shall therefore begin with the formula v' (I +X2); 
that iFl to say, we are to find such values of x, that, by add
ing unity to their squares, the sums may likewise be 
squares; and as it is evident that those values of x cannot 
be integers, we must be satisfied with finding the fractions 
which express them. 

41. If we supposed I +X2=y2, since I +X2 must be a 
square, we should have x2=y2_1, and X= v'(y2-1); so 
that in order to find x we should have to seek numbers for 
y, whose squares, diminished by unity, would also leave 
squares; and, consequently, we should be led to a question 
as difficult as the former, without advancing a single step. 
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It is certain, however, that there are real fractions, 
which, being substituted for x, will make 1 +X2 a square; 
of which we may be satisfied from the following cases: 

1. If x=i, we have l+x2 =·H·; and consequently 
..J(l +x2 )=t· 

2. 1 +X2 becomes a square likewise, if x=1, which 
gives ..J(l +x2)=t. 

3. If we make x= -/2' we obtain 1 +X2= -H·t, the square 
root of which is H. 

But it is required to shew how to find these values of x, 
and even all possible numbers of this kind. 

42. There are two methods of doing this. The first re
quires us to make ..J(l +X2) = x+p; from which sup
position we have 1 +X2=.t'2+2px+p2, where the square 
x 2 destroys itself; so that we may express x without a 
radical sign. For, cancelling x 2 ou both sides of the equa-

tion, we obtain 2px+p2=1; whence we find x = 12;2; 

a quantity in which we may substitute for p any number 

whatever less than unity. Let us therefore suppose p= m ; 
n 

m2 
I--

then we have x = 2:; and, if we multiply both terms 

n 
n2 _rn2 

of this fraction by n2 , we shall find x= -2--' mn 

43. In order, therefore, that I +X2 may become a square, 
we may take for rn and n all possible integer numbers, and 
in this manner find an infinite number of values for x. 

. n2 _m2 

Also, if we make, 1Il general, X= -2--' we find, by 
rnn 

n4 _ 2rn2n2 + m4 • 
squaring, I + x2 = 1+ 4rn2n2 ; or, by puttmg 

4m2 • n4 + 2rn2n2 + m4 

1 = -4 2 III the numerator, 1 +X2= 4 2 2 ; a 
m rn n 

f' . h' h . d' 1 n 2 + rn2 
ractIOn w IC IS a square, an gives..J( +X2)= ---. 

2mn 
We shall exhibit, according to this solution, some of the 

least values of x. 

If n=2, 
and m=l, 

3, 3, 4, 
1, 2, I, 

4, 5, 
3; 1, 

5, 
2, 

5, 
3, 

5. 
4, 
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We have x= i, 1, -Ai,"" 1.j, ti, V, %i, T85' -10' 
44. We have, therefore, in general, [Art. 42, 43.] 

(n2_m2 )2 (n2+m2)2 
1+ =---.' 

(2mn)~· (2mn)2' 

and, if we multiply this equation by (2mn)2, we find 
(2mn)2 + (n2_rn2)2=(n2 + m2)2 

so that we know, in a general manner, two squares, whose 
sum gives a new square. This remark will lead to the 
solution of the following question: 

To find two square numbers, whose sum is likewise a 
square number. 

We must have p2 +q2=r2; we have therefore only to 
make p=2mn, and q::;:: n2 _ m2, then we shall have 
r=n2+m2. 

Farther, as (n2+m2)2_(2mn)2=(n2_m2)2, we may also 
resolve the following question: 

To find two squares, whose difference may also be a 
square number. 

Here, since p2~q2 = r2, we have only to suppose 
p=n2+m2, and q=2mn, and we obtain r=n2_m2 • We 
might also make p=n2+m2, and q=n2_m2, from which 
we should find r=2mn. 

45. We spoke of two methods of giving the form of a 
square to the formula I +x2 , The other is as follows: 

mx 
If we suppose .v (l + X2) = 1 + -, we shall have 

n 
2mx m2x2 

1 + x 2 = 1 + - + --; subtracting 1 from both sides, 
n n2 

2mx m2x2 
:e2= -+ --. This equation being divided by x, we 

n n2 

2m m£x 
have x= - + -2 , or n2x=2mn +m2x, whence 

n n 
2mn :c= n2 _m ll ' Having found this value of x, we have 

'II< Thus, if n=3, and m=2, we have, by the last equation, 
32 + 22 13 132 I 32 

v(1+x2)=Z(3X2) 12;orl+x2=122' and x2=12z - 1• 

( 132 ) • 25 5 
Then ;r:=..! 122 - 1 ; that IS, x=.v 144=12' as above. 
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4m2'll2 n" + 2m2'll2 + m' 
I +x2-1 + - . which is the 

- 'll"-2m2'll2+m4 - n4 _2m2'll2+m4 ' 

'll2+m2 
square of-2--Q • Now, as we obtain from that, the equa

'11 -m~ 
. (2m'll)2 ('112 + m2)2 

bon 1 + (2 Q)2 = ( 2 2)2' we shall have, as before, '11 -m- '11 -m 
(2m'll)2+(n2_m2)2=('ll2+m2)~ ; 

that is, the same two squares, whose sum is also a square. 
40. The case which we have just analysed furnishes two 

methods of transforming the general formula a + bx + exll 

into a square. The first of these applies to all cases in 
which e is a square; and the second to those in which a 
is a square. We shall consider both these suppositions. 

First, let us suppose that e is a square, or that the given 
formula is a+bx+f2x2. Since this must be a square, 

we shall make ,.; (~+ bx + f2x2 ) fx +~, and shall thus 
'11 

have a + bx +JIlX2 =J2X2 + 2mJx + ml! in which the 
n '112' 

terms containing x2 destroy each other; so that 

2mfx ml! 
a + bx = -' - = -. 1f we multiply by n2, we obtain 

'11 '112 

m2_'ll2a 
n2a + n2bx= 2m'llJx+m2 ; hence we findx= 2b 2 if'; and, 

'11 - m'll 

substituting this value for x, we shall have 

m2f-'ll2af m m'llb-m2J-'ll2aJ 
";(a+bx+j2x2)= 2b 2 if+ - = 2b 2 if . 'll-mn n n-mn 

47. As we have got a fraction for x, namely, 

~-~ p d 
2b 2 if' let us make x = -, th<!n p = m2 - 'll2a, an 

n - m'll q 

q=n2b-2mnJ; so that the formula a + bp +.r~2 is a. 
q q 

square; and as it continues a square, though multiplied 
by the square q2, it follows, that the formula aq2 + bpq + ppll 
is also a square, by making p=m2 ...... 'lllla, and q='llllb-2m'llJ. 
Hence it is evident, that an infinite number of answers, 
in inteO'er numbers, may result from this expression, be
cause the values of the letters m and n are arbitrary. 

48. The second case which we have to consider, is that in 
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which a, or the first term, is a square. Let there be pro
posed, for example, the formulaf2+bx+cx2, which it is 
required to make a square. Here, let us suppose 

ma: 
,.J(j2+bx+CX2)=f+ -,and we shall have 

n 

f2 + bx + ex2 = P + 2fmx + m2;, in which equation the 
n n 

terms /2 destroying each other, we may divide the remain
ing terms by x, so that 

2mf m2x 
b + ex =-- + -2' or n2b + n2ex = 2mnf + m2x, or n n 

2mnl!-n2b 
x(n2c-m2)=2mnif-n2b' or lastly X= ';/. . " , n2e-m2 

If we now substitute this value instead of x, we have 

. 1(/2 b n) f 2m2+' - mnb n2cf + m2f- mnb 
'V +x+ex·= + .J =" ; n2c_m2 n2c_m2 

and making x=E, we may, in the same manner as before, 
q 

transform the expression f2q2 + bpq + ep2, into a square, 
by making p=2mnf-n2b, and q=n2a_m2. 

49. Here we have chiefly to distinguish the case in 
which a=O, that is to say, in which it is required to make 
a square of the formula bx+cx2 ; for we have only to 

suppose,.J(bx+ex2) = mx, from which we have the equa-
n 

tion bx+cx2 = m2;; which, .divided by x, and multiplied 
n 

bn2 
by n2 gives bn2 + cn2x = m2x . and x= . , , , m2 _en2 

If we seek, for example, all the triangular numbers 
that are at the same time squares, it will be necessary that 

x2:x, which is the form of triangular numbers, must be 

a square; and, consequently, 2x2 + 2x must also be a 
m2,x2 

square. Let us, therefore, suppose -2- to be that square, 
n 

2n2 
and we shall have 2n!!x+2n2=m2x, and X= . 2 2; in m2 _ n 

which value we may substitute, instead ofm and n, all pos-
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sible numbers; but we shall generally find a fl'action for 
x, though sometimes we may obtain an integer number. 
For example, if m=3, and n=2, we find x=8, the trian
gular number of which, or 36, is also a square. 

We may also make m=7, and n=5; in this case, 
x= -50, the t.riangle of which, 1225, is at the same time 
the triangle of + 49, and the square of 35. We should 
have obtained the same result by making n=7 and m= 10; 
for, in that case, we should also have found x=49. 

In the same manner, if m=17 and n=12, we obtain 
x=288; the triangular number of which is 

xex+ 1) _ 288 x 289 _ 83232 -144 289 
2 - 2 -2- x, 

which is a square, whose root is 12x 17=204. 
50. We may remark, with regard to this last case, that 

we have been able to transform the formula bx+cx2 into a 
square from its having a known factor, x. This obser
vation leads to other cases, in which the formula a + bx + 
cx2 may likewise become a square, even when neither a 
nor c is a square. 

These cases occur when a+bx+cx2 may be resolved 
into two factors; and this happens when b2 -4ac is a 
square: to prove which., we may remal'k, that the factors 
depend always on the roots of an equation; and that, 
therefore, we must suppose a+bx+cx2=0. This being 
laid down, we have cx2 = -bx-a, or 

bx a 
x 2= - C - c' whence, by completing the square, &c., 

we find 
x= _ ~+../ (b 2 _~) orx=-!!...+ ../eb2-4ac), 

2c - 4c2 c' 2c - 2c 
and, it is evident, that if b2-4ac be a square, this quantity 
becomes rational. 

Therefore let b'l - 4ac = d2 ; then the roots will be 
-b+d. -b+d I 2; ,that IS to say, x = 2; ; and, consequent y, 

the divisors of the formula a+bx+cx2 are x+ b~d, and 

x + b:a d. Ifwe multiply these factors together, we shall be 

brought to the same formula again, except that it is divided 
bx b2 d2 

by c; for the product is x 2 + - + -4 Q - 42 ; and since c c~ c 
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bx b2 b2 4ac bx a 
X2+_+~_~+_=X2+_+_; which being 

c 4c2 4c2 4c2 C c 
multiplied by c, gives cx2+bx+a. We have, therefore, 
only to multiply one of the factors by c, and we obtain 
the formula in question expressed by the product, 

( b d) ( b d) cX+ 2- 2 x x+ 2c + 2c ; 

and it is evident that this solution must be applicable 
whenever b2 -4ac is a square. 

51. From this results the third case, in which the for
mula a+bx+cx2 may be transformed into a square; 
which we shall add to the other two. 

52. This case, as we have already observed, takes place, 
when the formula may be represented by a product, such 
as (l+gx)x(h+kx). Now, in order to make a square 
of this quantity, let us suppose its root, or 

m(j+gx) v(1 + gx) x (h + kx) = . n ; and we shall then 

have (j + gx) X (It + kx) = m2(f +2 gX)2; and dividing 
n 

h · . b m2(j+gx) t IS equatIOn y l+gx, we have It + kx= 2 ; or 

hn2 + kn2x fm2 + gm2x ; 

d fm2-hn2 
an ,consequently, x='-k-~-' n2_gm2 

n 

To illustrate this, let the following questions be pro
posed. 

Question 1. To find all the numbers, x, such; that if 2 
be subtracted from twice their square, the remainder may 
be a square. 

Since 2x2 -2 is the quantity which is to be a square, 
we must observe, that this quantity may be expressed by 
the factors, 2(x+I) x (x-I). If, therefore, we suppose 
'. 11/(x+ I) 'lJZ2(x+ 1)2 
Itsroot= ,we have 2(x+I)x(x-l)= ; n ~ 

dividing by x+ I, and multiplying by n2, we obtain 
m~+2n2 

2n2x-2n2=m2x+m2, and X= . 
2n2-m2 

If, therefore, we make m=I, and n=I, we find x=3, 
and 2X2~2="I6=4Q. 

Ifm=3 and n=2, we have x=-I7. Now, as x is 



CHAP. IV. OF ALGEBRA. 329 

only found in the second power, it is indifferent whether 
we take x= - 17, or x= + 17; either supposition equally 
gives 2x2 -2=576=242• 

53. Question 2. Let the formula 6 + 13x + 6,:;;2 be pro
posed to be transformed into a square. Here, we have 
a=6, b= 13, and c=6, in which neither a nor c is a 
square. If, therefore, we try whether b2 -4ac becomes a. 
square, we obtain 25; so that we are sure the formula 
may be represented by two factol's; and those factors are 

(2+3x) x (3+2x). If m(2 + 3x) is their root, we have 
n 

(2 + 3x) x (3+2x) = m2(2~3x)2, 
n 

which becomes 3n2 +2n2x=2m2 + 3m2x, whence we find 
2m2 -3n2 3n2~2m2 . 

x= 2 n 3 '2 = 3 2 2 2' Now, III order that the nume-n-- m m - n 

rator of this fraction may become positive, 3n'Z must be 
greater than 2m2 ; and, consequently, 2m2 less than 3n2 : 

m'2 
that is to say, -2 must be less than t. With regard to the 

n 
denominator, if it must be positive, it is evident that 3m2 

m2 
must exceed 2n~; and, consequently, 2 must be greater 

n 
than i. If, therefore, we would have the positive values 
of x, we must assume such numbers for m and n, that 
m2 
2 may be less than t, and yet greater than t. 
n 

For example, let m=6, and n=5; we shall then have 
m2 , 
2= -H-, which is less than t, and evidently greater than 
n 

t, whence x = '"5\. 
54. This third case leads us to consider also a fourth, 

which occurs whenever the formula a+bx+cx2 may be 
resolved into two such parts, that the first is a square, and 
the second the product of two factors: that is to say, in th is 
case, the formlllamust be .represented by a quantity of the 
form p2+qr, in which the letters p, q, and r express quan
tities of the form f + 9x. It is evident that the rule for 

this case will be to make .J (p2 + qr)=p + mq; for we shall 
n 
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thus obtain p2 + qr p2 + 2mpq + m2t, in which the terms 
n n 

p2 vanish; after which we may divide by q, so that we find 
2mp m2q 

r = - + -2 , or n2r = 2nmp + m2q, an equation from n 1l 

which x is easily determined. This, therefore, is the 
fourth case in which our formula may be transformed into 
a square; the application of which is easy, and we shall 
illustrate it by a few examples. 

55. Question 3. Required a number, x, such, that double 
its square, shall exceed some other square by unity; that 
is, if we subtract unity from this double square, the re
mainder may be a square. 

For instance, the case applies to the number 5, whose 
square 25, taken twice, gives the number 50, which is 
greater by I than the square 49. 

According to this enunciation, 2X2 -I must be a square; 
and as we have, by the formula, a= -1, b=O, and c=2, 
it is evident that neither a nor c is a square; and farther, 
that the given quantity cannot be resolved into two factors, 
since b2-4ac=8 which is not a square; so that none of 
the first three cases will apply. But, according to the 
fourth, this formula may be represented by 

x~+ (x2_1)=X2 +(x-I)x(x+ 1). 

. m(x+l) 
If, therefore, we suppose Its root = x + , we shall 

n 
have 

2 ( 1) ( 1) 2 2mx(x+J) m2(x+IYz x + x + X x- =X + + 2 • 
11 n 

This equation, after having expunged X2, and divided the 
other terms by x + ], gives 

n2x-n2=2mllx+m2x+m2; whence we find 

m2 +n2 

x = 2 2 2; and, since in our formula, 2x2-1, the n - mn-m 

square x2 alone is found, it is indifferent whether we take 
positive or negative values for x. We may at first even 
write -m, instead of + m, in order to have 

m2 +n2 
X= . 

n2 +2mn-m2 

If we make m = 1, and n == 1, we find x = 1, and 
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2x2 _1 = 1 ; or if we make m = 1, and n = 2, we find 
x = t, and 2X2_1 = ill; lastly, if we suppose m = I, 
and n= -2, we find x= -5, or x= +5, and 2x2 _1 =49. 

56. Question 4. To find numbers whose squares doubled 
and increased by 2, may likewise be squares. 

Such a number, for instance, is 7, since the double of 
its square is 98, and if we add 2 to it, we have the square 
100. 

We must, therefore, have 2X2 + 2 a square: and as 
a = 2, b = 0, and c = 2, so that neither a nor c, nor 
b2 -4ac, (the last being = -16), are squares, we must 
have recourse to the fourth rule. 

Let us suppose tbe first part to be 4, then the second 
will be 2x2_2=2(x+ l)x(x-l), which presents the 
qmmtity proposed in the form 

4 + (x + ]) x (x- ] ). 

Now, let 2+ m(x+ 1) be its root, and by squaring, we 
n 

shall have the equation 
4m(x+ I) m2(x+ 1)2 • • 

4+2(x+l)x(x-l)=4+ + 2 ,mwhlCh 
n n 

the squares 4, are destroyed; so that after having divided 
the other tel'ms by x + ], we have 
2n2x-2n2=4mn +m2x+m2; and, consequently, 

4mn+m2+2n2 
x = --=-'-=-----'-,,---

2n2 -m2 

If, in this value, we make m = 1, and n = 1, we find 
x=7, and 2x2+2=100. But ifm=O, and n=l, we have 
x=l, and 2x2+2=4. 

57. It frequently happens, also, when none of the first 
three rules applies, that we are still able to resolve the 
formula into such parts as the fourth rule requires, though 
not so readily as in the foregoing examples. 

Thus, if the question comprises the formula 7 + 15x 
+ 13x2, the resolution we speak of is possible; but the 
method of performing it does not readily occur to the 
mind. It requires us to suppose the first part to be 
(1_X)2, or 1-2x+x2, so that the other may be 6+17x 
+ 12x2: and we perceive that this part bas two factors, 
because 172-(4 x 6 x 12), = 1, is a square. The two 
factors therefore are (2 + 3x) x (3 + 4x); so that the 
formula becomes (1-x)2+(2+3x) X (3+4x), which we 
may now resolve by the fourth r,ll'le. 
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But, as we have observed, it cannot be 'said that this 
analysis is easily found; and therefore we shall explain 
a general method for discovel'ing, beforehand, whether 
the resolution of such formuhe be possible or not; for 
there is an infinite number of them which cannot be 
resolved at all : such, for instance, as the formula 3x2 + 2, 
which can in no case whatever become a square. On the 
other hand, it is sufficient to know a single case, in which 
a formula is possible, to enable us to find all its anwers; 
and this we shall explain at some length. 

58. From what has been said, it may be observed, that 
all the advantage that can be expected on these occasions, 
is to determine, or suppose, any case in which such a 
formula asa+bx+cx2,may be transformed into a square; 
and the method which naturally occurs for this, is to 
substitute small numbers successively for x, until we meet 
with a case which gives a square. 

Now, as x may be a fraction, let us begin with substi-

tuting for x the general fraction ~; and, if the formula 
u 

bt ct2 h' h I Ii 'b "II b a + - + 2" w lC resu ts rom It, e a square; It WI e 
u u 

so also after having been multiplied by u2 ; so that it only 
remains to try to find such integer values for t and u, as 
will make the formula au2 + btu + ct2 a square; and it is 

evident, that after this, the supposition of x = !.. cannot fail 
u 

to give the formula a+bx+cx2 equal to a square. 
But if, whatever we do, we cannot arrive at any satis

factory case, we have every reason to suppose that it is 
altogether impossible to transform the formula into a 
square; which, as we have already said, very frequently 
happens, 

59. We shall now shew, on the other hand, that when 
one satisfactory case has been determined, it will be easy to 
find all the other cases which likewise give a square; and 
it will be perceived, at the same time, that the number of 
those solutions is always infinitely great. 

Let us first considel' the formula 2+7x2, in which a=2, 
b = 0, and c = 7. This evidently becomes a square, 
if we suppose x = I. Let us therefore make x = 1 + y ; 
then, by substitution, we shall have x2 = I +2y +y2, and 
our formula, 2+7x2, becomes 9+14y+7y2, in which the 
first term is a square; so that we shall suppose, con
formably to the second rule, the square root of the new 
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formula to be 3 + my, and we shall thus obtain the 
n 

equation 9+ 14y+7y 2=9+ 6my + m2r, in which we may 
n n 

expunge 9 from both sides, and divide by y: which being 
done, we shall have 14n2 + 7n2y = 6mn + m2y; whence 

6mn-14n2 6mn-7n2 _m2* 
y= 7 2 2; and, consequently, x = 7 2 2 n-m n-m 
in which we may substitute any values we please for m 
and n, 

If we make m= 1, and n= I, we have .1:= -t: or, since 
the second power of x stands alone, x = + t, wherefore 

18 7 
2 + 7:f2 ="9 + 9 = V· 

Ifm=3, and n=l, we have x=-I, orx=+l. 
But if m==3, and n= -1, we have x= 17; which gives 

2+7x2=2025, the square of 45, 
If m = 8, and n = 3, we shall then have, in the same 

manner, x= -17, or x= + 17. 
But, by making m = 8, and n =;:: _ 3, we find x = 271 : 

so that 2+7x2=514089 =7172 , 

60. Let us now examine theformula5x2 +3x+7, which 
becomes a square by the supposition of x= -1. Here, if 
we make x;::: y-l, our formula will be changed into this i 

5!:l- lOy + 5 
+ 3y-3 

+7 

5y~ - 7y + 9, 

the square root of which we will suppose to be 3 _ my; by 
n 

6my m2y2 
which means we have 5y2~7y+9=9_-- + --' or 

n n2 

5n2y-7n2=_6mn+m2y; whence, 
7n2 -6mn 2n2-6mn+m2 

y = 5 2 2; and lastly, x = 5 2 2 • n -m n-m 

'* Because:r: was made = 1 + y; and 1 is here added to the 
. . 6mn-14n2 

fractional expressIOn, 7 11 2' n-m 
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Ifm=2, and n=l, we have x=-6, and, consequently, 
5x2 +3x+7 = 169 = 132• 

But if m = -2, and n = 1, we find x = 18, and 5x2+3x 
+7=1681=41 2 • 

61. Let us now consider the formula, 7 x2 + 15x + 13, in 

which we must begin with the supposition of x = !... 
u 

Having substituted and multiplied by u2 , we obtain 
7t2 + 15tl.t + 13u2 , which must be a square. Let us there
fore try to adopt some small numbers as the values of t 
and u. 

If t = 1, and u = I, } {= 35 
t = 2, and u = 1, th l' I ·11 b = 71 
t=~,andu=-I, e 10rmu aWl ecome = II 
t = 3, and u = 1, = 121. 

Now, 121 being a square, it is a proof that the value of 
x = 3 answers the required condition; let us therefore 
suppose x = Y + 3, and, by substituting tllis value in the 
formula, we shall have 

7y2+42.lf+63+ 15y+45+ 13, or 
7y 2+57y+ 121. 

Therefore let the root be represented by 11 + m.1f, and 
n 

22my m2y2 
we shall have 7y2 + 57y + 121 = 121 + -- + -·2-' or n n 

57n2-22mn 
7n2y+57n2=22mn+m2y; whence y= 2 7 2 , and m-n 

57n2 -22mn 36n2 -22mn + 3m2 

x= 7 +3= 7· m2 _ n2 m2 _ n2 

Suppose, for example, m = 3, and n= 1; we shall then 
find x= -i, and the formula becomes 

7x2 + 15x+ 13= ~ = (t)2. 

Ifm=l, and n=l, we find x=-V; if m=3, and 
n=-I, we have xa: It!), and the formula 

7x2 + 15x+ 13 = 12 \40 9 = (31 7 )2. 

62. But frequently it is only lost labor to endeavour to 
find a case, in which the proposed formula may become a 
square. We have already said that 3x2 +2 is one of those 
unmanageable formulre; and by giving it, according to this 
rule, the form 3t2 + 2u2, we shall perceive that, whatever 
values we give to t and u, this qus.ntity never becomes 
a square number. As formulre' of this kind are very 
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numerous, it will be worth while to fix on some characters, 
by which their impossibility may be perceived, in order 
that we may be often saved the trouble of useless trials; 
which shall form the subject of the following chapter.'*' 

CHAPTER V. 

Of the Cases in which the Formula a+bx+cx2 can never 
become a Square. 

63. As our general formula is composed of three terms, 
we shall observe, in the first place, that it may always be 
transformed into another, in which the middle term is 

. Th" db' y-b h' h wantmg. IS IS one y supposmg x =' 2c ; w IC 

substitution changes the formula into 
bll-b2 y2_2by+b2 4ac-b2 +y2 . . 

a + _.7 __ + . or ; and smce thIS 
2c 4c' 4c 

Z2 
must be a square, let us make it equal to 4' we shall then 

4cz2 
have 4ac-b2+!1 =4' = cz2 ; and, conseqnently, 

1/ = Cz2 + b2-4ac. Whenever, therefore, our formula is 
a square, this last cz2 +b2 -4ac will be so likewise; and 
reciprocally, if this be a square, the proposed formula will 
be a square also. If therefore we write t, instead of 
bl! - 4ac, the whole will be reduced to determiniug 
whether a quantity of the form cz2 + t can become a square 
or not. And as this formula consists only of two terms, 
it is certainly much easier to judge from that whether it 
be possible or not; but in any further inquiry, we must 
be guided by the nature of the giveu numbers c and t. 

64. It is .evident that if t=O, the formula cz2 can become 
a square only when c is a square; for the quotient arising 
from the division of a square by another square being like
wise a square, the quantity cz2 cannot be a square, unless 

• See the Appendix,Ch. V. p. 537, of the Additions by De 
la Grange. 
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cz'1. . 
2' that IS to say, c, be one. So that when c is not a z 
square, the formula cz2 can by no means become a square; 
and, on the contrary, if c be itself a square, cz2 will also be 
a square, whatever number be assumed for z. 

65. If we wish to consider other cases, we must have 
recourse to what has been already said on the subject of 
different kinds of numbers, considered with relation to 
their division by other numbers. 

We have seen, for example, that the divisor 3 produces 
three different kinds of numbers. The first comprehends 
the numbers which are divisible by 3, and may be ex
pressed by the formula 3n. 

The second kind comprehends the numbers which, 
being divided by 3, leave the remainder l, and are con
tained in the formula 3n + I. 

To the third class belong numbers which, being divided 
by 3, leave 2 for the remainder, and which may be repre
sented by the general expression 3n + 2. 

Now, since all numbers are comprehended in these three 
formulre, let us therefore consider their squares. First, 
if the question relate to a number included in the formula 
3n, we see that the square of this quantity being 9n'1., it is 
divisible not only by 3, but also by 9. 

If the given number be included in the formula 3n+ I, 
we have the square 9n2 + 6n + I, which, divided by 3, 
gives 3n2 + 2n, with the remainder I; and which, conse .. 
quently, belongs to the second class, 3n+1. Lastly, if 
the number in question be included in the formula 3n + 2, 
we have to considel' the square 9n2 + 12n + 4; and 
if we divide it by 3, we obtain 3n2 + 4n + I, and the 
remainder 1; so that this square belongs, as well as the 
former, to the class 3n+ 1. 

Hence it is obvious, that square numbers are only of 
two kinds with relation to the number 3; for they are 
either divisible by 3, and in this case are necessarily 
divisible also by 9; or they are not divisible by 3, in 
which case the remainder is always 1, and never 2; for 
which reason, no number contained in the formula 3n+2 
can be a square. 

66. It is easy, from what has just been said, to shew, 
that the formula 3x2 + 2 can never become a square, what
ever integer, or fractional numbel', we choose to substitute 
for x. For, if x be an integer number, and we divide the 
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formula 3x2 + 2 by 3, there remains 2 ; therefore it cannot 

be a square. Next, if x be a fraction, let us express it by!., 
u 

supposing it already reduced to its lowest terms, and that 
t and u have no cornmon divisor. In order, therefore, that 

~22 + 2 may be a square, we must obtain, after multiply. 

ing by u2 , 3t2 +2u2 also a square. Now, this is impossible; 
for the number u is either divisible by 3, or it is not: if 
it be, t will not be so, for t and u have no common divisor, 

since the fraction !.. is in its lowest terms. Therefore, if 
u 

3t2 
we make u=3j, as the formula 2""+2, becomes3t2 + 18p. 

u 

it is evident that it can be divided by 3 only once, and not 
twice, as it must necessarily be if it were a square; in fact, 
if we divide by 3, we obtain t2 +6f2. Now, though one 
part, 6P, is divisible by 3, yet the other, t2, being divided 
by 3, leaves 1 fOl' a remainder. 

Let us now suppose that u is not divisible by 3, and see 
what results from that supposition. Since the first term 
is divisible by 3, we have only to learn what remainder 
the second term, 2u2 , gives. Now, u2 being divided by 3, 
leaves the remainder 1, that is to say, it is a number of the 
class 3n + 1; so that 2u2 is a number of the class 6n + 2; 
and dividing it by 3, the remainder is 2; consequently, the 
formula 3t2 + 2u2 , if divided by 3, leaves the remainder 2, 
and is certainly not a square number. 

67. We may in the same manner demonstrate, that the 
formula 3t2 + 5'12, likewise can never become a square, nor 
anyone of the following: 

3t2 +8u2 , 3t2 + llu2 , 3t2 + 14u2, &c. 
in which the numbers 5, 8, 11, 14, &c. divided by 3, lfave 
2 for a remainder. For, if we suppose that u is divisible 
by 3, and, consequently, that t is not so, and if we make 
u=3n, we shall always be brought to formulm divisible by 
3, but not divisible by 9: and if u were not divisible by 3, 
and, consequently, u2 a number of the kind 3n+1, we 
should have the first term, 3t2, divisible by 3, while the 
second terms, 5u2 , 8u2 , 11u2, &c. would have the forms 
15n+5, 24n+8, 33n+ll, &c. and, when divided by 3, 
would constantly leave the remainder 2. 

68. It is evident that this remark extends also to the 
general formula, 3t2 + (3n + 2)u2 , VI' hich can never be
come a square, even by taking negative numbers for n. If, 

z 
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for example, we should make n= -1, I say, it ·is im
possible for the formula 3t2 _u2 to become a square. This 
IS evident, if u be divisible by 3: and if it be not, then u2 

is a number of the kind 3n+ 1, and our formula becomes 
3t2-3n-l, which, being divided bY'3, gives the remain
der -1, or +2; and in general, ifn be = -m, we obtain 
the furmula, 3t2-(3m-2)u2 , which can never become a 
square. 

69. So far, therefore, are we led by considering the divi
sor 3; if we now consider 4 also as a divisor, we see that 
every number may be comprised in one of the four follow
ing formulffi : 

4n, 4n+ 1, 4n+2, 4n+3. 
The square of the first of these classes of numbers is 

16n2 ; and, consequently, it is divisible by 16. 
That of the second class, 4n + 1 , is 16n2 + 8n + 1 ; which. 

if divided by 8, the remainder is 1; so that it belongs to 
the formula 8n + 1. 

The square of the third class, 411+2, is 16n~+ 16n+4; 
which, if we divide bv 16, there remains 4; therefore this 
square is included in'the formula 16n+4. 

Lastly, the square of the fourth class, 4n + 3, being 
16n2 +2411+9, it is evident that dividing by 8 there re
mains] . 

70. This teaches us, in the first place, that all the even 
square numbers are either of the form 16n, or 16n +4 ; 
and, consequently, that all the other even formulffi, namely, 

16n+2, 16n+6, 16n+8, 16n+l0, 16n+12, 16n+14, 
can never become square numbers. 

Secondly, it shews that all the odd squares are contained 
in the formula 8n + 1 ; that is to say, if we divide them by 
8, they leave a remainder of 1. And hence it follows, that 
all the other odd numbers, which have the form either of 
8n + 3, or of 8n + 5, or of 8n + 7, can never be squares. 

71. These principles furnish a new proof, that the for
mula 3t2 + 2u2 cannot be a square. For, either the two 
nuwbel's t and 11. are both odd, or the one is even and the 
other odd. They cannot be both even, because in that case 
they would, at least, have the common divisor 2. In the 
first case, therefore, in which both t2 and u2 are contained 
in the formula 8n + 1, the first term 3t2, being divided by 
8, would leave the remainder 3, and the other term 2u2 

would leave the remainder 2; so that the whole remainder 
would be 5: consequently, the formula in question cannot 
be a square. But, if the second case be supposed, and t be 
even, and u odd, the first term 3t2 will be divisible by 4, 
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and the second term 2u2, if divided by 4, will leave the 
remainder 2; so that the two term!'! together, when divided 
by 4, leave a remainder of 2, and therefore cannot form a 
square. Lastly, if we were to suppose u an even number, 
as 2s, and t odd, so that t2 is of the form 8n + I, our formula 
would be changed into this, 24n + 3 + SS2; which, divided 
by S, leaves 3, and therefore it cannot be a square. 

This demonstration extends to the formula3t2 + (Sn + 2)u2 ; 

also to this, (Sm+3)t2 +2u2, and even to this, 
(Sm+3W+(Sn+2)u2; in which we may substitute for m 
and n all integer numbers, whether positive or negative. 

72. But let us proceed farther, and consider the divisor 
5, with respect to which all numbers may be ranged under 
the five following classes: 

5n, 5n+ I, 5n+2, 5n+3, 5n+4. 
We remark, in the first place, that if a number be of the 

first class, its square will have the form 25n2; and will 
consequently be divisible not only by 5, but also by 25. 

Every number of the second class will have a square of 
the form 25nz+ IOn + I; and as dividing by 5 gives the 
remaindel' J, this square will be contained in the formula 
5n+ 1. 

The numbers of the third class will have for their square 
25nz+20n+4; which, divided by 5, gives 4 for the re
mainder. 

The squal'e of a number of the fourth class is 25n2 + 
30n +9; and if it be divided by 5, there remains 4. 

Lastly, the square of a number of the fifth class is 
25n2 + 40n + 16; and if we divide this square by 5, there 
will remain 1. 

When a square number therefore cannot be divided by 
5, the remainder after division will always be I, or 4, and 
never 2, or 3: hence it follows, that no square number can 
be contained in the formula 5n+2. or 5n+3. 

73. From this it may be proved, that neither the formula 
5t2 +2u2, nor 5tz+3u2, can be a square. For, either u is 
divisible by 52 or it is not: in the first case, these formulre 
will be divisible by 5, but not by 25; therefore they cannot 
be squares. On the other hand, if u be not divisible by 5, 
u2 will either be of the form 5n+ I, or 5n+4. In the 
first of these cases, the formula 5tZ + 2uZ becomes 5t2 + 
IOn + 2; which, divided by 5, leaves a remainder of 2; 
and the formula 5t2+3uz becomes 5t2 +15n+3; which, 
being divided by 5, gives a remainder of 3; so that neither 
the one nor the other can be a square. With regard to the 
case of u2=5n+4, thefil'st formula becomes 5t2 + lOn+S; 
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which, divided by 5, leaves 3; and the other becomes 
5t2 + 15n + 12, which, divided by 5, Jeaves 2; so that in 
this case also, neithel' of the two formulre can be a square. 

For a similar reason, we may remark, that neither the 
formula 5t2 +(5n+2)u2 , nor 5t2 +(5n+8)u2 , can become a 
square, since they leave the same remainders that we have 
just found. We might even in the iil'st term write 5mt2, 

instead of 5t2, provided m be not divisible by 5. 
74. Since all the even squares are contained in the for

mula 4n, and all the odd squares in the formula 4n + 1 ; 
and, cOllsequently, since neither 4n + 2, nor 4n + 3, can 
become a square, it follows that the general formula, 
(4m+3)t2 +(4n +3)u2 can never be a square. For if t be 
even, t2 will be divisible by 4, and the other term, being 
divided by4, will give 3 for a remainder; and, if we suppose 
the two numbers t and u odd, the remainders of t2 and of 
u2 will be I ; consequently, the remainder oftha whole for
mula will be 2: now, there is no square number, which, 
when divided by 4, leaves a remainder of2. 

We shall remark, also, that both m and n may be taken 
negatively, or = 0, and still the formulre 3t2+3u2 , and 
3t2-u2, cannot be transformed into squares. 

75. In the same manner as we have found for a few di
visors, that some kinds of numbers can never become 
squares, we might determine similar kinds of numbers for 
all other di visors. 

If we take the divisor 7. we shall have to distinguish 
seven different kinds of numbers, the squares of which we 
shall also examine. 

Kinds of numbers. 

1. 
2. 
3. 
4. 
5. 
6. 
7. 

7n 
7n+ 1 
7n+ 2 
7n+ 3 
7n+ 4 
7n+ 5 
7n+ 6 

Their squares are of the kind. 

49n2 
49n2 + 14n+ J 
49n2 +28n+ 4 
49n2 +42n+ 9 
49n2 +56n+ 16 
49n2 + 70n + 25 
49n2 + 8411 + 36 

7n 
711+ 1 
7n+4 
711+2 
7n+2 
7n+4 
7n+ 1. 

Therefore, since the squares which are not divisible by 7 
are all contained in the three formulre, 7n+l, 7n+2, 
7n + 4, it is evident, that the three other formulre, 711 + 3, 
711 + 5, and 711 + 6, do not agree with the nature of 
squares. 

76. To make this conclusion still more apparent, we shall 
remark, that the last kind, 7n +6, may be also expressed 
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by 7n-l; that, in the same manner, the formula 711+5 
is the same as 711-2, and 711 +4 the same as 711-3. This 
being the case, it is evident, that the squares of the two 
classes of numbers 711 + 1, and 7n-l. if divided by 7, will 
give the same remainder 1 ; and that the squares of the 
two classes, 7n+2, and 7n-2, ought to resemble each 
other in the same respect, each leaving the remainder 4. 

77. In general, therefore, let the divisor' be any number 
whateYer, which we shall represent by the letter d, the dif
ferent classes of numbers which result from it will be 

dll; 
dn+l, dn+2, dn+3, &c. 
dn- 1, dll- 2, dn - 3, &c. 

in which the squares of dn + 1, and dn -1, have this in 
common, that, when divided by d, they leave the remain
del' 1, so that they belong to the same formula, dll + 1 ; in 
the same manner, the squares of the two classes, dn+2, 
and dll-2, belong to the same formula, dll +4. So that we 
may conclude, generally, that the squares of the two kiuds, 
dn +a, and dll-a, when divided by d, give a common 
remainder a2 , or that which remains in dividing a2 by d. 

78. These observations are sufficient to point out an in
finite number of formulre, such as at2 + bu2, which cannot 
by any means become squares. Thus, by considering the 
divisor 7, it is easy to perceive, that none of these three 
formulre, 7t2+3u2 , 7t2+5u2, 7t2+6u2 , can ever become 
a square; because the division of u2 by 7 only gives the 
remainders 1, 2, or 4; and, in the first of these formulre, 
there remains either 3, 6, or 5 ; in the second, 5, 3, or 6 ; 
and in the third, 6, 5, or 3; which cannot take place in 
square numbers. Whenever, therefore, we meet with such 
formulre, we are certain that it is useless to attempt dis
covering any case, in which they caa become squares: and, 
for this reason, the considerations, into which we have 
just entered, are of some importance. 

If, on the other hand, the formula proposed is not of this 
nature, we have seen in the last chapter, that it is sufficient 
to find a single case, in which it becomes a square, to 
enable us to deduce from it au infinite number of similar 
cases. 

The given formula, AI,t. 63, was properly ax2 + b ; 
and, as we usually obtain fractions for x, we supposed 

X= !.., so that the problelll, in reality, is to transform 
u 

at2+bu2 into a sqnare. 
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But there is fi'equently an infinite number of cases, in 
which x may be assigned even in integer numbers; and 
the detel'mination of those cases shall form the subject of 
the following chapter. 

CHAPTER VI. 

Of the Cases in Integer Numbers, in whiclt the Formula 
ax2 + b becomes a Square. 

79. We have already shewn [Art. 63], how such formulre 
as a + bx + cx2, are to be transformed, in order that the 
second term may be destroyed; we shall therefore confine 
our present inquiries to the formula, ax2 + b, in which it is 
required to find for x only integer numbers, which may 
transform that formula into a square. Now, first of all, 
such a formula must be possible; for, if it be not, we shall 
not even obtain fractional values of x, far less integer ones. 

80. Let us suppose then ax2 + b=y2; a and h being 
integer numbers, as well as x and y. 

Now, here it is absolutely necessary for us to know, or 
to have already found, a case in integer numbers; otherwise 
it would be lost labor to seek for other similar cases, as 
the formula might happen to be impossible. 

We shall, therefore, suppose that this formula becomes 
a square, by making x =f, and we shall represent that 
square by g2, so that af2+b=g2, wherefandg are known 
numbers. Then we have only to deduce from this case 
other similar cases; and this inquiry is so much the more 
important, as it is subject to considerable difficulties; 
which, however, we shall be able to surmount by parti
cular artifices. 

81. Since we have already found aj2 +b=g2, and like
wise, by hypothesis, ax2 + b == .y2, let us subtract the first 
equation from the second, and we shall obtain a new one, 
ax2_cif2 =y2_gZ, which may be represented by factors 
in the following manner; a(x+ j) x (x-f) = (1/+g) x 
(y-g), and which, by multiplying both sides by pq, becomes 
apq(x+.f) x (x-j)=pq(y +9) x (y-g). Ifwe now decom
pound this equation, by making ap(x+ j) = q(y+g), and 
q(x-j')=p(y-g), we may derive from these two equations 
"alues of the two letters rand y. [See Art. 92]. Th~ 
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d· 'd db' apx+apj d th first, IVI e y q, gives g + 9 = ; an e q 

second, divided by p, gives y_g = qx-qi. Subtracting 
p 

(ap2_q2)x + (ap2+'12)f 
this from the former, 2g = . , or 

pq . 
2gpq = (ap2 - q2)X + (ap2 + '12) j; therefore 

x= 2gpq _ (ap2+q2)i, from which (by substitutinO' this 
ap2_q2 ap2_'12 to 

value of x, in the equation, g_g = qx ;'1j) we obtain 

g=g+ 2g'12 _ (ap2+ q2)fq _ 'If. In this latter value, 
ap2_q2 (ap2_q2)p p 

as the first two terms, both containing the letter g, may 

be put into the form g(ap:+q?", and as the other two, 
ap -'1 

containing the letter j, may be expressed by - ~afpq 2' 
ap -q 

all the terms will be reduced to the same denomination, 
and we shall have 11 = ,q(ap2 + q2)-2afpq . 

.7 ap2_q2 
82. This operation seems not, at first, to answer our 

purpose; since having to find integer values of x and g, we 
are brought to fractional results; and it would be required 
to solve this new qllestion,-What numbers are we to 
substitute for p and q, in order that the fraction may 
disappear? A question apparently still more difficult 
than our original one: but here we may employ a parti
cular artifice, which will readily bring us to our object, 
and which is as follows: 

As every thing must be expressed in integer numbers, 
ap2+q2 2pq 

let us make 2 2 =m, and 2 2 =n; so that in the 
ap -'1 op-'1 

equation x = 2gpq _ (ap2+q2)J we may have 
, ap2_q2 ap2_ q2' 

x=ng-mj, and y=mg-naf. 
Now, we cannot here assume m and n at pleasure, since 

these letters must be such as will answer to what has been 
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already determined; therefore, for this purpose, let us 
consider their squares, and we shall find 

a2r)'1. + 2ap2q2 + q4 4p2q2 
'l/t2=. and n2= . hence 

a"p"-',lap2q2+q4' a2p4_2ap2q2+q4' , 
a2p4 + 2rtp2q2 + q4 _ 4ap2q2 a2p4_ 2ap2q2 + q4 

m2 _an2= = = 1. a2p" _ 2ap2q2 + q4 a2p" _ 2up2q2 + q4 
83. We see, therefore, that the two numbers m and n 

must be such, that m2=an2 + 1. So that, as a is a known 
number, we must begin by considering the means of deter
mining such an integer number for 71, as will make an2 + 1 
a square; for then m will be the root of that square; and 
when we have likewise determined the number f so, that 
af2 + b may become a square, namely g2, we shall obtain 
for :Jj and :'1 the following values in integer numbers; 
:Jj=ng-mj~ y=mg-naj; and thence, lastly, ax2+b=y2. 

84. It is evident, that having once determined m and n, 
we may wl'ite instead of them -m and -n, because the 
square n2 still remains the same. 

But we have already shewn that, in order to find x and 
y in integer numbers, so that ax2 + b = y2, we must first 
know a case, such that af2 + b may he equal to g2; when 
we have therefore found such a case, we must also endea
vour to know, beside the number a, the values of m and n, 
which will give an2+1=m2: the method for which shall 
be described in the sequel, and when this is done, we shall 
have a new case; namely, x = ng + mf, and y = mg + naf; 
also, ax2 + b = y2, 

Putting this new case, instead of the preceding, which 
was considered as known; that is to say, writing ng+mf 
for f, and mg+naf for g, we shall have new values of x 
and ,Y, from which, if they be again substituted for x and y, 
we may find as many other new values as we please: so 
that, by means of a single case known at first, we may 
afterwards determine an infinite number of others. 

85, The manner in which we have arrived at this 
solution has been very embarrassed, and seemed at first 
to lead us from our object, since it brought us to compli
cated fractions, which an accidental circumstance only 
enabled us to reduce: it will be proper, therefore, to 
explain a shorter method, which leads to the same 
solution, 

86. Since we must have ax2 + b = y2, and have already 
found af2+b=g2, the fil'st equation gives us b=y2-ax2, 
and the second gives b =g2 - af2; consequently, also, 



CHAP. VI. OF ALGEBRA. 345 

'!/' - ax'l. = 9'l. - a.f~, and the whole is reduced to deter
mining the unknown quantities x and y, by means of the 
known quantities f and 9. It is evident, that for this 
purpose we need only make x-.f, and Y=9; but it is also 
evident, that this supposition would not furnish a new case 
in addition to that already known. We shall, therefore, 
suppose that we have aIr'eady found sllch a. number for n, 
that an2 + 1 is a square, or that an~ + I =m2; which being 
laid down, we have m2 - an'!. = 1; and multiplying by 
this equation the one we had last, we find also y2_ax~ = 
(92 - ap) X (m2 - an2) = 9~m2 - af2m2 - a92n2 + a2f2n2. 
Let us now suppose Y=9m + afn, and we shall have 

92m2 + 2af9mn + a2 f 2n2 ~ ax'!. = 
92m2-a}2m2 -a921.2 +a:t2n2, 

in which the terms 92m2 and a2f 2n2 are destroyed; so that 
there remains ax2 =af2m2 + a92n2 + 2aj9mn, or X2 = f 2m2 
+ 2f9mn + 92n2. Now, this formula is evidently a square, 
and gives x=fm+9n. Hencewe have obtained the same 
formulre for x and y as Lefore. 

87. It will be necessary to render this solution more 
evident, by applying it to some examples. 

Question 1. To find all the integer values of x, that 
will make 2x2-1, a square, or give 2x2-1 =y2. 

Here we have a = 2 and b = -1; and a satisfactory 
case immediately presents itself; namely, that in which 
x=I,and y=l: which gives usf-I, and 9=1. Now, it 
is farther required to determine such a value of n, as will 
give 2n2+ I =m2; and we see immediately, that this obtains 
when n = 2, and consequently m = 3; so that every case, 
which is known for f and 9, giving us these new cases 
x = 3f + 29. and y = 39 + 4f, we derive from the first 
solution (f = 1, and g=] ,) the following new solutions: 

If{ f= I, Then {x = 5,29, 169 
g=1, y=7,41,239,&c. 

88. Questioll 2. To find all the triangular numbers, 
that are at the same time squares. 

L b h . 1 h"" Z2 + z. h . I et z e t e trlangu ar root; t en ~ IS t e trlang e, 

which is to be also a square; and if we call x the root of 

h· h Z2 + Z 2 I . 1 . t IS square, we ave -2- = x : mu tIp ymg by 8, we 

have 4z2 +4z=8x2 ; and also adding 1 to each side, we 
have 
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Hence the question is to make 8x2 + I become a square; 
for if, we find 8x2 + I = :1/1., we shall have y = 2z + I, and 
consequently, the triangular root required will be 

y-I 
z=2' 

Now, we have a = 8, and b = I, and a satisfactory case 
immediately occurs; namely,f 0, andg=l. It isfiuther 
evident, that 8n2+ 1= m'l , if we make n= I, and m =3 ; 
therefore x = 3f + g, and y=3g +8f; and since 

z = y 2 I, we shall have the following solutions: 

x = f = 0 I 6 35 204 1189 
Y = 9 = 1 3 17 99 577 3363 

y-I 
Z = '-----z = 0 1 8 49 288 1681, &c. 

89. Question 3. To find all the pentagonal numbers, 
which are at the same time squares. 

3z2 -z 
If the root be z, the pentagon will be = 2 ' which 

we shall make equal to x2, so that 3z2-z = 2Xll; then 
multiplying by 12, and adding unity, we have 
36z2-12z+I=(6z-J)2=24x2+I; also making 24x2+1 

y+I =y2, we have y=6z-I, and Z= -6-' 

Since a = 24, and b == 1, we know the case f = 0, and 
g= 1; and as we must have 24n2 + I =m'l., we shall make 
n= 1, which gives m=5; so that we shall have x=5f +g, 

.0/+ 1 and y = 5g + 24/; and not only z = -6-' but also 

I-y • 
z = -6-; because we may write y -1-6z : whence we 

find the following results 1 

x=f=O I 10 99 980 
.o/=g=I 5 49 485 4801 
.0/ + 1 J.. I us 81 114..D 1 Z = -6-:::' a 3 3 

I-y 
orz=-6-= 0 -t -8 - 'liZ - 800, &c. 

90. Question 4. To find all the integer square numbers, 
which, if multiplied by 7 and increased by 2, become 
squares. / 
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It is here required to have 7X2+2=y2, or a=7, and 
b = 2; and the known case immediately occurs, that is to 
say, x= 1; so that x=f= 1, and y=g=3. If we 
next consider the equation 7n2+ 1 =m2, we easily find 
also that n = 3, and m;= 8; whence x = 8f +3g, and 
y = 8g + 21f. We shall therefore have the following 
results: 

x = f = 1 117 I 271 
y=g=3 45 717,&c. 

91. Question 5. To find all the triangular numbers, that 
are at the same time pentagons. 

Let the root of the triangle be p, and that of the pen
p2+p 3q2 q 

tagon q: then we must have ---2- = 2 ,or 3q2_q 

-p2 + p; and, in endeavouring to find q, we shall first have 

'l = iq + p2: P, and 

_.1.+-,(-"--+ 2+p2+p) _I±';(12p2+12p+l) q - 6 - .., a 6 P ::J ' or q - 6 . 

Consequently, it is required to make 12p2 + 12p + 1 be
come a square, and that in integer numbers. Now, as 
there is here a middle term 12p, we shall begin with 

making p= x 2 1, by which means we shall have I 2p2= 3x2 

-6x+3, and 12p=6x-6; consequently, 12p2+ 12p+ 1 
= 3:,;2_2; and it is this last quantity, which at present 
we are required to transform into a square. 

If, therefore, we make 3x2 - 2 = ,!/" we shall have 
x-I I +y 

p = -CX-' and q=-6-; so that all depends on the formula 

3x2 _2=y2; andherewehavea=3,andb=-2. Farther, 
we have a known case, x = j= 1, and y = 9 = 1; lastly, 
in the equation m2=3n2 +1, we have n=I, and m=2; 
therefore we find the following values both for x and y. 
and for p and q: 

First, x=2j+g, and y=2g+3j; then, 
x-j=l 3 11 41 
y=g=l 5 19 71 

P =0 1 5 20 
q=t 1 1f 12 

or q=O -% -3-3.( 
l-y 

because we have also q = ~. 
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92. Hitherto, when the given formula contained a 
second term, we were obliged to expunge it, but the 
method we have just now given cannot be applied, with
out taking away that second term; the manner of doing 
which we shall farther explain. 

Let axz+bx+c be the given formula, which must be a 
square, yZ, and let us suppose that we already know the 
case ajZ+bf+c =g2. 

Now, if we subtmct this equation fwm the first, we 
shall have a(x2-p) +b(x-f) = !/_g2, which may be ex
pressed by factors in this manner: 

(x-f) x (ax+af+b) = (y_.g) x (y+g); 
and if we multiply both sides by pq, we sliall have 

pq(x-f) x (ax+af+b) =pq(y-g) x (!J+g); 
which equation may be resolved into these two, 

1. p(x-f) = q(y-g), 
2. q(ax + af+ b) = p(y+g). 

N ow, multiplying the first by p, and the second by q, and 
subtracting the first product from the second, we obtain 

(aq2-p2)x + (aq2 + p2)f + bq2 = 2gpq, 
which gives x= 2.qpq (aq2+ p2 )f _ ~ 

aq2_pZ aq2_p2 aq2~pZ' 

But the first equation is p(x-f)=q(y-g)=(by substitut-
2 q 2a~qZ b 2 ) in'" the above value of x) p ( _~ _ _ v __ - q . 

e> . ' wl-pz arl-p2 aq2_p2' 
so that, multiplying by p, and dividing by q, 

2,qp2 . 2afpq bpq. 
l/-g = aq2~p2 - aqZ_pZ - aqZ_p2' consequently, 

( aqZ + p2 ) 211fpq bpq 
Y =g aq2_p2 ~ aqZ_pZ - aqz:"'-pz' 

Now, in order to remove the fractions, let us make, as 
aq2+pZ 2pq 

before, --- := m, and = n' and we shall have aqZ_pZ aq2_pZ' 
2aqz qZ m+ 1 

m + 1 = -z--z' or 2 Z = --..--; therefore aq -p aq -q .. a 
b(m+ 1) 

x==ng~mf- 2a ; andy=mg-naf-tbn ; III 

which the letters m and n must be such, that, as before, 
m2 =an2 + 1. 

93. The formulre which we have obtained for x and y, 
are still mixed with fractions, since some of their terms con
tain the letter b; for which reason they do not answer our 
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purpose. But iffrom those values we pass to the succeeding 
ones, we constantly obtain integer numbers; which, indeed, 
we should have obtained much more easily by means of the 
numbers p and q, that were introduced at the beginning. 
In fact, if we take p and q, so that p2=aq2 + 1, we shall 
ha\'e aq2_p2= -1, and the fractions will disappear. For 
then x= -2gpq+j (aq2+p2) +hq2, and Y= _g(aq2+p2) 
+2ajpq + bpq ; but as in the known case, aj2+bj+c 
=g2, we find only the second power of g, it is of no con
sequence what sign we give that letter; if, therefore, we 
write - g, instead of + g, we shall have the formllire 

x = 2gpq+J(aq2+p2) +bq2, and 
y=g(aq2+ p2) +2ajpq+bpq, 

and we shall thus be certain, at the same time, that 
ax2+bx+c=y2. 

Let it be required, as an example, to find the hexagonal 
numbers that are also squares. 

We must have 2X2_X=y2, or a=2, b= -1, and 
C=O, and the known case will evidently be x f 1, and 
y=g=l. 

Farther, in order that we may have p2 = 2q2 + 1, we 
must have q = 2, and p = 3; so that we shall have 
x = 12g + 17j - 4, and y = 17g + 2'lf-6; whence result 
the following values: 

x=j=1 1251 841 
y =9 = 1 35 1189, &c. 

94. I.et us also consider our first formula, in which the 
second term was wanting, and examine the cases which 
make ax2 +b a square in integer numbers.* 

Let ax2 +b=y2, and it will be required to fulfil two 
conditions: 

1. We mnst know a case in which this equation exists; 
and we shall suppose that case to be expressed by the 
eqnation ap+b=g2. 

2. We must know such values of m and n, that 
m2=an2 + 1 ; the method of finding which will be taught 
in the next chapter. 

From this results a new case; namely, x = ng + mf, 
and y=mg + anf; this, also, will lead us to othe,' similar 
cases, which we shall represent in the following manner: 

; -{ I ~ I : \ ~ 1 ~ I ~,&c. In which, 
A=ng +mf IB=np +mA I c=1tQ +mB I n=nR+mc I E=ns +mn 
p=mg+anf Q=mp+anA R=mQ+anB s=mR+anc T=ms+ann, &c. 

• See the beginning ofthis Chapter. 
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and these two series of numbers may be easily continued 
to any length. 

95. It will be observed, however, that here we cannot 
continue the upper series for x, without having the under 
one in view; but it is easy to remove this inconvenience, 
and to give a rule, not only for finding the upper series, 
without knowing the other, but also for determining the 
latter without the former. 

The numbers which may be substituted for x succeed 
each other in a certain progression, such that each term 
(as, for example, E,) may be determined by the two pre
ceding terms c and n, without having recourse to the 
terms of the second series Rand s. In fact, since 

E = lls+mD == n(mR+anc) +m(rm+mc) = 
2mnR + an2c + m2c, and nR = n - mc, 

we therefore find 
E=2mn-m2c+an2c, or 
E = 2mn-(m2-an2)c; or lastly, 
E=2mn-c, because m2=an2+1, 

and m2 _an2= I; from which it is evident, how each term 
is determined by the two which precede it. 

I t is the same with respect to the second series; for, since 
T=ms+ann, and n=nR+mc, we have 
T = ms + an2R + amnc. Farther, s = mR + anc, so that 
anc = s-mR; and if we substitute this value of anc, we 
have T = 2ms - R, which proves that the second progres
sion follows the same law, or the same rule, as the first. 

Let it be required, as an example, to find all the integer 
numbers, x, such, that 2x2-1 =y2. 

We shall first have! 1, and 9= 1. Then m2=2n2 + 1, 
if n=2, and m=3; therefore, since A=n9+m! 5, the 
first two terms will be I and 5; and all the succeeding 
ones will he found by the formula, E=2mn-c, or 60-c : 
that is to say, each term taken six times and diminished 
by the preceding term, gives the next. So that the num
bers which we require for x, will form the following 
series: 

1, 5, 29, 169, 985, 5741, &c. 
This progression we may continue to any length; and 

if we choose to admit fractional terms also, we might find 
an infinite number of them by the method which has been 
already explained.* 

.. See the Appendix to this Chapter in the Additions by De 
la Grange, p. 550, et seq. 
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CHAPTER VII. 

Of a particular Method, by whiclt the FOI'mula, an2 + 1, 
becomes a Square in Integers. 

96. That which has been taught in the last chapter, 
cannot be completely performed, unless we are able to 
assign for any number a, a number n, such, that an2 + 1 
may become a square; or that we may have m2 =an2 + 1. 

This equation would be easy to resolve, if we were 
satisfied with fractional numbers, since we should ha,ve 

only to make m= 1 + np; for, by this supposition, we have 
q 

2 1 2np n2p2 l' h' h . 
111 = + - + -2- = an2 + ; In W IC equatIOn, we 

q q 
may expunge 1 from both sides, and divide the other terms 
by n: then multiplying by q2, we obtain 2pq+np2=anq2; 

and this equation, giving n = 2pq ,would furnish an aq2_p2 
infinite number of values for n: but as n must be an in
teger number, this method will be of no use; and there
fore very different means must be employed in order to 
accomplish our object. 

97 . We must begin by observing, that, if we wished 
to have an2 + 1 a square, in integer numbers (whatever 
be the value of a), the thing required would not be possible. 

For, in the first place, it is necessary to exclude all the 
cases, in which a would be negative; next, we must exclude 
those also, in which a would be itself a square; because 
then an2 would be a square, and no square can become a 
square, in integer numbers, by being increased by unity. 
We are obliged, therefore, to restrict our formula to the 
condition, that a be neither negative, nor a square; but 
whenever a is a positive number, without being a square, it 
is possible to assign such an integer value of n, that an2 + 1 
may become a square: and when one such value has 
been found, it will be easy to deduce from it an infinite 
number of others, as was taught in the last chapter: but, 
for our purpose, it is sufficient to know a single one, even 



352 ELEMENTS PART II. 

the least; and this, Pell, an English writer, has taught 
us to find by an ingenious method, which we shall here 
explain. 

98. This method is not such as may be employed ge
nerally, for any number a whatever; it is applicable only 
to each particular case. 

We shall therefore begin with the easiest cases, and 
shall first seek such a vHlue of n, that 2nZ + 1 may be a 
square; or that ..j (2nZ + 1) may become rational. 

We immediately see that this square root becomes 
greater than n, and less than 2n. If, therefore, we express 
this root by n + p, it is obvious that p must be less than n ; 
and we shall have ..j(2n2 + 1)=n+p; then, by squaring, 
2n2 + 1 = n2 + 2np + p2; or n2 + 2pn + p2; therefore, by 
completing the square, &c. 

. n2=2pll+pz_l, and n=p+ ..j(2pz-l). 
The whole is reduced, thel'efore, to the condition of 2p2-1 
being a square; now, this is the case if p= 1, which gives 
n=2, and ..j(2n2+ 1 )=3. 

If this case had not been immediately obviouE, we should 
have gone fill'ther; and since ..j(2p2-1 >p),* and, con
sequently, n>2p, we should have made n=2p+q; and 
should thus have had 

2p+q=p+ ..j(2p2-1), or p+q= ..j(2p2_1), 
and, squaring, p2+2pq+q2=2p2_1, whence 

p2=2pq+q2+ 1, 
which would have given p=q+ ..j(2q2+ 1); so that it 
would ha\'e been necessary to have 2q2+ 1 a square; and 
as this is the case, jf we make q=O, we shall have p= 1, 
and 71=2, as before. This example is sufficient to give an 
idea of the method; but it will be rendered more clear 
and distinct from what follows. 

99. Let a=3; that is to say, let it be required to trans
fOl'lll the formula 3,,2+ 1 into a square. Here we shall 
make v' (31/2 + I) = II + p, which gives 

3n2 + 1 = n2 +2np +p2, and 2112 = 211p+pz_1 ; 
P + ..j (3TJ2 -2) 

whence we obtain n = '.{ . Now, since 

v'(3p2_2) exceeds p, and, consequently, n is greater 

~ This sign >, placed between two quantities, signifies that 
the former is greater than the latter; and when the angular 
point is turned the contrary way, as <, it signifies that the 
former is less than the latter. 
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2p 
than 2' or than p, let us suppose n = p + q, and we shall 

h . p+y'(3p2_2) 
have, from t e equatIOn, n = 2 ' 

2p + 2q = P + y' (3p2 _ 2), or 
p + 2g = y' (3p2 - 2) ; 

then, by squaring, p2 + 4pq + 4q2 = 3p2 - 2; so that 
2p2=4pq+4q2+2, or ]J~=2pq+2q2+ I, and 

p=q+y'(3q2+I). 
Now, this formula being similar to the one proposed, we 
may make q=O, and shall thus obtain p= I, and n= 1 ; 
whence y'(3n2+ 1)::;2. 

100. Let a = 5, that we may have to make a square of 
the formula, 5n2 + I, the root of which is greater than 2n. 
We shall therefore suppose 

y'(5n2+ I)=2n+p, or 5n2 + I=4n2+4np + p2; 
whence we obtain 

n2=4np+p2_I, and n=2p+ y'(5pZ"""," I), 
Now, y'(5p2-1»2p; whence it follows thatn>4pl for 
which reason, we shall make 11 = 4p + q, which gives 
2p + q = y'(5p2 - 1), or 4p2 + 4pq + q2 = 5p 2 - 1, and 
p2=4pq+q2+ I; so that p=2q+ y'(5q2+ 1); and as g=O 
satisfies the terms of this equation, we shall have p= 1, 
and n=4; therefore y'(5n2+1) =9. 

101. Let us now suppose a==; 6, that we may have to 
consider the formula, 6n2 + 1, whose root is likewise COn~ 
tained between 2n and 3n. We shall, therefol'e, make 
y' (6n2 + 1) = 2n + p, and shall have 
6n2 + 1 = 4nZ + 4np + p2, or 2n2 ;= 4np + p2.,..,., 1; and, 
th . y'(6p2_2) 2p+ y'(6p2_2) so 

ence, n=p+ 2 ' Or n= 2 ; 

that n>2p. 
If, therefore, we make n = 2p + q, we shall have 

4p + 2q = 2p + y'(6p2 - 2), or 
2p + 2q = y' (6p2 _ 2) ; 

the squares of which are 4p2 + 8pq + 4q2 = 6p2_2; so 
that 2p2=8pq+4q2+2, and p2=4pg+2q2+1. Lastly, 
p=2q+y'(6q2+1). Now, this formula resembling the 
first, we have fj = 0; wherefore p ::;:; 1, n = 2, and 
y'(6n2+ 1)=5. . 

102. Let us proceed farther, and take a = 7, and 
7n2+1 =m2; hel'e we see that m>2n; let llS therefor!.\ 
make m = 2n + p, and we shall have 

AA 
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7n2+ 1 =4n2+4np +p2, or 3n2=4np+p2-1; 

h· h . 2p+ .,;(7p2_3) A . 
w Ie gives n= 3 . t present, smce n>tp, 

and, consequently, greatel' than p, let us make n = p + q, 
and we shall have p+3q = ";(7p2-3); then, squaring 
both sides, p2+6pq+9q2=7p2_3, so that 
6p2 = 6pq + 9q2 + 3, or 2p2 = 2pq + 3q2 + 1; whence 

we get p = q+ .,;(~q2+2). Now, we have here p> 3: ; 

and, consequently, p>q; so that making p = q + r, we 
shall have q+2r=";(7q2+2); the squares of which are 
q2 + 4qr + 41'2 = 7 q2 + 2; then 6q2 = 4qr + 41'2 - 2, 

2 2 r+ ";(7r2-3) 
or 3q = 2qr + 2r - 1; and, lastly, q = 3 . 

Since now q>r, let us suppose q = r+s, and we shall 
have 

2r + 3s = ";(71'2 - 3); then 
4r2 + 12rs + 9s2 = 71'2 - 3, or 
3r2 = 12rs + 9.~2 + 3, or 

1'2 = 4rs + 3s2 + 1, and 
l' = 2s + .,; (7s2 + 1). 

Now, this formula is like the first; so that making 
s = 0, we shall obtain r = 1, q = 1, P = 2, and n = 3, or 
m=8. 

But this calculation may be considerably abridged in 
the following manner; which may be adopted also in other 
cases. 

Since 7n2+ 1=m2, it follows that m<3n. 
If, therefore, we suppose m = 3n - p, we shall have 

7n2+ 1 = 9n2-6np +p2, or 2n2 = 6I1p-p2+ 1 ; 
. 3p + ";(7p2 + 2) 

whence we obtam n= 2 ; so thatn<3p; for 

this reason we shall write n=3p-2q; and, squaring, we 
shall have 9p2-12pq+4q2=7p2+2; or 

2p2=12pq-4q2+2, and p2=6pq-2q2+ 1; 
whence results p = 3q + .,; (7 q2 + 1). Here, we can at 
once make q = 0, which gives p = 1, n = 3, and m = 8, 
as before. 

103. Let a=8, so that 8n2+ 1=m2, and m<31l. Here, 
we mnst make m=3n-p, and shall have 

8n2+ 1 =9n2-6I1p+p2, or n2=6np-p2+ 1; 

whence 11 = 3p + ";(8p2 + 1), and this formula being 
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already similar to the one proposed, we may make p=O, 
which gives 11= I, and m=3. 

]04. We may proceed, in the same manner, for every 
other number, a, provided it be positive aud not a square; 
and we shall always be led, at last, to a radical quantity, 
such as v(at2+ 1), similar to the first, or given formula, 
and then we have only to suppose t = 0; for the irra
tionality will disappear, and by tracing back the steps, we 
shall necessarily find such a value of n, as will make 
a,,2 + 1 a square. 

Sometimes we quickly obtain our end; but frequently: 
also, we are obliged to go through a great number of 
operations. This depends on the nature of the number 
a; and we have no principles, by which we can foresee 
the number of operations that it may be necessary to per
form. The process is not very long for numbers below 
13, but when a == 13, the calculation becomes much more 
prolix; and, for this reason, it will be proper here to 
resolve that case. 

105. Let therefore a == 13, and let it be required to 
find 13n2+1=m2. Here, as m2>9n2, and, consequently, 
m>31l, let us suppose m==3n+p; we shall then have 
13112 + 1 = 9,,2 + 6np + p2, or 4n2 = 61lp + p2 - I, and 

3p+ v (l3p2_4) . 
n = 4 ,WhICh shews that n>{p, and there-

fore much greater than p. If, therefore, we make 1/=P + q, 
we shall havep+4q= v(13p2-4)j and, taking the squares, 

13p2_4=p2+8pq+ 16q2; 

so that 12p2=8pq+ 16q2+4, or 3p2=2pq+4q2+ I, and 

P q+ v(l3q2+3) Here p> q+3q orp>q' we shall 
3 ':3" 

proceed, therefore, by making p = q + r, and shall thus 
obtain 2q+3r=v(13q2+3); then 

13q2+3=4q2+ 12qr+9r2, or 
9q2=12q1'+9r2-3, or 
3q2= 4qr+3r2-1; 

h· h . 2r+ v (l3r2-3) 
w IC gives q = 3 . 

A .. 2r + 3r h II k gam, SlDce q> 3 ' or q>r, we S a ma e 

q=r+s, and we shall thus have r+3s=v(l3r2-3); 
or 13r2-3=r2 +6rs+9s2, or 12r2==6rs+9sz+3, or 4r2 :::;:: 

2rs + 3s2 + 1 ; whence we obtain 
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s+ v'(l3sa+4) B h 8+38 
r= 4 ut ere r> -. -4-' or r>s; where-

fore let r=s+t. and we shall have 38+4t= ';(13s2+4), 
and 1382 +4=982+24st+ ]6t2; 

so that 4s2=24st+ 16t2-4, and s2=6ts+4t2 -1; there
fore s=3t + v' (13t 2-1). Here we have 

s>3t+3t, or 8>6t. 

Let us therefore make s=6t+u; whence 
3t+u=v'(l3t2-1), and 13t2-1=9t2+6tn+u2 ; then 
4t2=6tu+u2+ 1; and, lastly, 

3u+ v'(l3u2+4) 6u d 
t= 4 ' or t>4' an >u. 

If, therefore, we make t=u + 'I), we shall have 
u+4v=v'(l3u2+4), and 13u2+4=u2 +8uv+16v2 ; there
fore 12u2 =8uv + 16v2-4, or 3u2=2uv +4v2-1. Lastly, 

v+v'(13v2-3) 4v 
u= 3 ,or u> -:p or u>v. 

Let us, therefore, make u = v + x, and we shall have 

2v +3x= v'(13/)2-3), and 
13v2 _3 =4v2 + 12vx+9x2; 01' 

9v2 =12vx+9x2+3, or 3v2 =4vx+3x2+ I, and 
2x+ v'(13x2+3) h 1i d v = 3 ; so t at v> aX, an >x. 

Let us now suppose v=x+y, and we shall have 

X +3y= v'(l3x2 +3), and 
13x2 +3 =x2+6~V+9y2, or 
12x2=6xy+9y2-3, and 
4x2=2xy+3y2-1; whence 

X _Y+ v'(l3.V2 - 4) 
- 4 ' 

and, consequently, x>y. We shall, therefore, make 
x=y+z, which gives 

3y +4z= ';(l3y2_4), and 
13y2-4 =9y2+24zy+ 16z2 , or 
4y2=24zy + 16z2 +4; therefore 

y2= 6yz+ 4z2+1, and 
y = 3z+ v'(l3z2 + 1). 

This formula being at length Elimilar to the first, we may 
take z=O, and go back as follows: 
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z =0, u = v + x = 3, q = t + s == 71, 
Y =1, t = 1l + V = 5, P = q + r = 109, 
x =y + z = 1, s =6t + 11 = 33, n = p + q = 180, 
v =x + y = 2, r = s + t = 38, m = 3n + p = 649. 

So that 180 is the least number, after 0, which we can 
substitute for n, in order that lan~ + 1 may become 
a square. 

106. This example sufficiently shews how prolix these 
calculations may be in particular cases; and when the 
numbers in question are greater, we are often obliged to 
go through ten times as many operations as we had to 
perform for the number 13. 

As we cannot forc!'Iee the numbers that willt'equire such 
tedious calculations, we may with propriety avail ourselves 
of the trouble which others have taken; and; for this 
purpose, a Table is subjoined to the present chapter, in 
which the values of Tn and n are calculated for all num
ber's, a, between 2 and 100; so that in the cases which 
present themselves, we may take from it the values of m 
and n, which answer to the given number a. 

107. It is proper, however, to remark, that, for certain 
numbers, the letters m and n may be determined generally. 
This is the case when a is gl'eater, or less than a square, 
by 1 or 2; it will be worth while, therefore, to enter into 
a particular analysis of these cases. 

108. In order to this, let a=e2-2; and since we must 
have (e2 _2)n2+ 1 =7112, it is clear that m<en; therefore 
we shall make m=en-p, from which we have 

(e2_2)n2+ 1 =e2n2-2enp+p2, or 
2n2=2enp-p2 + 1; therefore 

el'l+ ";(e2,~2_2p2+2) 
n = r - 2 ; and it is evident that if we 

make p = 1, this quantity becomes rational; and we have 
n=e, and m=e2-1. 

FOI· example, let a=23, so that e=5; we shall then have 
23n2+1=m2, ifn=5, and 711=24. The reason of which 
is evident from another consideration; for if, in the case 
ofa=e2-2, we make n=e, we shall have an2+1=e4 -

2e2 + 1; which is the square of e2 -1. 
109. Let a = e2 - 1, or less than a square by unity. 

First, we must have (e2~ 1 )n2 + 1 =7112 ; then, because, as 
before, m<en, we shall make m=en-p j and this being 
done, We have 

(e2 _I)n2 + 1 =e2n2-2enp +p2, or n2 =2enp-p2 + 1 j 
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wherefore n=ep+ ,v (e2pZ_p2 + 1). Now, the irrationality 
disappeared by supposing p = 1; so that n = 2e, and 
m=2e2-1. This also is evident; fOJ', since a=e2-I, and 
n=2e, we find an2 + 1 =4e4 _4e2 + I, 
or equal to the square of 2e2 - I. For example, let a=24, 
or e=5, we shall have n=10, and 

24n2 + 1 =2401 =(49)2.* 

1l0. Let us now suppose a=e2 + I, or a gl'eater than a 
square by unity. Here we must have 

( eZ + 1 )n2 + I = m2 , 

and m will evidently be greater than en. Let us, therefore, 
write m=en+p, and we shall have 

(eZ + I)n2 + ] =e2n2 + 2enp +p2, or n2=2enp + p2_1 ; 

whence n=ep+,v(e2p2+p2-I). Now, we may make 
p=], and shall then have 1I=2e; therefore mZ=2e2 + I ; 
which is what ought to be the result fl'om the consideration, 
that a=e~ + I, and n=2e, which gives 
all2 + I =4e4 +4e2 + I, the square of2e2 + 1. For example, 
Jet a=I7, so that e=4, and we shall have I7nz+I=m2; 
by making n=8, and m=33. 

Ill. Lastly, Jeta=e2 +2, or greater than a square by 
2. Here, we have (e2+2)u2 + 1=m2, and, 'as before, 
m>en; therefore we shall suppose m=en + p, and shall 
thus have 

e2n2 +21/2 + I =e2f/,2 +2enp+p2, or 
2112 + 2epn + p2 -1 , which gives 

_ ep+ ,v (e2p2+2p2_2) 
1l- 2 . 

Let p= 1, we shall find n=e, and m=ez+ I; and, in fact, 
since a=e2+2, and l1=e, we have an2+I=e4 +2e2 +I, 
whIch is the square of' e2 + 1. 

For example, let a= II, so that e=3; we shall find 
] ln2+ l=m2, by making n = 3, and m = 10. If we 

• In this case, likewise, the radical sign vanishes, if we make 
p==O: and this supposition incontestably gives the least possible 
numbers for m and n, namely, n=l, and m=e; that is to say, 
if e= 5, the formula 24n2 + I becomes a square by making 
n=l; and the root of this square will be m=e=5.-F. T. 
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supposed a=83, we should have e=9, and 
83n2 + 1=m2, where n=9, and m=82.· 

359 

• Our author might have added here another very obvious 

case, which is when a is of the form e2± ~e; for then by making 
c 

n=c, our formula an2 +1, becomes e2c2±2ce+l=(ec+I)2. 
I was led to the consideration of the above form, from having 
observed that the square roots of all numbers included in this 
formula are readily obtained by the method of continued frac
tions, the quotient figures, from which the fractions are derived, 
following a certain determined law, of two terms, readily ob
served, and that whenever this is the case, the method given above 
is also applied with great facility. And as a great many num
bers are included in the above form, I have been induced to 
place it here, as a means of abridging the operations in those 
particular cases. 

The reader is indebted to Mr. P. Barlow of the Royal Academy, 
Woolwich, for the above note; and also for a few more in this 
Second Part, which are distinguished by the signature, B. 
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T ABLE, shewing for each value of a the least numbers m and n, 
that will give m~=an2 + 1 ;* or that will render an2 + 1 a square. 

_a_I n m a n m 

2 2 3 52 90 649 
3 1 2 53 9100 66249 

-- 54 66 485 
5 4 9 55 12 89 
6 2 5 
7 3 8 56 2 15 

8 1 3 57 20 151 
58 2574 19603 

10 6 19 59 69 530 
I I 3 10 60 4 31 
12 2 7 61 226153980 1766319049 
13 180 649 62 8 63 
14 4 15 63 1 8 
15 I 4 65 16 129 --
17 8 33 66 8 65 
18 4 17 67 5967 48842 
19 39 170 68 4 33 
20 2 9 69 936 7775 
21 12 55 70 30 251 
22 42 197 71 413 3480 
23 5 24 72 2 17 
24 I 5 73 267000 2281249 

26 10 51 74 430 3699 

27 5 26 75 3 26 

28 24 127 76 6630 57799 

29 1820 9801 77 40 351 

30 2 11 
78 6 53 

31 273 1520 79 9 80 
80 I 9 32 3 17 ----------

33 4 23 82 18 163 
34 6 35 83 9 82 
35 1 6 84 6 55 
-- 85 30996 285769 37 12 73 

38 6 37 86 Il22 10405 

39 4 25 87 3 28 

40 3 19 88 21 197 

41 320 2049 89 53000 500001 

42 2 13 90 2 19 

43 531 3482 91 165 1574 

44 30 ]99 92 120 II51 
93 1260 12151 

45 24 161 94 221064 2143295 46 3588 24335 
47 7 48 95 4 39 

48 1 7 96 5 49 
-- 97 637n52 62809633 
50 14 99 98 10 99 
51 7 50 99 I 10 

If See Article 8 of the Additions by De la Grange. 
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CHAPTER VIIi. 

Of the Method of rendering the Irrational Formula; 
v(a+bx+cx2 +dx3 )l Rational. 

112. We shall now proceed to a formula, in which x 
rises to the thi"d power; after which we shall consider also 
the fourth power of' x, although these two cases are treated 
in the same manner. 

Let it be required, therefore, to transform into a square 
the formula, a + bx + cx2 + dx3 , and to find pl"Oper values 
of x for this purpo.se, exp"essed in rational numbers. As 
this investigation is attended with much greater difficulties 
than any of the preceding cases, more artifice is requisite 
to find even fractional values of x; and with such we must 
be satisfied, without pretending to find values in integer 
numbers. 

It must here be previously remarked also, that a general 
solution cannot be given, as in the preceding cases; and 
that, instead of the number here employed leading to an 
infinite number of solutions, each operation will exhibit 
but one value of x. 

113. As in considering the formula, a + bx + cx2, We oh
served an infinite number' of cases, in which the solution 
becomes altogether impossible, we may readily imagine 
that this will be much oftener the case with respect to the 
present formula; whicb, besides, constantly requires that 
we already know, or have found, a solution. So that here 
we can only give rules for those cases, in which we set out 
from one known solution, in ordel' to find a new one; by 
means of which, we may then find a third, and proceed, 
successively, in the same manner, to others. 

It does not, however, always happen, that by means of a 
known solution, we can find another: on the contrary, 
thel'e are many cases, in which only one solution can take 
place; and this circumstance is the more remarkable, as 
in the analY8es, which we have before made, a single solu· 
tion led to an infinite number of other new ones. 

114. We just now observed, that in order to tl'ansform 
the formula, a+bx+cx2 +dx3 , into a square, a case must 
be presupposed, in which that solution is possible. Now, 
such a case is clearly perceived, when the first term is itself 
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a square already, and the formula may be expressed thus, 
f2+bx+cx2+dx3 ; for it evidently becomes a square, if 
x=O. 

We shall therefore enter upon the subject, by consider
ing this formula; and shall endeavour to see how, by set
ting out from the known case, x=O, we may arrive at some 
other value of x. For this purpose, we shall employ two 
difl'erent methods, which will be separately explained: in 
order to which, it will be proper to begin with particular 
cases. 

115. Let, therefore, the formula 1 +2x_X2+x3 be pro
posed, which ought to become a square. Here, as the 
first term is a square, we shall adopt for the root required 
such a quantity as will make the first two terms vanish. 
For which purpose, let I +x be the root, whose square is 
to be equal to our formula; and this will give 1 +2x
x2+x3=1+2x+x2, of which equation the fir'st two tel'ms 
destroy each other; so that we have x~= _XIl +X3, or 
x 3=2xll, wbich, being divided by X2, gives x= 2; so that 
the formula becomes 1 +4-4+8=9. 

Likewise, in order to make a square of the formula, 
4+6x-5x2+3x3 , we shall first suppose its root to be 
2 + 1IX, and seek such a value of n as will make the first 
two terms disappear; hence, 

4 + 6x-5x2 + 3x3 =4 + 4nx + nllx2 ; 

therefore we must have 412 =6, and n = t; whence results 
the equation -5x1l+3x3=nllx2=txll, or 3x3= 5xll + txll= 
¥x2 , which, after dividing by XII, gives x=H; and this is 
the value which will make a square of the proposed for
mula, whose root will be 

2+ t.r= V.* 
116. The second method consists in giving the root 

three terms as/+9x+ ltx2 , such, that the first three terms 
in the equation may vanish. 

Let there be proposed, for example, the formula 1-4x + 
6x2 - 5x3 , the root of which we will suppose to be 
1-2x+hxll, and we shall thus have 

1-4x + 6.r1l-5x3= 1-4x + 4XIl_4hx 3 + h2a;4 + 2hxll. 
The first two terms, as we see, are immediately destroyed 
on both sides; and, in order to remove the third, we must 
make 2h+4=6; consequently, h=l; by these means, 
and transposing 2hx2=2x2, we obtain -5r'= -4x3+a;4, 
or -5= -4+,X, so that :r= -1. 

117. These two methods, therefore, may be employed, 

'" Thus, x= H-, and tx= H ; then 2, or -H +H = "Ii = -y. 
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when the first term a is a square. The first is founded on 
expressing the root by two terms, asf-/-px, in whichfis 
the square rOut of the first term, and p is taken such, that 
the second term must likewise disappear; so that there 
remains only to compare. p2X'" with the third and fourth 
term of the formula, namely cx2 -/- dx3 ; for then that equa
tion, being divisible by x 2, gives a new value of x, which is 

p2_C 
x=-d-' 

In the second method, three terms are given to the root; 
that is to say, if the first term a j2, we express the root 
by f -I-px -/- qx2; after which, p and q are determined sllch, 
that the first th,'ee terms of the formula may vanish, which 
is done in the following manner. Since 
f 2 -/-bx-/-cx2 -/-dx3 f2-/-2fpx-/-2fqX'1.+p2X2-/-2p'1x3-/- (/,x", 

b 
we must have b=2fp; and, consequently,p= 2f; farther, 

c = 2f'l -/- p"'; or '1 = c 2J2; after this, there remains the 

equation dX3=2pqx3-/- q2x4; and, as it is divisible by x 3, 

b . f: . d-2pq we 0 tam rom It x= 2·' 
'1 

llS. It may frequently happen, however, even when 
a f2, that neither of these methods will give a new value 
of x; as will appear, by considering the formula,f2-/-dx3, 
in which the second and third terms are wanting. 

For if, according to the first method, we suppose the 
root to be f -/- px, that is, 

P-/-dx3 p-/-2JpX-/-p2X2, 
we shall have 2fp = 0, and p=O; so that dx3=0; and 
therefore x=o, which is not a new value of x. 

If, according to the second method, we were to make 
the rootf-/-px-/-'1x2 , or 

p -/- dx3 P -/- 2fpx + p2X'1. -/- 2J'1x2 -/- 2p'1x3 -/- '12x4, 
we should find 2fp=0, p2-/-2f'1=0, and '12=0; whence 
dx3=O, and also x=O. 

119. In this case, we have no other expedient, than to en
deavour to find such a value of x, as will make the formula 
a square; if we succeed, this value will then enable us to 
find new values, by means of our two methods: and this 
will apply even to the cases in which the first term is not a 
square. 

If, for example, the form ula 3 -/-:J!l must become a sq nare; 
as this takes place when x=l, Jet x=l -/-y, and we shall 
thus have 4-/-3.y-/-3y2-/-!l, the first term of which is a 
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square. If, therefore, we suppose, according to the first 
method, the root to be 2+py, we shall have 

4 +3y+3y2 +y3 = 4 + 4py+p2y2. 
In order that the second term may disappear, we must 
make 4p=3; and, consequently,p=-i; whence 3+y=p2, 

d 2 3 9 ".It -39 th ti -'23 an y = p - = 16 - Tl> = 16; ere ore x = 16' 
which is a new value of x. 

If, again, according to the second method, we represent 
the root by 2+py+'1y2, we sllaH have 

4 + 3y + 3y2 + y3 = 4 + 4py + 4qy2 + p2y2 + 2pqy3 + '12y", 
from which the second term will be removed, by making 
4p == 3, or p = -i; and the fourth, by making 4'1 + p2 = 3, 

3 9. 
or q =. 4 P = t1; so that 1 = 2p'l + '12y ;* whence we 

obtain y= 1-;pq, or y=-j!iV'r; and, consequently, 
'1 

x=] +y, or x=tHf. 
120. In general, if we have the for'mula, 

a + bx + cx'l + dx3, 
and know also that it becomes a square when x f, or 
that a+bf+cp+dP=g~, we may makex=f+y, and 
shall hence obtain the following new formula: 

a 
bf + by 
cp + 2cfy + ry2 
dp + 3df2y + 3dfy2 + d,t/ 

g2 +(b + 2cf+ 3dP)y + (c +3df)y2 + dy3. 
In this forl11ula, the first term is a square; so that the 

two methods above given lDay be applied with success, as 
they will furnish new values of y, and consequently of x 
also, since x !+y. 

121. But often, also, it is of no avail even to have found 
a value of x. This is the case with the formula, 1 +x3, which 
becomes a square when x = 2. For if, in consequence 
of this, we make x=2+y, we shall get the formula 9+ 
12y + 6y9. + y3, VI" hich ought also to become a square. 

Now, by the first rule, let the root be 3+py, and we 
shall have 9+12y+6y2+y3=9+6py+p2y2, in which we 
must have 6p = 12, and p = 2; thel'efore 6 + y = p2 = 4, 
andy=-2, which, since we made x=2+y, this gives 
x=O; that is to say, a value from which we can derive 
nothing more. 

'* That is, dividing by y3, and cancelling the equal terms on 
both sides. 
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Let us also try the second method, and represent the 
root by 3 + py + qy2; this gi ~'es 

9 + 12,.1J + 6y2 + y3 =9 + 6py + 6qy2 + p2y2 + 2pqy3 + q2y., 
in which we must first have 6p=12, and p=2; then 
6q+p2=6q+4=6, and q=!; farther, 

1 =2pq + q'1y= t +iY; 
hencey=-3, and, consequently, x=-I, and l+x3 =0; 
from which we can draw no further conclusion; because, 
if we wished to make x= -1 +z, we should find the 
formula, 3z-3z3+Z~, the first term of which vanishes; so 
that we cannot make use of either method. 

We have therefore sufficient grounds to suppose, after 
what has been attenlpted, that the formula, 1 +.7,.3 can never 
become a square, except in these three cases; namely, when 

l. x = 0, 2. x= -1, and 3. x ... 2. 
But of this we may satisfy ourselves from other reasons. 
122. Let us consider, for the sake of practice, the for~ 

mula 1 +3x3, which becomes a square in the following 
cases; when 

1. x=O, 2. x=-I, and 3. x=2, 
and let us see whether we shall arrive at other similar 
values. 

Since x = 1 is one of the satisfactory values, let us sup
pose x= 1 +y, and we shall thus have 

1 +3x3=4+9y+9y2+3!/. 
Now, let the root of this new formula be 2+py, so that 
4+9y+9y2+3y3=4+4py+p2y2. We must have 9=4p, 
and p=t, and the other terms will give 9 + 3y=p2=·H·, 
andy=-·H-; consequently, x=-T%' and 1 +3x3 becomes 
a square, nameIY,--H-H. the root of which is --H; or+ 
H: and, if we chose tOlroceed, by making x=~T%+Z, 
we should not fail to fin new values. 

Let us also apply the second method to the same for
mula. and suppose the root to be 2 + py + qy'l.; which 
supposition gives 
4 + 9y + 9y2 + 3y3 = 4 + 4py + 4qy2 + 2pqy3 + p2y2 + q2y. ; 
therefore, we must have 4p=9, or p=-i. and 4q+p2= 
9 = 4q + H, or q = -H-: and the other terms will give 
3=2pq+q2y=-tH+q2y, or 567 + 128q2y=384-567; or 
1 28q2y= -183; that is to say, 

632 
128 x <H)2y, or 32 y =- 183. 

So thaty=-H-Pa-, and z=l +!I, or -T6l293; and these 
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values will furnish new ones, by following the methods 
which have been pointed out. 

123. It must be remarked, however, that if we gave our
selves the trouble of deducing new values from t.he two, 
which the known case of x= I has furnished, we should 
arrive at fractions extremely pmlix: and we have reason 
to be surprised that the case, X= I, has not rather led us 
to the other, x=2, which is no less evident. This, indeed, 
is an imperfection of the present method, which is the only 
mode of proceeding hitherto known. 

We may, in the same manner, set out from the case 
x=2, in order to find othe," values. Let us, for this pur
pose, make x=2 + .11, and it will be required to make a 
square of the formula, 25+36.11+18.112+3.113. Here, if 
we suppose its root, according to the first method, to be 
5+py, we shall have 

25 +36.11 + 18y~+ 3y3=25 + 10py+p2y2; 
and, consequently, lOp=36, or p= 1f': then expunging 
the terms which destroy each other, and dividing the others 
by y2, there results 18 + 3y = p2 = W; consequently, 
y= --B-, and X=!5; whence it follows, that 1+ 3x3 is a 
square, whose root is 5+ py= -tt.h or + lU. 

In the second method, it would be necessal'y to suppose 
the root =5 +py+ qy2, and we should then have 

25 + 36.11 + 18.112 + 3.113 = { 25 + lOpy + 10qy2 + 2pqy3 } 
+ p2y2 + q2y4 ; 

the second and third terms would disappear by making 
lOp = 36, or p = \8, and 10q +p2 = 18, or 
lOq= 18-\~ = lol-l, orq =-lts-; and then the other 
terms, divided by .113 , would give tpq + q2y = 3, or 
q2y = 3-2pq =-i-H; that is, .11 = --i-H1, and 
x = --l':ff3' 

124. This calculation does not become less tedious and 
difficult, even in the cases where, setting out differently, 
we can give a general solution; as, for example, when the 
formula proposed is I - x - x 2 + x 3, in which we may 
make, generally, x=n2-1, by giving any value whatever 
to 11: for, let n=2; we have then x=3, and the formula 
becomes 1-3-9+27 = 16. Let n = 3, we have then 
x= 8, and the formula becomes 1-8-64+512 = 441, 
and so on. 

But it should be observed, that it is to a very peculiar 
circumstance we owe a solution so easy, and this circum
stance is readily perceived by resolving OUl" formula into 
factors; for we immediately see, that it is divisible by 
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I-x, that the quotient will be I_x2, that this qnotient 
is composed of the factors (1 +x) x (I-x); and, lastly, 
that our formula, 
I-x-x2+x3=(l-x) x (1 +x) x (l-x):=(l_X)2 X (1 +x). 
Now, as it must be a 0 [square]. and as aD, when divisible 
by aD, gives a 0 for the quotient,. we must also have 
1 +x= 0 ; and, conversely, if 1 +x be aD, it is cel'tain 
that (l-x)2 x (1 +x) will be a square; we have therefore 
only to make 1 + x = n2 , and we immediately obtain 
x=n2-I. 

If this circumstance had escaped us, it would have been 
difficult even to have determined only five or six values of 
x by the preceding methods. 

125. Hence we conclude, that it is proper to resolve 
every formula proposed into factors, when it can be done; 
and we have already shewn how this is to be done, by 
making the given formula equal to 0, and then seeking 
the root of this equation; for each root, as x = J, will give 
a factor f-x; and this inquiry is so much the easier, as 
here we seek only rational roots, which are always divisors 
of the known term, or the term which does not contain x. 

126. This circumstance takes place also in our general 
formula, a+bx+ex2 +dx3 , when the first two terms dis
appear, and it is consequently the quantity cx2 + dx3 that 
must be a square; for it is evident, in this case, that by di
viding by the square x2, we mnst also have c + dx a square; 
and we have therefore only to make c+dx=n2, in order 

h n2_e 1 h' h . . fi . to ave;r = ~,a va ue w IC -contalDs an 10 Dlte num-

ber of answers, and even all the possible answers. 
127. In the application of the first of the two preceding 

methods, if we do not choose to determine the letter p, for 
the sake of removing the second term, we shall arrive at 
another irrational formula,. which it will be required to· 
make rational. 

For example, let.ft + bx + ex2 + d;c3 be the formula 
proposed, and let its root =f+px. Here we shall have 
P + bx + ex2 + tk.3 =j2 + 2fJlx + p2x2, from which the 
first terms vanish j dividing, therefore, by x, we obtain 

'* The mathematical student, who may wish to al!quire an 
extensive knowledge of the many curious properties of num
bers, is referred, once for all, to the second edition of Legen
dre's celebrated Essai sur la Theone des Nombres; or to Mr. 
Barlow's Elementary Investigation of the same subject. 
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b+cx+dx2 = 2jp+p2X, an equation of the second de
gree, which gives 

p2~C+ ";(p4~2cp2+8dfp+C2,..-4bd) 
x= 2d . 

So that the question is now reduced to finding such values 
ofp, as will make the formula p4_2cp2 + 8bfp + c2-4bd 
become a square. But as it is the fourth power of the re
quired number p which occurs here, this case belongs to 
the following chapter. 

CHAPTER IX. 

OJ tlte Method oj rendering Rational tIle incommensurable 
Formula, ..; (a + b.T + cx2 + d,-c3 + ex4 ). 

128. Weare now come to formulre, in which the in
determinate number, x, rises to the fonrth power j and 
this must be the limit of our researches on quantities af
fected by the sign of the square root; since the subject 
has not yet been prosecuted far enough to enable us to 
transform into squares any fOI'mulre, in which higher 
powers of x are found. 

Our new formula furnislles three cases; the first, when 
the first term, a, is a squal'e; the second, when the last 
term, ex-l, is a square; and the third, when both the first 
term and the last are squares. We shall consider each of 
these cases separately. 

129. lst. Resolution of the formula, 
..; <P + bx + C;C2 + dx3 + ex4). 

As the first term of this is a square, we might, by the first 
method, suppose the root to bej+px, and determine pin 
such a manner, that the first two terms would disappear, 
and the others be divisible by X2; hut we should not tilil 
still to find ;C2 in the equation, and the determination of x 
would depend on a new radical sign. We shall therefore 
have recourse to the second method; and represent the 
root by j + px + qx2; and then determine p and 'lo so as to 
remove the first three terms, and then dividing by x 3, we 
shall arrive at a simple equation of the first degree, which 
will give x without any radical signs. 
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130. If, therefore, the root bef+px+qx2, and for that 
reason 

f2 + bx + cx2 + dx3 + ex4 = 
p + 2fpx + p2X£ + 2fqx2 + 2pqx3 + q2x4, 

the first terms disappear of themselves; with regard to 
the second, we shall remove them by making b = 2fp, or 

p = ;i and, for the third, we must make c = 2fq + p2, 

or q = c 2}2. This being done, the other terms will be 

divisible by xl, and will give the equation d + ex = 2pq + 
q2x, from which we find , 

d-2pq 2pq-d 
X= ,orx=---. q2_e e_q2 

131. Now, it is easy to see that this method leads to 
nothing, when the second and third terms are wanting in 
our formula; that is to say, when b = 0, and c = 0; for 

then p = 0, and q = 0; consequently, x = - ~,from which 
e 

we can commonly draw no conclusion, because this case 
evidently gives dx3 + ex4 = 0; and, therefore, our formula 
becomes equal to the square f2. But it is chiefly with re· 
spect to such formulre as f2 + ex4 , that this method is of no 
advantage, since in this case we have d = 0, which gives 
x = 0, and this leads no farther. It is the same, when 
b = 0, and d = 0; that is to say, the second and fourth 
terms are wanting, in which case the formula is 

f2 + cx2 + ex4; for, then p = 0, and q :::;: ~f' whence x=O, 

as we may immediately perceive, from which no further 
advantage can result. 

132. 2d. Resolution of the formula, 
..; (a + bx + cx2 + dx3 + 92X4), 

We might reduce this formula to the preceding case, by 

supposing x = !; for, as the formula, 
y 

bed 92 

a+-+- +- +-!J y2 y3 y4' 

must then be a square, and remain a square if multiplied 
by the square y4, we have only to perform this multipliea. 
tion, in order to obtain the formula, 

BB 
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ay4 + by3 + Cy2 + dy + g2, 
which is quite similar to the forme.·, only inverted. 

But it is not necessary to go through this process; we 
have only to suppose the root to be gx2+pX+q, or, in
versely, q+px+gx2 , and we shall thus have 

a + bx + cx2 + dx3 + g~x4 = 
q2 + 2pqx + 2gqx2 + p2X2 + 2gpx3 + g2X4. 

Now, the fifth and sixth terms destroying each other, we 
shall first determine p so, that the fourth terms may also 
destroy each other; which happens when d = 2gp, or 

p = 2~; we shall then likewise determine q, in order to 

remove the third tel'ms, making for this purpose 

c = 2gq+p2, or q = C;;2; 

which done, the first two terms will fLlrnish the equation 
a+bx=q2+'lpqx; whence we obtain 

a_q2 q2_a 
X=--- orx--·--

'lpq-b' - b-2pri 

133. Here, again, we find the same imperfection that 
was before remarked, in the case where the second and 
fourth terms are wanting; that is to say, b=O, and d = ° ; 

C 
because we then find p = 0, and q = 2-; therefore 

9 
x = a--;/2: now, this value being infinite, leads no farther 

than the value, x = 0, in the first case; whence it follows, 
that this method cannot be at all employed with respect 
to expressions of the form a + cx2 + g2X4. 

134. 3d. Resolution of the formula, 
.; <j'l + bx + cx2 + dx3 + gQX4). 

It is evident that we may employ for tlJis formula both 
the methods that have been made use of; for, in the first 
place, since the first term is a square, we may assume 
J + px + qx2 for the root, and make the first three terms 
vanish; then, as the last term is likewise a square, we may 
also make the root q+px+gx2, and remove the last three 
terms; by which means we shall find even two values ofx. 

But this formula may be resolved also by two other 
methods, which are peculiarly adapted to it. 

In the first, we suppose the root to beJ+px+g.?J2, and 
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P is determined such, that the second terms destroy each 
other; that is to say, 

J2 + hx + cx2 + dx3 + g2x4 = 
f2 + 2fpx + 2fgX2 + p2X2 + 2gpx3 + g2X4. 

Then, making b = 2/p, 01' p = t.; and since by these 

means both the second terms, and the first and last, are 
destroyed, we may divide the others by X2, and shall have 
the equation c + dx = 2fg + p2 + '2gpx, from which we 

. c-2(q_ p2 pZ+2fg-c . 
obtam x = ').' d ,or x = I 2 . Here, It ought 

~gp- (- 9P 

to be particularly observed, that as 9 is found in the 
formula only in the second power, the root of this square, 
or 9, may be taken negatively as well as positively; and, for 
this reason, we may obtain also another value of x; namely, 

c+2fg-p2 pZ-2fq-c 
x= -2gp-d' or x= 2glH-d . 

135. There is, as we observed, another method of re
solvinO' this formula; which consists in first supposing the 
root,;s before, to beJ+px+gx2, and then determiningp 
in such a manner, that the fourth terms may destroy each 
other; which is done by supposing, in the fundamental 

equation, d = 2gp, or p = 2~; for, since the first and the 

last terms disappear likewise, we may divide the other by x, 
and there will result the equation b + cx= 2fp + 2fgx + p2X, 

h· h . b-2fp W J.'. h k h w IC gIVes x - e may 1art er remar ,t at . -'2:fg+p2_ C ' 

as the squaref2 is found alone in the formula, we may 
suppose its root to be -f, from which we shall have 

x = b + ~/p . So that this method also furnishes two 
p2-2jg-c 

new values of x; and, consequently, the methods we have 
employed give, in all, six new values. 

136. But here again the inconvenient circumstance oc
curs, that, when the second and the fourth terms are want
ing, or when b=O, and d=O, we cannot find any value of 
x which answers our purpose; so that we are unable to 
resolve the formula f2 + CXZ + gx+. For, if b = 0, and 
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d=O, we have, by both methods, p=O; the former 

. . c-2fq d I h .. 0 . h f glvmg x =~, an tIe ot er glvmg x= ; ne)t er 0 

which are proper for furnishing any further conclusions. 
137. These then are the th.-ee formulre, to which the 

methods hitherto explained may be applied; and if in the 
formula proposed neither tel'm be a square, no success 
can be expected, until we have found one such value of x 
as will make the formula a square. 

Let us suppose, therefore, that our formula becomes a 
square in the case of x=lt, or that 

a+bh+ch2 +dlt3+eh4 =k2 ; 

if we make x=h+y, we shall have a new formula, the 
first term of which will be k2 ; that is to say, a square, 
which will, consequently, fall under the first case: and 
we may also use this transformation, after having deter
mined by the preceding methods one value of x, for in
stance, x=h; for we have then only to make x=h+y, in 
order to obtain a new equation, with which we may pro
ceed in the same manner. And the values of x, that may 
thus be found, will furnish new ones; which will also lead 
to others, and so on. 

138. But it is to be particularly remarked, that we can 
in no way hope to resolve those formulre, in which the 
second and fourth terms are wanting, until we have found 
one solution; and, with regard to the process that must 
be followed after that, we shall explain it by applying it to 
the formula a+ex4 , which is one of those that most fre
quently occur. 

Suppose, therefore, we have found such a value of x=lt, 
that a + elt4=k2 ; then if we would find, from this, other 
values of' x, we must make x=lt+y, and the following 
form ula, a + elt4 + 4elt3!J + 6elt2y2 + 4eliy 3 + ey4, must be a 
square. Now, this formula being reducibletok2 +4elt3y+ 
6elt2y 2 + 4elty3 + ey4, it therefore belongs to the first of our 
three cases; so that we shall represent its square root by 
k+py +qy2; and, consequently, the formula itself will be 
equal to the square 

k2 + 2kpy + p2y 2 + 2kqy2 + 2pqy3 + q2y4 ; 
from which we must first remove the second term by de
termining p, and consequently q ; that is to say, by making 

2elt3 
4elt3=2kp, or p= T; and 6eh2=2kq+p2, or 
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6eh2_ p2 3eh2k2-2e2Jt6* eh.2(3k2-2eh4) 
q = 2k = k3 = k3 ; 

or, eh 2(k2 + 2a)i" lastly, q = . k3 , because eJt4 = k2 - a; after 

which, the remaining terms, 4eh:!l + ey4, being divided 
by y3, will give 4eh + ey = 2pq + q2y, whence we find 

y = 4ehz-2pq ; and the numerator of this fraction may be 
q -e 

th . t th P 4ehk4 -4e2h5(k2 +2a) + rown III 0 e lOrm kJ, ,+ 

or, because eh4 =k2-a, into this, 
4ehk4 - 4fh(k2-a) X (k2 +2a) 4eh( _ak2 +2a2 ) 

k4 k4 

With regard to the denominator q2_e, since 

eh2(k2 +2a) 
q = k3 , and eh4 =k2 -a, it becomes 

e(k2-a) x (k2 +2a)2- ek6 e(3ak4-4a3) ea(3k4-4a2 ) 

. ~ = ~ = ~ 

so that the value sought will be 
4aeh(2a _ k2) k6 

Y = k4 X ae(3~k~4-_-4"-a-.o2)' or, 

4hk2(2a-k2 ) 
y = 3k4 -4a2 ; and, consequently, 

_ h _ h(Sak2-k4-4a2 ) 

x -y+ - 3k4 -4a2 ,or 

h( lt4 - SaltZ + 4a£) 
x = 4a2 -:3k4 . 

'* By multiplying 6ehz- p2 by k2 , and substituting for k2p2 
its equal, 'leh3• 

t For smce k2=a+eh4, therefore 3k2-'leh4=3a+eh4 ; that 
is, a+eh4(=k2)+'la=k2 +'la. 

4ehk4 eh2(k 2 +2a) 2eh3 
t Here4eh=~, also q= k3 ,and p =-k-; 

4e2h5(kz+2a) 
therefore '1pq = k4 ' and, consequently, 

4 h 2 - 4ehk4-4e2 /t5(k2 +'1a) -B 
e - pq - k4 ., 
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If, therefore, we substitute this value of x in the formula 
a+e.7;+, it becomes a square; and its root, which we have 
supposed to be k+py+Q!l2, will have this form, 
k 8k(k2-a) X (2a-k2) 16k(k2-a) X W+2a) x (2a_kt)2 

+ 3k+-4a'Z + (3k+-4a2)2 ; 

2eh3 elt2( h2 + 2a) 
because, as we have seen,p= k' q= k3 

4hk2(2a-k2 ) 4 0 ... 

y= 3k+-4a2 ' and eh =k--a. 

139. Let us continue the investigation of the formula, 
a+ex+; and, since the case a+eh+=k2 is known, let 
us consider it as furnishing two different cases; because 
x= +k, and x= -h; for which reason we may trans
form our formula into another of the third class, in which 
the first term and the last are squares. This trans
formation is made by an artifice, which is often of great 

·1· d h· h . . k· k(l+y) b utI Ity, an w IC consIsts m ma mg x= 1 : y 

which means the formula becomes 
-y 

aO-y)++ek+(l +y)" th 
(l_y)4 ; orra er 

k2 +4(k2-2a)y +6k~1J2 +4(k2-2a)y3 + k2y+ 
(1_y)4 

Now, let us suppose the root of this formula, according to 
. k+py-k1f2 

the thIrd case, to be (l-yi ; so that the numeratol' 

of our formula must be equal to the square, 

·k2 + 2kp!l + p2y2 _ 2k2y2 _ 2kpy3 + k2y+ ; 

and, removing the second terms, by making 
2k2-4a 

4k2-8a=2kp, or p= k ; 

<l'Thus, 
2eh3 4hk2(2a-k2) 8eh~k(2a-k2) 8k(k2-a) X (2a-kS) • 

PY=T x 3k4_4a2 3k4-4a2 3k4-4a2 ' 

1 2 eh2(k2 +2a) 16h2k4(2a-k2 ) 16eh4k(k2 +2a) X (2a-kt)! 
a so,qy k3 X . (3k4-4a2)2 (3k4-4a2)2 
_ 16k(k2-a) X (k2 +2a) x (2a_k2)2 •• 4_ 2 
- (3k+-4a2)2 , by substItutmg ell. _k -a. 

B. 
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and, dividing the otller terms by y2, we shall have 
6k2+4y(h2-2a)= -2h2+p2-2kpy, or 
'!I( 4k2 - 8a + 2kp) = p2 - 8h2; OJ' 

2k2-4a 
P=-k-' and pk=2k2-4a; so that 

(8 '2_16 )_ -4k4 -1oak2 + 16a2 d y It a - /(~ , an 

-hl.-4ah2 +4a2 
y-

- k2(21t"--4a) 

If we now wish to find :c, we have, fil'st, 
lt4 _ 8altz + 4a'l 

l+y- . - h2(2k2-4a) , 
and, in the second place, 

3k4 -4a2 
1 !/- . so that - - k2(2k2_4;i) ' 

375 

I +.If _ k4 -8ak2 +4a2• 
-}- -' '3/,4 4 2 ,and,consequently, -!I . t - a 

11 ( k'J, - 8alt2 + 4a2) 

X= 3k4 -4a2 ; 

but this is just the same value that we found before, with 
regard to the even powers of x. 

140. In order to apply this result to an example, let it 
be required to make the formula, 2x4-1 a square. Here, 
we have a= -1, and e=2; and the known case, when 
the formula becomes a square, is that in which x= I ; so 
that h=l, and !t2=1; that is, k=l; therefore, we shall 

1+8+4 . 
have the new value, x= 3-4 = -13; and smce the 

fourth power of x is found alone, we may also write 
x = + 13, whence 2x4-1 =57121 =(239)2. 

If we now consider this as the known case, we have 
n= 13, and k=239; and shall obtain a new value of r, 
namely, 

13 x (2394 +'8 x :l3!)~'+4) 42422452969 
3 x 23y4_4 = 9788425919' 

141. We shall consider, in the same manner, a formula 
rather more general, a + cx2 + ex", and shall take for the 
known case, in which it becomes a square, x=n; so that 
a+ch2 +elt4=k2• 

And, in order to find other V'alues from this, let us 
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suppose x=h + y, and our formula will assume the follow
ing form: 

a 
eh2 + 2ehy + elf 
e1t4 + 4elt3!J + 6elt2y2 + 4ehy3 + ey4 

kZ + (2eh + 4eh3 )y + (e+ 6eh2)yZ + 4ehy 3 + ey4. 

The first term being a squal'e, we shall suppose the root 
of this formula to be h + py + qyZ; and the formula it~elf 
will necessarily be equal to the square, 

kZ + 2kpy + pZyZ + 2kqyZ + 2pqy·3 + (ly4 ; 

then determining p and q, in order to expunge the second 
and third terms, we shall have for this purpose 

eh+2eh3 

2eh+4eh3=2kp; or p= h ; and 

e+6elt2-pz 
e+6ehz=2kq+pz; or q= 2k . 

Now, the last two terms of the general equation being 
divisible by ,ll, they are reduced to 

4eh + ey=2pq + qZy ; 

h · h . 4elt~2pq d I th 1 w IC gIVes y= z , an , consequent y, e va ue 
q -e 

also of x=h + y. If we now consider this new case as the 
given one, we shall find another new case, and may pro
ceed, in the same manner, as far as we please. 

142. I .. et us iI1ustrate the preceding article, by applying 
it to the formula, l-x2+x4, in which a=l, e= -1, 
and e= 1. The known case is evidently x= 1 ; and, there
fore, h=l, and k=l. If we make x=l+y, and the 
square root of our formula 1 + py + qyZ, we must first have 

ch+2eh3 e+6eltz_pz 
p::::' It = 1, and then q= 2k =1'=2. These 

val ues give y = 0, and x = 1. Now, this is the known case, 
and we have not arrived at a new one; but it is because 
we may prove, from other considerations, that the pro
posed formula can never become a square, except in the 
cases of x=O, and x= ± 1. 

143. Let there be given, also, for an example, the 
formula, 2 ~ 3x2 + 2X4; in which a=2, e == - 3, and 
e=2. The known case is readily found; that is, X= I ; 
so that n= 1, and k= 1 : if, therefore, we make X= 1 +.1/, 
and the root =] +py+ qy2, we shall have p=l, and 
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q=4; whence y=O, and X= 1 ; which, as before, leads to 
nothing new. 

144. Again, let the formula be I +8x2+x4 ; in which 
a= I, c=8, and e= 1. Here a slight consideration is suf
ficient to point out the satisfactory case, namely, x=2; 
for, by supposing 11==2,. we find k=7; so that making 
x=2+,Y, and repJ'esentmg the root by 7 +py + qy2, we 
shall have p= V, and q= tit; whence 

,Y=--HH, and x= - 2ih; 
and we may omit the sign minus in these values. But we 
must observe, farther, in this example, that since the last 
term is already a square, and must therefore remain a 
square also in the new formula, we may here apply the 
method which has been already taught for cases of the 
third class. Therefore, as before, let x=2+y, and we 
shall have 

I 
32+32y+ 8y2 

16 + 32,Y + 24.y2 + 8,Y3 + 'y4 

49 + 64,Y + 32y 2 + 8,Y3 + 'y4, 

an expression which we may now transform into a square 
in several ways. For, in the first place, we may suppose 
the root to be 7+p,Y+y2; and, consequently, the formula 
equal to the square 

49+ 14py+p2'y2 + 14y2+2py3+'y4; 
but then, after destroying 8y3, and 2py3, by supposing 
2p=8, or p=4, dividing the other terms by y, and deriv
ing from the equation, 

64 + 32y= 14p + 14y +p2y:::::56 +30,Y, 
the value of y= -4, and of x= -2, or x= +2, we come 
only to the case that is already known. 

Farther, if we seek to determine such a value for p, that 
the second terms may vanish, we shall have 14p==64, and 
P= V; and the other terms, when divided by y2, form 
the equation 14+p2+2py=32+8y, or 
l'B-o + ¥y=32+8y, whence we find y= --H; and, 
consequently, x= - ti, or X= + -H; and this value trans
forms our formula into a square, whose root is l.."W. 
Farther, as _y2 is no less the root of the last term than 
+y2, we may suppose the root of the formula to be 
7 + py_y2, or the formula itself equal to 
49+14py+p2y2-14y2-2py3+'y4. And here we shall 
destroy the last terms but one, by making -2p=8, or 
p= -4; then, dividing the other terms by y, we shall have 
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64+32.y=14p-14p+p2y= -56+2y, 
which gives y= -4; that is, the known case again. If 
we chose to destroy the second terms, we should have 
64= 14p, and p= ~,? ; and, consequently, dividing the 
other terms by y2, we should obtain . 

32+8g= -14+p2-2py, or 
32+8y- V/- Vg; whence 
y= -it, and x= ±-H; 

that is to say, the same values that we found before. 
145. \-Ve may proceed, in the same mannel·, with respect 

to the general formula, 
a + bx+ cx2 + dx3 + t:x4 , 

when we know one case, as x=h, in which it becomes a 
square, k2. The constant method is to suppose x=lt + y: 
from this, we obtain a formula of as many terms as the 
other, the first of them being 1l2. If, after that, we express 
the root by k + P!! + qy2; and determine p and q so, tbat 
the second and third terms may disappear; the last two, 
being divisible by y3, will be reduced to a simple equation 
of the first degree, from which we may easily obtain the 
value of y, and, consequently, that of x also. 

Still, however, we shall be obliged, as before, to exclude 
a great number of cases in the application of this method; 
those, for instance, in which the value found for x is no 
other than x=lt, which was given, and in which, conse
quently, we could not advance one step. Such cases 
shew either that the formula is impossible in itself, or that 
we have yet to find some other case, in which it becomes a 
equare. 

146. And this is the utmost length to which the mathe
maticians have yet advanced, in the resolution of formlllre, 
that are affected by the sign of the square root. No dis
covery has hitherto been made for those, in which the 
quantities under the sign exceed the fourth degree; and 
when formulre occur which contain the fifth, or a higher 
power of x, the artifices which we have explained are not 
sufficient to resolve them, even although a case be given. 

That the truth of what is now said may be more evident, 
we shall coneider the formula, 

k2 + bx + cx2 +dx3 + ex4 + fx5, 
the first term of which is already a square. If, as before, 
we suppose the root of this formul~ to be k+pX+qx2, 
and determine p and q, so as to make the second and third 
terms disappear, there will still remain three terms, which, 
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when divided by x\ form an equation of the second degree; 
and x evidently cannot be expressed, except by a new irra
tional quantity. But if we were to suppose the root to be 
k+px+gx~+rx3, its squal"e would rise to the sixth 
power; and, consequently, though we should even de
termine p, g, and r, so as to remove the second, third, and 
fourth terms, there would still remain the fourth, the fifth, 
and the sixth powers; and, dividing by X4, we should again 
have an equation of the second degree, which we could 
not resolve without a radical sign. This seems to indicate 
that we have really exhausted the subject of transforming 
formulre into squares: we may now, therefore, proceed to 
quantities affected by the sign of the cube root. 

CHAPTER X. 

0/ tlte Method o/rendering rational tlte irrational Formula, 
~(a+bx+cx2+dx3). 

147. It is here required to find such values of x, that 
the formula a + bx + cx2 + dx3 may become a cuhe, and 
that we may be ahle to extract its cube root. We see 
immediately that no such solution could be expected, if 
the formula exceeded the third degree; and we shall add, 
that if it were only of the second degree, that is to say, if 
the term dx3 disappeared, the solution wonlp not be easier. 
With regard to the case in which the last two terms 
disappear, and in which it would be required to reduce 
the formula, a + bx to a cube, it is evidently attended with 
no difficulty; for we have only to make a+bx p3, to find 

p3_ a 
at once .7: = -b-' 

148. Before we proceed farther on this suhject, we 
must again remark, that when neither the first nor the 
last term- is a cuhe, we must not think of resolving the 
formula, unless we already know a case in which it 
becomes a cube, whether that case readily occurs, or 
whether we are obliged to find it out by trial. 

So that we have three kinds of formulre to consider. 
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One is, when the first term is a cube; and as tIlen the 
formula is expressed by f3 + bx + ex2 + dx3 , we imme
diately perceive the known case to be that of x=O. The 
second class comprehends the formula, a + bx + ex2 + g3x3 ; 
that is to say, the case in which the last term is a cube. 
The third class is composed of the two former, and com
prehends the cases in which both the first term and the 
last are cubes. 

149. Case 1. Let f3+bx+cx2+dx3 be the proposed 
formula, which is to be transformed into a cube. 

Suppose its root to be f + px; and, conseqnently, that 
the formula itself is equal to the cube, 

p+3f2px+3fp2X2+p3x3 ; 

as the first terms disappear of themselves, we shall de
termine p, so as to make the second terms disappear also; 

namely, by making b=3,Pp, or p= 3;2; then the remain

ing terms being divided by X2, give c+dx=3fp2+ p3X; 

or x= e 3fp2. 
pS_d 

If the last term, dx3, had not been in the formula, we 
might have simply supposed the cube root to be f, and 
should have then had f3 =f3+bx+cx2, or b+ex=O, 

and x = - ~; but this value would not have served to find 
e 

others. 
150. Case 2. If, in the second place, the proposed 

expression have this form, a + bx + ex2+g3x3, we may 
represent its cube root by p + gx, the cube of which is 
pa + 3p2gx + 3pg2x2 + g3x3 ; so that the last terms destroy 
each other. Let us now determine p, so that the last terms 
but one may likewise disappear; which will be done by 

supposing c::: 3g2p, or p = 3;2' and the other terms will 

then give a+bx=p3+3gp2x ; whence we find 
a._p3 

X=3gp2_b· 

If the first term, a., had been wanting, we should have 
contented ourselves with expressing the cube root by gx, 
and should have had 

g3x3=bx+ex2 +g3x3, or b+ex=O. 
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b 
whence x = - -; but this is of no use for finding other 

c 
values. 

151. Case 3. Lastly, let the formula be, 

f3 + bx + cx2 + g3x3, 

in which the first and the last terms are both cubes. It is 
evident that we may consider this as belonging to either 
of the two preceding cases;" and, consequently, that we 
may obtain two values of x. 

But beside this, we may also represent the root by 
f +gx, and then make the formula equal to the cube, 

f3 + 3pgx + 3fg2X2 + g3x3 ; 
and likewise, as the first and last terms destroy each 
other, the others being divisible by x, we arrive at the 
equation, b+cx=3f2g +3fg2x , which gives 

b-3f2g 
X= 3jjl-c. 

152. On the contrary, when the given formula belongs 
not to any of the above three cases, we have no other 
resource than to try to find such a value for x as will 
change it into a cube; then, having found such a value, 
for example, x = h, so that a + bh + clt2 + dh3 = kl, we 
suppose x=lt + y, and find, by substitution, 

a 
bit + by 
clt2 + 2chy + cy2 
dlt3 + 3dlt2y + 3dlty2 + dy 3 

k3 + (b + 2clt + 3dlt2)y + (c + 3dlt)y2 + dy 3. 

This new formula belonging to the first case, we know 
how to determine y, and therefore shall find a new value 
of x, which may then be employed for finding other 
values. 

153. Let us endeavour to illustrate this method by 
some examples. 

Suppose it were required to transform into a cube the 
formula, 1 +X+X2, which belongs to the first case. We 
might at once make the cube root I, and should find 
x+x2 =0, that is x(l+x)=O, and, consequently, either 
x = 0, or x = -1; but from this we can draw no con~ 
elusion. Let us therefore represent the cube root by 
1 + px; and as its cube is ] + 3px + 3p2X2 + p3X3, we 
shall have 3p = I, or p = -t; by which means the other 
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terms, being divided by X2, give 3p2 + p3X = J, or 
1-3p2 ~ 

x = --3-' Now, p=t, so that x = + = 18, and our 
P 27 

formula becomes 1 + 18 +324 = 343, and the cube root 
1 +px= 7. If now we proceed, by making X= 18+y, 
our formula will assume the form 343 + 37y + y2, and by 
the fil'st rule we must suppose its cube root to be 7 + py ; 
comparing it then with the cube, 

343+ 147py+21p2y2+p3y3, 

it is evident we must make 147p = 37, or p ~ -l4'1.r; the 
other terms give the equation 2Ip2+p3y = I, whence we 
obtain the value of 

Y_I - 2lp2 = _1~7 x (l47~-21 x 372) __ l_Q±JL5Jl.O 
- p3 373 - b 0 6~ 3 , 

which may lead, in the same manner, to new values. 
154. Let it now be required to make the formula, 2 +x£ 

equal to a cube. Bel'e, as we easily get the case x = 5, 
we shall immediately make x = 5 + y, and shall have 
27+IOy+?l=2+x2 ; supposing now its cube root to be 
3+p.lJ, so that the formula itself may be 27+27py+9p2y2 
+p3y3, we shall have to make 27p=1O, or p=}4; there
fore 1 = 9p2+p3,1j, and 

_ 1-9p2 _ 27 x (272-9 x 102) _ 4.2.11. d 
y-~ - - 1000 - - Too-o' an 

x= T3o~O; therefore om formula becomes 2+X2= lHHt*, 
the cube root of which must be 3 + py = -tH. 

155. Let us also see whether the formula, 1 +x3 , can 
become a cube in any other cases beside the evident ones 
of' x = 0, and x = -1. We may here remark first, that 
though this formula belongs to the third class, yet the 
root 1 +x is of no use to liS, because its cube, 1 +3x+3x2 

+x3, being equal to the formula, gives 3x+3x2=0, or 
3x(l +:1:)=0, that is, again, x=O, or x=-1. 

If we made x=-I +y, we should have to transform 
into a cube the f(lI'mula, 3y_3y2+ y3, which belongs to 
the second case; so that, supposing its cube root to be 
p + y, 01' the formula itself eq ual to the cube, 
p3 + 3p2y + 3py2 + y3, we should have 3p = - 3, or 
p= -1, and thence the equation 3y=p3 + 3p2y= -1 +3y, 
which gives y = 1;, or infinity; so that we obtain nothing 
more f!'Om this second supposition. In fact, it is in vain to 
seek for other values of x; for it may be demonstrated, 
that the SUIll of two cubes, as {I' + .'/:\ can never become 
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a cube;* so that, by making t = 1, it follows that the 
formula, x3+ 1, can never become a cube, except in the 
cases already mentioned. 

156. In 'the same manner, we shall find that the 
formula, x 3 +2, can only become a cube in the case of 
x= -1. This formula belongs to the second case; but 
the rule there given cannot be applied to it, because the 
middle terms are wanting. It is by supposing x= -1 +y, 
which gives 1 +3;lJ-3J/2 +y3 , that the formula may be 
managed according to all the three cases, and that the 
truth of what we have advanced. may be demonstrated. 
If, in the first case, we make the root = 1 +y, whose cube 
is 1 +3y-3y2+y\ we have _3y2=3y2, which can only 
be true when y = 0: and if, according' to the second case, 
the root be -1 +y, or the formula equal to -1 +3y-3y2 

+y3, we have 1 +3y=-I+3y, and y='t:i, or an infinite 
value; lastly, the third case requires us to suppose the root 
to be 1 +y, which has already been done for the first case. 

157. Let the formula 3x3 +3 be also required to be 
transformed into a cube. This may be done, in the first 
place, if x= -1 ; but from that we can conclnde nothing: 
then also, when x=2; and if, in this second case, we 
suppose x=2 + y, we shall have the formula 27 + 36y 
+ ISy2 + 3y3; and as this belongs to the first case, we 
shall represent its root by 3 + py, the cube of which is 
27 + 27py + 9p2y2 + p3yS; then, by comparison, we find 
27p=36, 01' P = t; and thence results the equation, 

18 + 3y=9p2+ p3y=I6 +Hy ; 
... -54 -20 

wInch gIves y = 17' and, consequently, x = --r7 : 
therefore our formula 3+3x3 =-H4t, and its cube root 
3 + }JY = 1:+; which solution would furnish new values, if 
we chose to proceed. 

158. Let us also consider the formula, 4+X2, which 
becomes a cube in two cases that may be considered as 
known; namely, x=2, and x= 11. If now we first make 
x=2+.y, theformula,8+4y+y2 will be required to become 
a cube, having for its root 2+ty, and the cube of this 
being 8+4y+tJ/2 + ny3, we find 1 =i-+t.ry; therefore 
y=9, and x=ll; which is the second given case. 

If we here supposex=ll +y,we shall have4+x!l= 
I25+22y+y2; which, being made equal to the cube of 
5 + py, or to 125 + 75py+ I5p2y2+p3y3, gives p =H; 

• See Article 247 of this Part. 
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and thence I5p2+ p3y =1, orp3y=1-I5p~=-t~t; con
sequently, y= - VrFe,6-li', and x = - -fo¥is' 

Now, since x may either be negative or positive, x 2 

being found alone in the given formula, let us suppose 

x = 21~;' and our formula will become ~l~~:' which 

must be a cube; let us therefol'e multiply both terms by 
I-y, in order that the denominator may become a cube; 

8-8y + 8y~ _ 8y3 

and this will give -~'-(J _yyl ; then we shall only 

have the numerator 8-8y+8y2_8y3, or if we divide by 
8, only the formula, 1_y+yZ_y3, to transform into a 
cube; which formula belongs to all the three cases, Let 
us, according to the first, take for the root 1- ty; the 
cube of which is 1-y+{-yz--<i1"!/; so that we have I-y 
= t - z\y, or 27 - 27y = 9 - y; therefore y = -(3; also, 

( 2+111) I+y=H,andI-y=T\; whencex =l-y =l1,as 

before. 
We should have obtained the same result, if we had con

sidered the formula as coming: under the second case. 
Lastly, if we apply the third, and take l-y for the 

root, the cube ofwbich is 1-3y+3J/-y\ we shall have 
-1 +y = -3 +3y, and y = I ; so that x =t, or infinity; 
and, consequently, a result which is of no use. 

159. But since we already know the two cases, x=2, 

and x = 11, we may also make x = 2; Ily; for by these 
+y 

means, if y = 0, we have x = 2; and if y = <JJ, or infinity, 
we have x= 11. 

Therefore, let x = 21+ IIy, and our formula becomes 
+y 

4 + 4 + 44y + 121 y2 or 8 + 52y + 125y2 

1 +2y+y2' (l +y)2 . Multiply both 

terms by 1 +y, in order that the denominator may be
come a cube, and we shall only have the numerator, 
8+60y+ 177y2+ 12~1j3, to transform into a cube. And 
if, for this purpose, we suppose the root to be 2 +5y, we 
shall not only have the first terms disappear. but also 
the last. We may, therefore, refer our formula to the se
cond case, taking p +5y for the root, the cube of which 
is p3 + 15p2y + 75p.1/ + 125$13; so that we must make 
75p = 177, or P =Z-t; and there will result 8 + 60y = 
p3 + I5p2y, or - 2fl-t y= -HiH, and y = -!'f..,li-f-s, whence 
we might obtain a value of x. 
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But we may also suppose x= 21+ 11.1/ ; and, in this case, 
-y 

our formula becomes 
4 4 + 44y + 121112 8 + 36y + 125y2 + ;.7 _ • 

1 - 2y + i.l - (1-g)2 ' 

so that multiplying both terms by 1-y, we have 8 + 28g + 
89y2_125y3 to transform into a cube. If we therefore 
suppose, according to the first case, the root to be 2 + }y, 
the cube of which is 8 + 28y + 9jy2 + W y 3, we haye 
89-I25y=9j+~24lY, or 3iPy=1fr9; and, consequently, 
Y = ·HH = n; whence we get x= II; that is, one of the 
values already known. 

But let us rather consider our formula with refet'ence to 
the third case, and suppose its root to be 2-5y; the cube 
of this binomial being 8-60y+ I50y2 -I25y3, we shall 
have 28 + 89y= -60 + I50y; therefore y= ~.lf, whence we 
get x= _1~O; so that our formula becomes 11-¥-_}%16, or 
the cube of 1%6. 

160. The foregoing are the methods at present known 
for reducing such formulre as we have considered, eithel' 
to squares, or to cubes, provided the highest power of the 
unknown quantity do not exceed the fourth power in the 
former case, nor the third in the latter. 

We might also add the problem for transforming a given 
formula into a biquadrate, in the case of the unknown 
quantity not exceeding the second degree. But it will be 
perceived, that, if such a formula as a + bx + cx2 were 
proposed to be transformed into a biquadrate, it must in 
the first place be a square; after which it will only remain 
to transform the root of that square into a new square, by 
the rules already given. 

If x 2 + 7, for example, is to be made a biquadrate, we 
first make it a square, by supposing 

7pZ_q2 t_7p2 
x= 2pq ,or x= 2pq 

the formula then becomes equal to the square, 
q4 - I4q2pZ + 49p4 + 7 _ q4 + 14q2p2 + 49p4 

4p2q2 - 4p2q2 ' 

the root of which, 7p~+q2, must likewise be transformed 
pq 

into a square. For this purpose, let us multiply the two 
terms by 2pq, in order that the denominatOl' becoming a 
squarp, we may have only to consider the numerator 
2pq(7p2+q2). Now, we cannot make a square of this 

cc 
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formula, without having previously found a satisfactory 
case; so that supposing q=pz, we must have the formula, 

2p~z( 7p2 + p2Z2) =2p 4Z(7 + Z2), 
and, consequently, if we divide by p4, the formula 2z(7 +Z2) 
must become a square. The known case is here z= I, for 
which reason we shall make z=I +y, and we shall thus 
have 

(2 + 2y) x (8 + 2y + y2)= 16 +20y +6y2 +2y3, 
the root of which we shall suppose to be 4 + ty; then its 
square will be 16+20y+ 9.bf, which, being made equal 
to the formula, gives 6 + 2y= 9..f; therefore y= t, and 

z= t. Also, z= ~; so that q=9, and p=8, which makes 
p , 

x=lli, and the formula 7 +X2= ~1. If we now ex
tract the square root of this fraction, we find lit; and 
taking the square root of this also, we find tt; conse
quently, the given formula is the biquadrate of ft. 

161. Before we conclude this Chapter, we must observe, 
that there are some formulre, which may be transformed 
into cubes in a general manner; for example, if ex2 must 
be a cube, we have only to make its root =px, and 

we find c,X2 _ p3X 3, or e=p3x; that is, x= ;3; or"ifwe 

write...!.., instead of p, X=cq3. 

The ~eason of this evidently is, that the formula contains 
a square; on which account, all such formulre, as a(b +eX)2, 
or ab2 + 2abex + ae2x2, may very easily be transformed into 

cubes. In fact, if we suppose its cube root to be b + ex, 
q 

we shall have the equation a(b+ex)2=(b+~x)3, which di
q 

'd db b )2' b+ex h aq3-b VI e y( +ex ,glVesa=--s- w encewe get x=---, q , c 
a value in which q is arbitrary. 

This shews how useful it is to resolve the given {ormulre 
into their factors, whenever it is possible: on this subject, 
therefore, we think it will be proper to dwell at some 
length in the following Chapter. 
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CHAPTER XI. 

OJ the Resolution of tlte Formula, ax2 + bxy + C:y2 into its 
Factors. 

162. The letters x and y shall, in the present formula, 
represent only integer numbers; for it is sufficiently e,' i
dent, from what has been already said, that, even when 
we were confined to fractional results, the question may 
always be reduced to integer numbers. For example, if the 

number sought, x, be a fraction, by making x= !, we 
u 

may always assign t and u in integer numbers; and as 
this fraction may be reduced to its lowest terms, we shall 
consider the numbers t and u as having no common divisor. 

Let us suppose, therefore, in the present formula, that x 
and yare only integer numbers, and endeavour to deter
mine what values must be given to these letters, in order 
that the formula may have two or more factors. This pre
liminary inquiry is very necessary, before we can shew 
how to transform this formula into a square, a cube, or any 
higher power. 

163. There are three cases here to be considered. The 
first, when the formula is really decomposed into two 
rational factors; which happens, as we have already seen, 
when b2 -4ac becomes a square. 

The second case is that in which those two factors are 
equal; and in which, consequently, the formula is a square. 

The third case is, when the formula has only irrational 
factors, whether they be simply irmtional, or at the same 
time imaginary. They will be simply irrational, when 
b2 -4ac is a positive number without being a square; and 
they will be imaginary, if b2 -4ac be negative. 

164. If, in order to begin with the first case, we suppose 
that the formula is resolvible into two rational factors, we 
may give it this form, <jx+gy) x (hx+ky), which already 
contains two factors. If we then wish it to contain, in a 
general manner, a greater number of factors, we have only 
to makejx+gy=pq, and hx+ky=r.~; our formula will 
then become equal to the product pqrs; and will thus neces
sarily contain four factors, and we may increase this number 
at pleasure. Now, from these two equations we obtain a 

double value for x, namely X= pqjgy, and X= rs--;,,'ty, 
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which gives ltpq-119,Y frs-jlty; consequently, 
frs-hpq ltpq-ars . y=·. , anJ x=. .1 :* but Ifwe choose to have 
.f k-Itg .f h-hg 

x and y expressed in integer numbers, we must give such 
values to the letters, p, q, r, and s, that the numerator may 
be really divisible by the denominator; which happens 
either when p and r, or q and s, are divisible by that 
denominator. 

165. 'fo render this more clear, let there be given the 
formula x2_y2, composed of the factors (x+y) x (x-y). 
N ow, if this must be resolved into a greater number of 
factors, we may make x + y=pq, and x-y=rs; we shall 
h h pq+rs d pq-rs . d h t en ave x= --2-' an y= -2--; but, III or el't at 

these values may become integer numbers, the two pro
ducts, pq and rs, must be either both even, or both odd. 

For example, let p=7, q=5, r=3, and s=1, we 
shall have pq=35, and rs=3; therefore, x= 19, and 
y= 16; and thence X2_.y2= 105, which is composed of the 
factors 7 x 5 x 3 x 1; so that this case is attended with no 
difficulty. 

166. The second is attended with still less ; namely, that 
in which the formula, containing two equal factors, may 
be represented thus: (jX+g.1J)2, that is, by a square, 
which can have no other factors than those which arise 
from the root fx + g.y; for if we make lx + gy=pqr, the 
formula uecomes p2q2r2, and may consequently have as 
many factors as we choose. We must farther remark, that 
one only of the two numbers x and y is determined, and 

the other may be taken at pleasure; for x= pqrjgy; 

and it is easy to give y such a value as will remove the 
fraction. 

The easiest formula to manage of this kind, is X2; if we 
make x=pqr, the square X2 will contain three square fac
tors, namely p2, q2, and 1'2. 

167. Several difficulties occur in considering the third 
case, which is that in which our formula cannot be resolved 

* For, since fx + gy =pq, and hx+ky=rs, we have 
pq-fx rs-hx pq-fx rs-hx 

y= -g-'-, and y= -k-; then -9--= -k-: whence, 

kpq-grs 
fkx-ltgx=kpq -grs; and, consequently, x= fk l . 

-Ig 
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into two rational factors; and here particular artifices are 
necessary, in ol'der to find such values for x and y, that 
the formula may contain two, or more factors. 

We shall, however, rendel' this inquil'J less difficult by 
observing', that our formula may be easily transformed into 
another, in which the middle term is wanting; for we have 

only to suppose .1:= Z-;;.1J, in order to have the following for-

z2-2byz+b2y2 bgz-bz.1J2 zZ+(4ac-b2)y2 
mula, 4 + + cyz= 4 : a ~a a 
so that, neglecting the middle term, in ax2 + bxg + cyZ, we 
shall consider the formula axZ + cyZ, and shall seek what 
values we must give to x and y, in OI'del' that this formula 
may be resolved into factors. Here it will be easily per
ceived, that this depends on the nature of the numbers 
a and C; so that we shall begin with some determinate 
formulffi of this kind. 

168. Let us, therefore, first propose the formula X Z + yZ, 
which comprehends all the numbers that are the sum of 
two squares, the least of which we shall set down; namely, 
those between 1 and 50 : 

I, 2, 4, 5, 8, 9, 10, 13, 16, 17, 18, 20, 25, 26, 29, 32, 
34,36,37,40,41,45, 49, 50. 

Among these numbers there are evidently some prime 
numbers, which have no divisors; namely, the following: 
2, 5, 13, 17, 29, 37, 41: but the rest have divisors, and 
illustrate this question; namely, 'What values are we to 
adopt for x and g, in order that the formula x 2 + y2 may 
have divisors, or factors, and that it may have any number 
of factors? ' We shall observe, farther, that we may neglect 
the cases in which x and y have a common divisor, because 
then X2 + yZ would be divisible by the same divisol', and even 
by its square. For example, if x=7p and y=7q, the sum 
of the squares, or 

49p2 + 49q2=49(p2 + q2), 
will be divisible not only by 7, but also by 49: for which 
reason, we shall extend the question no farther than the 
formulffi, in which x and yare prime to each other. 

We now easily see where the difficulty lies: for though 
it is evident, when the two numbers x and .y are odd, that 
the formula X2+y2 becomes an even number, and, conse
quently, divisible by 2; yet it is often difficult to discover 
whether the formula have divisors or not, when one of the 
numbers is even and the othet' odd, because the formula 
itself, in that case, is also odd. We do not mention the 
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case in which x and yare both even, because we have 
already said, that these numbers must not have a common 
divisor. 

169. The two numbers xandy must therefore be prime 
to each other, and yet the formula xl! + yl! must contain two 
or more factors. The preceding method does not apply 
here, because the formula is not resol vible into two rational 
factors; but the irrational factors, which compose the for
mula, and which may be represented by the product, 

(x+y"; -1) x (x-y..; -1), 
will answer the same purpose. In fact, we are certain, if 
the formula xl! + yl! have real factors, that these irrational 
factors must be composed of other factors; because, if they 
had not divisors, their product could not have any. Now, 
as these factors are not only irrational, but imaginary; and, 
farther, as the numbers x and y have no common divisor, 
and therefore cannot contain rational factors; the factors of 
these quantities must also be irrational, and even imaginary. 

] 70. If, therefore, we wish the formula x2 + y2 to have 
two rational factors, we must resolve each of the two irra
tional factors into two other factors; for which reason, let 
us first suppose 

x+y"; -1 =(p+q"; -1) x (r+s"; -1); 
and since..; -1 may be taken minus, as well as plus, we 
shall also have 

x-y"; -1 =(p-q"; -1) x (r-s..; -I). 
Let us now take the product of these two quantities, and 

we shall find our formula X2+y2=(p2+q2) x (r2+s2); 
that is, it contains the two rational factors p2 + '12, and 
,,2 +S2. 

It remains, therefore, to determine the values of x and y, 
which must likewise be rational. Now, the supposition 
we have made gives 

x+y";-I pr-qs+ps";-I+qr";-I; and 
x-y"; -I pr-qs-ps..; -1-qr..; -I. 

Ifwe add theseformulre together, we shall have x pr-qs; 
if we subtract them from each other, we find 

2y";-1=2ps"; -1 +2qr..; -I, or y=ps+qr. 
Hence it follows, if we make x pr-qs, andy=ps+qr, 

that our formula x2+!l must have two factors, since we 
find x2+y2=(p~+q2)x(r'l+s2). If, after this, a greater 
number of factors be required, we have only to as
sign, in the same manner, such values to p and '1, tlIat 
p2 + r/ may have two factors; we shall then have three 
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factors in all, and the number might be augmented by 
this method to any extent. 

171. As in this solution we have fonnd only the second 
powers of p, q, T, and s, we may also take these letters 
minus. If q, for example, be negative, we shall have 
x=pr+qs, and y=ps-qr; but the sum of the squares 
will be the same as before; which shews, that when a 
number is equal to the product, such as (p2+q2) X (r2..J..s2), 
we may resolve it into two squares in two ways; for we 
have first found x=pr-qs, and y=ps+qr, and then also 

x-pr+qs, and y-ps-qr. 
For example, let p=3, q=2, r=2, and s= I: then 

we shall have the product, 65= (13 x 5) = x2 + y2; in 
which x=4, and y= 7; or x=8, and y= I; since in 
both cases x2 + y2=65. If we multiply several numbers 
of this class, we shall also have a product, which may be 
the sum of two squares in a greater number of ways. For 
example, if we mnltiply together 22 +12=5,32+22 =13, 
and 42+12=17, we shall find 1105, which may be re
solved into two squares in four ways, as follows: 

1. 332 + 42, 2. 322 + 92, 

3. 312 + 122, 4. 242 +232• 

172. So that among the numbers that are contained in 
the formula, X2 + y2, are found, in the first place, those 
which are, by multiplication, the product of two or more 
numbers, prime to each other; and, secondly, those of a 
different class .. We shall call the latter simple factors of the 
formula, x2 + !/'l, and the former compound factors; then 
the simple factors will be such numbers as the following: 

1,2,5,9, 13, 17,29,37,41,49, &c. 
and in this series we shall distinguish two kinds of num
bers; one are prime numbers, as 2, 5,13,17,29,37,41, 
which have no divisor, and are all (except the number 2), 
such, that if we subtract 1 from them, the remainder will be 
divisible by 4; so that all these numbers are contained in 
the expression 4n + 1. The second kind comprehends the 
square numbers 9,49, &c. and it may be observed, that the 
roots of these squares, namely, 3, 7, &c. are not found in 
the series, and that their roots are contained in the formula 
4n-1. It is also evident, that no number of the form 
4n-l can be the sum of two squares; for since all num
bers of this form are odd, one of the two squares must be 
even, and the other odd. Now, we have already seen, that 
all even squares are divisible by 4, and that the odd squares 
are contained in the formula 4n + 1 : if we therefore add 
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together an even and an odd square, the sum will always 
have the form of 4n+ I, and never 4n-1. Farther, 
every prime number which belongs to the formula, 4n+ I, 
is the sum of two squares; this is undoubtedly true, but it 
is not easy to demonstrate it. * 

173. Let us proceed farther, and consider the formula, 
x2+2y2, that we may see what values we must give to 
x and y, in order that it may have factors. As this formula 
may be expressed by the imaginary factors (x+y"; -2) x 
(x-y"; -2), it is evident, as before, that if it have di
visors, these imaginary factors must likewise have divisors. 
Suppose, therefore, 

x+y"; -2=(p+q"; -2) x (r+s"; -2), 
whence it immediately follows, that 

x-y"; ~2=(p-q"; -2) x (r-s..; -2), 
and we shall have 

x2+2y2=(p~+2q2) X (r2+2s2); 
so that this formula has two factors, both of which have the 
same form. But it remains to determine the values of' x 
and y, which produce this transformation. For this pur
pose, we shall consider that, since 

x+y"; -2=pr-2qs + qr"; -2+ps"; -2, and 
x-y..; -2=pr-2qs-qr..; -2- ps"; - 2, 

we have the sum 2x = 2pr - 4qs; and, consequently, 
x=pr-2qs: also the difference 

2y"; -2=2qr..; -2+2ps"; -2; 
so that y='lr +ps. When, therefore, our formula x2 + 2y2 
has factors, they will always be numbers orthe same kind 
as the formula; that is to say, one will have the form 
p2 + 2q2, and the other the form 1,2 + 2S2; and, in order 
that this may be the case, x and y may also be determined 
in two different ways, because q may be either positive 
or negative; for we shall first have x = pr-2qs, and 
y=ps+qr; and, in the second place, x-pr+2qs, and 
y=ps-qr. 

174. This formula x2 +2y2 comprehends therefore all 
the numbers which result from adding together a square 
and twice another square. The following is an enumera
tion of these numbers as far as 50 : 

1,2,3,4,6,8,9, II, 12, 16, 17, 18, 19,22,24,25, 
27,32, 33,34, 36, :38, 41, 43,44,49,50. 

* The curious reader may see it demonstrated by Gauss, in 
his Disquisitiones Al'ithmetic(£ j and by De la Grange, in the 
Memoirs of Berlin, 1768. 
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We shall divide these numbers, as before, into simple 
and compound; the simple, or those which are not com
pounded of the preceding numbers, are these: 1, 2,3, II, 
17, 19, 25, 41, 43, 49, all which, except the squares 25 
and 49, are prime numbers; and we may remark, in ge
neral, that, if a number is prime, and is not found ill this 
series, we are sure to find its square in it. It may be ob
served, also, that all prime numbers contained in our 
formula, either belong to the expression, Sn+ 1, or Sn+3; 
while all the other prime numbers, namely, those which are 
contained in the expressions Sn + 5, and Sn + 7, can never 
form the sum of a square and twice the square: it is farther 
certain, that all the prime numbers, which are contained in 
one of the other formulre, Sn+ 1, and Sn+3, are always 
rcsolvible into a square addeu to twice a square. 

175. Let us proceed to the examination of the general 
formula, Xll+cyll, aud consider by what values of x and y 
we may transform it into a product of factors. 

We shall proceed as before; that is, we shall represent 
the formula by the product 

(x+y../ -c) X (x-y../ -c), 
and shall likewise express each of these factors by two fac
tors of the same kind; that is, we shall make 

x +y../ -c=(p+q../ -c) X (r+s"/ -c), and 
x -y"; -c=(p-q../ -c) X (r-s.../ -c); whence 
Xll+cyll=(p!!+cqll) X (rll+csll ). 

We see, therefore, that the factors are again of the same 
kind with the formula. With regard to the values of x 
and y, we shall readily find x=pr+cqs, andy=qr-ps; or 
x pr-cqs, and y = ps + qr; and it is easy to perceive 
how the formula may be resolved into a greater number of 
factors. 

176. It will not now be difficult to obtain factors for 
the formula x2 _cy2; for, in the first place, we have only 
to write - c, instead of + C; but, farther, we may find 
them immediately in the following manner. As our for
mula is equal to the product 

(x+y";c) x (x-y../c), 
let us make x+y../c=(p+q../c) x (rs+ ../c), and 

x-y..;c=(p-q..;c) x (r-s../c), and we shall 
immediately have xll - cy2= (p2 - cqll) X (r2 - cs2); so that 
this formula, as well as the preceding, is equal to a pro
duct whose factors resemble it in form. With regard to 
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the values of .'1: and y, they will likewise be found to be 
double; that is to say, we shall have 

x=pr+cq.~, and y=qr+ps; we shall also have 
x=pr-cqs, and y=ps-qr. If we chose to make 

trial, and see whether we obtain from these values the pro
duct already found, we should have, by trying the first, 

x'2 = p'2r2 + 2cpqrs + c2q2s2, and 
y2=p2S2 +2pqrs +q2r2, or 

cy!=cp2s2+2cpqrs+cq2r2; so that 
X2_cy2 = p2r2_cP2s2 + c2q2s2_cq2r2, which is just the pro
duct already found, (p2_ cq2) X (r2-cs2). 

177. Hitherto we have considered the first term as with
out a coefficient; but we shall now suppose that term to be 
multiplied also by another letter, and shall seek what 
factors the formula ax2 + cy2 may contain. 

Here it is evident that our formula is equal to the pro
duct (x";a+y'; -c) X (x..;a-y..; -c), and, consequently, 
that it is required to give factors also to these two factors. 
Now, in this a difficulty occurs; for if, according to the 
second method, we make 
x';a+y'; -c= (p';a + q'; - c) X (r';a + s'; - c) = 
apr - cqs + ps'; -ac + qr'; -ac, and 
x";a-.Y";-c=(p';a-q';-c) x (r.;a-s..;-c) = 
apr-cqs-ps..; -ac-qr..; -ac, we shall have 
2x..;a=2apr-2cqs, and 
2y..; -c = 2ps"; - ac +2qr'; - ac; that is to say, we 
have found both for x and for y irrational values, which 
cannot here be admitted. 

178. But this difficulty may be removed thus: let us 
make 
x";a + y'; - c = (p';a + q'; - c) X (r + s"; - ac) = 
pr";a-cqs';a+qr.; -c+aps.; -c, and 
x";a - y.; - c = (p';a - q'; - c) X (r-s.;-ac) = 
pr";a- cqs.; a - qr'; -c -aps.; - c. This supposition 
will give the following values for x and y; namely, 
x=pr-cqs, and y=qr+aps; and our formula, ax2+cy2, 
will have the factors (ap2 + cq2) X (r2+acs2), one of which 
only is of the same form with the formula, the other being 
different. 

179. There is still, however, a great affinity between 
these two formulre, or factors; since all the numbers con
tained in the first, if multiplied by a number contained in 
the second, revert again to the first. We have already 
seen, that two numbers ofthe second form, x2+acy2, which 
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returns to the formula x'J. + cy9., and which we have already 
considered, if multiplied together, will produce a number 
of the same form. 

It only remains, therefore, to examine to what formula 
we are to refer the product of two numbers of the first 
kind, or of the form ax'J. + cy2. 

For this purpose, let us multiply the two formulre, 
(ap'J. + cq2) X (ar2 + cs2) , which are of the first kind. It 
is easy to see that this product may be represented in the 
following manner: (apr + cqs)'J. +ac(ps-qr)2. If, there
fore, we suppose 

apr+cqs=x, and ps-qr=y, 
we shall have the formula x'J. + acy2, which is of the last 
kind. Whence it follows, that if two numbers of the first 
kind, ax2 + cy2, be multiplied together, the product will be 
a number of the Recond kind. If we represent the num
bers of the first kind by I, and those of the second by II, 
we may represent the conclusion to which we have been 
led, abridged as follows: 

I X I gives II; I X II gives I; II X II gives II. 
And this shews much better what the result ought to 

be, if we multiply together more than two of these num
bers; namely, that I X I X I gives I; that I X I X II gives 
II; that I x II X II gives I; and lastly, that II x II X II 
gives II. 

180. In order to illustrate the preceding Article, let 
a=2, and c=3; there will result two kinds of numbers, 
one contained in the formula 2x1! + 3y2, the other contained 
in the formula x9.+6y!z. Now, the numbers of the first 
kind, as far as 50, are 

2, 3, 5, 8, 11, 12, 14, 18, 20, 21, 27, 
29, 30, 32, 35, 44, 45, 48, 50; 

and the numbers of the second kind, as far as 50, are 
1, 4, 6, 7, 9, 10, 15, 16, 22, 24, 25, 

28, 3], 33, 36, 40, 42, 49. 
If, therefore, we multiply a number of the first kind, for 

example, 35, by a number of the second, suppose 31, the 
product 1085 will undoubtedly be contained in the formula 
2x2 +3y2; that is, we may find such a number for y, that 
1085-3y2 may be the double of a square, or=2x2 : now, 
this happens, first, when y=3, in which case x=23; in 
the second place, when y= 11, so that x=I9; in the 
third place, when y= 13, which gives x= 17; and, in the 
fourth. place, when y= 19, whence x= 1. 

We may divide these two kinds of numbers, like the 
otbers, into simple and compountlnumbers: we shall apply 
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this latter term to such as are composed of two or more 
of the smallest numbers of either kind; so that the simple 
numbers of the first kind will be 2, 3, 5, 11,29; and the 
compound numbers of the same class ,vill be 8, 12, 14, 
18,20,27,30,32, 35,40,45,48, 50, &c. 

The simple numbers of the second class will be 1, 7, 
31; and all the rest of this class will be compound num
bers; namely, 4, 6, 9, 10, 15, 16, 22, 24, 25, 28, 33, 36, 
40,42,49. 

CHAPTER XII. 

Of tlte Transformation of the Formula ax2 + C!J2 into 
Squares, and higher Powers. 

181. We have seen that it is frequently impossible to 
reduce numbers of the form ax2 + cy2 to squares; but 
whenever it is possible, we may transform this formula 
into another, in which a= 1. 

For example, the formula 2p2_q'l. may become a square; 
for, as it may be represented by 

(2p + q)2_2(p + q)'1., 
we have only to make 2p+q=x, andp+q=y, and we 
shall get the formula x'l_2y2, in which a = 1, and c = 2. 
A similar transformation always takes place, whenever 
such formulre can be made squares. Thus, when it is 
required to transform the formula ax2 +cy2 into a square, 
or into a higher power (provided it be even), we may, 
without hesitation, suppose a = 1, and consider the other 
cases as impossible. 

] 82. Let, therefore, the formula x2 + cy2 be proposed, 
and let it be required to make it a square. As it is com
posed of the factors (x + y.j - c) x (x - y.j -c), these 
factors must either be squares, or squares multiplied hy 
the same number. For, if the product of two numbers, 
for example, pq, must be a square, we must have p= r2, 
and q=S2; that is to say, each factor is of itself a square; 
or p = mr'1., and q = TIlS2; and therefore these factors are 
squares multiplied both by the same number. For which 
reason, let us makex+y.j-c=m(p+q.j-c)'l.; it will 
follow that x-y.j -c = m(p-q"; _C)2, and 
we shall have X2+cy2= m2(p2+ c(/)'l., which is a square. 
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Farther, in order to determine x and y, we have the equa
tions x+y"; -c=mp2+2mpq"; -C-mcq2, and 

x-.y"; -c=mp~-2mpq"; -C-mcq2; in which x is 
necessarily equal to the rational part, and y..; -c to the 
irrational part; so that x=mp2-mcq2, and 
y..; -c = 2mpq"; - c, or y = 2mpq; and these are the 
values of x and y that will transform the expression 
X2+~y2 into a square, m2(p2+cq2)2, the root of which is 
mp2+mcr/. 

183. If the numbers x and y have not a common 
divisor, we must make m = 1. Then, in order that 
x2 + cy2 may become a square, it will be sufficient to make 
X=p2_cq2, and y=2pq, which will render the formula 
equal to the square (p2+ cq2)2. 

Or, instead of making X=p2_Cq2, we may also suppose 
X=cq2_p2, since the square X2 is still left the same. 

Besides, the same formulre having been already found 
by methods altogether different, there can be no doubt 
with regard to the accuracy of the method which we have 
now employed. In fact, if we wish to make X2 +cy2 
a square, we suppose, by the former method, the root to 

be x +P'!J and find x2 + cy2 = X2 + 2p'xy + p2y~. 
q' q q2 

Expunge the X2, divide the other terms by y, multiply by 
q2, and we shall have 

cq2y=2pqx+p2y; or cq2y_p2y=2pqx. 

Lastly, dividing by 2pq, and also by y, there results 
x cq2_p2 y = 2pq . Now, as x and y, as well as p and q, are to 

have no common divisor, we must make x equal to the 
numerator, and y equal to the denominator, and hence we 
shall obtain the same results as we have already found, 
namely, X=cq2_p2, aud y=2pq. 

184. This solution will hold good, whether the number c 
be positive or negative; but, farther, if this number itself 
had factors, as, for instance, the formula X2 + aC!J2, we 
should not only have the preceding solution, which 
gives x = acq2_p2, and y = 2pq, but this also, namely, 
x=cr/-ap2, and y=2pq; for, in this last case, we have, 
as in the other, 

x 2 + acq2=C2q4 + 2acp2q2 + a2p4=(cqZ+ ap2)2; 
which takes place also when we make x = ap2 - cq2, 
because the square X2 remains the same. 
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This new solution is also obtained from the last method. 
in the following manner: . 

If we make x + y,.j - ac = (p,.ja + q,J - c)'!., and 
x-y,.j-ac=(p,Ja-q,.j-c)2, we 

shall have xl! + acy'l = (ap!l + cq!l)2, 
and, consequently, equal to a square. Fariher, because 

x+y,J -ac=ap2+ 2pq,J -ac-cq2, and 
x-y,J -ac=ap2-2pq,.j -ac-cq!l, 

we find x=ap2_ cq2, and y=2pq. 
It is farther evident, that if the number ac be resolvible 

into two factors, in a greater number of ways, we may 
also find a greater number of solutions. 

185. Let us illustrate this by means of some deter
minate formulre; and, first, if the formula x!l + y'l. must 
become a square, we have ac=l; so that X=p'l._q2, and 
y=2pq; whence it follows that x'l.+y!l=(p2+q2)2. 

If we would have x2_y2= 0 ; we ha\'e ac= -1 ; so 
that we shall take X=p2+q2, and y=2pq, and there will 
result x2_y2=(p2_q2)2= 0 • 

If we would have the formula x2+2yz= 0, we have 
ac=2; let us therefore take x p'l_2q'l., or x=2p'l._q2, 
and y=2pq, and we shall have 

x2+2y'l.=(p'!.+q2)!I, or X2 + 2y2=(2p2 + q2)2. 
If, in the fourth place, we would have x2_2y'l.= 0, 

in which ac=-2, we shall have x=p'l. + 2q2, andy=2pq; 
therefore x2_2y2=(p!l_2q2)2. 

Lastly, let us make x2 +6y2= D. Here we shall have 
ac = 6; and, consequently, either a = 1, and c = 6, or 
a = 2, and c = 3. In the first case, x = p!l-6q'l., and 
y = 2pq; so that X2 + 6y !l = (p!l + 6q!l)2; in the second, 
X=2p2-3q!l, and y=2pq; whence 

X'l.+6y2=(2p2+3if)!I· 
186. Bnt let the fOI'mula ax2 +cg2 be proposed to be 

transformed into a square. We know beforehand, that 
this cannot be done, except we already know a case, in 
which this formula really becomes a square; but we shall 
find this given case to be, when x = f, and y = g; so that 
afl! + cg2 = h!l; and we may observe, that this formula 
can be transformed into another of the form t2+ acu'l., by 
making 

al'x + crry gx-"'y, 
t=:/' h 0 ,and u = h J~ ; for If 

2 _ a'1Zx2 + 2acfgxy + C2!ly2 
t - It2 ,and 
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gflx2_2fgxy+py2 
Ull = It2 , we have 

a2 f9.xfl + C 2g2y2 + acg2x'l + acf2!l 
t2 + acu2 = 1t2 ." 

ax2(aj2 + cg2) + cy2(aj2 + cg2) . 
It2 ' 

also, since af2 + cg2 = It2, we have t2 +acu2 = QX2 + cy2. 
Thus, we have given easy rules for transforming the 
expression t2 +acu2 into a square, to which we have now 
reduced the formula proposed, ax2 + cy2. 

187. Let us proceed farther, and see how the formula 
ax2+cy2, in which x and yare supposed to have no com
mon divisor, may be reduced to a cube. The ruies already 
given are by no means sufficient for this; but the method 
which we have last explained applies here with the 
greatest success: and what particularly deserves observa
tion, is, that the formula may be transformed into a cube, 
whatever numbers a and care; which could not take 
place with regard to squares, unless we already knew a 
case, and which does not take place with regard to any 
of the other even powers; but, on the contrary, the solu
tion is always possible for the odd powers, such as the 
third, the fifth, the seventh, &c. 

188. Whenever, therefore, it is required to reduce the 
formula ax2 + cy2 to a cube, we may suppose, according to 
the method which we have already employed, that 

x.ja+y.j -c=(p.ja+q.j -c)3, and 
x.ja-y.j -c=(p.ja-q.j _C)3; 

the product (ap2+cq2)3, which is a cube, will be equal to 
the formula ax2 +cy2. But it is required, also, to deter
mine rational values for x and y, and fortunately we suc
ceed. If we actually take the two cubes that have been 
pointed out, we have the two equations, 
x.ja+y.j-c=ap~a+3ap2q.j-c-3cpq'fJa-cq3.j-c,and 
x.j a-y.j -c=apVa-3ap2q.j -c-3cpq2.ja+cq~-c; 
from which it evidently follows, that 

x=ap3-3cpq2, and y=3ap2q_ cq3. 

For example, let two squares, X2 andg2• be required, 
whose sum, X2+yll, may make a cube. Here, sincea=I, 
and c=I, we shall have x=p3_3pqll, and !/=3p2q _ q3, 
which gives X2+.y2=(p2 + q2)3. Now, ifp=2, and q=I, 
we find x=2, and y= II; wherefore 

X2+y2= 125=53 • 
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189. Let us also consider the formula .7:~+3y~, for the 
purpose of making it equal to a cube. As we have, in 
this case, a= 1, and c=3, we find 

x=p3_9pq2, and y=3p~q-3q3, 
whence x2+3y 2=(p2+3q2)3. This formula occurfl very 
frequently; for which reason we shall here give a Table 
of the easiest cases. 

p q x Y X~+3y2 

--
I 1 8 0 64= 43 

2 1 10 9 343= 73 

1 2 35 18 2197 = 133 

3 1 0 24 1728 = 123 

1 3 80 72 21952=283 

3 2 81 30 9261 =2J3 
2 3 154 45 29791 =3P 

190. If the question were not restricted to the condition, 
that the numbers x and y must have no common divisor, 
it would not be attended with any difficulty; for if 
ax'}. + cy2 were required to be a cube, we should only 
have to make x=tz, and y=uz, and the formula would 
become at2z2 + CU2Z2 ; which we might make equal to the 

3 

cube ;, and should immediately find z = v3( at2 + cu2 ). 
v 

Consequently, the values sought of x and y would be 
x= tv3(at2 + cu2), and y=uv3(at2 + cu2), which, beside the 
cube v3 , have also the quantity at2+cu2 for a common 
divisor; so that this solution immediately gives 

ax2 + cy2= v6(at2 + Clt2)2 x (at2 + cu2)=v6(at2 + CU2)3, 

which is evidently the cube of v2(at2 + cu2 ). 

191. This last method, which we have made use of, is 
so much the more remarkable, as we are brought to solu
tions, which absolutely required numbers rational and 
integer, by means of irrational, and even imaginary 
quantities; and, what is still more worthy of attention, our 
method cannot be applied to those case!", in which the 
irrationality vanishes. For example, when the formula 
x 2 + cy2 must become a cube, we can only infer from it, 
that its two irrational factors, x+y../ -c, and x-y../ -c, 
must likewise be cubes; and since x and y have no 
common divisor, these factors cannot have any. But if 
the radicals were to disappear, as in the case of c= -I, 
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this principle would no longer exist; he cause the two fac
tors, which would then be x+y, and x-y, might have 
common divisors, even when x and y had none; as would 
be the case, for example, if both these letters expressed 
odd numbers. 

Thus, when x2_y2 must become a cube, it is not neces
sary that both x+y, and x-y, should of themselves be 
cubes; but we may suppose x+y=2p3, and x-y=4q3; 
and the formula x2_y2 will undoubtedly become a cube, 
since we shall find it to be 8p3q3, the cube root of which is 
2pq. We shall farther have x=p3+2q3, and y_p3_2q3. 
On the contrary, when the formula ax2 +cyz is not re
sol vible into two ration a I factors, we cannot find any other 
solutions beside those which have been already given. 

192. We shall illustrate the preceding investigations by 
some cnrious examples. 

Question l. Required a square, X2, in integer numbers, 
and such, that, by adding 4 to it, the sum may be a cube. 
The condition is answered when x2= 121 ; but we wish to 
know if there are other similar cases. 

As 4 is a square, we shall first seek the cases in which 
X2+y2 becomes a cube. Now, we have found one case, 
namely, if x=p3_3pq2, and y=3p2q_ q3: therefore, since 
y2=4, we have y=±2, and, consequently, either 3p2q_ 
q3=+2, 01' :3p2q_ q3=_2. In the fil'st case, we have 
q(3p2_q2)=2, so that q is a divisor of 2. 

This being laid down, let us first suppose q= 1, and we 
shall have 3p2-1 =2; therefore p= 1; whence x=2, 
and x 2=4. 

If, in the second place, we suppose q=2, we have 
6p2_8=±2; admitting the sign+, we find 6p2=1O, 
and p2=-%; whence we shall get an irrational value of p, 
which could not apply here; but if we consider the sign-, 
we have 6p2=6, and p= 1; therefore x= II : and these 
are the only possible cases; so that 4, and 121, are the 
only two squares, which, added to 4, give cubes. 

193. Question 2. Required, in integer numbers, other 
squares, beside 25, which, added to 2, give cubes. 

Since x 2 + 2 must become a cube, and since 2 is the 
double of a square, let us first determine the cases in which 
x2+2y2 becomes a cube; for which purpose we have, hy 
Article 188, in which a= 1, and c=2, x = p3_ 6pq2, 
and y= 3p2q_2q3; therefore,since y = ± I, we must 
have 3p2q_2q3, or q(3p2_'2qZ) = ± 1; and, consequently, 
q must be a divisor of 1. 

Therefore let q= ], and we sha11 have 3p2_2 = ± ]. 
D D 
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If we take the uppel' sign, we find 3p 2 = 3, and p = 1 ; 
whence :r:=5; and if we adopt the other sign, we get a 
value of p, which being irrational, is of no use: it follows, 
therefore, that there is no square, except 25, which has 
the property required. 

194. Question 3. Required squares, which, multiplied 
by.5, and added to 7, may produce cubes; orit is required 
that 5x2 + 7 should be a cube. 

Let us first seek the cascs in which 5x2 + 7y2 becomes a 
cube. By Article 188, a being equal to 5, and c equal 7, 
we shall find that we must have x = 5p 3 - 2Ipq2, and 
y= 15p2q_7q3; so that in our example y being = ± 1, 
we have 15p2q_7q3 = q(l5p2- 7q2) = ± 1; therefol'e q 
must be a divisor of 1 ; that is to say, q= ± 1 ; conse
quently, we shall have 15p2-7=±I; from which, in 
both cases, we get irrational values for p: but from which 
we must not, however, conclude that the question is im
possible, since p and q might be such fractions, that y= 1, 
and that x would become an integer; and this is what 
really happens; for if p=i, and q=t, we find y= 1, 
and x=2; but there are no other fractions which render 
the solution possible. 

195. Question 4. Required squares, in integer numbers, 
the double of which, diminished by 5, may be a cube; or 
it is requil'ed that 2x2-5 may be a cube. 

If we begin by seeking the satisfactory cases for the 
formula 2x2_5y2, we have, in the 188th Article, a=2, 
and c=-5; whence x=2p 3+15pq2, and y=6p2q+5qs: 
so that, in this case, we must have y= ± 1 ; consequently, 

6p2q +5q3=q(6p2+5q2)= + 1 ; 
and as this cannot be, either in integer numbers, or even 
in fractions, the case becomes very remarkable, because 
there is, notwithstanding, a satisfactory value of x; namely, 
x=4; which gives 2x2 -5=27, or equal to the cube of3. 
It will be of importance to investigate the cause of this 
peculiarity. 

196. It is not only possible, as we see, for the formula 
2x2-5y2 to be a cube; but, what is more, the root of this 
cube has the form 2p 2_5q2, as we may perceive by mak
ing x=4, y= I, p=2, and q= 1; so that we know a case 
in which 2x2 -5y2=(2p2_5q2)3, although the two factors 
of 2x2 _ 5y2, namely, x..; 2 + y";5, and x..;2- y";5, 
which, according to our method, ought to be the cubes of 
p..;2+Q.j5, and of p.j2-q.j5, are not cubes; for, in 
our case, x..;2+y.j5=4.j2+.j5; whereas 
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(p.;2+q'; 5)3=(2.;2+ .; 5)3=46.;2 +29.; 5, 
which is by no means the same as 4'; 2 + .; 5. 

40;3 

But it must be remarked, that the formula, r2_1Os2, may 
become 1, or -1, in an infinite number of cases; for ex
ample, if r = 3, and s= 1, or if r= 19, and s = 6: and 
this formula, multiplied by 2p~-5q2, reproduces a number 
of this last form. 

Therefore, letp-lOg2= 1; and, instead of supposing, 
as we have hitherto done, 2x2-5.1/=(2p2_5q2)1, we may 
suppose, in a more general manner, 

2X2 - 5y2 = (p - 1Og2) X (2p2 _ 5q2)3 ; 

so that, taking the factors, we shall have 
x.;2±y.;5=(j±g';1O) x (p';2±q';5)s. 

Now, (p';2±q';5)3=(2p3+ 15pq2)';2±(6p2q+5q3)';S; 
and if, in order to abridge, we write A.;2 + B'; 5 instead 
of this quantity, and multiply by j + g'; 10, we shall 
have Aj';2 + Bj';5 +2Ag';5 + SBg.;2 to make equal 
to x.j2+y.;5; whence resultsx=Aj+5Bg, and y= 
Bj + 2Ag. Now, since we must have y = ± 1, it is 
not absolutely necessary that 6p2q + 5q3= I ; on the con
trary, it is sufficient that the formula, nj+2Ag, that is to 
say, that j(6p2q+5q3) + 2g(2p3 + ISpq2) becomes = ± 1 ; 
so that j and 9 may have several values. For example, 
letj 3, andg= 1, the formula, lSp2q+ lSqs+ 4p3 + 30pq2, 
must become± 1 ; that is, 

4p3+ ISp2q +30pq2 + 15q3 = ± l. 
197. The difficulty, however, of determining aU the pos

sible cases of this kind, exists only in the formula, ax2 + cyZ, 
when the number c is negative; and the reason is, that this 
formula, namely, X 2 _ acy2, which depends on it, may then 
become I ; which never happens when c is a positive num
ber, because X2+cy2, or x2+acy2, always gives greater 
numbers, the greater the values we assign to x and y. 
For which reason, the method we have explained cannot 
be successfully employed, except in those cases, in which 
the two numbers a and c have positive values. 

198. Let us now proceed to the fourth degree. Here 
we shall begin by observing, that if the formula, ax2+cy2, 
is to be changed into a biquadrate, we must have a= I ; for 
it would not be possible even to transform the formula into 
a square (Art. 181); and, if this were possible, we might 
also give it the form t2 +acu,2; for which reason we shall 
extend the question only to this last formula, which may be 
reduced to the former, x 1 + cy2, by supposing a= 1. This 
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being laid down, we have to consider what must be the 
nature of the values of x and y, in order that the formula 
XQ+cy2 may become a biquadrate. Now, it is composed 
of the two factors (x+y.j-c)x(x-y.j-c); and each 
of these factors must also be a biquadrate of the same 
kind; therefore we must make x+y.j -c=(p+q.j -c)4, 
and .x-y.j-c=(p-q.j-c)4, whence it follows, that 
the formula proposed becomes equal to the biquadrate 
(p2+Cq2)4. With regard to the values of x and y, they 
are easily determined by the following analysis: 
x+y.j -c p4+4p3q .j _c_6cp2q2+C2q4_4cpq3.j -c, 
x-y.j -c p4_4p3q .j -C'7"6Cp2qQ + c2q4 + 4Cpq3.j - c, 

whence, x=p4_6cp2qQ+ c2q4 ; and y=4p3q_4cpq3. 
199. So that when x 2 + y2 becomes a biquadrate, as it 

does, when c= 1, we have 
x=p4_6p2q2+q4; and y=4p 3q _4pq3; 

so that X2+y2=(pQ+ q2)4. 
Suppose, for example, p = 2, and q = I ; we shall then 

find x=7, and y=24; whence X2+y2=625=54. 
Ifp=3, and q=2, we obtain x=119, and y=120, 

which gives X2 + y2= 134. 
200. Whatever be the even power into which it is re

quired to transform the formula ax2 + cy2, it is absolutely 
necessary that this formula be always reducible to a 
square; and for this purpose, it is sufficient that we 
already know one case in which it happens; for we may 
then transform the formula, as has been seen, into a 
quantity of the form t2+acu2, in which the first term t2 is 
multiplied only by I; so that we may consider it as con
tained in the expression xQ + cy2; and in a similar manner, 
we may always give to this last expression the form of a 
sixth power, or of any higher even power. 

20]. This condition is not requisite for the odd powers; 
and whatever numbers a and c be, we may always trans
form the formula axQ + cy2 into any odd power. Let the 
fifth, for instance, be demanded; we have only to make 

x.ja+y.j -c=(p.j a+q.j _C)5, and 
x.ja-y.j -c=(p.ja-q.j _C)5, 

and we shall evidently obtain ax2 + cy2 = (ap2 + cqQ)". 
Farther, as the fifth power of p.j a + q.j - c is =a2p5.j a + 
5a2p4q.j - c - 1 Oacp3q2 .j a-I Oacp2q3 .j - c + 5c2pq4 .j a + 
C2q5.j -c, we shall, with the same facility, find 

x = aQp5 - lOacp3q2 + 5C2pq4, and 
y = 5a2p4q _ 10acp2q3 + C2q5. 

If it is required, therefore, that the sum of two squares, 
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such as x2 + y2, may be also a fifth power, we shall have 
a = 1, and c= 1; therefore, x= p5_lOp3q2+5pq4; and 
y=5p4q_lOp2q3+q's; and, farther, making p=2, and 
q = 1, we shall find x = 38, and q=41; consequently, 

x 2 +y2=3125=55. 

CHAPTER XIII. 

Of some Expressions of tIle Form ax4 + b!/, which are 
not reducible to Squares. 

202. Much labor has been formerly employed by some 
mathematicians to find two biquadrates, whose sum or dif
ference might be a square, but in vain; and at length it 
has been demonstrated, that neither the formula, X4 + y4, 
nor the formula, x4_y4, can become a square, except in 
these evident cases: first, when x = 0, or y = 0, and, 
secondly, when y=x. This circumstance is the more 
remarkable, because it has been seen, that we can find an 
infinite number of answers, when the question involves 
only simple squares. 

203. We shall give the demonstration to which we 
have just alluded; and, in order to proceed regularly, we 
shall previously observe, that the two numbers x and y 
may be considered as prime to each other: for, if these 
numbers had a common divisor, so that we could make 
x=dp, and y=dq, our formulre would become d4p4 + d4q4, 
and d4p4_d4q4: which formulre, if they were squares, 
would remain squares after being divided by d4 ; therefore, 
the formulre p4+q4, and p4_q4, also, in which p and q 
have no longer any common divisor, would be squares; 
consequently, it will be sufficient to prove, that our 
formulre cannot become squal"es in the case of x and y 
being prime to each other, and our demonstration will, 
consequently, extend to all the cases, in which x and y 
have common divisors. 

204. We shall begin, therefore, with the sum of two 
biquadrates; that is, with the formula, X4 + y4, considering 
x and yas numbers that are prime to each other: and we 
have to prove, that this formula becomes a square only in 
the cases above-mentioned; in order to which, we shall enter 
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upon the analysis and deductions, which this demons1l'a
tion requires. 

If anyone denied the proposition, it would be main
taining that there may be such values of x and y, as will 
make x4+'y4 a square, in great numbers, notwithstanding 
there are none in small numbers. 

But it will be seen, that if x and y had satisfactory 
values, we should be able, however great those values 
might be, to deduce from them less values equally satis
factory, and from these, others still less, and so on. Since, 
therefore, we are acquainted with no value in small num
bers, except the two cases already mentioned, which do 
not carry us any farther, we may conclude, with certainty, 
from the following demonstration, that there are no such 
values of x and .y as we require, not even among the 
greatest nnmbers. The proposition shall afterwards be 
demonstrated, with respect to the difference of two biqua
drates, x4-'y4, on the same principle. 

205. The following consideration, however, must be 
attended to at p,'esent, in order to be convinced that 
X4+y4 can only become a square in the self-evident cases 
which have been mentioned, 

1. Since we suppose x and y prime to each other, that 
is, having no common divisor, they must either both be 
odd, or one must be even, and the other odd. 

2. But they cannot both be odd, because the sum of 
two odd squares can never' be a square; for an odd squaJ'e 
is always contained in the formula, 4n + I; and, conse
quently, the sum of two odd squares will have the form 
4n + 2, which being divisible by 2, but not by 4, cannot 
be a square. Now, this must be understood also of two 
odd biquadrate numbers. 

3. If, therefore, x"+y4 must be a square, one of the 
terms must be even and the other odd; and we have 
already seen, that, in order to have the sum of two squares 
a square, the root of one must be expressible by p2_ q2, 

anel that of the other by 2pq; therefore, x2 = p2_q2, and 
y2=2pq; and we should have X4+y4=(p2+q2)2. 

4. Consequently, y would be even, and x odd; but since 
x 2 p2_q2, the numbers p and q must also be the one 
even, and the other odd. Now, the first, p, cannot be 
even; for if it were, p2_q2 would be a number of the 
form 4n-l, or 4n+3, and could not become a square: 
therefore p must be odd, and q even, in which case it is 
evident, that these numbers will be prime to each other. 

5. In order that p~ -'f may become a square, or 
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p2_q2 = X2, we must have, as we have already seen, 
p = r2 + S2, and q = 2rs; for then X2 = (r'l - S2)'l, aml 
x=r2_s2. 

6. Now, ,!;2 must likewise be a square; and since we had 
,!;2=2pq, we shall now have y2=4rs(r2+s2); so that this 
formula must be a square; therefore rs(r2 + S2) must also 
be a square: and let it be observed, that. rand s are num
hers prime to each other; so that the three factors of this 
formula, namely, r, s, and r2 + ~;2, have no common divisor. 

7. Again, when a product of sevel'al factors, that have 
no common divisor, must be a square, each factor must 
itself be a square; so that making r = t2, and s = u2, we 
must have t4+u4= O. 

If, therefore, X4 + y4 were aD, our fOl'mula t4 + u4, 
which is, in like manner, the sum of two biquadrates, would 
also be aD. And it is proper to observe here, that since 
X2=t4_u4, and y2=4t2U2(t4+U4) the numbers t and u 
will evidently be much smaller than x and y, since x and y 
are even determined by the fourth powers of t and u, and 
must therefore become much greater than these numbers. 

8. It follows, therefore, that if we could assign, in llum
bers however great, two biquadrates, such as X4 and y4, 
whose sum might be a square, we could deduce f!'Om it a 
number, formed by the sum of two much less biquadrates, 
which would also be a square; and this new sum would 
enable us to find another of the same nature, still less, 
and so on, till we arrived at very small numbers. Now, 
such a sum not being possible in very small numbers, 
it evidently follows, that there is not one which we can 
express by very great numbers. 

9. It might indeed be objected, that such a sum does 
exist in very small numbers; namely, in the case which 
we have mentioned, when one of the two biquadrates 
becomes nothing: but we answer, that we shall never 
arrive at this case, by going back from very great num
bers to the least, according to the method which has been 
explained; for if in the small sum, or the reduced sum, 
t4-u4, we had t = 0, or u=O, we should necessarily have 
y2=0 in the great sum; but this is a case which does not 
here enter into consideration. 

206. Let us proceed to the second proposition, and 
prove also that the difference of two biquadrates, or 
x4-y+, can never become a square, except in the cases of 
y=O, and y=x. 

1. We may consider the numbers x and y as prime to 
each other, and consequently, as being either both odd, 01' 
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the one even, and the other odd: and as in both cases the 
difference of two squares may become a sqnare, we must 
consider these two cases separately. 

2. Let us, therefOl'e, begin by supposing both the 
numbers x and yodd, and that x=p+q, and y = p-q; 
then one of the two numbers p and q must necessarily be 
even, and the other odd. We have also x2_y2=4pq, and 
x 2 + y2 = 2p2 + 2q2; thel'efore our formula x4_y4 = 4pq 
(2pZ + 2(2); and as this must be a Rquare, its fourth part, 
pq(2pz+2q2)=2pq(p2+q2), must also be a square. Also, 
since the factors of'this for'mula have no common divisor, 
(because if pis e\'en, q must be odd), each of these factOl'S 
2p, g, and p2+q2, must be a square. In order, there
fore, that the first two may become squares, let us suppose 
2p = 41'2, or p = 21'2, and q = liz; in which s must be odd, 
and the third factor, 41'4 +s4, must likewise be a square. 

3. Now, since 84 + 41'4 is the sum of two squares, the 
TII'st of which, s4, is odd, and the other, 41'\ is even, let us 
make the root of the first S2=t2_u2, in which let t be odd, 
and u even; and the root of the second, 21'2 = 2tu, or 
1'2 = tu, where t and u are prime to each other. 

4. Since tu=1'2 must be a square, both t and u must be 
squares also. If, therefore, we suppose t=rn2, and u=n2 , 

(I'epresenting an odd number by rIl, and an even number 
by n), we shall have 82 = 11/.4 _ n4 ; so that here also, it is 
requil'ed to make the difference of two biquadrate~"namely, 
m4 -n4, a square. Now, it is obvious, that these numbers 
would be much less than x and y, since they are less than 
l' and s, which are themselves evidently less than x and y. 
If a solution, therefore, were possible in great numbers, 
and x4_y4 were a square, there must also be one possible 
for numbers much less; and this last would lead us to 
anotllel' solution fOl' nnmbers still less, and so on. 

5. Now, the least numbers for which such a square can 
be found, are in the case where one of the biquadrates 
is 0, or where it is equal to the other biquadrate. In the 
first case, we must have n=O; therefore .u=O, and also 
r=O, p=O, and, lastly, x4_y4=0, orx4=.I/; which is a 
case that does not belong to the present question; if 
n = m, we shall find t = u, then s = 0, q = 0, and, lastly, 
also x=y, which does not here enter into consideration. 

207. It might be objected, that since m is odd, and n 
even, the last difference is no longer similar to the first; and 
that, therefore, we can form no analogous conclusions from 
it with respect to smaller numbers. But it is sutficient that 
the first difference has led ns to the second; and we shall 
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shew, that x4_y4 canna longer become a square, when 
one of the biquadrates is even, and the other odd. 

1. If the first term, x4, were even, and y4 odd, the 
impossibility of the thing would be self-evident, since we 
should have a number of the form 4n+3; which cannot 
be a square: therefore, let x be odd, and y even; then 
X,Q=p2 +q2, and y=2pq; whence x4_y4=p4_2p2q2 +q4 
=(p2_q2)2, where one of the two numbers p and q must 
be even, and the other odd. 

2. Now, as p2 + q2=X2 must be a sqnare, we have 
p=r2_82, and q = 2r8; whence x=r2+82: but from that 
results y2=2(r2_s2) x 2r8, or .y2 = 41"8 x (r2_82); and as 
this must be a square, its fourth part, 1"8(r2 - 82), whose 
factors are prime to each other, must likewise be a squat'e. 

3. Let us, therefore, make r = t2, and 8 = u2 , and we 
shall have the third factor, 1.2 _82 = [4 - u4, which must 
also be a square. Now, as this factor is equal to the dif
ference of two biquadrates, which are much less than the 
first, the preceding demonstration is fully confirmed; and 
it is evident, that, if the difference of two biquadrates 
could become equal to the square of a number, (however 
great we may suppose it), \ve could, by means of this 
known case, arrive at differences less and less, which 
would also he reducible to squares, without our being 
led back to the two evident cases mentioned at first. It 
is impossible, therefore, for the thing to take place even 
with respect to the greatest numbers. 

208. The first part of the preceding demonstration, 
namely, where x andy are supposed odd, may be abridged 
as follows: if x4_y4 were a square, we must have X2 = 
p2+q2, and!l p2_q2, representing by p and q numbers, 
the one of wbich is even, and the other odd; and by these 
means we should obtain x2y2=p4_q4; and, consequently, 
p4_q4 must be a square. Now, this is a difference of two 
biquadrates, tIle one of which is even, and the other odd; 
and it has been proved, in the second pal"t of the demon
stration, that such a difference cannot become a square. 

209. \Ve have therefore proved these two principal 
propositions; that neither the sum, nor the difference, of 
two biquadrates, can become a square number, except in 
a very few self-evident cases. 

Whatevel' formulre, therefore, we wish to transform into 
squares, if those formulre require us to reduce the sum, 
01' the difference of two biquadrates to a square, it may 
be pronounced, that the given formulre are likewise 
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impossible; which happens with regard to those that we 
shall now point out. 

I. It is not possible for the formula, x4 + 4!/" to become 
a square; for since this formula is the sum of two squares, 
we must have X2 = p2_q2, and 2y2 = 2pq, or y2 = pq; 
now p and q being numbers prime to each other, each of 
them must be aD. If we therefore make p=r2, and 
q=82, we shall have x2=r4-s4; that is to say, the dif
ference of two biquadrates must be a square, which is 
impossible. 

2. Nor is it possible for the formula, x4-4y4, to become 
a square; for in this case we must make X2_p2+q2, and 
2y2=2pq, that we may have x4_4y4=(P2_q2)2; but, in 
order that ".'Il=pq, both p and q must be squares: and if 
we therefore make p=r2, and q=82, we have x2=r4+84; 
that is to say, the sum of two biquadrates must be 
reducible to a square, which is impossible. 

3. It is impossible also for the formula, 4x4-y4, to be
come a square; because in this case y must necessarily be 
an even number. N ow, if we make :~=2z, we conclude 
that 4x4 -16z4, and consequently, also, its fourth part, 
x4-4z4, must be reducible to a square; which we have 
just seen is impossible. 

4. The formula, 2X4+2!/" cannot be transformed into a 
square; for since that square would necessarily be even, and 
consequently, 2x4+2~l=4z2, we should have x4 +y4=2z2, 
or 2Z2+2x2y2=X4+2x2y2+y4= 0 ; or, in like manner, 
2z2_2x2y2=x4_2x2y2+y4 = O. SO that, as both 2Z2+ 
2x2y2, and 2z2_2x~y2, would become squares, their pro
duct, 4z4_4x4y4, as well as the fourth 0'£ that product, or 
z4-x4y4, must be a square. But this last is the difference 
of the two biquadrates; and is therefore impossible. 

5. Lastly, I say also that the formula, 2x4_2y4, cannot 
be a square; for the two numbers x and y cannot both be 
even, since, if they were, they would have a common 
divisor: nor can they be the one even and the other odd, 
because then one part of the formula would be divisible 
by 4, and the other only by 2; and thus the whole formula 
would only be divisible by 2; therefore these numbers x 
and y must both be odd. Now, if we make x=p+q, and 
y p-q, one of the numbers p and q will be even, and 
the other will be odd; and, since 2x4-2.!l=2(X2+y2) X 
(X2_y2), and X2+y2=2p2+2q2=2(p2+q2), and x2_y2= 
4pq, our formula will be expressed by 16pq(p2+q2), the 
sixteenth part of which, or pq(p2 +q2), must likewise be a 
sflnare. But these factors are prime to each other, so 
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that each of them must be a square. Let us, therefore, 
make the first two p = r2, and q=S2, and the third will 
become r4 + s4, which cannot be a square; therefol'e the 
given formula cannot become a square. 

210. We may likewise demonstrate, that the formula, 
X4 + 2y4, can never become a square: the rationale of this 
demonstration being as follows: 

I. The number x cannot be even, because in that case 
y must be odd; and the formula would only be divisible 
by 2, and not by 4; so that x must be odd. 

2. If, therefore, we suppose the square root of our formula 

to be x2 + 2py2, in order that it may become odd, we 
q 

4px2 2 4p2y4 
shall have x4+2y'~ = X4 + --y- + -2-' in which the 

terms X4 are destroyed; so that if w~ divide the other 
terms by y2, and multiply by q2, we find 4pq.'C2 + 4p2y2 
= 2q2y2, or 4pq;c2 = 2(/y2 - 4p2y2, whence we obtain 
x2 q2_2'fl2 
- = r . that is X2=q2_2'fl2 and y2=2'flQ * which y2 2pq' , r , r , 

are the same formulre that have been aIt-eady given. 
3. So that q2 - 2p2 must be a square, which cannot 

happen, unless we make q=r2+2.s.2, and p=2rs, in order 
to have x2=(r2_2s2)Z; now, this will give us 4rs(r2+2s2) 
=y2; and its fourth part, rs(r2 + 2S2) , must also be a square: 
consequently, rand s must respectively be each a square. 
If, therefore, we suppose r=t2, and s=u2 , we shall find 
the third factor r2 + 2S2 = r + 2u\ which ought to be a 
square. 

4. Consequently, if x4+2y4 were a square, r + 21£4 

must also be a square; and as the numbers t and u would 
be much less than x and y, we should always come, in 
the same manner, to numbers successively less: but as it 
is easy from trials to be convinced, that the given formula 
is not a square in any small number; it cannot therefore 
be the square of a very great number. 

2] I. On the contrary, with regard to the formula, 
x4_2y4, it is impossible to pro\'e that it cannot become a 
square; and, by a process of reasoning similar to the fore
going, we even find that there are an infinite number of 
cases, in which this formula really becomes a square. 

In fact, if x4-2~ must become a square, we shall see 

• Because.r and yare prime to each other. 
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that, by making X2 p2+2'12, and y2=2p'1' we find 
a,-t>_2y4=(p2_2'12)2. Now, p2+2'12 must in that case 
evidently become a square; and this happens when 
p=r2_2s2, and '1=21's; since we have, in this case, 
x2=(1'2 + 2S2l; and farther, it is to be observed, that, for 
the same purpose, we may take p=2s2-1'2, and '1 = 21's. 
We shall therefore consider each case separately. 

1. First, let p=1'Z_2s2, and '1=21's; we shall then have 
x= 1'2 + 2S2; and, since y2 = 2p'1, we shall thus have 
y2=41's(r2_2s2) ; so that l' and s must be squares: making, 
therefore, 1'=t2, and s=u2, we shall findy2=4t 2u2(t4-2u4). 
So that y=2tU.j(t4_2u4), and x=t4+2u4; therefore, 
when t4_2u4 is a square, we shall also find x4_2y4 = 0 ; 
but although t and u are numbers less than x and y, we 
cannot conclude that it is impossible for x4-2!/ to be
come a square, from our arriving at a similar formula in 
smaller numbers; since x4_2y4 may become a square, 
without our being brought to the fOl'mula, t4_2y4, as will 
be seen by considering the second case. 

2. For this purpose, let p=2S2-T2, and '1=21's. Here, 
indeed, as before, we shall have x=1'2 + 2s2; but then we 
shall find !/=2p'1=41's(2s2-1'2): and if we suppose 
r=t2, and s=u2, we obtain !/2=4t2U2(2u4_t4); conse
quently, .y=2tu.j(2u4-t4), and x=t4+2u4, by which 
means it is evident that our formula, x4_2y4, may also be
come a square, when the formula, 2u4 -t4, becomes a square. 
Now, this is evidently the case, when t= 1, and u= 1 ; 
and from that we obtain x=3, y=2, and, lastly, 

x 4-2y4=81-(2x 16)=49. 

3. We have also seen, Art. 140, that 2u4 _t4 becomes a 
square, when u= 13, and t= 1; since then .j (2u4_t4 ) =239. 
If we substitute these values instead of t and u, we find a 
new case for our formula; namely,x= 1 + (2 x 134)=57123, 
and y=2 x 13 x 239=6214. 

4. Farther, since we have found values of x and y, we 
may substitute them for t and u in the foregoing formulre, 
and shall obtain by these means new values of x and y. 

Now, we have just found x=3, and !/=2; let us, there
fore, in the formulre, (No. 1.) make t=3, and u=2; so 
that .j(t4-2u4)=7, and we shall have the following new 
values; x=81+(2x 16)=1l3, andy=2x3x2x7=84; 
so thatx2= 12769, and x4= 163047361. Far·ther, y2=7056, 
and y4=49787136; therefore, x4-2y4=63473089: the 
square root of which number is 7967, and it agrees per
fectly with the formula which was adopted at first,p2-2q2; 
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for since t=3, and u=2, we have r=9, and s=4; where
forep=81-32=49, and q=72; whence p~-2q~=2401-
10308 = - 7967. 

CHAPTER XIV. 

Solution of some Questions that belong to this part of 
Algebra. 

212. We have hitherto explained such artifices as occur 
in this part of AI~ebra, and such as are necessary for re
solving any questIon belonging to it: it remains to make 
them still more clear, by adding here some of those ques
tions with their solutions. 

213. Question 1. To find such a number, that if we add 
unity to it, or subtract unity from it, we may obtain, in 
both cases, a square numbel'. 

Letthe number sought be x; then both x+ 1, and x-I, 
must be squares. Let us suppose for the first case x + 1 p'l; 
we shaH have x p'l_I, and x-I p'l_2, which must 
likewise be a square, Let its root, therefore, be re
presented by p-q; and we shall have p2_2 p2_ 

q'1.+2 
2pq+q2; consequently, p =~. Hence we obtain 

q4+4. h' h ' 1 h x= 4q2 ,In W IC we may give q any va ue w atever, 

even a fractional one. 
r r4+4S4 

If we therefore make q= -, so that x= 4 2 2 ,we shall 
s r s 

have the following values for some small numbers: 
Ifr=l, 2, 1, 3, 4, 

and s= I, 1, 2, 1, 1, 
we have x = t, t, -H, ii-, -H, 

214. Question 2. To fiud such a number x, that if we 
add to it any two numbers, for example, 4 and 7, we obtain 
in both cases a square. 

According to this enunciation, the two formuIre, x + 4 
and x + 7, must become squares. Let us therefore suppose 
the first x+4-,p'l, which gives us x p2_4, and the 
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second will become X+7=p2+3; and, as this last for
mula must also be a square, let its root be represented by 
p+q, and we shall have p2+3=p2+2pq+q2; whence 

. :3_q2 9_22q2+q4 
we obtam p= 2q' and, consequently, x = 4q2 ; 

and if we also take a fraction ~ for g, we find 
s 

9s4-22r2s2 + r4.. . 
X= 4 2 2 ' 1Il whICh we may substItute fOl' rand rs 

s any integer numbers whatever. 
If we make r=I, and s=I, we find X= -3; there

fore x+4=I, and x+7=4. 
If x were required to be a positive number, we might 

make s=2, and 1'= I; we should then have x = -B-, 
whence X+4=lT'Y, and x+7= Vi!. 

Ifwe make s=3, and r=I, we have x= 1~3 ; whence 
x+4= l.p, and x+7= 1%6. 

In order that the last term of the formula, which 
expresses x, may exceed the middle term, let us make 
r=5, and s= I, and we shall have x=%t; consequently, 
X+4=12~l, and X+7=t;S6. 

215. Question 3. Required such a fractional value of :1', 
that, if added to I, or subtracted from 1, it may give in 
both cases a square. 

Since the two formulre, 1 +x and I-x, must become 
squares, let us suppose the first I +X=p2, and we shall 
have x=p2-I; also, the second formula will then be 
I-x=2-p2. As this last formula must become a square, 
and neither the first nor the last term is a square, we 
must endeavour to find a case, in which the formula does 
become aD, and we soon perceive one, namely, when p= 1. 
If we therefore make p= I-q, so that x=q2-2q, we 
have 2-p2=1 +2q_q2; and supposing its root to be 
I-qr, we shall have 1+2q_q2=1_2qr+q2r2; so 

2r + 2 
that 2 - q = -21' + qr2, and q = 2 1 ; whence results 

r+ 
4r - 4r3 d' . f . . f k t X= (r2 + 1)2; an SInce r· IS a ractIon, 1 we rna e r= ii' 

4tu3 -4t3u 4tu(u2-tZ) . . 
we shall have x= (2')" = ([2 2)"' where It IS t +u' - + u -
evident that u must be greater than t. 

Let therefore u=2, and t=l, and we shall find x=H. 
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Let u=3, and t=2; we shall then have x= {B-; and 
the formulre, 1 +x=-i-H, and l-x=T\\' will both be 
squares. 

216. Question 4. To find such numbers x, that whether 
they be added to 10, or subtracted from 10, the sum and 
the difference may be squares. 

It is required, therefore, to transform into squares the 
formulre, lO+x, and 10-x, which might be done by the 
method that has just been employed; but let us explain 
another mode of proceeding. It will be immediately per
ceived, that the product of these two formulre, or lOO-x2, 
must likewise become a square. Now, its first term being 
already a square, we may suppose its root to be 10-px, 
by which means we shall have 100-x2=100-20px+p2x2; 

thereforep2x+x=20p,andx= :OPI' From this it appears, 
p+ 

that it is only the product of the two formulre which becomes 
a square, and not each of them separately: but provided 
one becomes a square, the other will necessarily be also a 

N 10 _ lOp'l+ 20p + 10 _ lO(p2+2p+ 1) 
square. ow +x- pI! + I - p2+ I ' 

and since p2+2p+ 1 is already a square, the whole is re-
. . 10 IOp2+ 10 

duced to makmg the fraction pI! + 1 ,or (p2 + 1 )2 , a square 

also. For this purpose we have only to make 10p2+ 10 a 
square, and here it is necessary to find a case in which that 
takes place. It will be perceived that p =3 is such a case; 
for which reason we shall make p=3 +q, and shall have 
100 + 60q + IOq2. Let the root of this be 10 + qt, and we 
shall have the final equation, 

100 + 60q + lOq2= 100 + 20qt + 92t2, 

which gives q= 6~=~~t, by which means we shall deter-

mine p=3 + g, and x = :OP1• 
p+ 

Let t=3, we shall then find q=O, and p=3; therefore 
x=6, and our formulre 10+x=16, and lO-x=4. 

Butift=l,we have q= -4j, and p= -If, so that 
X= - 1l.ft;4; now it is of no consequence if we also make 
X= + '4f--i' ; therefore 10 +x = 4fo4, and lO-x=-!1, which 
quantities are both squares. 

217. Remark. If we wished to generalise this question, 
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by demanding such numbers, x, for any number, a, that 
both a +x and a-x may be squares, the solution would 
frequently become impossible; namely, ill all cases in 
which a was not the sum of two squares. Now, we have 
already seen, that, between 1 and 50, there are only the 
following numbers that are the sums of two squares, or that 
are contained in the formula x 2 + y2 : 

1, 2, 4, 5, 8,9, 10, 13, 16, 17, 18, 20, 25, 26, 29, 32, 
34,36,37,40,41,45,49,50. 

So that the other numbers, compl'ised between 1 and 50, 
which are, 

3, 6, 7, II, 12, 14, 15, 19, 21, 22, 23, 24, 27, 28, 30, 
31,33,35,38,39,42,43,44,40, 47, 48, cannot be re
solved into two squares; consequently, whenever a is one of 
these last numbel's, the question will be impossible; which 
may be thus demonstrated. Let a+x p2, and a-x=q2, 
then the addition of the two formulre will give 2a=p2 + q2 ; 
therefore 2a must be the sum of two squares. Now, if 2a 
be such a sum, a will be so likewise ;* consequently, when 
a is not the sum of two squares, it will always be impossible 
for a+x, and a-x, to be each squares at the same time. 

218. As 3 is not the sum of two squares, it follows, 
from what has been said, that, if a=3, the question is im
possible. It might, however, be objected, that there are, 
perhaps, two fractional squares whose sum is 3; but we 

answer that this also is impossible: for if p: + 1': =3, 
q s 

~md if we were to multiply by q2s2, we should have 
3q2sZ---..:p2S2 + q2r2 ; and the second side of this equation, 
which is the sum of two squares, would be divisible by 3; 
but we have already seen (Art. 170) that the sum of two 
I'quares, that are prime to each other, can have no divisors, 
except numbers, which are themselves sums of two 
squares. 

The numbers 9 and 45, it is true, are divisible by 3, but 
they are also divisible by 9, and even each of the two 
squares that compose both the one and the other, is divisible 
by 9, since 9=:32 +02, and 45=62 +32 ; which is there
fore a different case, and does not enter into consider
ation here. We may rest assured, therefore, of this con
clusion; that if a number, a, be not the sum of two 
squares, in integer numbers, it will not be so in fractions. 

* For, let x2 +y2=2a; and put x=s+d, and y=s-d; then 
(S+d)2+(s-d)2=2s2+2d2; that is, x2+y2=2s2+2d~=2a, or 
s2+d~=a.--B. 
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On the contrary, when the number a is the sum of two 
squares in fractional numbers, it is also the sum of two 
sQuares in integer numbers an infinite number of ways: 
and this we shall illustrate. 

219. Question 5. To resolve, in as many ways as we 
please, a number, which is the sum of two squares, into 
another number, that shall also be the sum of two squares. 

Let f2+9 2 be the given number, and let two other 
squares, x2 and y2, be required, whose sum X2+y2 may 
be equal to the number J2+92. Hem it is evident, 
that if x be either greater or less than j: y on the other 
hand must be either less or greater than 9: if, therefore, 
we make x = J + pz, and y = 9 - qz, we shall have 

p +2fpz + p2Z2 + 92-29qz + q2Z2-" f2 + 92 , 

where the two termsf2 and 92 are destroyed; after which 
there remain only terms divisible by z. So that we shall 
have 2fp+p2Z-29q+q2z =0, or p2Z + q2z = 29q-2fp; 

therefore z = 29~ - 2!p; whence we get the following 
p +q 

values for x and y' namely x= 29Pq+JCq2_p2) 'I(. and 
, , p2+q2' 

Y = 2fpq~9(p:_q2; in which we may substitute all pos
p +q 

sible number's for p and q. 
If 2, for example, be the number proposed, so that 

j=l, and 9=1, we shall have X2+y2=2; and because 
x=2pq+q2_p2 andy= 2pq+p2_q2 if we makep=2 

p2+q2 , p2+q2 , , 
and q= 1, we shall find x=i, and y=f. 

220. Question 6. If a be the sum of two squares, to 
find such a number, x, that a+x and a-x may become 
squares. 

Let a=13=9+4, and let ns make 13+x=p2, and 
13 - x = q2. Then we shall first have, by addition, 
26 p2+q2; and by subtraction, 2x_p2_q2; consequently, 
the values of p and q must be such, that p2+q2 may be
come equal to the number 26, which is also the sum of 
two squares, namely, of25+1. Now, since the question 
in reality is to resolve 26 into two squares, the greater of 

'* As x=f+pz and z= 2gq-2fp x=f+ 2gpq-2fp2. 
, p'J.+ q2 , p2+q2 ' 

or, putting f in the numerator, and abridging, 
2gpq+ f( q2_p2) 

x= 2+ 2 ,as above. p q 
EE 
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which may be expressed by p2, and the less by q2, we 
shall immediately have p = 5, and q = 1; so that x = 12. 
But we may resolve the number 26 into two squares in an 
infinite number of other ways: for, since p=5, and q= 1, 
if we write t and u, instead of p and q, and p and q, instead 
of x and y, in the formulre of the foregoing example, we 
shall find, 

2tu + 5(U2 _t2) d 10tu+t2-u2 

P = tZ + u2 ' an q = t2 + u2 • 

Here we may now substitute any numbers for t and u, 
and by these means determine p and q, and, consequently, 

I p2_q2 
a so the value of x = -2-' 

For example, let t = 2, and u = 1; we shall then have 
p=li, and q=2-l; wherefore p2_q2=¥-l, and x=V:/,. 

221. But, in order to resolve this question generally, 
let a=e2 +d2, and put z for the unknown quantity; that 
is to say, the formulre, a+z, and a-z, must become squares. 

Let us therefore make a+z=x2 , and a-z=!l, and 
we shall thus have fil'st 2a = 2(e2 + d2) = X2 + y2, then 
2z = x2_y2. Therefore the squares x2 and y2 must be 
such, that x2+y2=2(e2+d2); where 2(e2+d2) is really 
the sum of two squares, namely, (e+d)2+(e-d)2; and, 
in order to abbreviate, let us suppose e + d = f, and 
e-d=g; then we must have X 2+y2_f2+.rl; and this 
will happen, according to what has been already said, when 

x 2gpq+ jCq2_p2) and 1 = 2Jpq+g(p2_q2). 
]12 + q2 ' Y p2 + q2 , 

from which we obtain a very easy solution, by making 
2g 

p = 1, and q = 1; for we find x = 2 = 9 = e - d, and 

y j--c+d; consequently, z=2ed; and it is evident that 
a+z=e2+2ed+d2=(e+d)2, and 

a - z = e2 - 2ed + d2 = (e - d)2. 

Let us attempt another solution, by making p=2, and 
c-7d 7c+d 

q= I; we shall then have x = -5-' and y = -5-' 

where e and d, as well as x and y, may be taken minus, 
because we have only to consider their squares. Now, 
since x must be greater than y, let us make d negative, 

e+7d 7e-d 
and we shall have x = -5-' and y = -5-: hence 
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24d2+ 14cd-24c2 d h' lb' added to 
Z = 25 ; an t IS va ue emg 

. c2+ 14cd+49d2 . 
a=c2 +d2, gIves 25 ,the square root of whIch 

. c+7d 
IS -5-' If we now subtract z from a, there remains 

49c2-14cd+d2 . . 7c-d 
25 ' whIch IS the square of -5-' the former 

of these two square roots being x, and the latter y. 

222. Question 7. Required snch a number, x, that 
whether we add unity to itself, or to its square, the result 
may be a square. 

It is here required to transform the two formulre, x+ I, 
and x 2 + 1, into squares. Let us therefore sllppose the 
first, x + I = p2; and, because x = p2 - 1, the second, 
x2 + 1 = p4 - 2p2 + 2, must be a square; which last 
formula is of such a nature as not to admit of a solution, 
unless we already know a satisfactory case; but snch a 
case readily occurs, namely, that of p= 1: therefore let 
p=l+q, and we shall have x2+1=1+4q2+4q3+ q4, 
which may become a square in several ways. 

1. If we suppose its root to be 1 +q2, we shall have 
1+4q2+4q3+ q4=1 +2q2+q4; so that 4q+4q2=2q, 
or 4+4q=2, and q=-t; therefOl'e p=}, and x=-i. 

2. Let the root be I -q2, and we shall find I + 4q2 + q! 
+q4=1-2q2+t'; consequently, q=-t, and p=--t, 
which gives x=-{, as before. 

3. Ifwe represent the root by 1 +2q+q2, in order to 
destroy the first, and the last two terms, we have 

1 +4q2+4q3+ q4= 1 +4q+6q2+4q3+ q4) 

whence we get q= -2, and p= -1; and therefore x=O. 
4. We may also adopt 1_2q_q2 for the root, and in 

this case we shall have 

1 +4q2+4q3+q4= 1-4q+2q2+4q3 +(t. 
but we find, as before, q= -2. 

5. We may, if we choose, destroy the first two terms, 
by making the root equal to I +2q2; for we shall then 
have ] +4q2+4q3+q4=1 + 4q2+4q4; also, Q=1, and 
p=t; consequently, x=V ; lastly, x+ 1=V=(t)2, and 
X2+ 1 = li-P =(V )2. 
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A greater number of values will be found for q, by 
making use of those which we have already deter
mined. Thus, having found q=-t; let q=-t+r, and 
we shall have p = t + r; also, p2 = -! + r + r2, and 
p4 = -iff + ir + tr2 + 2r3 + r4 ; whence the expression 

p4-2p2+2=H -fr-tr2+2r3+r4, 
to which our formula, x 2 + 1, is reduced, must be a 
square, and it must also be so when multiplied by 16; 
in which case, we have 2.5-24r-8r2+32r3+ 16r4 to 
be a square. For which reason, let us now represent 

1. The root by 5+jr+4r2; so that 
25-24r - 8r2 +32r3+ 16r4= 
25+ lOfr±40r2+ j'£r2± 8fr3+ 161'4. 

The first and the last terms destroy each other; and we 
may destroy the second also, if we make 1 0f- -24, and, 
consequently,f= - 1-S2; then dividing th~ remaining terms 
by r2, we have - 8 + 32r = + 40 + P + 8fr; and, ad-
.. h . fi d 48 + /2 N b mlttmg t e upper sign, we n r = 32~8f. ow, e-

cause f = - 1i, we have r = -t-<l-; therefore p = -H-, and 
x=U-b-; so that x+ 1 = (U)2, and x2+ 1 = (1-U)2. 

2. If we adopt the lower sign, we have 
- 8 + 32r = - 40 + f2 - 8fr, 

whence r = {~~~}; and since f = - 'r,2, we have 

r = - -Po- ; therefore p = f-b-, which Jeads to the preceding 
equation. 

3. Let 4r2 + 41'±5 be the root; so that 
16r4 +32r3- 8r2-24r +25= 
16r4 +32r3 ±40r2 + 16r2±40r+25: 

and as on both sides the first two terms and the last 
destroy each other, we shall have 

- 8r-24=±40r+ 16r±40, or 
-24r-24= ±40r±40. 

Here, if we admit the upper sign, we shall have 
-24r-24=401'+40, or 0=64r+64, or 

O=r+l; that is, r=-l, and p=-t; but this is a case 
ah·eady known, and we should not have found a different 
one by making use of the other sign. 

4. Let now the root be 5+fr+gr2, and let us deter
mine f and 9 so, that the first three terms may vanish: 
then, since 
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25-247 - 8r2 +3273 + 1674= 
25+ 1017+ lOf272 + IOg72+21gr3+g274 , 

we shall first have IOf -24, so that 1=- ll; then 
. _8_{2 -344 -172 

10g+12=-8, or g= -w = 250 = 125' 
When, therefore, we have substituted and divided the 
remaining terms by 7 3, we shall have 

21:g -32 
32+ 167=21g +g27, and r = f~_g2' 

Now, the numerator 21g-32 becomes here 
24x172-32x625 -32 x 496 -16x32x31 

5 x 125 - 625 - 625 and 
the denominator 

8 x 32x 41 x 21 
16-g2=(4-g) x (4+g)= fH x H~ = 25x625 ; 

so that r = - Vir°; and hence we conclude that 
p = - tftt, by means of which we obtain a new value 
of x, because X=p2_1. 

223. Question 8. To find a number, x, which, added to 
each of three given numbers, a, b, c, produces a square. 

Since here the three formula), x+a, x+b, and x+c, 
must be squares, let us make the first x+a=zz, and we 
shall have x=zz-a, and the two other formulre will, by 
substitution, be changed into Z2 + b-a, and Z2 + c-a. 

It is now required for each of these to be a square; but 
this does not admit of a general solution; the problem is 
frequently impossible, and its possibility entirely depends 
on the nature of the numbers b - a and c-a. For 
example, if b-a= 1, and c-a= -1, that is to say, if 
b=a+ I, and c=a-l, it would be required to make 
Z2+ 1, and z2-1, squares, and, consequently, that z should 

be a fraction; so that we should make z = 12. It would 
q 

be farther necessary that the two formulre, p2+qZ, and 
pZ-q2, should be squares, and, consequently, that their 
product also, p4_q4, should be a square. Now, we have 
already shewn (Art. 202) that this is impossible. 

Were we to make b-a=2, and c-a=-2; that is, 

b=a+2, and c=a-2; and also, if z=12, we should 
q 

have the two formulre, pZ+2qZ, and pZ_2qZ, to transform 
into squares; consequently, it would also be necessary for 
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their product, p'-4q4, to become a square; but this we 
have likewise shewn to be impossible. (Art. 209.) 

In general, let b-a = m, c-a=n, and z = l!.: then 
q 

the formulre, p2 + mq2, and p2 + nq2, must become squares; 
but we have seen that this is impossible, both when 
m= + 1, and n =-1, and when m= +2, and n=-2. 

It is also impossible. when m f2, and 11 = -1'1.; for, 
in that case, we should have two formulre, whose product 
would be =p4-f4q4, that is to say, the difference of two 
biquadrates; and we know that such a difference can 
never become a square. 

Likewise, when m=2p, and n=-'lj'2, we have the 
two formulre, p2 + 2j"lq'l., and p2 - 2f2q2, which cannot 
both become squares, because their pl'oduct p4 _ 4j4'q4 
must become a square. Now, if we make fq = r, this 
product is changed into p4_4r4, a formula, the impossi
bility of which has been aheady demonstrated. 

If we suppose m= 1, and n=2, so that it is required to 
reduce to squares the formulre, p2+q2, and p2+2q'l., we 
shall make p2 + 'l = r2, and p2 + 2q2 = S2; the first 
equation will give p2=r2_q'l., and the second will give 
r2 + q2 = ,~2; and therefore both r2 _ q2, and r2 + q2, 
must be squares: but the impossibility of this is proved, 
since the product of these fOl'mulre, or r4_q4, cannot be
come a square. 

These examples are sufficient to shew, that it is not easy 
to choose such numbers for m and n as will render the 
solution possible. The only means of finding such values 
of m and n, is to imagine them, or to determine them by 
the following method. 

Let us make f2 + m92 = h2, and p + 1192 = k2 ; then 
h2_p 

we have, by the former equation, m= -2-' and, by the 
9 

k2-f2 
latter, n = --~ -; this being done, we have only to take 

9 
for f, 9, h, and k, any numbers at pleasme, and we shall 
have values of m and 11. that will render the solution 
po!'sible. 

For example, let h = 3, k = 5, f= I, and 9 = 2, we 
shall have m=2, and n=6; and we may now be certain 
that it is possible to reduce the formu'lre, p2 + 2q2, and 
p2 + 6q2, to squares, since it takes place when p = 1, 
and q=2. But the first formula generally becomes a 
square, if p=r2_2s2, and q=2rs; for then p2+2q2= 
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(r2+2s2)2. The latter formula also becomes p2+6q2= 
r4+20r2s2+4s4; and we know a case in which it becomes 
a square, namely, when p = 1, and q = 2, which gives 
r= I, and s= 1; or generally, r=s; so that the fOJ'mula 
is 25s4. Knowing this case, therefore, let us make r=s + t; 
and we shall then have r2 = s2+2st + t2, or r4=s4 + 
4s3t+6s2t2+ 4st3 + t4; so that our formula will become 
25s4 + 44s3t + 26s2t2 + 4st3 + t4: and, supposing its root 
to be 5s2 + fst + t2 , we shall make it equal to the square 
25s4 + lOfs3t + f2S2t2 + lOs2[2 + 2fst3 + t4, by which means 
the first and last terms will be destroyed. Let us likewise 
make 2f 4, or f-2, in order to remove the last terms 
but one, and we shall obtain the equation, 
44s + 26t = lOfs + lOt + f 2t = 20s + 14t, or 2s = - t, 

s 
andt=-t; therefore s=-l, and t=2, or t=-2s; 

and, consequently, r= -s, also r2=S2, which is nothing 
more than the case already known. 

Let us rather, therefore, determine f in such a manner 
that the second terms may vanish. We must make 10f-44, 
or f ~2; and then dividing the other terms by st2, we 
shall have 26s+4t= IOs+ps+2ft, that is,-M-s=2lt; 

which gives t= -";os, and r = s + t=T~S, or ~ = T%-; so 
s 

that r=3, and s= 10; by which means we find p=2S2_ 
r2= 191, and q=2rs=60, and our formulre will be, 

p2 + 2q2 = 43681 = (209)2 and 
p2+ 6q2=58081 =(241)2. 

224. Remark. In the same manner, other numbers may 
be found for m and 11, that will make oUJ'formulresquares; 
and it is proper to observe, that the ratio of m to n is 
arbitrary. • 

Let this ratio be as a to b, and let m=az, and n=bz; 
it will be required to know how z is to be determined, in 
order that the two formulre, p2+ azq2, and p2+bzq2, may 
be transformed into Rquares; the method of doing which 
we shall explain in the solution of the following problem. 

225. Question 9. Two numbers, a and b, being given, to 
find the number z such, that the two formulre, p2+azq2, 
and p2 + bzq2, may become squares; and, at the same 
time, to determine the least possible values of p and q. 

Here, if we make p2+ azq2=r2, and p2+bzq2=S2, and 
multiply the first equation by a, and the second by b, the 
difference of the two products will furnish the equation 
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br2 _as2 

(b - a)p2 = b1'2 - as2, and, consequently, p2 = ----O;-b--
-a 

which formula must be a square: now, this happens when 
1'=s. Let us, therefore, in order to remove the fractions, 
suppose 1'=s+(b-a)t, and we shall have 

b1'2-as2 bs2 + 2b(b-a)st + b(b-a)2t2-asZ 
pZ = b-a = b-a = 

(b_a)s2+2b(b_a)st+b(b_a)Zt2 _ 
b-a -

S2 +2bst+ b(b-a)t2. 
x 

Let us now make p = s + -t, and we shall have 
y 

2x x2 
p2 = S2 + -st + ,/Z=S2 + 2bst + b(b-a)t2, 

y y 
in which the terms S2 destroy each other; so that the other 
terms being divided by t, and multiplied by y2, give 
2sxy + tx2=2bsy2 + b(b-a)ty2; whence 

~ 2sxy-2sb.1l2 d ~ _ 2xy-2by2 
t- bb ,an -bb . ( - a)y2-x~ s ( _a)y2_x2 

So that t = 2xy- 2by2, and s=b(b-a)y2- x2. Farther, 
l' = 2(b - a)xy - b(b - a)y2 - X2; and, consequently, 

x 
p = s + - t = b(b - a)yZ + x2 - 2bxy = (x - by)2 - ab!/. 

y 
Having thel'efore found p, 1', and s, it remains to deter

mine z; and, for this purpose, let us subtract the first equa
tion, pZ + azq2 = 1'2, from the second, p2 + bzq2 = S2; the 
remainder will be zq2(b -a)=s2-1'Z=(s+1') x (s-1'). 
Now, s+r=2(b-a)xy-2x2, and 

s-1'=2b(b-a)yZ-2(b-a)xy, or 
s+1'=2x(b-a)y-x), and 
s-1'=2(b-a) x (by-x)y; so that 

(b - a)Z'qz= 2x(b-a)y-x) x 2(b-a) x (by-x)y, or 
zq2=2x(b-a)y-x) X (by-x)2.IJ, or 
zq2=4xy(b-a)y-x) X (by-x); 

4xy(b-a)y-x) X (by-x) 
consequently, z= \ 2 • 

q 
We must therefore take the greatest square for q2, that 

will divide the numerator; but let us observe, that we have 
already found p=b(b-a)y2+xz-2bxy= (X_by)2_ aby2; 
and therefore we may simplify, by making x=v+by, or 
x-by=v; for then p=v2-aby 2, and 
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4(v + by) x vy x (v+ay), 4vy(v +ay) x (v + by) 
Z= 2 ,or Z= 2 • q q 
By these means we may take any numbers for v and y, 
and assuming for qll the greatest square contained in the 
numerator, we shall easily determine the value of z; after 
which, we may return to the equations, m=az, n=bz, 
and p=l)2-aby2, and shall obtain the formulre required. 
1. p2 + azq2 = (V2 - aby2)2 + 4avy(v + ay) x (v + by), 
which is a square, whose root is r = - v2 - 2avy- aby2. 

2. The second formula becomes -
p2 + bzq2 = (V2 - aby'l)2 + 4bvy(v + ay) x (v + by), 

which is also a square, whose root is s= -v'l-2bvy-aby2, 
and the values both of rand s may be taken positive. 

It may be proper to analyse these results in some ex
amples. 

226. Example 1. Let a=-l, and b=+l, and let us 
endeavour to seek such a number for z, that the two for
mulre, p'l_zq2, andp2+zq2, may become squares ; namely, 
the first rll, and the second sIl. 

We have thereforep=v2 +y'l; and, in order to findz, 
we have only to consider the formula, 

z = 4vy(v-y) x (v+y). and by giving different values to 
q2 " 

v and y, we shall see those that result from them for z. 

1 2 3 4 5 I 6 
---------

v 2 3 4 5 16 8 
Y I 2 1 4 9 I 

v-y 1 1 3 I 7 7 
v+y 3 5 15 9 25 9 

zq2 4x6'4x30 16x 5 9x 16x5 36x25x 16x7'16x9x 14 
------

q2 4 4 16 9x 16 36x25x 16 16x9 

;1 6 30 15 5 7 14 
5 13 17 41 337 65 

And by means of these values, we may resolve the fol
lowing formulre, and make squares of them: 

1. We may transform into squares the formulre, p'l_6q2, 
and p2 + bq'l; which is done by supposing p=5, and q=2 ; 
for the first becomes 25 - 24 = 1, aud the second 

25+24=49. 
2. Likewise, the two formulre, p2 _ 30q'l, and p'l + 30q2 ; 
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namely, by making p=I3, and q=2; for the :first be
comes 169-120=49, and the second 169 + 120=289. 

3. Likewise the two formulre, p2_I5q2, and p2+ l5q2; 
for if we make p= 17, and q=4, we have, for the :first, 
289-240=49, and for the second 289+240=529=232. 

4. The two formulre, p2_5q2, and p2 + 5q2, become 
likewise squares: namely, when p=4l, and q=12; for 
then p 2-5q2=1681-720= 961=312, and 

p2 +5q2= 1681 + 720=2401 =492. 
5. The two formulre, p2_7q2, and p2 + 7q2, are squares, 

if p=337, and q= 120; for the :first is then 
113569 - 100800 = 12769 = 1132, and the second is 
II356t) + 100800 = 214369 = 4632. 

6. The formulre,p2-14q2, and p2 + 14q2, become squares 
in the case of p=65, and q= 12; for then 

p2-14q2=4225-2016=2209=472, and 
p2+ I4q2=4225+2016=6241 =792. 

227. Example 2. 'When the two numbers m and n are 
in the ratio of I to 2; that is to say, when a = I, and 
b=2, and therefore m=z, and n=2z, to find such values 
for z, that the formulre, p2+zq2, and p2+2'tq2, may be 
transformed int.o squares. 

Here it would be superfluous to make use of the general 
formulre already given, since this example may be imme
diately reduced to the preceding. In fact, ifp2+zq2=r2, 
and p2 + 2zq2 = 82, we have, from the first equation, 
p2=r2_zq2; which, being substituted in the second, gives 
r2+zq2=s2; so that the question only requires, that the 
two formulre, r2_ zq2, and r2+zq2, may become squares; 
and this is evidently the case of the preceding example. 
We shall consequently have for z the following values: 
6, 30, 15, 5, 7, 14, &c. 

We may also make a similar transformation in a general 
marmel'. FOI', suppo!!ing that the two formulre, p2+mq2, 
and p2+nq2, may become squares, let us make p2 +mq2=r2, 
and p2+nq2=s2; the first equation gives p2=r2_mq2; 
the second will become 
82 = r2 - mq2 + nq2, or r2 + (n - m)q2 = 82 : if, therefore, 
the first formulre are possible, these last, 1'2_mq2, and 
r2+(n_m)q2, will be so likewise; and as m and n may 
be substituted for each other, t.he formnlre, r2_nq2, and 
r2 + (m - n)q2, will also be possible: on the contrary, if 
the first are impossible, the others will be so likewise. 

228. Example 3. Let m be to n as I to 3, or let a= 1, and 
b=3, so that m=z, and n=3z, and let it be required to 
transform into squares the formul.re, p2 +zq2, andp 2+ 3zq2. 
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Since a= 1, and b=3, the question will be possible in 
all the cases in which zq2 = 4vy(n + y) x (v + 3y), and 
p=v2 _3y2. Let us thel'efore adopt the following val ues 
for v and y: 

-v ~1-2-31~' 4 II' 5 16 
!I II 21 1 Il 9 

v+ y 2 5 5 9 25 
v+3y 41 9 ' 7 251 4:1 

flJq' 16 x 2114 x 9 x 3014 x 4 x 354 x 9" 25 x 4 x 2:4 x 9 x 16 x 25)( 43 ------' '-----------
q' 16 ~I 4 x 41 4 x 4 x 9 )( 25i 4 x 9 x 16 x 25 
fIJ 21 30, 35 21 43 
p 21 3: 13 191 13 

Now, we have here two cases for z=2, which enables 
us to transform, in two ways, the formulre, p2+2q2, and 
p2+6q2. 

The first is, to make p=2, and q=4, and, consequently, 
also p= 1, and q=2; for we have then from the last, 
pZ+2q2=9, and p2+6q2=25. 

The second is, to suppose p= 191, and q=60, by which 
means we shall have p2+2q2=(209)2, and p2+ 6q£=(241)2. 
It is difficult to detel"mine whether we cannot also make 
Z= 1; which would be the case, if zq2 were a square: but, 
in order to determine the question, whether the two for
JIlulre, p2+q2, and p2+3q2, can become squares, the fol
lowing process is necessary. 

229. It is required to investigate, whether we can trans
form into squares the formulre, pZ+q2, and p2+3q2, with 
the same values ofp and q. Let us here suppose p2+ q2=rZ, 
and p2 + 3qZ=S2, which leads to the investigation of the 
following circumstances. 

1. The numbers p and q may be considered as prime to 
each other; for if they had a common divisor, the two 
formulre would still continue squares, after dividing p and 
q by that divisor. 

2. It is impossible for p to be an even number; for in 
that case q would be odd; and, consequently, the second 
formula would be a number of the class 4n + 3, which can
not become a square; whel"efore p is necessarily odd, and 
pZ is a number of the class 8n + 1. 

3. Since p thel"efore is odd, q must in the first formula 
not only be even, but divisible by 4, in order that q2 may 
become a number of the class 16n, and thatp2+q2 may be 
of the class 8n + 1. 

4. Fal"ther, p cannot be divisible by 3; for in that case, 
p2 would be divisible by 9, and qZ not; so that 3~z2 would 
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only be divisible by 3, and not by 9; consequently, also, 
p2 + 3q2 could only be divisible by 3, and not by 9, and 
therefore could not be a square; so that p cannot be di
visible by 3, and p2 will be a number of the class 3n + l. 

5. Since p is not divisible by 3, q must be so; for other
wise q2 would be a number of the class 3n+ 1, and con
sequently p2 + rf a number of the class 3n + 2, which can
not be a square: therefore q must be divisible by 3. 

6. Nor is p divisible by 5; for if that were the case, q 
would not be so, and q2 would be a number of the class 
5n + 1, or 5r1 + 4; consequently, 3q2 would be of the class 
5n + 3, or 5n + 2; and as p2 + 3q2 would belong to the 
same classes, this formula therefore could not in that case 
become a square; consequently, p must not be divisible by 
5, and p2 must be a number of the class 5n+ 1, or of the 
class 5n +4. 

7. But since p is not divisible by 5, let us see whether q 
is divisible by 5, or not; since if q were not divisible by 
5, q2 must be of the class 5n + 2, or 5n + 3, as we have 
already seen; and sin-ce p2 is of the class 5n + 1, or 5n + 4, 
p2 + 3q2 must be the same; namely, 5n + 1, 01' 5n + 4 ; and 
therefore, of one of the forms, 5n + 3, or 5T1 + 2. Let us 
consider these cases separately. 

If we suppose p2(p)5n+ 1,* then we must have q2(p) 
5n +4, because otherwise p2 + q2 could not be a square; 
but we should then have 3q2(p)5n+2 and p2 +3q2 (F) 
5n+3, which cannot be a square. 

In the second place, let p2(F)5n+4; in this case we 
must have q2(F)5n+ 1, in order that p2+q2 may be a 
square, and 3q2(F)5n + 3; therefore p2 + 3q2(F)5n + 2, 
which cannot be a square. It follows, therefore, that q2 
must be divisible by 5. 

8. Now, q being divisible first by 4, then by 3, and in 
the third place by 5,it must be such a number as 4 x 3 x 5m, 
or q = 60m ; so that our formulre would become 
p2+3600m2=1'2, and p2+ 10800mz=s2: this being esta
blished, the first, subtracted from the second, will give 
7200m2 =s2-r2=(s+r) x (s-r); so that s+r and s-r 
must be factors of 7200m2, and at the same time it should 

l\I In the former editions of this work, the sign = is used to 
express the words, " of the form." This was adopted in order 
to save the repetition of these words; but, as it may occasionally 
produce ambiguity, or confusion, it was thought proper to sub
stitute (F) instead of =, which is to be read thus: p2 (F) 5n + 1, 
of the form 5n + 1. 
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be observed, that sand r must be odd numbers, and also 
prime to each other. * 

9. Farther, let 7200m2 =4fg, or let its factors be 2fand 
2g, supposing s+r=2f, and s-r=2g, we shall have 
s /+g, and r=f-.q; f and g, also, must be prime to 
each other, and the one must be odd and the other even. 
Now, as fg= 1800m2, we may resolve I 800m2 into two fac
tors, the one being even and the other odd, and having at 
the same time no common divisor. 

10. It is to be farther remarked, that since r2=p2+q2, 
and since r is a divisor of p2 + q2, r-f-g must likewise 
be the sum of two squares (Art. 170); and as this number 
is odd, it must be contained in the formula, 4n + 1. 

11. If we now begin with supposing m= 1, we shall have 
f9= 1800=8 x 9 x 25, and hence the following results: 
f 1800, and g= 1, or f-200, and g=9, or /=72, and 
g=25, or f 225, and g=8. 

The 1st} .[r-f - g=I799(F)4n+3; 
2d . r f-g= 191(F)4n+3; 
3d glves lr j-g= 47(F)4n+3; 
4th r f-g= 2I7(F)4n+ 1. 

So that the first three must be excluded, and there remains 
only the fourth: from which we may conclude, generally, 
that the greatel' factor must be odd, and the less even; 
but even the value, r=2I7, cannot be admitted here, be
cause that number is divisible by 7, which is not the sum 
of two squares.t 

12. If m=2, we shall have jg=7200=32 x 225; for 
which reason we shall makef-225, and g=32, so that 
r f-g= 193; and this Bumber being the sum of two 
squares, it will be worth while to try it. Now, as q=120, 
and r= 193, and p2=r2_q2=(r + q) x (r-q), we shall 
have r+q=3I3, and r-q=73; but since these factors are 
not squares, it is evident that p2 does not become a square. 
In the same manner, it would be in vain to substitute any 
other numbers for m, as we shall now shew. 

230. Theorem. It is impossible for the two formulre, 
p2+ q2,and p2+3q2, to be both squares at the same time; 
so that in the cases where one of them is a square, it is 
certain that the other is not. 

'II< Because p is odd and q is even; therefore p2+q2=r2, and 
p2+3q2=S2, must be both odd.-B. 

t Because the sum of two squares, prime to each other, can 
only be divided by numbers of the same form.-B. 
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Demonstration. We have seen that p is odd, and q 
even, because p2+q2 cannot be a square, except when 
q=2rs, andp=T2-s2; and p2+3q2 cannot be a square, 
except when q=2tu, and p=t2-3u2, or p=3u2_t2. 
Now, as in both cases q must be a double product, let us 
suppose for both, q=2abed; and, for the first fonnula, let 
us make r=ab, and s=ed; for the second, let t=ae, 
and u=bd. We shall have for the former, p=a2b2 _e2d2, 
and for the latter, p=a~e2-3b2d2, or p=3b2d2_a2e2 , 

and these two values must be equal; so that we have either 
a2b2-e2d2=a2e2_3b2d2, or a2b2_e2d2=3b2d2_a2e2; and 
it will be perceived that the numbers, a, b, e, and d, are 
each less than p and q. We must, however, consider each 
case separately: the first gives a2b2+3b2d2=e2d2+a2e2, 

b2 a2 +d2 

or b2( a2 + 3d2) = e2( a2 + d2), whence 2" = 2 3d2' a frac-
e a + 

tion that must be a square. 
Now, the numerator and denominator can here have no 

other common divisor than 2, because their difference is 
2d2 • If, therefore, 2 were a common divisor, both 
a2 +d2 a2 +3d2 
-2--' and ~ ,must be a square; but the numbers a 

and d are in this case both odd, so that their squares have 

the form 8n+], and the formula,a2~3d2, is contained in 

the expression 4n + 2, and cannot be a square; wherefore 2 
cannot be a common divisor; the numerator, a2 +d2 , and 
the denominator, a2 +3d2 , are therefore prime to each other, 
and each of them must of itself be a square. 

But these formulre are similar to the former, and if the 
last were squares, similar formulre, though composed of 
the smallest numbers, would have also been squares; so 
that we conclude, reciprocally, from our not having found 
squares in small numbers, that thel'e are none in great. 

This conclusion, however, is not admissible, unless the 
second case, a2b2_e2d2=3b2d2_a2c2, furnishes a similar 
one. Now, this equation gives a2c2+a2e2=3b2d2+e2d2, 
or a2(b2+e2)=d2(8b2+e2); and, consequently, 
a2 b2+e2 e2 +h2 .. 
d2 = 3bZ + e2 = e2 + 3b2 ; so that as thIS fractlOn ough t to 

be a square, the foregoing conclusion is fully confirmed; 
for, ifin great numbers there were cases in whichp2+q2, 
and p2+3q2, were squares, such cases must have also 
existed with regard to smaller numbers; but this is not 
the fact. 
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231. Question 10. To determine three numbers, x, y, 
and z, such, that multiplying them together two and two, 
and adding I to the product, we may obtain a square each 
time; that is, to transform into squares the three following 
formulre : 

X,Y + I, xz+ 1, and yz+ 1. 

Let us suppose one of the last two, as xz + I = p'l., and 
the other 'yz+ I =q2, and we shall have, 

P'l.-1 q2_1 
x= --, and y= --. The first formula is now trans-

z z 

formed to (p'l._I) ~ (92
_ 1) + I ; which must consequently 

z 
be a square, and will be no less so, if multiplied by z'l.; so 
that (p2_1) X (q2_1) +z'l., must be a square, which it is 
easy to form. For, let its root be z+r, and we shall have 

(p'l._I) X (q2-I)=2rz+r'l., and 

z= (p2_1) X~;2_1)_r2, in which any numbers may be 

substituted for p, q, and r. 
For example, if r=(pq+ 1), we shall have 

p'l.+2pq+q2 
r2=p'l.q2 + 2qp + 1 and Z= . wherefore , 2pq+'2 ' 
x- (p2_1) ~~E9_+2) = 2(pq+ I) x (p2-1) and 

- p2+2pq+q2 (p+q)'l.' 
_ 2(pq+ 1) x (q2_1) 

y- (p+q)2 
But if whole numbers be required, we must make the 

first formula, xy + 1 p2, and suppose z=.'C + y + q; then 
the second formula becomes X2+xy+xq+ 1=x2+qx+p2, 
and the third will be xy+y2+qy+ 1 =y'l.+qy+p2. Now, 
these evidently become squares, if we make q= + 2p ; 
since in that case the second is x2±2px+p2, the root of 
which is x±p, and the third is '!l±2py+p2, the root 
of which is .1f±p. We have consequently this very 
elegant solution: xy+ 1 =p2, or xy=p2-1, which applies 
easily to any value of p; and from this the third number 
also is found, in two ways, since we have eitherz=x+y+2p, 
or z=x+y-2p. Let us illustrate these results by some 
examples. 

1. Let p=3, and we shall have p2_1 =8; if we 
make x=2, and y=4, we shall have either Z= 12, or 
z=O; so that the three numbers sought are 2, 4, and 12. 
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2. Ifp=4, we shall have p2-I=I5. Now, if x=5, 
and y=3, we find z= 16, or z=O; wherefore the three 
numbers sought are 3, 5, and 16. 

3. If P = 5, we shall have p2_1 = 24 ; and if we 
farther make x=3, and y=8, we find z=21, or z= I; 
whence the follo\Ying numbers result; I, 3, and 8; or 
3,8, and 21. 

232. Question II. Required tnree whole numbers, x, y, 
and z, such, that if we add a given number, a, to each 
product of these numbers, multiplied two and two, we 
may obtain a square each time. 

Here we must make squares of the three following formulre, 
xy+a, xz+a, and yz+a. 

Let us therefore suppose the first xy+a=p2, and make 
z=x+y+q; then we shall have, for the second formula, 
X2 + xy + xq + a = x2 + xq + p2; and, for the third, 
xy + y2 + yq + a = y2 + qy + p2; and these both become 
squares by making q= +2p: so that z=x+y+2p; that 
is to say, we may find two different values fOl' z. 

233. Question 12. Required fonr whole numbers, x, y, 
z, and v, such, that if we add a given number, a, to the 
products of these numbers, multiphed two by two, each of 
the sums may be a square. 

Here, the six following formulre must become squares: 
1. xy+a, 2. xz+a, 3. yz+a, 
4. xv +a, 5. yv +a, 6. zv+a. 

If we begin by supposing the first xy + a = p2, and 
take z=x+y+2p, the second and third formulre will 
become squares. If we farther suppose v=x+y-2p, 
the fourth and fifth formulre will likewise become squares; 
there remains therefore only the sixth formula, which will 
be x2+2xo9+o92_4p2+a, and which must also become 
a square. Now, as p2=xy+a, this last formula becomes 
x2-2xy+y2-3a; and, consequently, it is required to 
transform into squares the two following formulre: 

xy+a p2, and (x-y)2-3a. 
If the root of the last be (x-y)-q, we shall have 

(x-y)2-3a=(x-y)2_2q(x-y)+q2; so that 
q2+ 3a 

-3a = - 2q(x-y) + q2, and x - y = '2q ,or 

q2+3a q2+3a 
x=o9+ 2q ; consequently, p2 y2+ 2q y+a. 

Ifp=y+r, we shall have 
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qZ+ 3a 
2ry+r2= ~y+a, or 

4qry +2qr2=(q2+3a)y+2aq, or 
2qr2 - 2aq=(q2 +3a)y-4qry, and 

_ 2qr2-2aq 
y- q2 +3a-4qr' 

433 

where q and r may have any values, provided x and y be
come whole numbers; for since p=y+r, the numbers, 
z and v, will likewise be integers. The whole depends, 
therefOl'e, chiefly on the nature of the number a, and it is 
tme that the condition which requires integer numbers 
might cause some difficulties; but it must be remarked, 
that the solution is already much restricted on the other 
side, because we have given the letters, z and v, the values 
x+y±2p, notwithstanding they might evidently have a 
great number of other values. The following obser\'ations, 
however, on this question, may be useful also in other 
cases. 

1. When xy+a must be a square, or xy=p2-a, the 
numbers x and y must always have the form r'l_as'1. 
(Art. 176); if, therefore, we suppose 

x=b2-a&, and y=d2-ae2, 

we find xy=(bd-ace)2-a(be-cd)2. 
If be-cd= ± 1, we shall have xy=(bd-ace)2-a, and, 

consequently, xy+a=(bd-ace)2. 
2. If we farther suppose z=j2_ag2, and give such 

values tojandg, that bg-cf- ± I, and also dg-ej: ± I, 
tIle formulre, xz +a, and yz +a, will likewise hecome 
squares. So that the whole consists in giving such values 
to b, c, d, and e, and also to f and g, that the property 
which we have supposed may take place. 

3. Let us represent these three couples of letters by the 

fractions~, ~, and.f. Now, they ought to be such, that 
c e 9 

the difference of any two of them may be expressed by a 
fraction, whose numerator is 1. For since 
b d be-de . 
- - - = ---, thIS numerator, as we have seen, must 
e e ee 

be equal to + 1. Besides, one of these fractions is ar
bitrary; and it is easy to find another, in order that the 
given condition may take place. For example, let the first, 

FF 
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~ = t, the second ~ must be nearly equal to it; if, there-
c e 

fore, we make ~ = t, we shall have the difference z = t. 
e 

We may also determine this second fraction by means of 
. d 3e-2d 

the first, generally; for smce t - - = 2 ,we must 
e e 

have 3e-2d= I; consequently, 2d=3e-I, and 
e-I . e-I 

d=e+ 2-' So thatmakmg-2-=m, or e=2m+I, we 

shall have d=3m + I, and our second fraction will be 
d 3m+I . 
- =;---2 l' In the same manner, we may determme the 
e m+ 
second fraction for any first whatever, as in the following 
Table of examples: 

b 
i- t I ! I y \t' t..,7 _=.ll. 

C 2 

d 3m+1 5m+l 7m+2ISm+311m+3 13m+5 17m+5 
e=2m+1 :3rn+ I am + 115m + 2 4m + 1 8m+3 7m+2 

4. When we have determined, in the manner required, 

the two fractions, ~,and ~, it will be easy to find a third 
c e 

also analogous to these. We have only to supposef-b+d, 

and g=c+e, so that.[= h+d; for the first two giving 
9 c+e 

be-cd= +1, we have i_'2= 2+1 ; and subtracting 
gee +ce 

likewise the s~cond from the third, we shall have 

i_'!.= be-cd +1 
9 e e2 +ce = ce+e2 ' 

5. After having determined in this manner the three 

fractions,~, '!., and t, it will be easy to resolve our ques-
c e 9 

tion for three numbers, x, y, and z, by making the three 
fOl'mulre, xy+a, xz+ a, and yz + a, become squares: 
since we have only to make x=b~-ac2, y=d2_ae2, 

and z f2-ag 2• For example, in the foregoing Table, 
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b d f let us take - = 1, and - = ·h we shall then have - = V ; 
c e 9 

whence x=25-9a, y=49-16a, and z= 144-49a; by 
which means we have 

1. xy+a= 1225- 840a+ 144a2=(35-12a)2; 
2. xz+a=3600-2520a+441a2 =(60-21a)2; 
3. yz+a=7056-4704a+784a2 =(84-28a)2. 

234. Tn order now to determine, according to our ques
tion, four letters, x, y, Z', and n, we must add a fourth 
fraction to the three preceding: therefore let the first three 

be ~, ':!., t = b + d, and let us suppose the fourth fraction 
c e 9 c+e 

It b+d 2d+b. . 
-k = --= -2--' so that It may have the glven rela-

e+g e + c 
tion with the third and second; if after this we make 
x=b2-ac2, y=d2-ae2, z __ f2-ag2, and v=!t2-ak2, we 
shall have already fulfilled the following conditions: 

xy+a= 0, xz+a= 0, yz+a= 0, 
yv+a= 0, zy+a= o. 

It therefore only remains to make xv + a become a square, 
which does not result from the preceding conditions, be
cause the first fraction has not the necessary relation with 
the fourth. This obliges us to preserve the indeterminate 
number rn in the three first fract.ions; by means of which, 
and by determining m, we shall be able also to transform 
the formula xv+a into a square. 

6. If we therefore take the first case from our small 
b d 3m+ 1 

Table, and make - = ·h and - = -2 1; we shall have 
c e m+ 

t = 23m +43, and ~k = 46m +45, whence x=9-4a, and 
9 rn+ rn+ 
v=(6m +5)2-a(4m +4)2; 

h { 9(6m+5)2-4a (6m+5)2 
so t at xv+a= -9a(4m+4)2+4a2(4m+4)2 

+ { 9(6m +5)2 + 4a2(4m +4)2 
or xv a= -a(288m2 +528m +244), 

which we can easily transform into a square, since m2 will 
be found to be multiplied by a square; but on this we shall 
not dwell. 

7. The fractions, which have been found to be necessary, 
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may also be represented in a more general manner; for 

if ~ =~l' '!:. = nf3-I, we shall have 
c e n 

t. = 1If3 + f3 - 1 and fl = 2nf3 + f3 - 2. If in this last frae-
9 n+ I' It 2n+ 1 

tion we suppose 2n + I =m, it will become f3m- 2 ; conse-
m 

quently, the first gives x=f32-a, and tlle last furnishes 
v=(f3m-2)2- am2 • The only question therefore is, to 
make xv+a a square. Now, because 

v=(f32-a)m2 -4f3m +4, we have 

xv + a = (f32 - a)2rn2 - 4(f32 - a)f3m + 4f32 - 3a; and 
since this must be a square, let us suppose its root 
to be (f32 - a)rn - p; the square of which quantity 
being (f32 - a)2m2 - 2(f32 - a)mp + p2, we shall have 
-4(f32-a)f3m + 4f32 - 3a= -2(f32- a)mp + p2; wherefore 

p2-4f32+3a 
m= (f32_ a) X (2p- 4 f3), If p = 2f3 + q, we shall find 

4f3q+q2+3a. h' h b . 
111= 2q(f32_ a) ; III W IC we may su shtute any num-

bers whatever for f3 and q. 
For example, if a= I, let us make f3=2: we shall then 

4q+q2+3 . 
have m = . : and makmg q=l, we shall find 

oq I 

m = t; farther, m = 2n + 1. But without dwelling any 
longer on this question, let us proceed to another. 

235. Question 13. Required three such numbers, x, y, 
and z, that the sums and differences of these numbers, 
taken two by two, may be squares. 

The question requiring us to transform the six following 
formulre into squares, viz. 

x+y, x+z, y+z, 
x-y, x-z, y-z, 

let us begin with the last three, and suppose x_y=p2, 
x - Z = q2, and y - z = r2; the last two will furnish 
X=q2+Z, and y=r2+z; so that we shall have (/ p2+r2, 
because x_y=q2_r2_p2; hence, p2 +1"2, or the sum of 
two squares, must be equal to a sqllare q2; now, this hap
pens, when p=2ab, and r=a2_u2, since then q=a2 + bZ• 

But let us still preserve the letters p. g. and r, and consider 
also the first three formulre. We shall have, 
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1. x+y=q2+r2+2z; 
2. x+z=q2+2z; 
3. y +z=r2+2z. 

Let the firstq~+r2+2z=t2, by which means2z=t2_q2_r2; 
we must also have t2_r2= 0, and t2_q2= 0 ; that is to 
say, t2_(a2 _b2)2= 0, and t2_(a2+b2)2= 0; we shall 
have to consider the two formulre, t2_a4_b4+2a2b2, 
and t2-a4_b4_2a2b2. Now, as both c2+d2+2cd, 
and c2+d2-2cd, are squares, it is evident that we shall 
obtain what we want by comparing t2 - a4 - b"', with 
c2 +d2, and 2a2b2 with 2cd. With this view, let us suppose 
cd=a2b2 =f2g2h2k2, and take C=f2g2, and d=ll2k2; 
a2 f21t 2, and b2=g2k2, or a=fh, and b=gk; the 
first equation t2_a4_b4=c2+d2, will assume the form 
t2_f4h4_g4k4 f4g4+ !t4k4 ; whence 
t2 f4g4 + j"4Il4_g4k4 + k 4k4, or t2 = (/4 + k4) X (g4 + k4) ; 
consequently, this product must be a square; but as the 
resolution of it would be difficult, let us consider the sub
ject under a diflerent point of view. 

If from the first three equations x_y=p2, X_Z=q2, 
y-z=r2, we determine the letters '!I and z, we shall find 
y = x - p2, and z = x - q2; whence it follows that 
q2=p2+r2. Our first formulre now become x+y=2X-p2, 

x+Z=2x_q2, and y+Z=2X_p2_q2. Let us make this 
last 2x_p2_q2=t2, so that 2x=t2+p2+(/. and there will 
only remain the formulre, t2+q2, and t2+p2, to transform 
into squares. But since we must have q2 p2+r2, let 
q=a2+b2, and p=a2_b2; we shall then have r=2ab; 
consequently, our formuire will be: 

1. t2+(a2+b2)2=t2+a4+b4+2a2b2= 0; 
2. t2+(a2_b2)2=t2+a4+b4_2a2b2= D. 

In order to accomplish our purpose, we have only to 
compare again t2+a4+b4 with c2+d2, and 2a2b2 with 
2cd. Therefore, as before, let c f 292, d=k2k2, a f h, 
and b=gk; we shall then have cd=a2b2, and we must 
again have 

t2+f4h4+g4k4=c2+d2 -f4g4+k4k4; whence 
t2 f"g4-P'h4+ h4k4_g4k4=(f4_k4) x (g4_lt4). 

So that the whole is reduced to finding the differences of 
two pair ofbiquadrates, nameIy,f4-k4, andg4 -h4, which, 
multiplied together, may produce a square. 

For this purpose, let us consider the formula m4 _n4 ; 

let us see what numbers it fUl'Diwes, if we substitute 
given numbers for m and n, and attend to the squares that 
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will be found among those numbers; the property of 
m4_n4=(m!l+n2) x (m2_ n!l), will enable us to construct 
for our purpose the following Table :-

A Table of numbers contained in the Formula m4 _n4 • 

m2 n2 m2 _n2 m2 +n2 m4 _n4 ----
4 1 3 5 3x 5 
9 1 8 10 16 x 5 
9 4 5 13 5x 13 

16 1 15 17 3x 5x17 
]6 9 7 25 25x 7 
25 1 24 26 16x 3x13 
25 9 16 34 16x 2x 17 
49 1 48 50 25x 16x 2x 3 
49 16 33 65 3x 5xllxl3 
64 1 63 65 9x 5x 7x13 
81 49 32 130 64x 5x 13 

121 4 117 125 25 x 9x 5x 13 
121 9 112 130 16x2x 5x 7x13 
121 49 72 170 144 x .s x 17 
144 25 119 169 169x 7x 17 
169 I 168 ]70 16x3x 5x 7x17 
169 81 88 250 25x 16x 5x 11 
225 64 161 289 289x 7x23 

We may already deduce some answers from this. For, 
if P = 9, and k2 = 4, we shall have f4_k4 = 13 X 5 ; 
farther, let 92 = 81, and n2 = 49, we shall then have 
94 - n4 = 64 x 5 x 13; therefore t2 = 64 x 25 x 169, 
and t = 520. Now, since t2 = 270400, f=3, 9 = 9, 
k=2, n=7, we shall havea=21, and b=18; so that 
p = 117, q = 765, and r = 756; from which results 
2x = t2 + p2 + q2 = 869314; consequently, x = 434657 ; 
then y=x-p2=420968, and lastly, z=x-q2=-150568, 
This last number may also be taken positively; the dif
ference then becomes the sum, and, reciprocally, the sum 
becomes the difference. Since therefore the three numbel's 
sought are: 
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x =434657 
y=420968 
z= 150568 

we have x + y = 855625 = (925)2 
x + z = 585225 = (765)2 

and y+z = 571536 = (756)2 

also, X-,1f = 13689 = (117)2 
x-z = 284089 = (533)2 

and y-z = 270400 = (520)2. 

439 

The Table which has been given would enable us to 
find other numbers also, by supposingf2=9, and k2 =4, 
g2= 121, and h£ = 4; fo,' then 
t£ = 13 x 5 x 5 x 13 x 9 x 25 = 9 x 25 x 25 x 169, and 

t=3 x 5 x 5 x 1:3=975. 
Now, as 1=3, g= 11, k=2, and h=2, we have 

a--fh=6, and b=gk=22; consequently, 
p=a2 -b2=_448, q=a£+h2 =520, and r=2ab =264; 
whence 2x = t2 + IP + q2 = 950625 + 200704 + 270400 = 
1421729, and x= 142t729; wherefore y=X_p2= 
102%,121, and Z=X_ q2=88fl;J!29. 

Now, it is to be observed,- that if these numbers have 
the property required, they will preserve it by wha tever 
square they are multiplied, If, therefore, we take them 
four times greater, the followillg numbe,'s must be equally 
satisfactory: x=2843458, y=2040642, and z= 1761858; 
and as these numbers are greater than the former, we 
may consider the former as the least that the question 
admits of. 

236. Question 14. Required three such squares, that 
the difference of every two of them may be a square, 

The preceding solution will serve to ,'esol ve the present 
question, In fact, if x, y, and z, are such numbers that 
the following formulre, namely, 

x+y=o, x-y=o, x+z=o, 
x-z= 0, y+z= 0, y-z= 0, 

may become squares; it is evident, likewise, that the pro
duct :C2_y2 of the first and second, the product X 2_Z2 of 
the third and fourth, and the product y2_z2 of the fifth 
and sixth, will be squares; and, consequently, x2, y2, and 
Z2, will be th,'ee such squaJ'es as are sought. But these 
numbel's would be very great, and there are, doubtless, less 
numbers, that will satisfy the question; since, in order that 
x2_y2 may become a square, it is not necessary that x+y, 
and x - y, should be squal'es: for example, 25 - 9 is a 
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square, although neither 5+3, nor 5-3, are squares. Let 
us, therefore, resolve the question independently of this 
consideration, and remark, in the first place, that we 
may take 1 for one of the squares sought: the reason for 
which is, that if the formulre X2 _y'l., X2 _ Z2, and y2 _ ,::2, 

al'e squares, they will continue so, though divided by Z2 ; 
consequently, we may suppose that the question is to 

transform (~-!:), (~-l), and (~-l ) into squares, 

and it then refers only to the two fractions:', and :!t. 
z z 

x p2+1 Y q2+1 
If we now suppose -=~l' and-= ~l' the last z p- z q-

two conditions will be satisfied; for we shall then have 
X2 4p2 !l 4q2 . 
"2 - 1 = ( 2 1)2' and 2-1 = (2 1 2' It only remams, z p- z q-) 
therefore, to consider the first formula 

x2 y2 _ ( p2 + 1)2 (q2 + 1)2 _ 
Z2- z2-(p2_1)2- (q2_1)2-

( P2+ 1 +q2+1) x (P2+ 1 _ q2+ 1 ). 
~-1 ~-1 ~-1 ~-1 

. 2(p2q2_1) 
Now, the first factor here IS ( 0 1 (2 1); the second 

p-- ) x q-

is (P2~i~2~~~2_1)' and the product of these two factors 

is= 4(p2q2_1) x (q2_ p2). It is evident that the deno-
(p2_1) x (q2_1) 

minator of this product is already a square, and that the 
numerator contains the square 4; therefore it is only 
required to transform into a square the formula 

(p2q2_1) x (q2_p2), or (p2q2_1) x (~-1) ; and this is 

/2+g2 q 1l2+h 
done by making pq = -2'1" ,and - = --';--k ,because then 

';,g p ""It 
each factor separately becomes a square. We may also 
be convinced of' this, by remarking that 

q P+g2 h2+k2 
pq x P =q2= 2j~ x 21th ; and, consequently, the pro-

duct of these two fractions must be a square; as it must 
also be when multiplied by 4p·g2 x 112hz, by which means 
it becomes equal tojg(j2+g2)xhk(h2+h2). Lastly, this 
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formula becomes precisely the same as that before found, 
if we makef-a+b,g=a-b, h=c+d, and k= c-d; 
since we have then 

2(a4-b4) x 2(c4-d4)=4 x (a4_b4) X (c4_d4), 

which takes place, as we have seen, when a2=9, b2=4, 
c2 =81, and d2 =49; or a=3, b='2, c=9, and d=7. 
Thus, f= 5, g= 1, It = 16, and Ie = 2, whence pq = l-l, 

and 'l = 2-tf = H-; the product of these two equations 
p 

. 65 x 13 13 x 13 I 1:' d' 1:' I 
gIves q= lti x 5 = 16 ; w lCrelOre q= If, an It 10 -

lows that p=!, by which means we have 

:: _ p2 + 1 __ U and!L _ q2 + 1 _ 11L2.. therefore, 
Z - p2_1 - 9 , Z - q2 _ I - T 5 3 , 

. 41z d 185z. db' h I smce x=- 9' an y= 153-' In or er to 0 tam woe 

numbeI's, let us make z= 153, and we shall havex= -697, 
and y=185. 

Consequently, the thI'ee square numbers sought al'e, 

X2 = 4858091 {X2_ y2 = 451584 = (672)2 
y2 = 34225 . and y2_z2 = 10816 = (104)2 
Z2= 2340!)J X2_Z2=462400=(680)2. 

It is farther evident, that these squares are much less 
than those which we should have found, by squaring the 
three numbers x, y, and z, of the preceding solution. 

237. Without doubt it will here be objected, that this 
solution has been found merely by trial, since we have made 
use of the Table in Article 235. But in reality we have 
only made use of this, to get the least possible numbers; for 
if we were indifferent with regard to brevity in the calcula
tion, it would be easy, by means of the rules above given, to 
find an infinite number of solutiolls; because, having found 
x p2+ 1 Y q2+ I 
-= Z-1' and-= -2--1' we have reduced the question z p- z q-

to that of transforming the product (p2q2_1) X (~-1) 
P 

into a square. If we therefore make ~ = m, or q = mp, 
p 

our formula will become (m2p4 - 1) x (m2-1), which is 
evidently a square, when p= 1; .but we shall farther see, 
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that this value will lead us to others, if we write p= I +s; 
in consequence of which supposition, we have to transform 
the formula 

(m2-1) X (m2_1 + 4m2s + 6m2s2 +4m2s3 +m2s4) 
into a square; it will be no less a square, if we divide it 
by (m2_1)2; this division gives us 

4m2s 6m.2S 2 4m2s3 m2s4 

1 + m2-1 + m2-1 + m2_1 + m2-1; 

and if to abridge we make :2 1 =a, we shall have to 
rtt -

reduce the formula 1 + 4as + 6as2 + 4as3 + as4 to a 
square. Let its root be l+fs+gs2, the squa,'e of which is 
1 + 2fs + 2gs2 + f 2s2 + 2fg83 + g284 , and let us deter
mine f and 9 in such a marmer, that the first three terms 
may vanish; namely, by making if 4a, or f-2a, and 

6a - (2 
6a = 2g + f2, or 9 = ;l" 3a-2a2, the last two 

terms will furnish the equation 4a + as = 2fg + g28 ; 
4a-2lq _ 4a-12a+8a3 

whence8= 2 -4 4 12 3 +9 2 -9 -a a - a a-a 
4-12a+8a2 • • • 4(2a-l) 

4 31.29 l;or,dlvldmgbya-I,8=4"2 8 l' a - !.a + a- a - a+ 

This value is already sufficient to give us an infinite num
ber of answers, because the number m, in the value of a, 

m2 
= ~1' may be taken at pleasure. It will be proper to 

m-
illustrate this by some examples. 

1. Let m=2, we shall have a=t; so that 
Ii. 

8 = 4 x :""=-"H"; whence p= -i{, and q= -it; 
-9 

lastly,::= U~, and 'V... =i~H. z z 
2. If m=t, we shall have a=t, and 

13 

8 = 4 x -tt = - '¥f; consequently, p = - \~, and 

q= - Vi, by which means we may determine the fractions 

:: and'V.... 
z' z 

There is here a particular case that deserves to be at-
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tended to; which is that in which a is a square, and takes 
place, for example, when m=t; since then a=H-. If 
here again, in order to abridge, we make a=b2, so that 
our formula may be I +4b2S+6b2S2+4b2S3+b2S4, we may 
compare it with the square of 1 +2b2s+bs2 , that is to 
say, with I + 4b2s + 2bs2 + 4b4s2 + 4b3s3 + b2s4 ; and ex
punging on both sides the first two terms and the last, and 
dividing the rest by S2, we shall have 6b2 +4b2s=2b+ 

6b2 -2b-4b4 3b-I-2b3 
4b4 + 4b3s, whence s= 4b3-4b2 = 2b2-2b ; but 

this fraction being still di visible by b-I, we shall, at last, 
1-2b-2b2 I-2bZ 

have s = 2b ' and p = 26- . 
We might also have taken 1 + 2bs + bs2 for the root 

of our formula; the square of this trinomial being 
I + 4bs + 2bs2 + 4b2s2 + 4b2s3 + b2s4, we should have de
stl'oyed the first, and the last two terms; and dividing the 
rest by s, we should have been brought to the equation 
4b2 +6b2s=4b+2bs+4bzs. But as b2 = H, and b = {, this 
equation would have given us s= -2, and p= -I; con
sequently, p2_1 =0, from which we could not have drawn 
any conclusion, since we should have had z=O. 

To return then to the former solution, which gave 
I-2b2 . P = -----u-; as b=i, It shews us that if m=t, we have 

x 
p = tt, and q = mp = ft; consequently, - = lU, and z 

!l = -Ht. 
x 

238. Question 15. Required three square numbers 
such, that the sum of every two of them may be a square. 

Since it is required to transform the three formulre, 
X2 +y2, X2+Z2, and $12 +Z2, into squares, let us divide them 
by Z2, in order to have the thr'ee following, 

X2 $12 X2 y2 
2+""""2=°'2+ 1 = °'""""2+ 1=0, z z z z 

x p2_1 
The last two are answered, by making - = -2-' and 

z 'P 

Y.. = q2 - 1, which also changes the first formula into this, 
z 2q 

(p2 -I )2 + (q2 _1)2, which ought also to continue a square 
4p2 4q2 
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after being multiplied by 4p2q2; that is, we must have 
q2(p2_1)2+Jl(q2_1)2=D. Now, this can scarcely be 
obtained, unless we previously know a case in which this 
formula becomes a square: and as it is also difficult to 
find such a case, we must have recourse to other artifices, 
some of which we shall now explain. 

I. As the formula in que8tion may be expressed thus, 
q2( p+ 1)2 X (p_l)2+ p2(q+ 1)2 x (q-I )2= 0, let us make 
it divi .. ible hy the square (p + 1)2; which may be done by 
making q-I=p+ I, or q=p+2; for then q+ 1 p+3, 
and the formula becomes 
( p + 2)2 X (p + 1 )2 X (p - 1)2 + p2( P + 3)2 X (p + 1)2 = 0 ; 
so that dividing hy (p + 1)2, we have (p +2)2 X (p_I)2 + 
p2( P + 3)2, which must be a square, and to which we may 
give the form 2p4 + 8p 3 + 6p2_4p+4. Now, the last 
term here being a 8quare, let us suppose the root of the 
formula to be 2 + jp+gp2, or gp2 +./p+2, the square of 
which is g2p4 + 2fgp3 + 4gp2 + pp2 + 4fp + 4, and we 
shall destroy the last three terms, by making 4f = -4, or 
.f -I, and 4g + 1 =6, or 9 = t. Aho the first terms 
being divided by P3, will give 2p+8=g2p +2fg=Hp-t; 

x p2_1 
or p=-24, and q=-22; whence - = -2- =- %7;; 

Z P 
Y q2_1 

or x=-%'!.jz, and '- = -2- =-4...r,8.j, or y=-4...r,8.jz. 
z q 

Let us now make z= 16 x 3 xII; we shall then have 
x = 575 x 11, and y = 483 x 12; consequently, the roots 
of the three squares sought will be: 

x=6325= 11 x 23 x 25; 
y=5796= 12 x 21 x 23 ; 

and Z= 528= 3x II x 16; 
for from these result, 

X2 +!l = 2;32(2752 + 2522)=232 x 3732; 
x2+z2 =112(.5752+ 4R2)=1l2x5772; 

and y2 + Z2= 122(48:32 + 442) = 122 X 4852 • 

2. We may also make our formula divisible by a square, 
in an infinite number of ways; for example, if we suppose 
(q+I)2=4(p+I)2, or q+l=2(p+I), that is to say, 
q = 2p + I, and q - 1 = 2p, the formula will become 
(2p + 1)2 X (p + 1)2 X (p - 1)2 + p2 X 4(p + I )2 X 4p2 = 0 ; 
which may be divided by (p+ 1)2, by which means we 
have (2p+I)2x(p-l)2+16p4=D, or 
20p4 - 4p 3 - 3p 2 + 2p + I = 0 ; but from this we derive 
nothing. 
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3. Let us then rather make (q-l)2=4(p+ 1)2, or 
q - 1 = 2(p + 1); we shall then have q = 2p + 3, and 
q + 1 = 2p + 4, or q + 1 = 2(p + 2), and after havinO' 
divided our formula by (p + I )2, we shall obtain th~ 
following; (2p + 3)2 X (p - 1)2 + 16p2(p + 2)2, or 
9-6p+53p2+68p2+20p4. Let its root be 3_p+gp2, 
the square of which is 9-6p + 6gp2 + p2_2gp3 + g2p4; 
the first two terms vanish, and we may destroy the third 
by making 6g+ 1 =53, or g= ¥; so that the other terms 
are divisible by p, and give 'lOp + 68 = g2p - 2g, or 
4%6p = 21 6 ; therefore p = n, and q = tt-f, by which 
means we obtain a new solution. 

4. If we make q-l=1(p-l), we have q=1p-i, 
and q + 1 = 1- P + % = %('2p + 1), and the formula, aftel' 
being divided by (p-l)Z, becomes 

(4p 9 I r x (p + 1)2 + -Hp2(2p + 1)2; multiplying by 81, 

we have 9(4p-l)2 x (p + 1)2 + 64p2(2p + 1)2= 
400p4 + 472p 3 + 73p2_54p + 9, 

in which the first and last terms are both squares. If, 
therefore, we suppose the root to be 20p2_9p + 3, the 
square of which is 400p4_360p3 + I20p2+ 81p2-51p +9, 
we shall have 472p+73=-360p+20I; wherefore P=l3' 
and q=-fg-i= ---fg. 

We might likewise have taken for the root 20p2 + 9p-3, 
the square of which is 400p4+360p3-120p2+8Ip2_54p 
+ 9; but comparing this square with our formula, we 
should have found 472p + 73 = 360p - 39, and conse
quently p= -1, a value which can be of no lise to us. 

5. We may also make OUI' formula divisiLle by the two 
squares, (p + 1)2, and (p_l)2, at the same time. For 

this purpose, let us make q = pt + 1; so that 
p+t 

l=pt+p+t+I =(p+I)x(t+l) and 
q+ p+t p+t' 

_ pt-p-t+ 1 _ (p-I) x (t-I) 
q-I- p+t - p+t . 

This formula will be divisible by (p+l)2x(p-l)2, and 
. (pt+l)2 (t+l)2x(t-I)2 0 

will be reduced to ( )2 + ( )4 X p-. If p+t p+t 
we multiply by (p + t)4, the formula, as before, must be 
transformable into a square, and we shall have 

(pt + 1)2 x (p+ t)2 +p2(t+ 1)2 x (t-I)2, 01' 

t2p4+2t(t2 + I )p3 +2t2p2 +(t2 + 1 )2p2t (t2_ 1 )2p2 +2t(t2 + l)p + t2 
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in which the first and the last terms are squares. Let us 
therefore take for the root tp2+(t2+ I)p-t, the square of 
which is 

tZp4 + 2/(t2+ I)p3_2t2p 2 + (t2 + I )2p2_2t(t2 + I)p + t2, 

and we shall have, by comparing, 
2tZp+ (t2 + I)2p + 2t(t2 + I) + (t2-I)2p= 

_2t2p+(t2+ 1)2p-2t(t2+ I); or, by subtraction, 
4tZp + 4t(t2 + I) + (t2-1 )Zp=O, or 
(t2 + I)Zp* +4t(t2 + 1)=0, 

-4t -4t 
that is to say, t2 + I = p; whence p = t2+ I; conse-

-3t2 + I t3-3t 
quently, pt + 1= [2+ l' and p + t = [2+ 1 ; lastly, 

-3t2 + 1 . . 
q = t 3 -at' where the value of the letter t IS arbItrary. 

-8 
For example, let t = 2; we shall then have p = 5' 

-II x p2_1 
and q = --2; so that z = 'IjJ = + it, and 

'!!... = q2 - 1 = LU or x = 3 x 13 z and 11 = 9 x 13 z. 
z 2q 4 4. , 4 x 4 x 5' .7 4 x 11 

Farther, if .r=3 x 11 x 13, we have 
y=4 x 5 x 9 x I;~, and 
z=4x 4x 5x II, 

and the roots of the three squares sought are 
x=3 x II x 13=429, 
y=4 x 5 x 9 x 13=2340, and 
z = 4 x 4 x 5 x II = 880 : 

where it is evident that these are still less than those 
found above, from which we derive 

X2+!J2 = 32 x 132(121 +3600)=32 x 132 X 6]2, 
x2+z2=1l2x (1521 +6400)=1J2 x 892 , 

y2 +z2=202 x (13689 + 1936)=202 x 1252• 

6. The last remark we shall make on this question is, 
that each answer easily furnishes a new one; for when we 

• Thus, (t2_1)2 = t4_2t2+ 1, which multiplied by p be-
comes pt4_2pt2+p, 

Then adding, 4pt£ 
We have pt4+2pt2+p=W+ 1)2p; 
and (t2 + I )2p + 4t(t2 + 1 )=O,.as above. 
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for the two numbers sought x={1-, and y=-H-, by which 
means x2+y=t-H +-H= .. H-t=(H)2, and 
y2+x=W-J'+*=~W=(H)2. If we made p=l, 
and q = 3, we should have x = - T3T! and y = ++; an 
answer which is inadmissible, since one of the numbers 
sought is negative. 

But let p= 1, and q=t, we shall then have x=-fo, and 
Y=170' whence we derive 

x2 +Y="4h +T70=H1l-=(U)2, and 
y2 +X=T4090 + 2'0 = T90\= (T\)2. 

240. Question 17. To find two numbers, whose sum 
may be a square, and whose squares added together may 
make a biquadrate. 

Let us can these numbers x and y; and since X2+y2 
must become a biquadrate, let us begin with making it a 
square: in order to which, let us suppose X=p2_q2, and 
y=2pq, by which means, x2 + y2 =(p2 + q2)2. But, in 
order that this square may become a biquadrate, p2 + q2 
must be a square; let us therefore make p = 1'2 - S2, and 
q = 21'S, in order that p2 + q2 = (1'2 + S2)2; and we 
immediately have x2 + y2 = (1'2 + S2)4, which is a biqua
drate. Now, according to these suppositions, we have 
x=1'4-61'2s2+s4, and y=41'3s-41's3; it therefore remains 
to transform into a square the formula 

x + y =1'4 + 41'3s- 61'2s2- 41'83 + S4. 

Supposing its root to be 1'2+21's+s2, or the formula 
equal to the square of this, 1'4+41'3s+61'2s2+41's3+s4, we 
Dlay expunge from both the first two terms and also s4, 
and divide the rest by 1'82, so that we shall have 

61'+4s= -61'-4s, or 12r+8s=0; or 
121' 

s= - 8 = -ir. We might also suppose the root to be 

1'2-21's+82, and make the formula equal to its square 
1'4-41'3s + 61'2s2 - 41'83 + 84 ; the first and the last two 
terms heing thus dest oyed on both sides, we should have, 
by dividing the other tet'ms by 1'2s, 41'-68=-41'+ 6s, 
or 81'= 12s; consequently, 1'=is; so that by this second 
supposition, if l' = 3, and s = 2: we shall find x= -119, 
01' a negative value. 

But let us make 1'=is + t, and we shall have for our 
formula, 

1'2=-is2 +3st +t2; 1'3=V S3 + fIi s2t+tst2+ t3• 
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Therefore r4 = _H-S4 + 'V sat + 'V s2t2 + 6st3 + t i 

+4r3s = 'VS4+ 27s3t+ 18s2t2+4st3 
_6r2.~2= -2is4-18s3t- 6s2t2 
-4rs3"= - 6s4- 4s3t 
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+ S4= + S4; and, consequently, the formula will 
1 37 51 . 

be 16s4+ 2s3t + 2s2t2+lOst3+t4. 

This formula ought also to be a square, if multiplied by 
16, by which means it becomes 

s4+296s3t+408s2[2 + 160st3+ 16t4 • 

Let us make this equal to the square of S2+ 148st-4t2, 

that is, to s4+296s31+21896s2t2-1184st3+16t~; the first 
two terms, and the last, are destroyed on both sides, and 
we thus obtain the equation, 

21896s-1184t=408s+ 160t, which gives 
~ - l:U 4 - _-"L'tJL _ .lLL_ 
t-"21'488-5 372 -1'343' 

Therefore, since 8=84, t= 1343, and r2= ~s2+3st+ t2, we 
shall have r=ts+t=1469, and, consequently, 

x=r4-6r2s2 +S4= 4565486027761, and 
y=4r3s-4rs3= 1061652293520. 

CHAPTER XV. 

Solutions of some Questions in which Cubes are required. 

241. In the preceding chapter, we have considered some 
questions, in which it was required to transform certain 
formulre into squares, and they afforded an opportunity of 
explaining several artifices requisite in the application of 
the rules which have been given. It now remains to con
sider questions, which relate to the transformation of cer
tain formulre into cubes; and the following solut.ions will 
throw some light on the rules, which have been already 
explained for transformations of this kind. 

242. Question 1. It is required to find two cubes, x3, 
and y3, whose sum may be a cube. 

Since X 3 +y3 must be a cube, if we divide this formula 
by y3, the quotient ought likewise to be a cube, or 
x 3 x 
-+I=c. If, therefore, - = z - 1, we shall have y3 y 

G G 
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z3_3z2 + 3z - P=c. If we should here, according to the 
rules already given, suppose the cube root to be z-u, and, 
by comparing the formula with the cubez3-3uz2+3u~z-u3, 
determine u so, that the second term may also vanish, we 
should have u= 1; and the other terms forming the equa
tion 3z = 3u2z - u3 = 3z-I, we should find Z'=OO, 
from which we can draw no conclusion. Let us therefore 
rather leave u undetermined, and deduce z from the qua
dratic equation _3z2 + 3z = - 3uz2 + 3u2z - u3 , or 
3uz2-3z2=3u2z-3z-u3, or 3(u-l)z2=3(u2-1)z-u3, or 

z2=(u+I)z- 3(u~I); from this we shall find 

_ u + 1 + (U2 + 2u + 1 _~ ) 
z- 2 -../ 4 3(u-I) 

u+ 1 (-u3 +3u2 -3u-3) 
orz=----..:r-±../ 12(u-l) ; so that the 

question is reduced to transforming the fraction under the 
radical !lign into a squal·e. For this purpose, let us first 
multiply the two terms by 3(u-I), in order that the deno
minator becoming a square, namely, 36(u-l)2, we may 
only have to consider the numerator _3u4 + ] 2u3 -18u2 +9: 
and, as the last term is a square, we shall suppose the 
formula, according to the rule, equal to the square of 
gu2 +fu+3, that is, to g2u4 + 2Jgu3 +f2u2 + 6gu2 + 6fu +9. 
We may make the last three terms disappear, by putting 
6f 0,01'/-0, and 6g+.(9-= -18, or g= -3; and the 
remaining equation, namely, 

-3u+ 12=g2u +2fu=9u, 
will give u= 1. But from this value we learn nothing; so 
that we shall proceed by writiug u= 1 + t. Now, as our 
formula becomes in this case-I2t-3t4, which cannot be 
a square, unless t be negative, let us at once make t= -8; 
by these means we have the formula, 128-384, which be
comes a square in the case of s= 1. But here we are 
stopped again; for when 8= 1, we have t= -1, and 
u=O, from which we can draw no conclusion, except that 
in whatever mannel' we set about it, we shall never find 
a value that will bring us to the end proposed; and hence 
we may already infer, with some degree of certainty, that 
it is impossible to find two cubes whose sum is a cube. 
But we shall be fully convinced of this from the following 
demonstration. 

243. Theorem. It is impossible to find any two cubes, 
whose sum, or difference, is a cube. 
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We shall begiu by observing, that if this impossibility 
applies to the sum, it applies also to the difference, of two 
cubes. In fact, if it be impossible for X3+y3=z3, it is a180 
impossible fOl' :;:3_ y3=X3 • Now, Z3_ y3 is the differenee 
of two cubes; therefore, if the one be possible, the other is 
so likewise. This being laid down, it will be sufficient, if 
we demonstrate the impossibility either in the case of the 
8um, or diffel'ence; which demonstration requires the fol
lowing chain of reasoning. 

1. We may consider the numbers x and y as prime to 
eaeh other; for if they had a common divisOI', the cubes 
would also be divisible bv the cnbe of that divisor. For 
example, Jet x=ma, al{d y=mb, we shall then have 
x3+y3=m3(l3+ m3b3 ; now if this formula be a cube, 
a3 + b3 is a cube also. 

2. Since, therefore, x and y have no common factor, 
these two numbers are either huth odd, or the one is even 
and the other odd. In the first case, z would be eVPD, 
and in theotherthatnutnbenvould be odd. Consequently, 
of these three numbers, .x, y, and z, there is always one 
that is e\'en, and two that are odd; and it will therefore 
be sufficient for our demonstration to consider the case in 
which x and yare hoth odd: because we may prove the 
impossibility in question either for the sum, or for the dif
fel'ence; and the sum only happens to become the dif
ference, when one of the roots is negative. 

3. If therefore x and .11 are odd, it is evident that both 
their sum and their difference will be an even number. 

Therefore let x;y =p, and x 2 y =q, and we shall have 

x=p+q, and y_p-q; whence it follows, that one of the 
two numbers, p and q, must be even, and the other odd. 
Now, we have, by adding (p+q)3=X3, to (p_q)3=y3, 
X3+y3=2p3 +6pq2=2p(p2+3q2); so that it is required 
to prove that this product 2p(p2+3q2) cannot become a 
cu be; amI if the demonstration were applied to the dif
ference, we should have x3_y3=6p2q+2q3=2q(q2+:3p2), 
a formula precisely the same as the former, if we substitute 
p and q for each other. Consequently, it is sufficient for 
our purpose to demonstrate the impossibility ofthe formula, 
2p(p2 + 3q2), becoming a cube, since it will necessarily fol
low, that neither the sum 1101' the difference of two cubes 
can become a cube. 

4. If therefore 2p(p2+3q2) were' a cube, that cube 
would be even, and therefor~' divisible by 8: conse-
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found p = t(t2 - 9u2) = t(t + 3u) x (t - 3u), it is also 

required that~, and, consequently, 2p, be a cube; or, 

which comes to the same, that the formula, 
2t(t+3u) x (t-3u) be a cube. But here it must be ob
served that t is an even number, and not divisible by 3; 
since otherwise p would be divisible by 3, which we have 
expressly supposed not to be the case: so that the three 
factors, 2t, t + 3u, and t-3u, are prime to each other; 
and each of them must separately be a cube. If, therefore, 
we make t+3u-f3, and t-3U=g3, we shall have 
2t f3 + g3. So that, if 2t is a cube, we shall have two 
cubesf3, and g\ whose sum would be a cube, and which 
would evidently be much less than the cubes x 3 and y3 as
sUlned at first; for as we first made x=p +q, and y p-q, 
and have now determined p and q by the letters t and v, 
the numbers x and y must necessarily be much greater 
than t and u. 

9. If, thel"efore, there could be found in great numbers 
two such cubes as we require, we should also be able to 
assign in less numbers two cubes, w hose sum would make a 
cube, and in the same manner we should be led to cubes 
always less. Now, as it is very certain that there are no 
such cubes among small numbers, it follows, that there are 
not any amoug greater numbers. This conclusion is con·· 
firmed by that which the second case furnishes, and which 
will be seen to be the same. 

10. Case 2. Let us now suppose, that p is divisible by 
3, and that q is not so, and let us make p=3r; our formula 

will then become 3; x (9r2 + 3q2), or ~r(3r2 + q2); and 

these two factors are prime to each other, since 3r2 + q2 is 
neither divisible by 2 nor by 3, and r must be even as well 
as p; therefore each of these two factors must separately 
be a cube. 

II. Now, by transforming the second factor 3r2 + q2, 
or 92 + 3r2 , we find, in the same manner as before, 
q=t(t2-9u2), and r=3v(t2-u2); and it must be observed, 
that since q was odd, t must be here likewise an odd num
ber, and u must be even. 

9r 
12. But -4 must also be a cube; 01" multiplying by the 

b -1L h 2r cu e 27' we mllst ave 3" ' or 
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2U(t2-u2)=2u(t+u) X (t-u) a cube; and as these three 
factors are prime to each other, each must of itself be a 
cube. Suppose therefore t+u f3, and t-U=g3, we shall 
have 2u j'3_g3; that is to say, if2u were a cube,f3-g3 
would be a cube. We should consequently have two 
cubes, f3 and g3, much smaller than the first, whose 
difference would be a cube, and that would enable us also 
to find two cubes whose sum would be a cube; since we 
should only have 'to makef3-g3=h3, in order to have 
f3=h3+g3 , or a cube equal to the sum of two cubes. 
Thus, the foregoing conclusion is fully confirmed; for as 
we cannot assign, in great numbers, two cubes whose sum 
or difference is a cube, it follows from what has been befoJ'e 
observed, that no such cubes are to be found among small 
numbers. 

244. Since it is impossible, therefore, to find two cubes, 
whose sum or difference is a cube, our first question falls 
to the ground; and, indeed, it is more usual to enter on 
this subject with the question of determining three cubes, 
whose sum may make a cube; supposing, however, two 
of those cubes to be arbitrary, so that it is only J'equired 
to find the third. We shall therefore proceed immediately 
to this question. 

245. Question 2. Two cubes a3 , and b3 , being given, 
required a third cube, such, that the three cubes added 
together may make a cube. 

It is here required to transform into a cube the formula, 
a3 + b3 + x 3 ; which cannot be done unless we already 
know a satisfactory case; but such a case occurs imme· 
diately; namely, that of x= -a. If therefore we make 
x=y-a, we shall have x3 = y3_3ay2 + 3a~1j - a3; and, 
consequently, it is the formula y3_3ay2+3a2y+b3 that 
must become a cube. Now, the first and the last term 
heJ'e being cuhes, we immediately find two solutions. 

]. The first requires us to represent the root of the 
formula by y +b, the cube of which is y3+3by2+3b2y+ b3 ; 

and we thus obtain - 3ay + 3a2 = 3by + 3b2; and, con
a2 _b2 

sequently, y = --b- = a - b; but x = -b, so that this 
a+ 

solution is of no use. 
2. But we may also represent the root by fy + b, the 

cube of which isf3y3 + 3lif2!f+3b2fy+b3, and then de
terminefin such a manner, that the third terms may be 

a2 
destroyed, namely, by making 3a'l=3b2j, or f= fli; for 
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we thus arrive at the equation 

y-3a=f3!J+3bf2 = a;r + 3;4, which multiplied by b6, 

becomes b6y-3ab6=a6!J + 3a4b3• This gives 
3a4b3 + 3ab6 3ab3( a3 + b3) 3ab3 

y = b6 6 b6 6 =-b3 3; and, consequent--a -a +a 
2ab3 + a4 2b3 + a3 

Iy, x=y-a= b3 3 = a X -b3 3' So that the two 
-a -a 

cubes a3 and b3 being given, we know also the root of 
the third cube sought; 'and if we would have that root 
positivf', we have only to suppose b3 to be greater than a3• 

Let us apply this to some examples. 
1. Let I and 8 be the two given cubes, so that a= I, 

aud b = 2; the formula 9 + x 3 will become a cube, if 
X=1-.1; for we shall have 9+x3=Wf=(~,n3. 

2. Let the given cubes be 8 and 27, so. that a = 2, 
and b = 3; the formula 35 +x3 will be a cube, when 
x=\V· 

3. If 27 and 64 be the given cubes, that is, if a= 3, 
and b = 4, the formula 9I-x3 will become a cube, if 
x=4.N· 

And, generally, in order to determine third cubes for 
any two given cubes, we must proceed by substituting 
2ab3 +a4 

b3 _a3 + z instead of x, in the formula, a3 + b3 + x 3 ; 

for by these means we shall arrive at a formula like the 
preceding, which would then fUl'llish new values of z ; 
but it is evident that this would lead to very prolix cal
culations. 

246. In this question, there likewise occurs a remark. 
able case; namely, that in which the two given cubes are 

3 4. 
equal, or a = b; for then we have x = ; = 00; that is, 

we have no solution; and this is the reason why we are not 
able to Joesolve the problem of transforming into a cube the 
formula, 2a3 +X3. For example, let a= I,orlet this formula 
be 2 +x3 ; we shall find that whatever forms we give it, it 
will always be to no purpose, and we shall seek in vain for 
a satisfactory value of x. Hence, we may conclude with 
sufficient certainty, that it is impossible to find a cube 
equal to the sum of a cube, and of' a double cube; so that 
the equation 2a3 +x3=!J3 is impossible. As this equation 



456 ELEMENTS. PART II. 

gives 2a3=y3-x3, it is likewif:e impossible to find two 
cubes having their difference equal to the double of 
another cube; and the same impossibility extends to the 
sum of two cubes, as is evident from the following 
demonstration. 

247. Theorem. Neither the sum nor the difference of 
two cubes can become equal to the double of another 
cube; OJ1, in other words, the formula, x3±y3 = 2z3, is 
always impossible, except in the evident case of y=x. 

We may here also consider x and y as prime to each 
other; for if these numbers had a common divisor, it would 
be necessary for z to have the same divisor.; and, conse
quently, for the whole equation to be divisible by the cube 
of that divisor. This being laid down, as X 3±!J3 must be an 
even number, the numbers x and y must both be odd, in 
consequence of which both their sum and their difference 

b M k · h' l' x+y _ d X- y _ must e even. a mg, t elelore, -2- - p, an -2- -g, 

we shall have x=p+g and y=p-g; and of the two 
numbers p and q, the one must be even and the other 
odd. Now, from this, we obtain 

x 3 +y3=2p 3 +6pq2=2p(p2+3q£), 
and X3_ y3=6p2q+2q3=2q(3pz+qZ), 

which are two formulre perfectly similar. It will therefore 
be sufficient to prove that the formula 2p(pZ +3q2) cannot 
become the double of a cube, or that p(pZ + 3qZ) cannot 
become a cube: which may be demonstrated in the fol
lowing manner. 

I. Two different cases again present themselves to our 
consideration; the one, in which the two factors p, and 
pZ + 3q2, have no common divisor, and mnst separately be 
a cube; the other in which these factors have a common 
divisor, which divisor, however, as we have seen (Art. 
243), can be no other than 3. 

2. Case 1. Supposing, therefore, that p is not divisible 
by 3, and that thus the two factors are prime to each 
other, we shall first reduce pZ + 3qZ to a cube by making 
p=t(t2-9u2), and q=3u(tZ-9uZ); by which means it 
will only be farther necessary for p to become a cube. 
Now, t not being divisible by 3, since otherwise p would 
also be divisible by 3, the two factors t, and t2-9u2, are 
prime to one another, and, consequently, each must 
separately be a cube. 

3. But the last factor has also two factors, namely t + 3u, 
and t-3u, which are prime to each other; first because t is 
not divisible by 3, and, in the second place, because one of 
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the numbers t or u is even, and the other odd; for if these 
numbers were both odd, not only p, hut also q, must be 
odd, which cannot be: therefore, each of these two fac
tors, t+3u, and t-3u, must separately he a cube. 

4. Therefore let t+3U=j3, and t-3u =g3, and we 
shall then have 2/ f3+ g3. Now, t must be a cube, 
which we shall denote by lt3, by which means we must 
have f3 + g3 = 2h3; consequently, we should have two 
cubes much smaller, namely,f3 anu g3, whose sum would 
be the double of a cube. 

5. Case 2. Let us now suppose p divisible by 3, and, 
consequently, that q is not so. 

If we make p=3r, our formula becomes 
3r(9r2 + 3q2) = 9r(3r2 + q2), and these factors being now 
numbers prime to one another, each must separately be a 
cube. 

6. In order therefore to transform the second q2 + 3r2, into 
a cube, we shall make q=t(t2-9u2), aud r=3u(t2-u2) ; 
and again one of the numbers t and u must be odd, and 
the other even, since otherwise the two numbers q and r 
would be even. Now, from this we obtain the first factor 
9r=27u(t2_u2); and as it must be a cube, let us divide 
it by 27, and the formula U(t2_U2), or u(t+u), x (t-u), 
must be a. cube. 

7. But these three factors being prime to each other, 
they must all be cubes of themselves. Let us therefore 
suppose for the last two t+u f3, and t-U=g3, we shall 
then have 21l f3_g3; but as u must be a cube, we should 
in this way have two cubes, iu much smaller numbers, 
whose difference would be equal to the double of another 
cube. 

B. Since therefore we cannot assign, in small numbers, 
any cubes, whose sum or difference is the double of a cube, 
it is evident that there are no such cubes, even among the 
greatest numbers. 

9. It will perhaps be objected, that our conclusion 
might lead to error; because there does exist a satisfactory 
case among these small numbers; namely, that of f g. 
But it must be considered that whenj=g, we have, in the 
first case, t+3u=t-3u, and therefore u=O; consequently, 
also q = 0; and, as we have supposed x = p + q, and 
y p-q, the first two cubes, x3 and y3, must have already 
been equal to one another, which case was expres!1ly ex
cepted. Likewise, in the second case, if f g, we must 
have t+ u = t-u, and also u = 0; therefore r =0, and 
p=O; so that the first two cubes, x 3 and y3, would again 
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become equal, which does not enter into the subject of the 
problem. 

248. Question 3. Required in general three cubes, 
x3, y3, and Z3, whose sum may be equal to a cube. 

We have seen that two of these cubes may be supposed 
to be known, and that from them we llIay determine the 
third, provided the two are not equal; but the preceding 
method furnishes in each case only one value for the third 
cube, and it would be difficult to deduce from it any new 
ones. 

We shall now, therefore, consider the three cubes as 
unknown; and, in order to give a general solution, let us 
make x 3 + y3 + Z3 = v3• Here, by transposing one of the 
terms, we have X 3+y3=V3_Z3, the conditions of which 
equation we may satisfy in the following' manner. 

l. Let x=p+q, and y-p-q, and we shall have, as 
before, x 3 + y3 = 2P( p2 + :3q2). Also, let v = r + s, and 
z = r- s, which gives v3 - Z3 = 28(82 + 3r2 ); the]'efore 
we must have 2p(p2+3q2)=2s(s2+3r2), or 

p(p2 + 3q2) =8(82 + 3r2). 
2. \Ve have already seen (Art. 176), that a numbe]', 

such as p2+3q2, can have no divisors except numbers of 
the same form. Since, therefore, these two form 11 he , 
p2+3q2, and S2 + 31'2, must necessarily have a common 
divisor, let that divisor be t2 + 3u2 • 

3. And let us, therefore, make 
p2+3q2=(P+3g2) x (t2+3uZ), and 
s2+3r2 =(/t2 + 3k2 ) X (tz+3u2), 

and we shall have p =ft + 3gu, and q = gt-fu; con
sequently,p2 f 2t2 + 6fgtu X 9g2u2, and 

q2=g2t2-2fgtu + j' 2U2; whence, 
p2+3q2=Cj'2+3g2)tz+(3j2 +9g2)uZ ; or 
p2+3q2=(j2+3g2) x W+3u2). 

4. In the same manner, we may deduce f!'Om the other 
formula, s=ht+3ku, and r=kt-hu; whence results the 
equation, 

(ft + 3gu) X (f2 + 3g2) X (t2 + 3u2) = 
(ht +3ku) x (h2 +3k2) X W+3u2), 

which being divided by t2 +3u2, and reduced, gives 
jt(j'2+3g2) +3gu(f2 +3g2) = 
Ilt(h2 + 3k2 ) + 3ku(h2 + 3k2), or 
ft(j'2+3g 2 )-ht (h2 +3k2 ) = 

3ku(h2 +3k2 )-3gu(P +3g2), 
b h' h _ 3k(/t2 + 3k2) - 3g(j2 + 3g2) 

Y w IC means t - f(/2+3g 2)-h(/t2+3k2) U. 
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5. Let us now remove the fractions, by making 
u -f(P + 3g2) _7t(lt2 + 3hz; then 
t=3k(/t2 + 3k2)-3g(j2+3g2), 
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where we may give any values whatever to the letters f, 
g, It, and h. 

6. When therefore we have determined, from these four 
llumbers, the values of t and u, we shall have 

p=ft+3gu, q=gt-fu, 
T=ht-Itu, s =ltt+3ku; 

whence we shall at last arrive at the solution of the ques
tion, x=p +q, y=p-q, z=1'-s, and v=r+s; and this 
solution is general, so far as to comprehend all the pos
sible cases, since in the whole calculatioll we have ad
mitted no arbitrarv limitation. - The whole artifice con
sists in rendel·ing"' our equation divisible by t2 + 3'1t2 ; for 
we have thus been able to determine the letters t and 'It by 
an equation of the ihst degree; and innumerable appli
cations may be made of these formulre, some of which we 
shall give for the sake of example. 

1. Let k=O, and h=l, we shall have 
t = - 3g(P + 3g2), and 11 = f({2 + 3g2) - 1: so that 
P = - 3fg(j2 + 3g2) + 3fg(P + 3g2) - 3g, or P = - 3g; 
q = _(j2+3g2)2+f; s=-3g(P+3g2); 
r = -f(f2+ 3g2) + I; consequently, 

x = - 3g - (j£ + 3g2)2 + f, 
y= -3g + (f2 + 3g2)2_ j~ 
z=(3g-f) x (P+3g2 )+ 1; 

lastly, v= -(3g + f) x (P+3g2 ) + 1. 
If we also suppose f -I, and g= + 1, we shall have 

x = - 20, Y = 14, Z = 17, and v = - 7; and thence re
sults the final equation, - 203 + 143 + 173 =- 73 , or 
143 + 173 + 73 = 20-\ 

2. Let f = 2, 9 = 1, and consequently f2 + 3g2 = 7 ; 
farther, It = 0, and h = 1; so that Itz + 3hZ = 3; we shall 
then have t = - 12, and u = 14; so that 

p=2t+3u= 18, q=t-2u= -40, 
1'=t=-I:2, ands=3u=42. 

From this will result 
x=p+q=-22, y=p-q=58, 
z=r-s=-54, andv=1'+s=30; 

therefore, 303 = 223 + 583 - 543 , or 
583 =303 + 543 + 223 ; 

and as all these roots are divisible by 2, we shall also have 
293 = 153 +273 + 1 P. 
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3. Let! 3,g=1,11=1,andk=l; so that 
f2 + 3g2 = 12, h2 +3k2 = 4; also t =- 24, and u = 32. 
Here, these two values being divisible by 8, and as we 
consider only their ratios, we may make {= -3, and u=4. 
Whence we obtain 

p=3t+3u= +3, q=t-3u=-15, 
1'= t- u=-7, and S=t+311= + 9; 

consequently, x= -12, and y= 18, 
Z= -16, and v= 2, 

whence - 123 + 183 - 163 = 2\ or 183 = 163 + 123 + 23, 

or, dividing by 2, 93 =83 +63 + P. 
4. Let us also suppose 9 = 0, and k = h, by which 

means we leave fand h undetermined. We shall thus have 
f2 + 3g2 = f2, and h2 + 3h2 = 4hz ; so that t = 12h3 , and 
u = f3 - 4h3; also, p = st = 12f1t3, q = -,r + 4flt3, 
r = 12h4 -lif3 + 4h4 = 16lt4 - hP, and s = 3/if'3; lastly, 

x p+q=16fh3-f4, y=p-Q=8flt3+j4, 
z=r-s=16lt4 -411j\ and v=r+s=16h4+21if'l. 

If we now makef=h=l, we have x=15"y=9,z=12, 
and v= 18; or, dividing all by 3, x=5, y=3, z=4, 
and v = 6 ; so that 33 + 43 + 5~ = 63 • The progression of 
these three roots, 3, 4, 5, increasing by unity, is worthy of 
attention; for which reason, we shall investigate whether 
there al'e not others of the same kind. 

249. Question 4, Required three numbers, whose dif
ference is 1, and forming such an arithmetical progres
sion, that their cubes added together may make a cube. 

Let x be the middle number, or term, then x-I will be 
the least; and x +] the greatest term; the sum of the 
cubes of these three numbers is 3x3 +6x=3x(x2+2), which 
must be a cube. Here, we must previously have a case, 
in which this propel·ty exists, and we find, after some 
trials, that that case is x = 4. 

So that, accOJ'ding to the rules already given, we may 
make x=4+,y; whence .:t'2=16+8y+y2, and 
x 3=64+48y+ 12y2+y3, and by these means our formula 
becomes 216+ 150y+ 36y 2 +3y3, in which the first term 
is a cube, but the last is not. 

Let us, therefore, suppose the root to be 6 + jlJ, or the 
formula to be 216+10~fy+18py2+p'y3, and destroy the 
two second terms, by writing 108f= 150, or f-H; the 
other terms, divided by .y2, will give 

36 3 -18f2 f3. _ 252 253 

+ '!/- . + ,Y- -nf + IR3Y' or 
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IS3 x 36 + lS3 X 3y = lS2 X 252 + 253y, or 
IS3 X 36 -182 X 252 = 253:/f- IS3 X 3y; therefore 
lS3 X 36- IS2 X 252 182 X (1S X 36-252) h t 

Y = 253-3 X lS3 = 253-3 x lS3 ; t a 

. - 324 X 23 - 7452 d 1 3 2 
IS, y= IS71 - IS71; an ,consequent Y,X=Tll"'rT' 

As it might be difficult to pursue this reduction in 
cubes, it is proper to observe, that the question may al
ways be reduced to squares. In fact, since 3X(X2 + 2) 
must be a cube, let us suppose 3x(x2 +2)=X3y3; dividing 
by x, we shall have 3x2 + 6 = X2y3; and, consequently, 

x2 = y3 6 3 = 6.!/3~ IS' Now, the numerator of this frac

tion being already a square, it is only necessary to trans
form the denominator, 6y3-1S, into a square, which also 
requires that we have already found a case. For this 
purpose, let us consider that IS is divisible by 9, but 6 
only by 3, and that y therefore may be divided by 3; if 
we make y=3z, our denominator will become 162z3-1~, 
which being divided by 9, and becoming lSz3-2, must 
still be a square. Now, this is evidently true of the case 
z= I. So that we shall make Z= 1 + v, and we must have 
16 + 54v + 54l,2 + lSv3 = D. Let its root be 4 + '¥v, 
the square of which is 16+54v+\~v2,and we must have 
54 + ISv= \~ ; or lSv= - ltV, or 2v= -H-; and, conse
quently, v = - it; which produces z = 1 + v = -H-, and 
then y=-H-. 

Let us now resume the denominator 

6y3-1S= 162z3-1S=9(lSz3-2) ; 

and since the square root of the factor, lSz3 - 2, is 
4 + '¥ v = tH, that of the whole denominator is -Hi: but 

the root of the numerator is 6; therefore x = ~~~l = tH, a 
128 

value quite different from that which we found before. It 
follows, therefore, that the roots of our three cubes sought 
are x-1=+H, x=ffi, x+I=tH: and the sum of the 
cubes of these three numbers will be a cube, whose root, 
x,/f, =Ht X H='i4Of/=-Ht· 

250. We shall here finish this Treatise on the Indeter
minate Analysis, ha.ving had sufficient occasion, in the ques
tions which we have resolved, to explain the chief artifices 
that have hitherto been devised in this branch of Algebra. 
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QUESTIONS FOR PRACTICE. 

1. To divide a square number (16) into two squares. 
Ans. 2f-l, and Y-l. 

2. To find two square numbers, whose difference (60) 
is given. Ans. 72.t, and 132t. 

3. From a number x to take two given numbers 6 aud 
7, so that both remainders may be square numbers. 

Arts. x='T'V. 
4. To find two numbers in proportion as 8 is to 1.5, and 

such, that the sum of their squares shall make a square 
number. Alls. 576, and 1080 . 

.5. To find four numhers such, that if the square num
ber 100 be added to the product of every two of them, 
the sum shall be all squares. Arts. ] 2, 32, 88, and 168. 

6. To find two numbers, whose difference shall be 
equal to the difference of their squares, and the sum of 
their squares a sqnare number'. Ans. t, and -to 

7. To find two numbers, whose product being added to 
the sum of their squares, shall make a square number. 

Arts . .5 and 3, 8 and 7, 16 and 5, &c. 
8. To find two such numbers, that not only each num

ber, but also their sum and their difference, being in
creased by unity, shall be square numbers. 

Arts. 3024, and .5624. 
9. To find three square numbers such, that the sum of 

their squares shall be a square number. 
Arts. 9, 16, and ll,l. 

10. To divide the cube number 8 into three other cube 
numbers. Ans. 1-·h ~y, and 1. 

11. Two cube numbers, 8 and 1, being given, to find 
two other cube numbers, whose difference shall be equal 
to the su m of the given eu bes. A ns. 8f4Of, and 4.j-lf. 

12. To find three such cube numbers, tbat if 1 be sub
tracted from everyone of them, the sum of the remainders 
shall be a squal'e. Ans, -HH, WN, and 8. 

13. To find two numbers, whose sum shall be equal to 
the sum of their cubes. Ans. 4, and t. 

14. To find three such cube numbers, that the sum of 
them may be both a square and a cube. 

Arts. 1, 2fflH-l, ItHHf2 • 



ADDITIONS 

BY 

M. DE LA GRANGE. 

ADVERTISEMENT. 

THE geometrieians of the last century paid great attention 
to the Indetel'lninate Analysis, or what is commonly called 
the Diophantine Algebra; but Bachet and Fel"mat alone 
can properly be said to have added any thing to what 
Diophantns himself has left us on that subject. 

To the fOI"mer we particularly owe a complete method 
of resolving, in integer numbers, all indetel'minate PI'O
blems of the first degree: * the latter is the author of 
some methods for the resolution of indeterminate equa
tions, which exceed the second degree; t of the singular 
method, by which we demonstrate that it is illlpossible for 
the sum, or the difference of' two biquadrates to be a 
square; t of the solution of a great number of very 
difficult pl'Oblems; and of several admirable theorems 
respecting integer numbers, whieh he left without demon
stration, but of' which the greater part has since been 
demonstrated by M. Euler in the Petersburg Com
mentaries. II 

In the present century, this branch of analysis has been 
almost entirely neglected; and, except M. Euler, I know 

'" See Chap. :3, in these Additions. I do not here mention 
his Commentary on Diophantus, because that work, properly 
speaking, though excellent in its way, contains no discovery. 

t These are explained in the 8th, 9th, and 10th chapters of 
the preceding Treatise. Pere Billi has collected them from 
different writings of M. Fermat, and has added them to the new 
edition of Diophantus, published by M. Fermat, junior. 

t This method is explained in the 13th chapter of the preced
ing Treatise; the principles of it are to be found in the Remarks 
of M. Fermat, on the XXVlth Question of the VIth Book of 
Diophantus. 

II The problems and theorems to which we allude, are scattered 
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no person who has applied to it: but the beautiful and 
numerous discoveries, which that great mathematician 
has made in it, sufficiently compensate for the indifference 
which mathematical authors appear to have hitherto 
entertained for such researches. The Commentaries of' 
Petersburg are full of the labors of M. Euler on this 
subject, and the preceding Work is a new service, which 
he has rendered to the admirers of the Diophantine 
Algebra. Before the publication of it, there was no 
work in which this science was treated methodically, and 
which enumerated and explained the principal rules 
hitherto known for the solution of indeterminate pro
blems. The preceding Treatise unites both these advan
tages : but, in order to make it still more complete, I have 
thought it necessary to make several Additions to it, of 
which I shall now give a short account. 

The theory of Continued Fractions is one of the most 
useful in arithmetic, as it sel'ves to resolve problems with 
facility, which, without its aid, would be almost unmanage
able; but it is of still greater utility in the solution of in de
terminate problems, when integer numbers only are 
sought. This consideration has induced me to explain 
the theory of them, at sufficient length to make it under
stood. As it is not to be found in the chief works on 
arithmetic and algebra, it must be little known to mathe
maticians; and ] shall be happy, if I can contribute to 
render it more familiar to them. At the end of this 
theory, which occupies the first Chapter, follow several 
curious and entirely new problems, depending on the 
truth of the same theory; but which I have thought 
proper to treat in a distinct manner, in order that the 
solution of them may become more interesting. Among 
these will be pal,ticularly remarked a very simple and 
easy method of reducing the roots of equations of the 
second degree to Continued Fractions, and a rigid 
demonstration, that those fractions must necessarily be 
always periodical. 

The other Additions chiefly relate to the resolution of in-

through the Remarks of M. Fermat on the Questions of Dio
phantus; and through his letters printed in the Opera Mathe
matica, &c. and in the second volume of the works of Wallis. 

There are also to be found, in the Memoirs of the Academy 
of Berlin, for the year 1770, et seq. the demonstrations of 
some of this author's theorems, which had 1I0t been demon
strated before. 
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determinate equations of the first and second degree; for 
these I give new and general methods I both for the case in 
which the numbers are only required to be rational, and 
for that in which the numbers sought are required to be 
integer; and I consider some other important matters 
relating to the same subject. 

The last Chapter contains researches on the functions,* 
which have this property, that the product of two or more 
similar functions is always a similar function. I give a 
general method for finding such functions, and shew their 
use in the resolution of differeut indeterminate problems, 
to which the usual methods could not be applied. 

Such are the principal objects of these Additions, which 
might have been made much more extensive, had it not 
been for exceeding proper bounds; I hopeI however, that 
the subjects here treated will merit the attention of mathe
maticians, and revive a taste for this branch of algebra, 
which appeal's to me very worthy of exercising their skill. 

CHAPTER I. 

On Continued Fractions. 

1. As the subject of Continued Fractions is not found in 
the Common books of arithmetic and algebra, and for this 
reason is but little known to mathematicians, it will be 
proper to begin these Additions by a short explanation of 
their theory, which we shall have frequent opportunities 
to apply in what follows. 

In general, we call every expression of this form, a conA 

tinued fraction, 
b 

a+i3+!: d 
r+a- +, &c. 

* A term used in algebra for any expression containing a cera 
tain letter, denoting an unknown quantity, however mixed and 
compounded with other known quantities or numbers. Thus, 

ax + yx; 2,x _ a.;(aQ
:3 X

2); 3xy3+ .;(bc~yx), are aU 

functions of x. 
HH 
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in which the quantities a, (3, r, 0, &c. and b, c, d, &c. are 
integer numbers, positive or negative; but at present we 
shall consider those Continued Fractions only, whose 
numerators, b, c, d, &c. are unity; that is to say, fractions 
of this form, 

I 
a+;8+! 1 

r + a-+' &c. 

If! (3, r, 0, &c. being any integer numbers, positive or nega
tIve; for these are, properly speaking, the only numbers, 
which are of great utility in analysis, the others being 
scarcely any thing more than objects of curiosity. 

2. Lord Brouncker, I believe, was the first who thought 
of Continued Fractions. We know that the continued frac
tion, which he devised to express the ratio of the circum
scribed square to the area of the circle was this: 

l+t+.9. 
2+~ 

l! +, &c. 

but we are ignorant of the means which led him to it. We 
only find in the Arithmetica InjinitoTum some researches 
on this subject, in which Wallis demonstrates, in an indi
rect, though ingenious manner, the identity of Brouncker's 

. h' h' h' 3 x 3 x 5 x 5 x 7, &c. H h expressIOn to IS, w lC IS, 2 4 4 6 6 &. e t ere x x x x , c. 
also gives the general method of reducing all sorts of con
tinued fractions to vulgar fractions; but it does not appear 
that either of those great mathematicians knew the princi
pal properties and singular advantages of continued frac
tions; and we shall afterwards see, that the discovery of 
them is chiefly due to Huygens. 

3. Continued Fractions naturally present themselves, 
whenever it is required to express fractional, or imaginary 
quantities in numbers. In fact, suppose we have to assign 
the value of any given quantity, a, which is not expressible 
by an integer number; the simplest way is, to begin by 
seeking the integer number, which will be nearest to the 
value of a, and which will differ from it only by a fraction 
less than unity. Let this number be a, and we shall have 

a-a equal to a fraction less than unity; so that _1_ will, 
a-a 

on the contrary, be a number greater than unity: therefore 
1 

let -- = b; and, as b must be a number greater than 
a-a 
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unity, we may also seek for the integer number, which 
shall be nearest the value of b; and this number being 
called (3, we shall again have b-(3 equal to a fraction less 

than unity; and, consequently, h~(3 will be equal to a 

quantity greater than unity, which we may represent by c; 
so that, to assign the value of c, we have only to seek, in 
the same manner, for the integer number nearest to c, 
which being represented by r, we shall have c-r equal to 

a quantity less than unity; and, consequently, _1_ will c-r 
be equal to a quantity, d, greater than unity, and so on. 
From which it is evident, that we may gradually exhaust 
the value of a, and that in the simplest and readiest 
manner; siuce we only employ integer numbers, each 
of which approximates, as nearly as possible, to the value 
sought. 

Now, since _1_ = b, we have a - a = -bI , and 
a-a 

1 l'k .. 1 h h (J 1 a=u+7j; 1 eWlse,smce b_(3=c, we ave =I"'+c; 

and, since _1_ = d, we have, in the saDIe manner, c-r 
1 

c = r + d' &c.; so that by successively substituting these 

values we shall have 

1 
=u+ b' 

1 
a =a+ Q I 

I"'+c' 
1 1 =u+(3+_ ] 

r+ d; 
1 

and, in general, a=u+ (3+.!. 1 
r+ -a+' &c. 

It is proper to remark here, that the numbers u, (3, r, 
&c. which represent, as we have shewn, the approximate 
integer values of the quantities a, b, c, &c. may be taken 
each in two different ways; since we may with equal pro
priety take, for the approximate integer value of a given 
quantity, either of the two integer numbers between which 
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that quantity lies. There is, however, an essential difference 
between these two methods of taking the approximate 
values, with respect to the continued fraction which results 
from it: for if we always take the approximate values less 
than the true ones, the denominators f3, r, a, &c. will be 
all positive; whereas they will be all negative, if we take 
all the arproximate values greater than the true ones; and 
they wi] be partly positive and partly negative, if the ap
proximate values are taken sometimes too small, and 
sometimes too great. 

In fact, if a. be less than a, a-a. will be a }?ositive quan
titl; wherefore b will be positive, and f3 wlll be so like
Wlse: on the contrary, a-a. will be negative, if a. be greater 
than a; then b will be negative, and f3 will be so likewise. 
In the same manner, if f3 be less than b, b-f3 will always 
be a positive quantity; therefore c will be positive also, 
and consequently, also r; but if f3 be greater than b, b-f3 
will be a negative quantity; so that c, and consequently 
also r, will be negative, and so on. 

Farther, when negative quantities are considered, I un
derstand by less quantities those which, taken positively, 
would be greater. We shall have occasion, however, some
times to compare quantities simply in respect of their ab
solute magnitude; but I shall then take care to premise, 
that we must pay no attention to the signs. 

It must be remarked, also, that if, among the quantities 
b, c, d, &c. one is found equal to an integer number, then 
the continued fraction will be terminated; because we shall 
be able to preserve that quantity in it: for example, if c 
be an integer number, the continued fraction, which gives 
the value of a, will be 

1 
a=a.+-f3 1 +-. c 

It is evident, indeed, that we must take. r=C, which 

gives d= _1_ = t = 00; and, consequently, d=oo; so c-r 
that we shall have 

1 
a=a.+;S+~ 1 

"'+I 00' 

the following terms vanishing in comparison with the infinite 



CHAP. I. ADDITlONS. 469 

quantity 00 • 
I 

Now, - = 0, wherefore we shall only have 
00 

I 
a=a+-(3 I +-. c 

This case will happen whenever the quantity a is com
mensurable; that is to say, expressed by a rational frac
tion; but when a is an irrational, or transcendental 
quantity, then the continued fraction will necessarily go 
on to infinity. 

4. Suppose the quantity, a, to be a vulgar fraction, 

~, A and B being given integer numbers; it is evident, 
B 

that the integer number, a, approaching nearest to~, will 
B 

be the quotient of the division of A by B; so that supposing 
the division performed in the usual manner, and calling 
ex, the quotient, and c the remainder, we shall have 

A C B 
- - ex, = -; whence b= -. Also, in order to have the 
B B C 

approximate integer value (3 of the fraction ~, we have 
C 

only to divide B by c, and take (3 for the quotient of this 
division; then calling the remainder D, we shall have 

D C 
b - (3 = -, and c= -. We shall therefore continue to 

C D 

divide C by D, and the quotient will be the value of the 
number "/, and so on; whence results the following very 
simple Rule for reducing Vulgar Fractions to Continued 
Fractions. 

RULE.-First, divide the numerator of the given frac
tion by its denominator, and call the quotient ex,; then 
divide the denominator by the remainder, and call the 
quotient (3; then divide the first remainder by the second 
remainder, and let the quotient be y. Continue thus, 
always dividing the last divisor by the last remainder, till 
you arrive at a division that is performed without any re
mainder, which must necessarily happen, when the remain
ders are all integer numbers that continually diminish; 
you will then have the continued fraction, 
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I 
a+i3+! I 

"/+ a' &c. 
which will be equal to the given fraction. 

ellA}'.!. 

5. Let it be proposed, for example, to reduce Vrf-,f to a 
Continued Fraction. 

First we divide 1103 by 887, which gives the quotient 
1, and the remainder 216; 887 divided by 216, gives 
the quotient 4, and the remainder 23; 216 divided by 23, 
gives the quotient g, and the remainder g; also dividing' 
23 by g, we obtain the quotient 2, and the remainder 5 ; 
then 9 by 5, gives the quotient 1, and the remainder 
4; 5 by 4, gives the quotient 1, and the remainder 1 ; 
lastly, dividing 4 by 1, we obtain the quotient 4, and no 
remainder; so that the operation is finished: and, collect
ing all the quotients in OJ'der, we have this series 
1,4,9, 2,1, 1,4, whence we form the Continued Fraction, 

LIJL3 -] +-1 
887 - 4+J 

9+-1 
2+-1 

1 + 1 
T +-1, 

6, As, in the above division, we took for the quotient 
the integer number which was equal to, or less than, the 
fraction proposed, it follows that we shall only obtain 
from that method continued fractions, of which all the 
denominatol's will he positive numbers. 

But we may also assume for the quotient the integer 
number, which is immediately greater than the value of the 
fraction, when that fmction is not reducible to an integer, 
and, for this purpose, we have only to increase the value 
of the quotient found by unity in the usual manner; then 
the remainder will be negative, and the next quotient will 
necessarily be negati\'e. So that we may, at pleasure, make 
the terms of the continued fraction positive or negative. 

In the preceding example, instead of taking 1 for the 
quotient of 1103 divided by 887, we may take 2; in which 
case we have the negative remainder -671, by which we 
must now divide 887; we therefore divide 887 by -671, 
and obtain either the quotient -1, and the remainder 216, 
or the quotient -2, and the remainder -455. Let us take 
the greater quotient -1: then divide the remainder -671 
by 216; whence we obtain eithel' the quotient -3, and the 
remainder -23, 01' the quotient -4, and the remainder 
193. Continuing the division by adopting the greater 
f{uotiellt -:3, we have to divide the "ellJainder 216 by the 
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remainder-23, which gives either the quotient -9, and 
the remainder 9, or the quotient -10, and the remainder 
-14, and so on. 

In this way, we obtain 
1103 1 
887 =2+ -1+ 1 1 

-3+-9+ &,c. 
in which we see that all the denominators are negative. 

7. We may also make each negative denominator po
sitive by changing the sign of the numerator; but we must 
then also change the sign of the succeeding numerator; 
for it is evident that 

{fl-+ 1 1 & 1 ffl--! 1 1 
-v+:;+, c'J=l v-;+, &c'J 

Then we may also, if we choose, remove all the signs - in 
the continued fraction, and reduce it to another, in which 
all the terms shall be positive; for we have, in general, 

Jfl-+~ l_{fl--l+! 1 1 L -v+, &c'J- l+v_l +, &c'J 

as we may easily be convinced of by reducing those two 
quantities to vulg'ar fractions.* 

We may also, by similar means, introduce negative 
terms instead of positive; fol' we have 

1 1 fl-+- =fl-+1-- 1 
v +, &c, I + --1 +, &c. 

v-
whence we see, that, by such transfo)'mations, we may 
always simplify a continued fraction, and reduce it to 
fewer terms: which will take place, whenever there are 
denominators equal to unity, positive or negative. 

In general, it is evident, that, in order to have the con
tinued fraction approximating as nearly as posl:)ible to the 

'If, Thus, the mixed number, 1 + '~l =,~ 1; therefore 

~ 1 1- ,-I . 
I +,-IJ - , ' 

and, consequently, 

f ... -l+~ I 1 ,-1 1 ~ ) l+-J= ... -l+-= ... ---.-B. 
L ,- I " 
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value of the given quantity, we must always take ct, {3, r, 
&c. the integer numbers which are nearest the quantities 
a, b, c, &c. whether they be less, or greater than those quan
tities. Now, it is easy to perceive that if, for example, we 
do not take for IX. the integer number which is nearest to a, 
either above or below it, the following number {3 will neces
sarily be equal to unity; in fact, the difference between a 
and ct will then be greater that t, consequently, we shall 

1 
have b = -- less than 2; therefore {3 must be equal to 

a-ct 

unity. 
So that whenever we find the denominators in a con

tinued fraction equal to unity, this will be a proof that 
we have not ta-ken the preceding denominators as near as 
we might have done; and, consequently, that the f.-action 
may be simplified by increasing, or diminishing those de
nominators by nnity, which may be done by the preceding 
formulre, without the necessity of going through the whole 
calculation. 

S. The method in Art. 4 may also serve for reducing 
every irrational, or transcendental quantity to a continued 
fraction, provided it be expressed before in decimals; but 
as the value in decimals can only be approximate, by aug~ 
menting the last figure by unity, we procure two limits, 
between which the true value of the given quantity must 
lie; and, in order that we may not pass those limits, we 
must perform the sa:tne calculation with both the fractions 
in question, and then admit into the continued fraction 
those quotients only which shall equally result from both 
operations. 

Let it be proposed, for example, to express by a con
tinued fraction the ratio of the circumference of the circle 
to the diameter. 

This ratio expressed in decimals is, by the calculation of 
Vieta, as 3,1415926535 is to 1; so that we have to reduce 

h ti . 3, 1415926535 f d f . b h 
t e ractIOn 10000000000 to a con mue ractIon y t e 

method above explained. Now, if we take only the fraction 

3'1~~~~~' we find the quotients 3, 7, 15, 1, &c. and if we 

k h fi · 3, 14160 fi d h . 3 ta e t e greater ractlOn 100000' we n t e quotIents , 

7, 16, &c., so that the third quotient remains doubtful; 
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whence we see, that, in order to extend the cQntinued 
fraction only beyond three terms, we must adopt a value 
of the circumference, which has more than six figures. 

If we take the value given by Ludolph to thirty-five 
decimal places, which is 3,14159, 26535, 89793, 23846, 
26433,83279,50288; and if we work on with this fraction, 
as it is, and also with its last figure 8 increased by unity, we 
shall find the following series of quotients, 3, 7, 15, 1, 292, 
I, 1, 1,2, 1,3, I, 14,2, 1, 1,2,2,2,2,1,84,2, 1, 1, 15, 
3, 13, 1, 4, 2, 6, 6, 1; so that we shall have 
Circumference _ 3 1 

.D. - +7"+ 1 zameter 1"3" + I 
T+---L-

292+.1. 
1 +t+, &c. 

And as there are here denominators equal to unity, we 
may simplify the fraction, by introducing negative terms, 
according to the formulre of Art 7, and shall find 
Circumference -3 1 

.D" - +7" 1 tameter +Tlf 1 
-J.l94_l. 

3_-1-+, &c. 
Circumference 

.Diameter 3+++-L. 
10+ 1 

-294+ .l. 
-a +-l+, &c. 

9. We have elsewhere shewn how the theory of con
tinued fractions may be applied to the numerical resolution 
of equations, for which other methods are imperfect and in
sufficient.· Tbe whole difficulty consists in finding in any 
equation the nearest integer value, either above, or below 
the root sought; and for this I first gave some general rules, 
by which we may not only perceive how many real roots, 
positive or negative, equal or unequal, the proposed equa
tion contains; but also easily find the limits of each ofthose 
roots, and even the limits of the real quantities which com
pose the imaginary roots. Supposing, therefore, that xis the 
unknown quantity of the equation proposed, we seek first 
for the integer number, which is nearest to the root sought, 
and calling that number (1" we have only, as in Art. 3, to 

"" See the Memoirs of the Academy of Berlin, for the years 
1767 and 1768; and Le Gendre's Essai sur la Theorie des 
Nombres, page 133, first edition. 
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1 
make X=a + -; x, y, z, &c. representing here what was 

y 
denoted in that article by a, b, c, &c. and substituting this 
value instead of x, we shall have, after removing the frac
tions, an equation of the same degree in y, which must have 
at least one positive or negative root greater than unity. 
After seeking therefore for the approximate integer value 
of the root, and calling that value {3, we shall then make 

y={3 +!, which will give an equation in z, having like-
z 

wise a root greatel' than unity, whose approximate integer 
value we must next seek, and so on. In this manner, the 
root requil'ed will be found expressed by the continued 
fraction, 

I 
a+i3+! I 

y+-0+, &c. 
which will be terminated, if the root is commensurable; 
but will necessarily go on ad infinitum, if it be incom
mensurable. 

In the Memoirs just referred to, there will be found all 
the principles and details necessary to render this method 
and its application easy, and even different means of abridg
ing many of the operations which it requires. I believe 
that I have scarcely left any thing farther to be said on this 
important subject. With regard to the roots of equations 
of the second degree, we shall afterwards (Art. 33 et seq.) 
give a particular and very simple method of changing 
them into continued fractions. 

10. After having thus explained the genesis of continued 
fractions, we shall proceed to shew their application, and 
their principal properties. 

It is evident, that the more terms we take in a continued 
fraction, the nearer we approximate to the true value of 
the quantity which we have expressed by that fraction; so 
that if we successively stop at each term of the fraction, we 
shall have a series of quantities converging towards the 
given quantity. 

Thus, having reduced the value of a to the continued 
fraction, 

I 
a+i3+! 1 

Y+a- +, &c. 
we shall have the <{{[alltities, 
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a, r~ + ~ 1, .fa + ~ 1 1 & b . l fJ f l (3+y,J c. or, y reductIon,"" 

(~(3 + I a(3y + a + y & 
a, -(3--' (3y+ 1 ' c. 

which approach nearer and nearer to the value of a. 
In order to judge better of the law, and of the con

vergence, of these quantities, it must be remarked, that, by 
the formuhe of Art. 3, we have 

1 I 1 
a=a+ b, b=(3+c' c=y +d' &c. 

Whence we immediately perceive, that a is the first ap
proximate value of a; that then, if we take the exact value 

f h· h . xb + 1 d' h' b' l' b' o a, W Ie IS-b-, an , In tiS, su stItute 101' Its ap-

proximate value {3, we shall have this more approximate 
a,8 + 1 . value ---(3-; that we shall, In the same manner, have a 

third more approximate value of a, by substituting for bits 
(3c+ 1 .. (a(3+ I )c+a 

exact value --, whICh glVes a= Q I ,and then 
C fJC+ 

taking for C the approximate value y; by these means 
the new approximate value of a will be 

(a(3 + I )y + a 
(3y+ I 

Continuing the same reasoning, we may approximate 
nearer, by substituting, in the above expression of a, 

. d f' ] yd + 1 h' h '11 ll1stea 0 c, Its exact ya ue, d' w IC WI give 

( (a{3 + l)y + a)d + a{3 + 1 a = ~~~~~~,----~:..-'--
({3y + l)d + (3 

and then taking for d its approximate value 0, we shall 
have, for the fonrth approximation, the quantity 

;;:- Rule. Place the quotients, ",13, 'Y, &c. in a line, and the 

results, ~ ~ "13 + 1, &c. beneath. The product of each nurne-
0' l' 13 

rator with the quotient over it, added to the preceding nurnerato:, 
will give the next numerator: and the product of e~ch denorn~
nator with the quotient over It, added to the precedmg denorn.l
nator, will give the next denornmator. Thus, the 1st term will 

be,,; the 2d af3+ 1 ; the ad, "13'l+"'1+'Y, &c. See p. 489. 
, f3 B'l + 
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( ( a,8 + ] )'1 + a )t3 + a,8 + 1 d 
(,8'1+ 1)0+,8 ,an so on. 

Hence it easy to perceive, that, if by means of the 
numbers a, ,8, '1, 0, &c. we form the following expressions, 

A=a ~=l 
B=,8A+1 B'=,8 
C = '1B + A c' = '1B' + A' 

D = Dc + B D' = Dc' + B' 

E=sD+C E'=sn' + 0' 
&c. &c. 

we shall have this series of fractions converging towards 
. ABCDEF 

the quantIty a, -, -; , I ,. " &c. 
ABCDEF 

If the quantity a be rational, and represented by any 

fraction :!,., it is evident that this fraction will always be 
v 

the last in the preceding series; since then the continued 
fraction will be terminated; and the last fraction of the 
above series must always be equal to the whole continued 
fraction. 

But if the quantity a be irrational, or transcendeutal, 
then the continued fraction necessarily going on ad 
infinitum, we may also continue ad infinitum the series of 
converging fractions. 

I]. Let us now examine the nature of these fractions. 
1st, It is evident that the numbers A, B, C, &c. must con
tinually increase, as well as the numbers A', B', c', &c. for 
1st, if the numbers a, ,8, '1, &c. are all positive, the num
bers A, B, C, &c. A', B', 0', &c. will also be positive, and 
we shall evidently have B>A, C>B, D>C, &c. and B'=, 
or >A', o'>B', D'>c', &c. 

2dly, If the numbers a, ,8, '1, &c. are all, or partly, 
negative, then amongst the numbers, A, B, C, &c. and 
A', B', 0', there will be some positive, and some negative; 
but in that case we must consider that we have, by the 
preceding formulal, 

B I CAD B - =,e + - - = '1 + - - = 0 + - &c. 
A a' B B' C c' 

whence we immediately see, that, if the numbers a,,e, '1, &c. 
are different from unity, whatever their signs may be, we 

shall necessarily have, neglecting the signs, ~ > 1; and 
A 

A C 
therefore - <I; consequently, - > 1, and so on: there-

B B 

fore B>A, C>B, &c. 
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There is no exception to this but when some of the num
bers, IX, {3, '1, &c. are equal to unity. Suppose, for example, 
that the number '1 is the first which is equal to ± 1; we 
shall then have B > A, but C < B, if it happens that the frac-

tion ~ has a different sign from ,,/; which is evident from 
B 

th . C Ab • II A e equatIOn - = "/ + - ; ecause, In t at case, "/ + -
B B :a 

will be a number less than unity. Now, I say, in t.his 
case, we must have D>B; for since "/=+ 1, we shall have 

1 1 
(Art. 10), c = + 1 + d' and c - d = + 1; but as c and d 

are quantities greater than unity (Art. 3), it is evident, that 
this equation cannot subsist, unless c and d have the same 
signs; therefore, since "/ and 0 are the approximate integer 
values of c and d, these numbers "/ and 0 must also have 

the same sign. Farther, the fraction ~="/+ ~ must have 
B B 

the same sign as "/, because r is an integer number, and 

~ a fraction less than unity; therefore~, and 0, will be 
B B 

quantities of the same sign; consequently, DC will be a 
B 

.. . N h D B dh posItive quantIty. ow, we ave - = 0 + -; an ence, 
C C 

multiplying by ~, we shall have ~ = oC + 1; so that 
B B B 

~ being a positive quantity, it is evident that ~ will be 
B B 

greater than unity; and therefore D > B. 

Hence we see, that, if in the series A, B, C, &c. there be 
one term less than the preceding, the following will 
necessarily be greater; so that, putting aside those less 
terms, the series will always go on increasing. 

Besides, if we choose, we may always avoid this incon
venience, either by taking the numbers IX, {3, "/, &c. 
positive, or by taking them different from unity, which 
may always be done. 

The same reasonings apply to the series A', B', cf , &c. in 
which we have likewise 



478 .ADDITIONS. CHAP. I. 

~ d ~ d ~ -,- = {3, 1= r + -;, I = 0 + " &C. 
A B B C C 

whence we may form conclusions similar to the preceding. 

12. If we now multiply cross-ways the terms of the 

. fi . . h . ABC & h II consecutIve ractIons, III t e serIes I, " " c. we s a 
ABC 

find BA'-AB'=I, CB'-BC'=AB'-BA', 

nd-cD'=Bd-CB', &c. 

whence we conclude, in genet"al, that 

BA' -AB'=1 Dd -cD'=l 
CB'- Bc'=-1 ED'-DE'=-l, &c. 

This property is very remarkable, and leads to several 
important consequences. 

First, we see that the fractions.!:" B,,";, &c. must be 
ABC 

already in their lowest terms; for if C and c' had any 
common divisor, the integer numbers CB'-Bd would also 
be divisible by that same divisor, which cannot be, since 
cB'-Bd=-I. 

N ext, if we put the preceding equations into this form, 

B A 1 
B' - A' = A'B' 

C B 1 
(! - PI = - dB' 

Del 

D' -cr = (Ii/ 
E D 1 -; -, = ---,;, &c. 
E D DE 

it is easy to perceive, that the differences between the 

d· ., L'. • f h . ABC t' II a ~omIDg lractIons 0 t e serIes" ,-, " are con mua y 
ABC 

diminishing, so that this series is necessarily converging. 

Now, I say, that the difference between two consecutive 
fractions is as small as it is possible for it to be; so that 
there can be no other fraction whatever between these two 
fractions, unless it have a denominator greater than the 
denominators of them. 

Let us take, for example, the two fractions ~. and D ,. the 
C D 

difference of which is c,~" and let us. suppose, if possible, 
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that there is another fraction, ~, whose value falls between 
n 

the values of those two fractions, and whose denominator, 11, 

is less than c' or less than D'. Now, since!!!: is between 
n 

o D. mo.. mo' -no 
" and " the dIfference of -, and " whICh IS " o D n c no 

no -me' 1. 
or " must be less than If' the dIfference between no OD 

D, and ~; bnt it is evident that the former cannot be less 
D 0 

than ~; and therefore if n < D', it will necessarily be 
no 

greater than --i,. Also, as the diffel'ence between ~, and 
OD n 

D, cannot be less than --.!." it will necessarily be greater 
D nD 

than -;" if n<e', whereas it ought to be less. 
OD 

13. Let us now see how each fraction of the serIeS 

~ , ~, &c. will approximate towards the value of the 
A B 
quantity a. For this purpose, it may be observed that 
the forrnulre of Article 10 give 

and so on. 

Ab+ 1 
a=77J 

B'C+A a-..,..--, 
- B'C+A' 

Od+B 
a----

- e'd+B' 
De+o 

a - --;----.-
- D'e+e' 

Hence, if we would know how nearly the fraction ~ e" 
for example, approaches to the given quantity, we seek 

for the difference between -.;. and a; taking for a the 
o 

. Od+B 
quantIty , d " we shall have 

(J +B 
o Od+B 0 Be' -OB' 1 

a - 0' = e'd+B' - d = e'(O'd+B') = e'(e'd+B')' 

because Be'-oB'=l, (Art. 12). Now, as we suppose 0 the 



480 ADDITI01"fS. CHAP. I. 

approximate value of d, so that the difference between d 
and 0 is less than unity (Art. 3), it is evident that the 
value of d will lie between the two numbers 0 and 0 ± I, 
(the upper sign being for the case, in which the approxi
mate value 0 is less than the true one d, and the lower 
sign for the case, in which 0 is greater than d), and, con
sequently, that the value of 0' d + B', will also be contained 
between these two, c'o + B', and c'(o+ 1) + B'; that is to 

say, between D' and D' + c'; therefore the difference a--;' 
c 

will be contained between these two limits -,!" '(,I ,; 
CD CD±C) 

whence we may judge of the degree of approximation of 

the fraction ~. 
C 

14. In general, we shall have, 

A I C I 
a= A' + A'b a=(J + C'\c'd+B') 
BID I 

a =-, - I I , a= -, - " , and so on. 
B B (BC + A) D D (D e + C) 

Now, if we suppose that the approximate values, a, {3, y, 
s.c. are always taken less than the real values, these num
bers will all be positive, as well as the quantities b, c, d, 
&c. (Art. 3), and, consequently, the numbers A', n', 0', &c. 
will be likewise all positive; whence it follows, that the 
differences between the quantity a, and the fractions 

~, B,,~, &c. will be alternately positive and negative; 
A n C 

that is to say, those fra<;tions will be alternately less and 
greater than the quantity a. 

Farther, as b>{3, c>y, d>o, &c. by hypothesis, we 
have b> B', (B'C + A') > (n'y + A'), and also > 0',* 
(old + B') > (c'o + B'), and therefore> D', &c. and as 
b«{3+l), c«y+l), d«o+l), we have b«B'+l), 

'*' For since c>,,!, therefore B'C>B'''!; and, consequently, 
(B'C + A') > (B',,! +A'), which is > c'; because B',,! + A' = c', 
page 476. And it is exactly the same with the other quan
tities.-B. 
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(B'e + A')«B'(y+ 1) + A') «c' +B'), also 
(c'd+B')«c'(o+I)+B')«D'+c'), &c. so that the errors 

in taking the fractions ~, B,,~, &c. for the value of a, 
ABC 

1 1 1 
would be respectively less than ----,---" -,7, ".. &c. but 

AB BC CD' 

greater than I } " I ,I ')' , } " &c. which 
A(B+A) B(C+B C(D+C) 

shews how small those errors are, and how they go on 
diminishing from one fraction to another. 

But farther, since the fractions ~, ~, ~, &c. are 
ABC 

alternately less and greater than the quantity a, it is 
evident, that the value of that quantity will always be 
found between any two consecutive fractions. Now, we 
have already seen (Art. 12), that it is impossible to find, 
between two such fractions, any other fraction whatever, 
which has a denominator less than one of the denomi
nators of those two fractions; whence we may conclude, 
that each of the fractions in question expresses the quantity 
a more exactly than any other fraction can, whose denomi
nator is less than that of the succeeding fraction; that is 

to say, the fraction !:!." for example, will express the value 
C 

of a more exactly than any other fraction m , in which n 
n 

would be less than D ' • 

15. If the appl"Oximate values a, 13, y, &c. al'e all, or 
partly, greater than the real values, then some of those num
bel'S will necessarily be negative (Art. 3), which will also 
render negative some tel'ms of the series A, B, C, &c. A', B', 0', 
&c. consequently, the differences between the fractions 

~, ~,~, &c. and the quantity a, will no longer be 
ABC 

alternately positive and negative, as in the case of the 
preceding articles: so that those fractions will no longer 
have the advantage of giving the limits in plus and minus 
of the quantity a; an advantage which appears to me of 
very great importance, and which must therefore in 
practice make us always prefer those continued fractions, 
in which the denominators are all positive. Hence, in 
what follows, we shall only attempt an investigation of 
fractions of this kind. 

I I 
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16. Let us, therefore, consider the series ~, ~-, ~,~" 
ABC D 

&c. in which the fractions are alternately less and greater 
than the quantity a, and which, it is evident, we may 
divide into these two series: 

ACE 
t' t' -l> &c. 
ACE 

B D F 
-" -;, -,-, &c. 
B D F 

of which the first will be composed of fractions all less 
than a, and which go on increasing towards the quantity a; 
the second will be composed of fractions all greater than a, 
but which go on diminishing towards that same quantity. 
Let us therefore examine each of those two series sepa
rately. In the first, we have (Art. 10, and ]2), 

C A _ '1 
0'- - A' - "A'c'; 

~-~--~ &c 
E' d - dE" . 

and in the second we have, 

B D ° 17- Dl = JTii 
D P e ------ &c 
D' F' - D'll' • 

Now, if the numbers '1, 0, e, &c. were all equal to unity, 
we might prove, as in Art. 12, that between any two con
secutive fractions of either of the preceding series, there 
could never be found any other fraction, whose denomi
nator would be less than the denominators of those two 
fractions; but it will not be the same, when the numbers 
'1, 0, e, &c. are greater than unity; for, in that case, we 
may insert between the fractions in question as many 
intermediate fractions as there are units in the numbers 
'1-1, 0-1, e-l, &c. and for this purpose we shall only 
have to substitute, successively, in the values of c and c', 
(Art. ] 0), the numbers, I, 2, 3, .••. '1, instead of '1; and, 
in the values of D and D', the numbers 1, 2, 3,. • • •. 0, 
instead of 0, and so on. 

17. Suppose, for example, that '1=4, we have C=4B+A 

and C'=4B' + A', and we may insert between the fractions 

A and ~/' three intermediate fractions, which will be 
A' c 
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B+A 2B+A 3H+A 
B' + A" 2B' + A" 3B' + A'· 

483 

Now, it is evident, that the denominators of these 
fractions form an increasing al'ithmetical series from 
A' to c'; and we shall see that the fractions themselves 

also increase continually f!"Om ~I to ~; so that it would 
A C 

now be impossible to insert in the sel'ies 

A B+A 2B+A 3H+A 4B+A C - -_. --- --- or --
A" 13' + A" 213' + A" 3B' + A" 413' + A" c' ' 

any fraction, whose value would fall between the values 
of two consecutive fractions, and whose denominator also 
would be found between the denominators of the same 
fractions: for, if we take the differences of the above 
fractions, since BA'-AB'=I, we have. 

A I 
13' +A' - 7 = A'(B' + A') 

2B +A B+A I 
2B' + At - B' + A' = (B' + A''-)-x-(co2~B~' + A') 

:3B +A 2H+A I 
3R' + A' - 2pj + A' = (213' + A') X (313' + A') 

C 3H+A I 
ci - 3R' + A' = (3R' + A')c'; 

whence we immediately perceive, that the fractions 
A 13 + A & . II· . h . d· ir --,., -,--" c. contmua y Increase, Slllce t elr luerences 
A R +A 
are all positive; then, as those differences are equal to 
unity, if divided by the product of the two denominators, 
we may prove, by a reasoning analogous to that which we 
employed (Art. 12), that it is impossible for any fraction, 

~, to fall between two consecutive fractions of the pre
n 
ceding series, if the denominator n fall between the deno
minators of those fractions; or, in general, if it be less 
than the greater of the two denominators. 

Farther, as the fractions of which we speak are all 

greater than the real value of a, and the fraction .Hi is 
B 

less, it is evident that each of those fractions will ap
proximate towards the value of the quantity a, so that 
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the difference will be less than that of the same fraction 

and the fraction ~; now. we find 
B 

A B 1 
AT -Jl = ;'/ii 

B+A B 1 
B' +A' - Ii = (B' +A')B' 

2B+A B 1 
2B' + A' - i' = (2B' + A')n' 

3B+A B 1 
3B' + A' - B' = (3B' + A')B' 

C B 1 
d - B' = c'B" 

Therefore, since these differences are also equal to unity 
divided by the product of the denominators, we may 
apply to them the reasoning of Article 12, to prove that 

no fraction, ~, can fall between anyone of the fractions 
n 

A B+A 2B+A & d h f: t' B 'fth d . " -,--" 2' " c. an t e rac Ion -"Ie enoml-A B +A n +A B 
nator n be less than that of the same fraction; whence it 
follows, that each of those fractions approximates towards 
the quantity a nearer than any other fraction less than a, 
and having a less denominator; that is to say, expressed 
in simpler terms. 

18. In the preceding Article, we have only considered 

the intermediate fractions between';, and!3,; but the 
A C 

same will be found true of the intermediate fractions 
• C E E G between I and " between -, and " &c. if E, 1/, &c. 

C E E G 

are nnmbers greater than unity. 

We may also apply what we have just said with 

respect to the first series A,,";, &c. to the other series 
A C 

B" ~, ~, &c. so that if the numbers, 0, ~, are greater 
B D !<' 

than unity, we may insert between the fractions B, and D" 
B D 



CHAP. I. AnnITIONS. 485 

n, and ~, &c. different intermediate fractions, all greater 
n F 
than a, but which will continually diminish, and will be 
such as to express the quantity a more exactly than could 
be done by any other fraction greater than a, and ex
pressed in simpler terms. 

Farther, if 13 is also a number greater than unity, we 

may likewise place before the fractions B, the fractions 
B 

A + I 2A + 1 3A + 1 j3A + 1 . B 
-1-' -2-' -3-' &c. as far as -13-' that IS 11' and 

these fractions will have the same properties as the other 
intermediate fractions. 

In this manner, we have these two complete series of 
fractions converging towards the quantity a. 

Fractions increasing and less titan a. 

~ B+A 2B+A 3B+A &c yB+A 
A" B' + A" 2B' + A" 3n' + A" . rB' + A" 
~ n+c 2n+c 3n+c &c m+c 
c" n'+c" 2n'+c" 3n'+c" . en'+c' 
~ F+E 2F+E 3F+E &c 
E" F'+E" 2F'+E" 3F'+E" . 

Fractions decreasing and greater titan a. 

A + I 2A + 1 3A + I & j3A + I 
--1-'~'---3-' c'-j3-' 

~ C+B 2C+B &c OC+B' 
B" c'+B" 2C'+B" . OC'+B" 
~ E+n 2E+n 3E+n &c 
n" E' + n" 2E' + n" aE' + n" . 

If the quantity a be irrational, or transcendental, the 
two preceding series will go on to infinity, since the series 

of fractions A" B" C,' &c. which in future we shall call 
ABC 

principal fractions, to distinguish them from the interme
diate fractions, goes on of itself to infinity. (Art. 10.) 

But if the quantity a be rational, and eq ual to any fraction, 

;" we have seen in that Article, that the series in qU,estion 

will terminate, and that the last fraction of that sel·ies will be 
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the fraction ~ itself; therefore, tllis f.·action must also 
v 

terminate one of the above two series, but the other series 
will go on to infinity. 

In fact, suppose that 0 is the last denominator of the 

continued fraction; then D, will be the last of the principal 
D 

fractions, and the series of fractions greater than a will he 

terminated by the same fraction~. Now, the other series 
D 

of fractions less tlJan a, will naturally stop at the fraction 

..;, which precedes?,; but to continue it, we have only 
C D 

to consider tllat the denominator E, which must follow the 
last denominator 0, will be = 00 (Art. 3); so that the 

fraction ~" which would follow E, in the series of principal 
E D 

fractions, would be 00 ~ + 0, = ~*; now, by the law of inter-
00 D +C D 

mediate fractions, it is evident that, since E = 00 , we might 

. b h f . C dE. fi 't b Insert etween t e ractIons, an "an m III e num er 
C E 

of intermediate fractions, which would be 
D+C 2D+0 3D+0 & 
D' + cn 2D' + of' 3D' + c" c. 

So that in this case, after the fraction ;, in the fil'st series 
C 

of fractions, we may also place the intermediate fractions 
we speak of, and continue them to infinity. 

19. Problem. A fraction expressed by a great number 
of figures being given, to find all the fractions, in less 
terms, which approach so near the truth, that it is impos
sible to approach nearer without employing greater ones. 

'" Because an infinite quantity cannot be increased by ad
dition; and therefore 00 D + C = 00 D, and 00 D' + c' = 00 D' ; 
consequently, 

oon+c ClOn n 
co n' + -e= 'XJ n'=J)i 

B. 
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This problem will be easily resolved by the theory which 
we have explained. 

We shall begin by reducing the fraction proposed to a 
continued fraction after the method of Art. 4, observing to 
take all the approximate values less than the real ones, in 
order that the numbers {3, y, 0, &c. may be all positive; 
then, by the assistance of the numbers found, ct, {3, y, &c. 
we form, according to the formulre of AI't. 10, the fractions 

A" ~, ~,&c. the last of which will necessarily be the 
ABC 
same as the fraction proposed: because in that case the 
continued fraction terminates. Those fractions will alter
nately be less and greater than the given fraction, and will 
be successively expressed in greater terms; and farther, 
they will be such, that each of those fractions will be 
nearer the given fraction than any other fraction can be, 
which is expressed in terms less simple. So that by these 
means we shallllave all the fractions, that will satisfy the 
conditions of the problem, expressed in lower terms than 
the fraction proposed. 

If we wish to consider separately the fractions whieh are 
less, and those which are greater, than the given fraction, 
we Dlay insert between the above fractions as many inter
mediate fl'actions as we can, and form from them two series 
of converging fractions, the one all less, and the other all 
greater than the fraction proposed (Art. 16, 17, and 18;) 
each of which series will have separately the same pro-

. h . f .. If . ABC & pertIes, as t e serles 0 prmclpa ractions A" B" d' c. 

for the fractions in each series will be successively ex
pressed in greater terms, and each of them will approxi
mate nearer to the value of the fraction proposed than 
could be done by any other fraction, whether less, or 
greater, than the given fraction, hut expressed in simpler 
terms. 

It may also happen, that one of the intermediate frac
tions of one series does not approximate towards the 
given fmction so nearly, as one of the fractions of the 
other series, although expressed in terms less simple than 
the former; for this reason, it is not proper to employ 
intermediate fractions, except when we wish to have the 
fractions sought either all less, or all greater, than the 
given fraction. 

20. Exa"fle 1. According to M. de la Caille, the solar 
year is 365 . 5h • 48'. 49", and, consequent1y, longer by 
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5h• 48'. 49" than the common year of 365 days. If this 
difference were exactly 6 hours, it would make one day at 
the end of four common years: but if we wish to know, 
exactly, at the end of how many years this difference will 
produce a certain number of day .. , we must see the ratio 
between 24h, and 5h• 48'. 49", which we find to be tH%8 ; 
so that at the end of 86400 common years, we must inter
calate 20929 days, in order to reduce them to tropical 
years. 

Now, as the ratio of 86400 to 20929 is expressed in very 
high terms, let it be required to find ratios, in lower terms, 
as near this as possible. 

For this purpose, we must reduce the fraction lH%% to 
a continued f!"action, by the rule given in Art. 4, which 
is the same as that by which the greatest common divisor 
of two given numbers is found. This will give us 

20929)86400(4 = IX, 

83716 

2684)20929(7=,8 
18788 

2141)2684(1 =y 
2141 

543)2141(3=13 
1629 

512)543( 1 = f 

512 

31)512(16=~ 
496 

16)31(1 =" 
16 

15)16(1 =11 
15 

1)15(15=1 
15 

O. 

Now, as we know all the quotients u,,8, y, &c. we easily 
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I!'. fi b b· A B .orm rom t em t e serIes" -
A B', 

&c. in the following 

manner: 
4, 7, 1, 3, 1, 16, 1, 1, 15. 
-t, V, y, W, lfgl, W'r/', 'WI, 1H%, t~m, 

the last fraction being the same as the one proposed. 
In order to facilitate the formation of these fractions, we 

first write, as is here done, the series of quotients 4, 7, 1, &c. 
and place under these coefficients the fractions -t, V, y, 
&c. which result from them. 

The first fraction will have for its numerator the num
ber which is above it, and for its den'ominator unity. 

The second will have for its numerator the product of 
the number which is above it by the numerator of the 
first, plus unity, and for its denominator the number itself 
which is above it. 

The third will have for its numerator the product of 
the number which is above it by the numerator of the 
second, plus that of the first; and, in the same manner, 
for its denominator, the product of the number which is 
above it by the denominator of the second, plus that of the 
first. 

And, in general, each fraction will have for its numerator 
the product of the number which is above it by the nu
merator of the preceding fraction, plus that of the second 
preceding one; and for its denominator the product of 
the same number by the denominator of the preceding 
fraction, plus that of the second preceding one. 

So that 29=7x4+1, 7=7; 33=lx29+4, 8=lx7 
+ I; 128=3 x 33+29, 31=3 x 8+7, and so on; which 
agrees with the formulre of Art. 10. 

Now, we see from the fractions t, V, y, &c. that the 
simplest intercalation is that of one day in four common 
years, which is the foundation of the Julian Calendar; 
but that we should approximate with more exactness by 
intercalating only 7 days in the space of 29 common years, 
or eight in the space of 33 years, and so on. 

lt appears farther, that as the fractions t, 2-.(, 3/, &c. 
are alternately less and greater than the fraction ~ g t g a, or 

5h .4~;.:9'" the intercalation of one day in four years would 

be too much, that of seven days in twenty-nine years too 
little, that of eight days in thirty-three years too much, and 
so on; but each of these intercalations will be the most 
exact that it is Ilossible to make in the same space of 
time. 
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Now, if we arrange in two separate series the fractions 
that are less, and those that are greater than the given 
fraction, we may also insert different secondary fractions 
to complete the series; and, for this purpose, we shall 
follow the same process as before, but taking successively, 
instead of each number of the upper series, all the integer 
numbers less than that number, when there are any. 

So that, considering first the increasing fractions, 
1, 1, 1, 1:5. 

4c 3~ UiJ 2....1tJj---5 .ll.1L4cQQ 
l' 8' 39' 694' 20929' 

we see that, since unity is above the second, the third, 
and the fourth, we cannot place any inteTmediate fraction, 
either between the first and the second, or between the 
second and the third, or between the third and the fourth; 
but as the last fraction stands below the number 15, we 
may place, between that fraction and the preceding, four~ 
teen intermediate fractions, the numerators* of which will 
form the arithmetical progression 2865 + 5569,2865 + 2 X 
5569, 2865 + 3 x 5569, &c. their denominatol's will also 
form the arithmetical progression 694 + 1349, 694 + 2 X 

]349, 694+3x 1349, &c. 
So that the complete series of increasing fl'actions will be 

4-, :Jl, W, 2-l¥l, -H-i-1-, JsVft, li!-;-N, ¥-rJ#, 
VthP, V-,Nl, H-¥-H, 4f-Hi, H%H, 1nH-, 
JL± 1 ~± JUUi 9.Jt :L!1.~ 6.~ .!l.iU.LD_ .lL6_AQQ 
15533' 1688lP 18231' 19580' 20929' 

And, as the last fraction is the same as the given fraction, 
it is evident that this series cannot be carried farther. 
Hence, if we choose to admit those intercalations only in 
which the errol' is too much, the simplest and most exact 
wiII be those of one day in four years, 01' of eight days in 
thirty~three years, or of thirty-nine in a hundred and 
sixty~one years, and so on. 

Let us now consider the decreasing fractions, 
7, 3, 16, 1. 
29 1...J!8 2....7045..5.69 
"7' 3T, 6-'f5' T3-,i!j"' 

And first, on account of the number 7, which is above the 
first fraction, we may place six others before it, the nume~ 
rators of which will form the arithmetical progression, 

4+1, 2x4+1, 3x4+1, &c. 
and the denominators of which will form the progression 

* Because HH- is the principal fraction between 'i/'tll, and 
-!fH~e, as is found in the foregoing series. See page 485.-E. 
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1,2,3, &c.;* also, on account of the number 3, we may 
place two intermediate fractions between the fil'st and the 
second; and between the second and the third we may 
place fifteen, on acconnt of the number 16 which is above 
the third; but between this and the last we cannot insert 
any, because the number above it is unity. 

Farther, we must remark, that, as the preceding series 
is not terminated by the given fraction, we may continue 
it as faJ' as we please, as we have shewn, Art. 18. So that 
we shall have this series of decreasing fractions, 

1, t. y, V, 2-l, V, y, ft, -:H, VTB, 
2-{'159 , +i~, +H-, fif, tH', lllr/', 13QO¥' Wl, 
1.1> 1J U .. JJ..JI UU1.9 !Ul..JUl ~!U!.".l 2_lL8 .. ~ !L'i...!..3 
362' 42T' 460' 499' .. 30' 57''l'' "ino' 
2t:,n/, -4ill. g~~~, liNij~, 2"o;s.W';, 'YsWl, 
¥ott8%, &c. 

which are all less than the fraction proposed, and ap
proach nearer to it than any other fractions expressed in 
simpler terms. 

Hence we may conclude, that if we only attend to the 
intercalations, in which the error is too small, the simplest 
and most exact are those of one day in five years, or of two 
days in nine years, or of threc days in thirteen years, &c. 

In the G,'egorian calendar, only ninety-seven days are 
intercalated in four hundred years; but it is evident, from 
the pl'eceding series, that it would be much more exact, to 
intercalate a hundred and nine days in four hundred and 
fifty years. 

But it must be observed, that in the Gregorian reforma
tion, the determination of the year given by Copernicus 
was made use of, which is 365d • 5h• 49'.20": and substi
tuting this, instead of the fract.ion M~~, we shall have 
~ 8 H%, or rather -414; whence we may find, by the preced
ing method, the quotients 4, 8, 5, 3, and from them the 
principal fractions, 

4, 8, 5. 3. 
-t, ~l, \;¥, 11-4, 

which, except the first two, are quite different f/'Om the 
fractions found before. However, we do not perceive 
among them the fraction W adopted in the Gregorian 
calendar; and this fraction cannot even be found among 
the intermediate fractions, which may be inserted in 

* See page 485. 
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the two series t, W, and V, {H; for it is evident, that 
it could fall only between those last fractions, between 
which, on account of the number 3, which is above the 
fraction {-H-, there may be inserted two intermediate frac
tions, which will be W, and ='i.l; whence it appears, 
that it would have been more exact, if in the Gregorian 
reformation they had only intercalated ninety days in the 
space of three hundred and seventy-one years. 

If we reduce the fraction \C1.f, so as to have for its nu
merator the number 86400, it will become tlH-t, which 
estimates the tropical year at 365d • 5h• 49'. 12". 

In this case, the Gregorian intercalation would be quite 
exact; but as observations make the year to be shorter 
by more than 20", it is evident that, at the end ofa certain 
period of time, we must introduce a new intercalation. 

If we keep to the determination of M. de la Caille, as 
the denominator 97 of the fraction V .. ,p lies between the de
nominators of the fifth and sixth principal fractions already 
found, it follows, from what we have demonstrated (Art. 
14), that the fraction 1.{>g1 will be nearel' the truth than the 
fraction W ; but as astronomers are still divided with re .. 
gard to the real length of the year, we shall refrain from 
giving a decisive opinion on this su~ject; our only object 
in the above detail is to facilitate the means of understand
ing continued fractions and their application: with this 
view, we shall also add the following example. 

21. Example 2. We have already given, in Art. 8, the 
continued fraction, which expresses the ratio of the circum
ference of the circle to the diameter, as it results from the 
fraction of Ludolph; so that we have only to calculate, 
according to the manner taught in the preceding example, 
the series offractions, converging towards that ratio, which 
will be 

3, 7, 15, I, 292, 1, I, 
t, Q";, -iii, lB, :l.fl-ro¥' VNr4f', 9.,PIN,l, 

1, 2, 1, 3, I, 
W-l-f-l, tffiit, 'a~WPf, tH5H~-, HtHH, 

14, 2, 1, I, 
~glHHt, 17iW-flf';,l, Q,lHi\~¥g2, t!H~HH, 

2, 
1...(L6 a.9_Q...QJIJL6 
340262731' 

2, 
\\8f'lfi~'f~~6_-ll , 

1, 
9.Lo-", 3.3 :1..-.1-1 -l1 
67014872"5"9 , 

2, 
6.1..Ji_l~lUl.4.H 
19633196071 

84, 
l--/l'-i~3..llrfi/'4'irili , 
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2, 
HttHH-H%-H, 

3, 
4t~t%11t4!ttrt~t, 

I, 
-¥§2 ~H'H~~HHH, 

I, 
5~ 7 U_5_iJUt~ 
l'I'OV09O'f'I'Y4""8 3' 

15, 
IlNH-4W-f-lNN, 

13, 
fH& ~ ~ t HtH-B--H, 

4, 
~¥h2rl""'i~V:,3NN , 

6, 
till-}H-H--H-HH~ t g , 

6, I, 
2-i\V46t?iN82lil69tr¥2~¥, ~9Q"V1N-llllpV3QloV-l'Y· 
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These fractions will therefore be alternately less and 
greater than tllfl real ratio of the circumference to the 
diameter; that is to say, the first t will be less, the second 
y greater, and so on; and each of them will approach 
nearer the truth than can be done by any other fraction ex
pressed in simpler terms; or, in general, having a deno
minator less than that of the succeeding fraction: so that 
we may be assured that the fraction t approaches nearer 
the truth than any other fraction whose denominator is 
less than 7; also the fraction 9.l approaches nearer the 
truth than any other fraction whose denominator is less 
than 106; and so of others. 

With regard to the error of each fraction, it will always 
be less than unity divided by the product of the denomi
nator of that fraction, by the denominator of the following 
fraction. Thus, the error of the fraction t will be less than 

·h that of the fraction \l will be less than 7 x 1106, and so 

on. But, at the same time, the error of each fraction will 
be greater than unity divided by the product of the deno
minator of that fraction, into the sum of this denominator, 
and that of the denominator ofthe succeeding fraction; so 
that the error of the fraction t will be greater than i, 
that of the fraction \2 greater than 7 x \ 13' and so on, 

(Art. 14). 
If we now wish to separate the fractions that are less than 

the ratio of the circumference to the diameter, from those 
which are greater, by inserting the proper intermediate 
fractions, we may form two series of fractions, the one in-
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creasing, and the other decreasing, towal'ds the h'ue ratio 
in question; in this manner we shall have 

Fractions less than the ratio of the circumference to the 
diameter. 

3 2~ .1c1. JiJl. .lLl 1i3 UL5 UJ L1 3 
T' 8' 15' .2 2' 2 g, 3 6' 4:3' 5 0' ::,"7' 

Vi, \2.(, 2,li, 2il, \V, V,l, Hi, H~, 
\¥i, 1,;,\0:!" Ii-tTl, ~~\8, 2,[\1!j, &c. 

Fractions greater than the ratio of tIle circumferellce to tIle 
diarneter. 

t, i, 1.f, y, 1-l, \1, 2,,?, i--41-, l.'.P3~\*a8, 

3d'g2,H'l, tNl'"!HV', HtH-1t, ~H-tH-H, ly/'Nf-N-rf-f', 
tHtHHi, \4,Nd'6~5~80!i,p, &c. 

Each fraction of the first series appl'Oaches nearer the 
truth than any other fraction whatever, expressed in simpler 
terms, and the error of which consists in being too small; 
and each fraction of the second series likewise approaches 
nearer the tmth than any other fraction, which is expressed 
in simpler terms, and the error of which consists in its 
being too large. 

These series would become very long, if we were to con
tinue them as far as we have done that of the principal 
fractions before given. The limits of this work do not 
permit us to insert them at full length; but they may be 
found, if wanted, in Chap. XI. of Wallis's Algebra. 

SCHOLIUM. 

22. The first solution of this problem was given by Wal
lis in a small treatise, which he added to the posthumous 
works of Horrox, and it is to be found in his Algebra as 
quoted above; but the method of this author is indirect, 
and very laborious. That which we have given belongs to 
Huygens, and is to be considered as one of the principal 
discoveries of that great mathematician. The construction 
of his planetary automaton appears to have led him to it: 
for, it is evident, that, in order to represent the motions and 
periods of the planets exactly, we must employ wheels, in 
which the teeth are precisely in the same ratios, with respect 
to number, as the periods in question; but as teeth cannot 
be multiplied beyond a certain limit, depending on the size 
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of the wheel, and, besides, as the periods of the planets are 
incommensurable, or, at least, cannot be represented, with 
any exactness, but by very large numbers, we must con
tent ourselves with an approximation; and the difficulty 
is reduced to finding ratios expressed in smaller numbers, 
which approach the truth as nearly as possible, and nearer 
than any other ratios can, that are not expressed in greater 
numbers. 

Huygens resolves this question by means of continued 
fractions as we have done; and explains the manner of 
forming those tractions by continual divisions, and then 
demonstrates the principal properties of the converging 
fractions, which result from them, without forgetting even 
the intermediate fractions. See, in his Opera Postauma, 
the Treatise entitled Descriptio Automati Planetarii. 

Other celebrated mathematicians have since considered 
continued fractions in a more general manner. We find 
particularly in the Commentaries of Petersburga (Vols. IX. 
and XI. of the old, and Vols. IX. and XI. of the new), 
Memoirs by M. Euler, full of the most profound and inge
nious researches on this subject; but the theory of these 
fmctions, considered in an arithmetical view, which is the 
most curious, has not yet, I think, been cultivated so much 
as it deserves; which was my inducemeut for composing 
this small Treatise, in order to render it more familiar to 
mathematicians. See, also, the Memoirs of Berlin for the 
years 1767 and 1768. 

I have only to observe farther, that this theory has a 
most extensive application through the whole of arith
metic; and there are few problems in that science, at least 
among those for which the common rules are insufficient, 
which do not, directly or indirectly, depend on it. 

John Bernoulli has made a happy and useful application 
of it in a new species of calculation, which he devised for 
facilitating the construction of Tables of proportional parts. 
See Vol. I. of his Recueil pour les Astronomes. 

CHAPTER II. 

Solution of some curious and new Arithmetical Problems. 

Although the problems, which we are now to consider, 
are immediately connected with the preceding Chapter, and 
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depend on the same principles, it will be proper to treat 
of them in a direct manner, without supposing any thing 
of what has been before demonstrated: by which means 
we shall have the satisfaction of seeing how necessarily 
these subjects lead to the theory of Continued Fractions. 
Besides, this theory will be rendered much more evident, 
and receive from it a greater degree of perfection. 

23. Problem 1. A positive quantity a, whether rational 
or not, being given, to find two integer positive numbers, 
p and q, prime to each other; such, that p-aq (abstract
ing from the sign) may be less than it would be, if we 
assigned to p and q any less values whatever. 

In order to resolve this problem directly, we shall begin 
by supposing that we have a1ready found values of p and 
q, which have the requisite conditions; wherefore, assum
ing for rand .Y, any integer positive numbers less than p 
and q, the value of p-aq must be less than that of r-as, 
abstracting from the signs of these two quantities; that is 
to say, taking them both positive: now, if the numbers r 
and s be such, that ps-qr= + 1, (the upper sign apply
ing when p-aq is a positive number, and the under, when 
p-aq is a negative number) we may conclude, in general, 
that the value of the expression y - az will always be 
greater (abstracting from the sign) than that of p-aq, as 
long as we give to z and y only integer values, less than 
those of p and q. 

First, it is evident, that we may suppose, in general, 
!I pt+ru, and z=qt+ru, t and u being two unknown 
quantities. Now, by the resolution of these equations, we 

sy-rz qy-pz 
have t= ---, and u= ---; then, since 

ps-qr qr-ps 
ps-qr= ± 1, t= +(sy-rz), and u= ±(qy-pz); it is 
evident, that t and u will always be integer numbers, since 
p, q, r, s, y, and z, are supposed to be integers. 

Therefore, since t and u are integer numbers, and p, q, r, s 
integer positive numbers, it is evident, in order that the 
values of y and z may be less than those of p and q, 
that the numbers t and u must necessarily have different 
signs. 

Now, I say, that the value of r-as will also have a dif
ferent sign from that of p-aq; for, making p-aq=p, 

p pr R 
and r - as = R, we shall have - = a + -, - = a + -; 

q q s s 

but the equation, ps-qr= ± 1, gives l!. - ~ = + ~ ; 
q s qs 



CHAP. II. ADDITIONS. 497 

wherefore ~ - ~ = + .!..; and, since we suppose the doubt-
q s qs 

ful sign to be taken, conformably to that of the quantity 

h . P R b . . 'f b p-aq, or P, t e quantIty - - --.: must e posItIve, 1 P e 
q s 

positive; and negative, if P be negative: now, as s<p, and 

R>P (hyp.), it is evident tbat ~ > ~ (abstracting from 
s q 

the sign); therefore, the quantity ~ ...... ! will always have 
q s 

its sign different from that of!:; that is to say, from that 
s 

of R, since s is positive; and, consequently, P and R will 
necessarily have different signs. 

This being laid down, we shall have, by substituting the 
above values of y and z, 

y~az=(p-aq)t+(r-as)u=pt+RU. 

Now t and u having different signs, as well as P and R, it 
is evident, that pt and RU will be quantities of like signs: 
therefore, since t and u are integer numbers, it is clear 
that the value of y-az will always be greater than P ; 

that is to say, than the value of p-aq, abstracting from 
the signs. 

But it remains to know whether, when the numbers p 
and q are given, we can always find numbers, rand s, 
less. than those, and such that ps-qr= ± I, the doubtful 
signs being arbitrary. This follows evidently from the 
theory of continued fractions; but it may be demonstrated 
directly, and independently of that theory. For the diffi
culty is reduced to proving, that there necessarily exists an 
integer and positive number less than p, which being as
sumed for r, will make qr+ I divisible by p. Now, sup
pose we successively substitute for r the natural numbers 
1, 2, 3, &c. as far as p, and that we divide the numbers, 
q+l, 2q+l, 3q+l, &c.pq+l, by p, we shall then have 
p remainders less than p, which will necessarily be all 
different from one another; since, for example, if mq+ I, 
and nq+ I (m and n being distinct integer numbers not 
exceedingp), when divided by p, give the same remainder, 
it is evident that their difference (m-n)q, must be divisible 
by p; now, this is impossible, because q is prime to p, 
alld m-n is a number less than p. 

KK 
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Therefore, since all the remainders in question are in
teger, positive numbers less than p, and different from each 
other, and are p in number, it is evident that Omust be among 
those remainders, and, consequently, that there is one of 
the numbers q± I, 2q± I, 3q± I, &c. pq± I, which is di
visible by p. Now, it is evident that this cannot be the last; 
so that there is certainly a value of r less than p, which 
will make rq± I divisible by p; and it is evident, at the 
same time, that the quotient will be less than q; therefore 
there will always be an integer and positive value of r less 
than p, and another similar value of s, and less thanq, which 

'11 . f h . qr± I I WI sabs y t e equatIon s = --, or p$-qr= + . 
q 

24. The question is therefore now reduced to this; to 
find fonr positive whole numbers, p, q, r, s, the last two 
of which may be less than the first two; that is, r<p, and 
s<q, and such, that ps-qr= + I; farther, that the quan
tities, p-aq, and r-as, may have different signs, and, at 
the same time, that r-as may be a quantity greater than 
p-aq, abstracting f,'om the signs. 

In order to simplify, let us denote r by p', and s by q', 
so that we have pq'-qjl=+ I; and as q>q' (hyp.), let l'" 
be the quotient that would be produced by the division of 
q by q', and let the remainder be q", which will conse
quently be <q'; also, let p,' be the quotient of the division 
of q' by q", and qlll the remainder, which will be<q"; in 
like manner, let P," be the quotient of the division of q" by 
qlll,and qiV the remainder <q"', and so on, till there is no 
remainder; in this way, we shall have 

q = p,q' +q" 
q' = p,' q" + gill 
q" = p," qlll + qiV 
qlll = p,1II qiV + qV, &c. 

where the numbers p" p,', p,", &c. will all be integer and 
positive, and the numbers p, q', q", q''', &c. will also be 
integer and positive, and will form a series decreasing to 
nothing. 

In like manner, let us suppose 

p = p,p' +p" 
p' = p,' pI! + l" 
p" = p," 11/ + p" 
pili = p,'~iV + P v, &c. 
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And as the numbers p and p' are considered here as 
given, as well as the numbers (h, !k', !k", &c. we may deter
mine from these equations the numbers p", p''', pi" &c. 
which will evidently be all integer. 

Now, as we must have pq'-qp'=±l, we shall also 
have, by substituting the preceding values of p and q, and 
effacing what is destroyed, p"q' -q"p' = ± 1. Again, sub
stituting in this equation the values of p' and g'. there 
will result p" q'" - q'p'" = + 1, and so on: so that we shall 
have, generally, 

pq' - qp' =+ 1 
p'o" - q'p" = += 1 
p,IO'" - q" p'" = ± 1 
p"lqiV _ q"piV = =+ 1, &c. 

So that, if g"', for example, were = 0, we should have 
-q''p'''=± 1; also, q"= 1, and p"'= =+1 ; but if qiV were 
=0, we should have_q"'piv==+I; therefore q"'=1, and 

piV= ± 1 ; so that, in general, if qe=o, we shall have 
qe-t = I ; and then pe = + 1, if g is evell, and pe = + 1, 
if g is odd. 

Now, as we do not previously know whether the upper, 
or the under sign is to take place, we must successively 
suppose pe= + 1, and-1: but I say that one of these 
cases may at all times be reduced to the other; and, for 
this purpose, it is evidently sufficient to prove, that we 
can always make the g of the term qe, which must be 
nothing, either even, or odd, at pleasure. 

For example, let us suppose that qiV =0, we shall then 
have q'" = 1, and q"> 1, that is, q" =2, or >2, because the 
numbers, q, q', q", &c. naturally form a decreasing series; 
therefore, since g"=!k"gfll +qiV; we shall have q"=!k", so 
that !k" = or > 2 ; thus, if we choose, we may diminish !k" by 
unity, without that number being reduced to nothing, and 
then qiV, which was 0, will become 1, and qV=O; f()I', put
ting!klf - 1, in stead of /', we shall ha ve g" = (,v/' _ 1 )'1fll + giV ; 
but q" = !k", '1'" = 1; wherefore, qiv = 1 ; then having 
'1'" =/" 7iV + q" that is, 1 =(h'" + qV, we shall necessarily 
have !k" = 1, and qV=O. 

Hence we may conclude, in general, that if qe=o, we 
shall have qe-t =1, andpe=±l, the doubtful sign being 
arbitrary. 

Now, if we substitute the values of p and q, given by 
the preceding formulre, in p-aq, those of p' and g', in 
p' -ag', and so of others, we shall have 
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p -aq =(J, (p' -aq' )+p" -aq" 
p -aql =(J,I (pi' _agll)+pfll_aglll 
jP -arl' =(J,II (1'Ill-ar/')+pi. _aqiY 
p'll_aglll=(J,II'(piV _agiV) +pv _aqv, &c. 

CHAP. II. 

whence we find 
a(/ _]il p-aq 

fJ- - +--- p' -ag' p' -ag' 
aq'l' _pili p' - aq' 

p/ - +"'--;-;----"'---n - p" _ a'l" p'l -aqll 
p/' _ agiV _pi. + pll _ aqll 

- p'll -ai/II plll_a'llil 
11/ aqT _1" p'll_aqlfl 

II- =. . +. . , &c. 
1''' - aq" 1''' - aq" 

Now, as by hypothesis the quantities p-aq, and pi -aql, 
are of different signs; and farther, as pl_aql (abstracting 
from the signs) must be greater than p-aq, it follows 

that p, ... aq,will be a negative quantity, and less than unity. 
p -aq . 

Therefore, in order that fk may be an integer, positive Dum

a"- " bel' (as it must), it is evident, that 3,-1'1 must be a po-
1'-aq 

sitive quantity greater than unity; and it is obvious, at the 
same time, that /1- can only be the integer number, that is 

oq'l_p'l 
immediately less than ,--, ; that is to say, contained 

p -aq 

between the limits 
(lq'l - t:. aql' _ p" .. . 

, "and, q' - 1 , for smce 
l' -a'l p-a 

p-aq 
- -'--I > 0, and < 1, we p-aq 

a" ff 

shall have ,u. < ~ -P, and 
1'-ap 

aqll_1''' > -1 1"-(1q' , 
a."- " 

Also, since we have seen, that ~ PI must be a positive 
l' -aq 

quantity greater than unity, it follows that ~: - aq:1 will be 
l' -aq 

a negative quantity less than unity, (I say less tllan unity, 
abstracting from the sign.) Wherefore, in order that ",' may 

a 1'1_ Iff 

be an integer, positive number,~, 1'" must be a positive 
l' -aq 
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quantity greater dian unity, and consequently the number 
p.' can only be the integer number, which will be im-

ar. III -""" mediately below the quantity ~, 1',,-. 
P -aq 

In the same manner, and from the consideration, that ",' 
must be an integer, 'positive number, we may prove that the 

if' h' 

quantity, ~'/, -q'P'" will necessarily be positive, and greater 
p -a 

than unity, and that p." can only be the integer number 
immediately below the same quantity; and so on. 

Tt follows, 1st, that the quantities p - ag; p'- aq', 
p" -aq'l, &c. will successively have different signs; that 
is, alternately positive and negative, and will form a sel'ies 
continually increasing. 2dly, that if we denote by the 
sign < the integer n urn ber, which is immediately less than 
the value of the quantity placed after that sign, we shall 
have, for the determination of the numbers, p., p./, p.", &c. 

aq"-p" 
p. < p'_aq' 

I aq'" - p'" 
p. < p"-ag" 

/I aqiV_plV 
p. < il'i _aq{{f' 

Now, we have already seen, that the series q, q', q", &c. 
must terminate in 0; and that then the preceding term 
will be 1, and the term corresponding to 0 in the other 
series p, p', p', &c. will be :....- + I at pleasure. 

For example, let us suppose that qIV=O, we shall then 
have i" = 1, and plV = 1; therefore 

pili -aq"l_p'" -a, and 
piV _aqi' = 1; 

therefore pili -a must be a negative quantity, and less than 
1, abstracting f/'Om the sign; that is, a-pili must be> 0, 
and < 1; so that pI/! must be the integer number im
mediately below a; we shall therefore know the values of 
these four terms, 

piv=l, ql'=O, 
pili <a, qlll = 1, 

by means of which, going back through the former fOI·mulre. 
we may find all the preceding terms. We shall first have 
the value of ",fI, then we shall have pfl and gil, by the formulre, 
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p"=fl-"p'" +piv , and 
q" = fl-" g'f' + qiV ; 

f,'om which we shall get {J/, and then p' and q'; and so of 
the rest. 

In general, let qe=o, then we shall have qe-l, and 
pe = 1 ; and shall prove, as before, that pe-1 can only be 
the integer nllmber immediately below a; so that we shall 
llave these four terms, 

pe=l, 
pe-1<a, 

we shall then have 
aqe_ pe 1 

e-2< <----, fl- pe-1_aqe-1 a_pe-I 
pe-Q =fl-e-Qpe-1 + pe, qe-2=fl-e-2qe-1 + qe 

aqe-1_pe-1 
e-3 < fl- p-7e --:2,--_-a~q-::-e-;;2 

pe-3=fl-e-3pe-2 +pe-1 , qe-3=fl-e-3qe-2+ qe-1, 

and so on. 
In this manner, therefore, we may go back to the first 

terms, p and q; but it must be observed, that all the suc
ceeding terms,p', q',p", gil, &c. possess the same properties, 
and serve equally to resolve the problem proposed. For it 
is evident, in the preceding formulre, that the numbers 
p, p', p", &c. and q, g', q", &c. are all integer and positive, 
and form two series continually decreasing; the iil'st of 
which is terminated by unity, and the second by 0. 

Farther, we have seen that these numbers are such, 
thatplJ'-qp'= ±l. p'q"-q'p"= =Fl, &c. and that the 
quantities p -aq, p' -aq', p" -ag", &c. are alternately posi
tive and negative, and at the same time form a series con
tinually increasing. Whence it follows, that the same 
conditions, which exist among the four numbers p, q, r, s, 
or p, q, p', g', and on which, as we have seen, the solution 
of the problem depends, equally exist among the numbers, 
p', q', pIt, q", and among these, p", gil, p"', qfff, and so on. 

Therefore, beginning with the last terms pe and qe, and 
going back always by the formulre we have just found, we 
shall successively have all the values of p and q that can 
solve the question proposed. 

25. As the values of the termspe, pe-I, &c. qe, qe-1, &c. 
are independent of the exponent, g, we may abstract from 
it, and denote the terms of these two increasing series thus, 

pO, p', p", p"', piV, &c. qO, q', q", q"', qiV, &c. 
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SO that we shall have the following results; 

Then, 

pO=l qO=O 
p'=", q'=l 
p" =",'p' +1 (j' =",' 
p'" = "'''1/' + p' if" = pI'tI' + q' 
piv = ",''''p''' +p" qiY =pI" q'" +9" 

&c. &c. 

'" <a 
",' <po_aqo< _1_ 

aq'-p' a-", 
" aq'-p' 

'" <p'-aq" 

'" p" - aq" 
'" < aq'" _pilI 

i. aq'" - p'" '" < iv iv' &c. p -aq 
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Where the sign < denotes the integer number imme
diately less than the value of the quantity placed after that 
sign. 

Thus, we shall successively find all the values of p and q 
that can satisfy the problem; these values being onl, the 
correspondent terms of the two series, po, p', p", p'l , &c. 
and qO, q', q", q"', &c. 

26. (,orollary 1. If we make 

b_po-apo 
- aq'-p' 

aq' - p' 
c=" q" p -a 

p" - aq" 
d = '" lIn &c. aq -p 

we shall have, as it is easy to perceive, 

b=_l_ 
a-", 

1 
c=-b ' -'" I 
d=--", &c. 

C-", 
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and (.h < a, p.' < b, p.'f < c, iff < d, &c. therefore the IIum
bers (.h. p.', if, &c. will be no other than those which we 
have denoted by a, p, y, &c. in Art. 3; that is to say, these 
numbers will be the terms of the continued fraction, which 
represents the value of a; so that we shall have here 

I 
a=p.+ --,- I 

p. +" +, &c. 
p. 

Consequently, the numbers p', p", p''', &c. will be the 
numerators, and q', q", '1"', &c. the denominators of the 
fractions converging' to a; fractions which we have already 

ABC 
denoted by -" t' t, &c. (AI·t.10.) 

ABC 

SO that the whole is reduced to converting the value of 
a into a continued fraction, having all its terms positive; 
which may be done by the methods already explained, pro
vided we are always careful to take the approximated 
values too small; then we shall only have to form the series 
of principal fractions converging towards a, and the terms 
of each of these fractions will give the values of p and q, 

which will resolve the problem proposed; so that l!. can 
. q 

only be one of these fractIOns. 
27. Corollary 2. Hence results a new property of the 

fractions we speak of; calling E one of the principal frac-
q 

tions conve"ging towards a, (provided they are deduced 
from a continued fraction, all the terms of which are posi
tive,) the quantity p-aq will always have a less value 
(abstracting from the sign), than it would have, were we 
to substitute in the room of p and q any other smaller 
numbers. 

28. Problem 2. The quantity, 
Apm + Bpm-Il] + Cp"t-2q2 + ,&c. + vqm, 

being proposed, in which A, B, C, &c. are given integers, 
positive or negative, and p and q unknown numbers, 
which must be integer and positive; it is required to deter
mine what values we must give to p and q, in order that 
the quantity proposed may become the least possible. 

Let a, {3, '1', &c. be the real roots, and p.± v"; -I, 
<7r±g"; -1, &c. the imaginary roots of the equation, 

Axm +nxm- 1 +cxm-2+, &c. +v=O, 
then we shall have, by the theory of equations, 
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Apm + Bpm-lq + cpm-2q2 +, &C. + v qm = 
A(p-aq) X (p-(3q) x (P-rq) . .•• x 
(p-(fJ-+ vv' -1)q) x (p-(fJ--vv' -1)q) x 
(p-(?r+gv' -l)q) x (p-(?r- gv' -l)q) .. •• = 

A(p-aq) X (p-(3q) x (p-rq) ...• x 
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((p_fJ-q)2+V2q2) X ((p_nq)2+ g2q2)* •••• 
Therefore the question is reduced to making the product 

of the quantities p-aq, p-(3q, p-rq, &c. and 
(p_fJ-q)2+V2q2, (p_'Tq)2+g~q2, &c. 

the least possible, when p and q are integer, positive 
numbers. 

Suppose we have found the values of p and q, which 
answer to the minimum; and if we suhstitute other smaller 
numbers for P and '1, the product in question must acquire 
a greater value. It will therefore be necessary for each of 
the factors to increase in value. Now, it is evident, that if 
a, for example, were negative, the factor p-aq would 
always diminish, when p and q decreased; the same thing 
would happen to the factor (p-fJ-q)2+ v2qz, if IN were 
negative, and so of the others; whence it follows, that 
among the simple real factors none but those where the 
roots are positive, can increase in value; and among the 
double imaginary factors, those only, in which the real part 
of the imaginary root is positive, can increase. Farther', 
it must be remarked, with regard to these last, that in 
order that (p_,u,q)2 + v2q2 may increase, whilst p and q 
diminish, the part (p-fJ-q)2 must necessarily increase, be
cause the other term v2q2 necessarily diminishes; so that 
the increase of this factor will depend on the quantity 
V-fJ-q; and so of the others. 

Therefore, the values of p and q. which answer to the 
minimum, must be such, that the (luantity p-aq may in
CI'ease, by giving less values to p and q, and taking for IX. 

one of the real positive roots of the equation, 
A"m+B"m-l+cxm-2+, &c. +v=O, 

or one of the real, positive parts of the imaginary roots of 
the same equation, if there be any. 

Let rand s be two integer, positive numbers less than P 
and q; then r - as must be > (p-aq), abstracting from 
the sign of the two quantities. Let us therefore suppose, 
as in Art. 23, that these numbers are such, that ps-qr= ± I, 
the upper sign taking place, when p-aq is positive; and 

* Because (p - (f' + vv' -1 )q) x (p-(f' -vv' -l)q) = p2_ 
2Pf'q+f'Z'l2+vZq2=(p_f'q)2+v~q~, and the sall1e with the 
others.-D. 
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the under, when p-aq is negative; so that the two quan
tities, p-aq, and r-as, become of different signs, and we 
shall exactly have the case, to which we reduced the pre
ceding problem, Art. 24, and of which we have already 
given the solution. 

Hence, by Art. 26, the values of p and q will necessarily 
be found among the terms of the principal fractions con
verging towards a; that is, towards anyone of the quan
tities, which we have said may be taken for a. So that 
we must reduce all these quantities to continued fractions; 
which may easily be done by the methods elsewhere taught, 
and then deduce the converging fractions required: after 
which, we must successively make p equal to all the nu
merators of these fractions, and q equal to the correspond
ing denominators, and of these suppositions, that which 
shall give the least value of the proposed function will 
necessarily answer likewise to the minimum required. 

29. Scholium 1. We have supposed that the numbers p 
and q must both be positive; it is evident that if we were 
to take them both negative, no change would result in the 
absolute value of the formula proposed; it would only 
change its sign in the case of the exponent m being odd; 
and it would remain quite the same, in the case of the ex
ponent m being even: so that it is of no con seq uence what 
signs we give the numbers p and q, when we suppose them 
both of the same kind. 

But it will not be the same, if we give different signs to 
p and q; for then the alternate terms of the equation pro
posed will change their signs, which will also change the 
signs of the roots ct, (3, '/, &c. I,,±v.y'-l, 1I'±g.y'-I, &c. 
so that those of the quantities ct, (3, 'I, &c. 1", '71', &c. which 
were negative, and consequently useless in the first case, 
will become positive in this, and must be employed instead 
of the other. 

Hence, I conclude, generally, that when we investigate 
the minimum of the proposed formula, without any other 
restriction, than that of p and q being whole numbers, we 
must successively take for a all the real roots, ct, (3, 'I, &c. 
and all the real parts, 1", '71', &c. of the imaginary roots of 
the equation A"m+ B"m-1 +Cxm-2+, &c. +v=O; abstract
ing' from the signs of these quantities; but then we must 
give the same signs, or different signs, to p and q. accord
ing as the quantity we have taken for a had originally the 
positive, or the negative sign. 

30. Scholium 2. When among the real roots ct, (3, 'I, &c. 
there are some commensurable, then it is evident that the 
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quantity proposed will become nothing, by making l!. equal 

to one of these roots; so that in this case, properlyqspeak
ing, there will be no minimum. In all the other cases, it 
will be impossible for the quantity in question to become 0, 
whilst p and qare whole numbers. Now, as the coeffi
cients A, B, 0, &c. are also whole numbers, (by hypothesis), 
this quantity will always be equal to a whole number; and, 
consequentl.y, it can never be less than unity. 

Ifwe had, therefore, to resolve the equation, 
Apm+Bpm-lq+opm-2q2+, &c. +vqm= =+=1, 

in whole numbers, we must seek for the values of p and q 
by the method of the preceding problem, except in the case 
where the equation, 

A"m + B"m-l + 0,,"'-2 +, &c. + v =0, 
had roots, or any divisors commensurable; for then, it is 
evident, that the quantity, 

Apm+Bpm-lq+op"'-2q2+, &c. 
might be decomposed into two or more similar quantities 
of less degrees; so that it would be necessary for each of 
these partial formulre to be separately equal to unity; 
which would give at least two equations that would serve 
to determine p and q. 

We have elsewhere given a solution of this last problem 
(Memoires pour l'Academie de Berlin pour l'Annee 1768); 
but the one we are going to explain is much more simple 
and direct, although both depend on the same theory of 
continued fractions."" 

31. Problem 3. Required the values of p and q, which 
will render the quantity, Ap2 + Bpq + oq2, the least possible, 
supposing that whole numbers only are admitted for p 
Md~ . 

This problem evidently is only a particular case of the 
preceding; but it may be proper to consider it separately, 
because it is capable ofa very simple and elegant solution; 
and, besides, we shall have occasion afterwards to make 
use of it, in resolving quadratic equations for two unknown 
quantities in whole numbers. 

According to the genel'al method, we must begin, there
fore, by seeking the roots of the equation, b 2 + B" + 0 =0, 

-B+ .J(B2_4AO) 
which we know to be, - 2A 

• See also Le Gendre's Essai sur la TMorie des Nombres, 
page 169. 
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1st, If B2_4AC be a square number, the two roots will 
be commensurable, and there will properly be no minimum, 
because the quantity, Ap2+Bpq+cq2, will become 0. 

2d, If B2_4AC be not a square, then the two roots will 
be irrational, or imaginary, according as B2_4AC will be 
>, or <0, which makes two cases that must be con
sidered separately. We shall begin with the latter, which 
it is most easy to resolve. 

First Case, when B2-4AC<0 .. 
32. The two roots being in this case imaginary, we shall 

have 2: for the whole real part of these roots, which 

must consequently be taken for a. So that we shall only 

have to reduce the fraction 2:' abstracting from the sign 

it may have, to a continued fraction, by the method of 
Art. 4, and then deduce from it the series of converging 
fractions (Art. 10), which will necessarily terminate. 
This being done, we shall successively try for p the 
numerators of these fractions, and t.he correspond~ng 
denominators for q, taking care to give p and q, the 

same, or different signs, according as 2: is a positive, or 

negative number. In this manner, we shall find the 
values of p and q, that may render the formula proposed 
a minimum. 
Example. Let there be proposed, for example, the quantity, 

49p2 - 238pq + 290q2. 
Here, we shall have A=49, B= -238, c=290; where-

-B 
fore B2 - 4AC = - 196, and 2A = W = Y . Working 

with this fraction according to the method of Art. 4, we 
shall find the quotients 2, 2, 3; by means of which, we 
shall form these fractions (see Art. 20), 

2, 2, 3. 
i, t, t, y. 

So that the numbers to try with will be 1,2, 5, 17; for p, 
and 0, 1,2, 7, for q. Now, denoting the quantity pro
posed by P, we shall have 

1{ 
2 
5 

]7 

q 

° 1 
2 
7 

p 

49 
10 
5 

49; 
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whence we perceive, that the least value of p is 5, which 
results from these suppositions, p = 5, and q = 2; so that 
we may conclude, in general, that the given formula can 
never become less than 5, while p and q are whole num
bel's; and that the minimum will take place, when p = 5, 
and q=2. 

Second Case, when B~-4AC>0. 

33. As, in the present case, theequation, AX2 + Bx + c=O, 
has two real inational roots, they must both be reduced 
to continued fractions. This operation may be performed 
with the greatest ease by a method which we have else
where explained, and which it may be proper to repeat 
here, since it is naturally deduced from the formlllffi of 
Art. 25, and likewise contains all the principles necessary 
for the complete and general solution of the problem 
pl'Oposed. 

Let us, therefore, denote the root, which is to be 
thrown into a continued fraction, by a, which we shall 
suppose to be always positive; at the same time, let b be 

the other root, and we shall evidently have a + b = -~, 
A 

C v' (B~-4AC) 
and ab = -; whence a-b= ; or, for the sake 

A A 

of abridgement, making B~-4AC = E, a-b= v'E, whe)'e 
A 

the radical v' E may be positive, or negative: it will be 
positive, when the root a is the g)'eater of the two, and 
negative, when that root is the less; therefore 

-B+v'E -B-v'E 
a = 2A ' b = 2A . 

Now, if we preserve the denominations of Art. 25, we 
shall only have to substitute for a the preceding value, 
and the difficulty will only consist in determining the 
integer, approximate values, p..', /', /", &c. 

To facilitate these determinations, I multiply the nume-
rator and the denominator of the fractions, 

pO_aqO aq' - pi p" -aq" !'< •• 

-,--"" '" III 11/' &c. re. pectn: ely by aq - p p - aq aq - p 

A (bq'_p') , A(p"-bq"), A(bq"-p"'), &c. 

and as we have 
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I 

A(aq'- p') X (bq'- p')=Ap2-A(a+ b)p'q' + Aabq2 
I I 

=Ap2 + Bp' q' + Cq2, 

" /I A(p"-aq") X (p" -bq")= Ap2-A(a+ b)p"g" + Aabg2 

/I /I 

= Ap2 + Bp" g" + cg2, &C. 
A(pO_agO) X (bq'-p') = -,u.A-tB-tv'E, 

A(aq' - p') X (p" - bq") 
= - Ap'p" + Aap" q' + A bp' q" - Aabq' g" 

= - Ap'p" - cg' g" - tB(p' q" + q'p") + t v' E(p" q' - q"p'), 
A(p"-aq") X (bqlll_p"') 

= - Ap"plll + Aap"'p" + Abp" q'" - Aabq" qlll 
=-AP"p "_ Cq"qlll_tB(p" q'" + q"p"') +t.JE(plll q"-q"'p"), 
and so on. Now, in ol'der to alJridge, let us make 

pO = A 

/I /I 
p" = Ap2 + Bp" q" + cq2 

QO =tB 
Q' =A,u. +tB 
Q" =AP'P" +tB(p'q" + q'p")+cr/;/' 
Q"'=Apftplll +tB(p"qlll +q''plll) + cq' g"', &c. 

Because 
p"q'_q''p = I, plllq"_q"'p" = -I, pi"q'" _qiVpm = I, &c. 
we shall have the following values, 

< _Qo + ~.JE 
,u. pO 

-Q'-t.J E 
III <---r'--'--.. 
,.. p' 

" + 1 I ,,<-Q 2vE 
,u. p" 

'" 1 I 111< -Q - 'IV E & ,u. --p-,-,-, --, c. 

Now, if in the expression of Q" we put, for pI! and q", 
their values, ,u.'p' + 1, and ,u." it will become ,u.'p' +<t ; also, 
if we substitute in the expression of <t", for pili and qlll, 
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their values p/'p" + p', and fJ-"q" + '1', it will be changed 
into fJ-"p', + QII, and so on; so that we shall have 

Q' = fJ-po + QO 
ci' = fJ-'p' + Q' 
Q'" = fJ-" p" + Q" 

Ql' = p/"p'" + Q''', &c. 
Likewise, if we substitute the values of p", and '1", ill 

, 
the expression of p", it will become fJ-2p' + 2p/Q' + A; and 
if we substitute the values of pili, and ci". in the expres-

" sion of P''', it will become fJ-2p" + 2,1J/' Q" + p', and so on ; so 
that we shall have 

p' = /N2pO + 2,u,Qo + C 

1/1 
pl. = /N2p'" + 2fJ-"'Q''' + P", &c. 

By means of these formu]re, therefore, we may con
tinue the several series of numbers, /N, fJ-', P/'; QO, Q', Q", 
and pO, p', p", &c. to any length. which, as we see, 
mutually depend on each other, without its being neces
sary, at the same time, to calculate the numbers pO, p, 
p", &c. and '1°, '1' , '1", &c. 

We mJlY also find the values of p', p", P"', &c. by more 
simple formulre than the preceding, observing that we have 

" , , 
Q2_p'p"= (/N'p' +Q')2_p'Gu,2p' +2/N'ci + A)=Q2 -AP', 

and so on; that is to say. 

, II '" Q2_pOp'=tE, Q2_p'p"=tE, Q2_pllp"'=iE, &c. 
Whence we get 

, /I 11/ 

, Q2-tE " Q2-tE '" Q2-iE &c. 
p = pO ,P = p' ,P = p" , 

The numbers fJ-, fJ-', /N", &c. having thus been found, we 
have (Art. 26) the continued fraction, 

1 
a=fJ-+/N'+l & --,; +. c. 

fJ-
and, in order to find the minimum of the formula, 
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Ap2+npq+cq2, we shall only have to calculate the num
bers pO, pi, p", p/ll, &c. and qO, q', q", qll!, &c. (Art. 25), 
and then to try them instead of p and q; but this opera
tion may likewise be dispensed with, if' we consider, that 
the quantities pO, P', pI!, &c. are nothing but the values of' 
the formula in question, when we successively make 
p . pO, p', pI!, &c. and q='1O, q', q", &c. We have, there
fore, only to consider which is the least term of the serie8, 
pO, p', pll, &c. which we calculate at the same time with 
the series, /1>, pi, /1>", &c. and that will be the minimum 
required; we shall then find the cOITesponding values of' 
p and q by means of the formulffi above quoted. 

34. Now I say, that continuing the series, po, pI, plf, &c. 
we must necessarily arrive at two consecutive terms with 
different signs; and that then the succeeding terms, also, 
will all have different signs two by two. For, by the 
preceding Article, we have 

po = A(pO_ aqO) x (pO _ bqo), 
p' = A(p' - aq') x (p' - bq'), &c, 

And, from what we demonstrated in Problem 2, it follows, 
that the quantities pO - agO, p' - aq', p" - aq", &c. must 
have alternate signs, and go on diminishing; therefore, 1st, 
if b is a negative quantity, the quantities,po-bqo, p'-bq', 
&c. will all be positive; consequently, the numbers pO, p', pll, 

will all have alternate signs; 2dly, if' b is a positive quantity, 
as the quantities p'- aq', p"-aq", &c. and much more the 

I " 
quantities P, - a, P" - a, form a series, decreasing to 

q q 
infinity, we shall necessarily arrive at one of these last 

/II 

quantities, as P/ll - a, which will be < (a - b), abstracting 
q iv v 

from the sign, and then all the followin£', L - a, p. - a, 
~ q" q 

will be so likewise; so that all the quantities, 
'If iv 

a - b + P", - a, a -h+ P
iV -a, &c. will necessarily have 

q q 
the same sign as the quantity a-hi consequently, the 

. . p'" pi. If! /II 
quantitIes, q'" - b, qiV - b, &c. and these p - bq , 

pi. _ bqi., &c. to infinity, will all have the same sign; 
therefore, all the numbers P"', piV, &c. will have alternate 
signs. 

Suppose now, in general, that we have arrived at terms, 
with alternate signs, in the sel'ies, P', P", P"', &c. and that 
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pA is the first of those terms, so that all the terms pA, pA+l, 

pAH, &c. to infinity, are alternately positive and negative; 
I say that none of those terms can be greater than E. If, 
for example, pili, pi', pO, &c. have all alternate signs, it is 
evident that the products, two by two, p/"pio, pivp', &c. 
will necessarily be negative; but (by the preceding Article), 

we have ~2 _ plllpi' = E, ~2 _ pi'p' = E, &c. wherefore the 
positive numbers, _p"'pi', _piOp', will all be less than E, 

or at least not greater than E; so that, as the numbers 
p', P", pili, &c. must be integers, the numbers P"', piO, &c. 
and, in general, the numbers PA, pA+J, &c. abstracting 
from their signs, can never exceed the number E. 

Hence it follows, also, that the terms Qi" Q', &c. and, 
in general, QA+1, QAH, &c. can never be greater than v E. 

Whence it is easy to conclude, that the two series pA, 
pA+1, pA+2, &c. and QA+l, QA+2, &c. though carried to in
finity, can never be composed but of a certain number of 
different terms, those terms being, for the first, only the 
natural numbers as far as E, taken positively, or nega
tively; and for the second, the natural numbers as far as 
vE, with the intermediate fractions t, t, t, &c. likewise 
taken positively, or negatively; for it is evident, from the 
forml1]re of the preceding Article, that the numbers Q', 
Q'I, Q"', &c. will always be integer, when B is even; but 
that they will each contain the fraction t, when B is odd. 

Therefore, continuing the two series pI, P", pili, &c. and 
ct, Q", ci", &c. it will necessarily happen, that two cor
responding terms, as p'"' and Q'"', will return after a certain 
interval of terms, the number of which may always be 
supposed evpn; for, as the same terms, p'" and Q'"', must 
return togethe,· an infinite number of times, because the 
number of different terms in both serie8 is limited, and 
consequently also the number of their different combina
tions, it is evident, that if these two terms always re
turned, after the interval of an odd number of terms, we 
should only have to consider their returns alternately, 
and then the intervals would all be composed of an even 
number of terms. 

Denoting, therefore, the number of intermediate terms 
by 2g, we shall have p,",He=p'"', and Q,,"He=Q"', and then 
all the terms p"', p"'+l, p,",+2, &c. Q"', Q'"'+1, Q,",+2, and ",.,., 
","'+1, ","'+2, &c. will also return at the end of each interval 
of 2g terms. For it is evident, from the formulll given in 
the preceding Article, for the determmation of the num
bers, ",', ",", ",IIf, &c. Q', Q", Q"', &c. and p', pll, pili, &c. 

L L 
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that, since we shall have p'"'He"_p"', and Q"'+2f=Q"', we 
shall also have p."'He = p."', then Q"'He+1=Q"'+t, and p"'He+t 
=p"'+t; whence, also, p. ... He+t=p."'+2f, and so on. 

So that if n is any number equal to, or greater than '1f, 

and m denotes any integer positive number, we shall have, 
in general, 

pIIHme = pII, QII+2me =QII, p.II+2me=p.II; 
therefore, by knowing the '1f+ 2g leading terms of each of 
the three series, we shall likewise know all the succeed
ing, which will be only the 2g last terms repeated, in the 
same order, to infinity. 

From all this it follows, that, in order to find the Jeast 
value of p= AP~ + Bpq + cq2, it is sufficient to continue the 
series pO, pI, pll, &c. and QO, ci, ci' , &c. until two corre
sponding terms, as p'" and Q"', appear again together, after 
an even number of intermediate terms, so that we ~ay have 
p"'He = p"', and Q"'He = Q"'; then the least term of the 
series pO, pI, pll, &c. p"'He will be the minimum required. 

35. Corollary 1. If the least term of the series pO, pi, pll, 

&c. p"'+2e is not found before the term p"', then that term 
will be repeated an infinite number of times in the same 
series infinitely prolon~ed; so that we shall then have an 
infinite number of values of p and q answering to the 
minimum, and all discoverable by the formulre of Art. 25, 
by continuing the series of the numbers p.', p.", p/", &c. 
beyond the term p.2e+<r by the repetition of the same terms 
p. ... +l, p. ... +2, as we have already said. 

In this case we may likewise have general formulre 
representing all the values of p and q in question; but an 
explanation of the method for arriving at this, would 
carry me too far; for the present, I shall only refer to the 
Memoires de Berlin already quoted, ann. 1768, page 123, 
&c. where will be found a general and new theory of 
periodical continued fractions. 

36. Corollary 2. We have demonstrated (Art. 34), that, 
by continuing the series pi, pll, pili, &c. we ought to find 
consecutive terms with different signs. Let us suppose, 
therefore, for example, that pili and p;' are the first two 
terms, with this property. We shall necessarily have the 
two quantities pili _ bqlll, and piv_ brjV, with the same 
signs, because the quantities p1l1_aqlll, and piv_aqIV, have 
from their nature different signs. Now, by putting in the 
quantities pY_bqV, pVi_bq'\ &c. the values of p\ p'\ &c. 
qY, qYI, &c. (Ar.t. 25), we shall have 

p" -bq" =p.iY(ph_brjY) +p'll-bq'" 
p·'-bq"=p."(p" -bqY)+p'Y -bq'" , &c. 
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Whence, because fJ-1', fJ-', &c. are positive numbers, it is 
evident that all the quantities p'-bq', pYi_bqYi, &c. to in
finity, will have the same signs as the quantities pI/I - b9"', 
and pi' _ bqi'; consequently, all the terms P"', piY, p\ &c. 
to infinity, will alternately have the signs plus and minus. 

From the preceding equations, we shall now have 

i, pY - bq' p'" -bq'" 
fJ- = p'Y _ bqiv - P" _ bqiv 

• p.i _ bq'i P'V _bq'V 
fJ- = -pV _ bqY pV _bqV 

.i pVii_bq'ii p' _bgV 

fJ- = p.i _ bgYi - pYi _bq'i , &c. 

p'" _ bq'" pi' _ bgiY 
where the quantities, iv b iv , v b v' &c. will be all 

p - 9 P - 9 
positive. 

Wherefore, since the numbers fJ-i', fJ-" fJ-vi , &c. must be 

all positive integers, by hypothesis, the quantity ~~y =;;i: 
must be positive, and > 1; so also must the quautities 
pV'_bgVi pVIi_bg'ii . 
pY -bq" pVi _bgVi> &c., wherefore the quantities 

piV_bgiV pV _ bqv . . . . 
...."....~b;-"'-::-' ' bY" &c. wIll be posItIve, and less than umty; p' _ gV p"_ g' 

so that the numbers fJ-" fJ-vi, &c. can only be the integer 
numbers, which are immediately less than the values of 
pVi_bqVI pViI_bgVii 
"-:-----O;b;-'-::-" ' b " &c. As to the number fJ-iv, it will pY _ gV p" _ q" 
also be equal to the integer number, which is immediately 

v b v 

less than the value of PVi-bqVi> whenever we have 
p - q 

Thus, we shall have 

pili -bq'" 
iv b iy <1. p - q 

, pV _bqv . p'" -bq'" 
fJ-" <piY_bqi., If ply _bgiV < 1. 

v pVi_bqVi 
fJ- < p'-bq' , 

pYii_bqVii 
{kvl < p'i_bq'i' &c. 
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the sign < placed after the numbers ","', ",IV, ",', &c. 
denoting as before, the integer numbers which are imme
diately under the quantities which follow that same sign. 

Now, by reductions similar to those of Art. 33, it is easy 
.• pY -bqY p.i_bq.1 . 

to transform the quantitIes . b I , b y' &c. mto p'Y- q' pY_ q 
QY +.1.v'E QYi_.1.v'E 

these, p~v , p! ,&c. Farther, the condition of 

pq''' _ bq'''. . _ pflf aq'" _ p'" 
h b;' < 1 may be reduced to thiS, --Iv < Iv ;. P - q p p -aq 

. aq'" - p'" which, because I . > 1, will certainly take place, 
p' -aq" 

-1'''' when --Iv = or < I; wherefore we shall have 
p 

Y+1.1 III 
i. < Q "2 'V E ·f - P - < 1 /J. --.--] -- _ or . 

r plY' piY 

Combining now these formulre with those of Art. 33, 
which contain the law of the series pI, pll, pili, &c. and 
fi, "', Q"', &c. we shall easily see, that, if two correspond
ing terms of these two series be supposed to be given, the 
rllnk of which is higher than 3, we may go back to the 
preceding terms, as far as plY and Q', and even to the 

Ilf 

terms P''' and Qiv, if the condition of - Ph = or < I takes 
p 

place; so that all these terms will be absolutely deter
mined by those which we have supposed to be given. 

For example, knowing pYI, and Q'\ we shall imme

diately know pY from the equation ~£_p.p'i=tE; then, 
having Qvi and p', we shall find the value of ",'; by means 
of which we shall next find the value of Q' from the equa-

tion QYi=",'pv +QV. Now, the equation ~~_pivp' =iE, will 
-p'" 

give ph; and if we previously know, that --y; must be 
p 

= or < 1, we shall find ",IV; after which, we shall have Qh 



CHAP. II. ADDITIONS. .517 

from the equation QV =,u}VpiV + Qiv, and then pIli fl'om this, 

~~_ p"'piV = lE. 
Whence it is easy to draw this general conclusion, that, 

if pA and pA+l are the leading terms of the series p', pll, P"', 
&c. which are successively found with different signs, the 
term pA+l, and the following, will all retnrn, after a 
certain number of intermediate terms, and it will be the 

same with the term PA, if we have p~~ = or < 1. 

For let us imagine, as in Art. 34, that we have found 
p"+ze=p", and Q"+2e=Q", and suppose that '71' is >"-, 
that is to sav, '7r= "-+v; wherefore we mal go hack, on 
the one hand, from the tenn p" to the term p +1, or PA, and 
on the other, from the term p"He to the term pAHe+1, or 
pAHe; and, as the terms fmm which we set out are equal 
on hoth sides, all the terms derived from them will likewise 
be respectively equal; so that we shall have pA+2e+l=pA+l, 

. ±pA 
or even pAH= pA, If pA+! = or < I. 

We may, therefore, judge heforehand of the beginning 
of the periods in the series 1'0, I", pll, 1'111, &c. and conse
quently in the other series a l,lO , QO, Q', Q", QIII, &c. 11-,11-', 
11-", p/", &c. but as to the length of the periods, that 
depends on the nature of the numbel' E, and entirely on 
the value of that number, as I could demonstrate, were I 
not afraid of heing led into too long a detail. 

37. Corollary 3. What we have demonstrated in the 
preceding corollary, may serve to prove the following 
theorem: 

Every equation of the farm p2_Kq2= 1, (in which K is a 
positive integer number, but not a square, and p and q two 
indeterminate numbers) is resolvible in integer numbers. 

For, hy comparing the formula p2 - Kq2 with the 
general formula, Ap2 + Bpq + Cq2, we have A = 1, B = 0, 
C = - K; wherefore E = B2 - 4AC = 4K, and tv'.E = v' K 
(Art. 33). \Vherefore, 1'0 = 1. QO = 0; likewise 11-< v' K, 
Q' = 11-, -and p' = 11-~- K; whence we see .first, that p' is 
negative, and consequently has a different sign from pO; 
secondly, that - pI, is = or > I, because K and Ii. are 

1'0 
integer numbers; so that we shall have --, = or < 1 ; 

-I' 

whence we shall find, from the preceding Article, ,,-=0, 
and pze = 1'0 = 1 ; so that by continuing the series 1.°, p', 
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pIt, &c. the term, pO = 1 will necessarily return after a 
certain interval of terms; consequently, we may always 
find an infinite number of values for p and q, which will 
render the formula p2_ Kq2 equal to unity. 

3S. Corollary 4. We may likewise demonstrate this 
theorem: 

If the equation p2_Kq2 = ± H be resolvible in integer 
numbers, by supposiT/g K a positive number, not a square, 
and H a positive number, less than..; K, the numbers p and q 

must be such, that ~ may be one of the principal fractions 
q 

converging to the value of ..; K. 

Let us suppose that the upper sign must take place, so 
that p2_Kq2=H; wherefore, we shall have 

p-q";K= H ,and.l!. _ ";K= H 

p+q";K q q2(~ +";K) 

Now, let us seek two integer positive numbers, rand s, less 
than p and q, and such, that ps-qr= I, which is always 
possible, as we have demonstrated (Art. 23), and we shall 

have .l!. - !:. = ~; subtracting this equation from the pre-
q s qs 

ceding, we shall have 
r H I 
--";K= --, so that we have 
s q2 (~ + ..; K ) qs 

H 
p-q";K= , 

q(~ +";K ) 

l( SH 1). 
r-s";K=q q(.l!. + ";K) 

q 

Now, as l!. > ";K, and H < ";K, it is evident, that 
q 

H will be < t; whence p-q";K will be < 21 ; 
.l!.+";K q 
q 

wherefore, S1l will much more be < t, since s<q; 

q(~+";K) 
so that r-s";K will be a negative quantity, which, taken 
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positively, will be > 21 , because 1- aH ) >i. 
q q(~ +v K 

So that we shall have the two quantities, p-qvK, and 
'I'-avK; or rather, making a= vK, p-aq, aud r-aG: 
which will be subject to the same conditious as we have 
supposed in Art. 24, and from which we shall draw 
similar conclusions: therefore, &c. (Art. 26), if we had 
p2_Kq2= -H, then it would be necessary to seek the 
numbers rand 8 such, that p8-qr= -1, and we should 
have these two equations, 

, 
SH 

As II < vK, and 8<q, it is evident, that 
q( VK+~) 

will be < 1 ; so that the quantity 8'; K-r will be negative. 
Now, I say that this quantity, taken positively, will be 
greater than q v K-P; to prove which, it must be demon-

1 ( 8H) II strated, that - 1 - > , 
. q q(vK+E) q(vK+E) 

q q 

H( 1 + ~ ) 
or rather, that 1> q; that is to say, 

VK +E 
q 

v K + E> H + aH; but H < v K(hyp.); it is therefore suf-
q q 

ficient to prove, that E > a V K, or that p > 8 V K; which 
q q 

is evident, because the quantity 8VK-r being negative, 
we must have r>8vK, and much more P>8VK, since 
p>r. 

Thus, the two quantities,p-q.jK, and r-avK, will 
have different signs, and the secona will be greater than the 
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ihst (abstracting from the signs), as in the preceding case; 
therefore, &c. 

So that when we have to resolve, in integer numhel's, an 
equation, of the form, p2_Kq2= ±H, where H< ";K, we 
have only to follow the same pl'Ocess as in Art. 33, making 
A=l, B=O, and c= -K; and, if in the series pO, pI, pll, 

pfff, &c. p"'+2e, we find a term = ± H, we shall have the 
solution required: if not, we may be certain that the given 
equation admits of no solution in integer numbers. 

39. Scholium. We have considered (Art. 33) only one 
root of the equation A"2+n"+c=0, which we have sup
posed positive; if this equation have both its roots positive, 
we must take them successively for a, and perform the 
same operation with both; but if one of the two roots, or 
both, were negative, then we should first change them into 
positive, by only changing the sign of B, and should pro
ceed as before: but then we should take the values of p 
and q with contrary signs; that is to say, the one positive, 
and the other negative (Art. 29). 

In general, therefore, we shall give the ambiguous sign 
± to the value of B, as well as to ..; E; that is to say, we 
shall make QI = += tB, and l~t us put ± before ..; E, and 
we must take these signs, so that the root 

+=i.B+.!.";E a= 2 - 2 

A 

may be positive, which may always be done in two different 
ways: the upper sign of B will indicate a positive root; in 
which case, we must take both p and q with the same 
signs: on tlle contrary, the lower sig'n of B will indicate a 
lIegative root; in which case, the values of p and q must 
be taken with contrary signs. 

40. Example. Requil'ed what integer numbers must be 
taken for p and q, in order that the quantity, 

9p2_ 118pq + 378q2 

may become the least possible. 
Comparing this quantity with the general formula of 

Problem 3, we shall have A=9, B= -118, c=378; 
wherefore, B2-4Ac=316; whence we see that this case 
belongs to that of Art. 33. We shall therefore make 
E=316, and t..; E= ..;79, where we at once observe, that 
";79>8, and <9; so that in the formulre of which we 
shall only have to find the approximate integer' value, we 
may immediately take, instead of ";79, the number 8, or 
9, according as that radical shall be added, or subtmcted, 
from the othel' nlllllllers of' the ~ame formula. 
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We shall now give the ambiguous sign + to D, as well 
as to ..; E, and shall then take these signs such, that 

±59± ";79 
a= 9 

may be a p08itive quantity (Art. 39); whence we see, that 
we must always take the upper sign for the number 59; 
and, that for the radical..;79, we may either take the upper, 
or the under. So that we shall always make QO= -tB, 
and ..jE may be taken, successively, plus and minus. 

First, therefore, if t..; E= ..;79 with the positive sign, 
we shall make (Art. 33), the following calculation: 

" (.0 

R" x C':> _ 

~ J,. 

~J 

" I 
0) 

X 
t.:l 

+ 
'I 

" I 
~CJt 

" CJt 
X 
~ 

I 
00 

" ~'1 

~ . .. 
II 
I 
~ 

x 
CJt 

+ 
'I 

II 
I 

YJ 

II 
" I 
'I 
X -+ 
"'" II 
I 
~ 

Here I stop, because I perceive that Q,ii=Q', and 
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p.H=p', and that the difference between the two indices, 
1 and 7, is even; whence it follows, that all the succeed
ing terms will likewise be the same as the preceding; so that 
we shall have QVil=4, Q,iH=_3, Qix=7, &c. p'ii=_7, 
pviii= 10, &c. so that, if we choose, we may con,tinue the 
above series to infinity, only by repeating the same terms. 

Secondly, let us take the radical .;79 with a negative 
sign, and the calculation will be as follows: 

~" 
" 

'd 

." 
II 

II 
c.o 
x 

I 
~ 

II 
<:"'l 

II 

II II 
~c:.rc I 

~O) 

II 
I 
"'-l 
X 

+ 
Co:I 
II 
I 
~ 

II 

II 
c.o 

II ..... 
o 
x 

I 
"'-l 

II 
Co:I 

II 

II 
I 

~"'-l 

II 
I 

Co:I 
x 
c:.rc 
+ 
00 

II 
I 

~"'-l 

II 

II ...... 
o 

II 
c,'l 
X 
Co:I 
I 
"'-l 

II 
~oo 

II 

II 
I 
~ 

II 
I 
0) 

x 

I ..... 
II 
I 

~"'-l 

II 

II 

II 
..... 
Co:I 
X ..... 
..... 
~ 

II 
I 

II 

II 
c.o 
x 
c:.rc 
I 

c:.rc c.o 
II 
I ..... 
~~ 

II 

II 

'd 
o 

II 

We may stop here, since we have found QiX=Q''', and 
pi,,=p"', the difference of the indices 9 and 3 being even; 
for by continuing the series, we should only find the same 
terms that we have found already. 
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Now, if we consider the values ofthe terms pO, pI, p",p"', 
&c. found in the two cases, we shall perceive that the 
least of these terms is equal to -3; in the first case, it is 
the term pili, to which the values pfll and g'" answer; and, 
in the second case, it is the term pi" to which the values 
piv and giV answer. 

Whence it follows, that the least value, which the given 
quantity can receive, is -3; and, in order to have the 
values of p and g, which answer to it, we shall take, in the 
first case, the numbers p., p.', p.", namely, 7, 1, and 1, 
and shall form with them the principal converging frac-

11/ 

tions t, 1, V ; the third fraction will, therefore, be ~'" 

so that we shall have p'" = 15, and rJ" =2; that is to say, 
the values required will be p= 15, and q=2. In the 
second case, we shall take the numbers p., p.', p.", p."', 
namely, 5, 1, I, 3, which will give these f!'actions, 
t, 1, V, 3-,(; so that we shall have piv=39, and qiv=7; 
therefore p=39, and g=7. 

The values which we have just found for p and q, in the 
case of the minimum, are also the least possible; but if we 
choose, we may likewise successively find others greater: 
for it is evident, that the same term, - 3, will always return 
at the end of every interval of six terms; so that, in the 
first case, we shall have pfll = - 3, P"= -3, pI' = -3, 
&c. and, in the second, piv=_3, pX=_3, pxvi=_3, &c. 

Therefore, in the first case, the satisfactory values of p 
and q will be these: p"', q''', piX, qiX, p", qIV, &c.; and, in 
the second case, p'Y, qiV, p\ qX, p .. i, gXV" &c. Now, the 
values of p., p.', p.", &c. are in the first case 7, I, 1, 5, 3, 2, I ; 
1,1,5,3,2,1; 1,1,5,3, &c. to infinity, because /.kVii=p.', 
and /J:iii=p.", &c. so that we shall only have to form, by 
the method of Art. 20, the fractions, 

7, I, I, 5, 3, 2, I, 1, 1, 5, 
t, t, t{', lh ¥-l, 6-N, Hi, \V-l, 'l.NY, IT\V-l, &c. 

And we may take for p the numerators of the third, 
ninth, &c. and for q the corresponding denominators: we 
shall therefore have p= 15, g=2, or p=2361, q=313, 
&c. 

In the second case, the values of p., p.', p.", &c. will 
be 5, I, I, 3, 5, 1, 1, I, 2; 3, 5, 1, I, 1, 2, &c. be
cause p.iX=p.fII, p.X=p.i., &c. We shall, therefore, form these 
f,'actions, 
5, I, I, 3, 5, 1, 1, 1, 2, 3, 5, 
4,~, 1..1, :'./, 2f-/, 2,t4"~8V,~~~, tsfil-t', ti-lih 3S2g'J2~l, &c. 
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And the fourth fraction, the tenth, &c. will give the 
values of p and q; which will therefore be 

p=39, q=7, or p=6225, q= 1118, &c. 
In this manner, therefore, we may regularly find all the 

values of p and q, that will make the given formula = -3, 
the least value it can receive. We might even have a ge
neral value, which would comprehend all these values of 
p and q. Any person who has the curiosity may find it 
by a method which we have elsewhere explained, and 
which has been already noticed (Art. 35). 

We have just found, that the minimum of the quantity 
proposed is -3, and consequently negative; now, it might 
be proposed to find the least positive value that the same 
quantity can receive: we should then only have to examine 
the series p0, P', pll, P"', &c. in the two cases, and we should 
see that the least positive term is 5 in both cases ; and as 
in the first case it is pi., and in the second P"', which is 5, 
the values of p and q, that will give the least positive value 
of the quantity proposed, will be pi., qi., or p\ qX, &c. in 
the first case, and p"', q"', or piX, qi., &c. in the second; so 
that we shall have, from the above fractions, p=83, q= II ; 
or p=1329I, q=1762, &c. or p=ll, q=2; p= 1843, 
q=33I, &c. 

We must not forget to observe, that the numbers, p." p.,', 
p.,", &c. found in the above two cases, are no other than 
the terms of the continued fractions, which represent the 
two roots of the equation 9)(.2-118)(. + 378 =0. 

So that these roots will be, 
7++ 1 

+T+l 
:>+~ 

5+ 1 3 +, &c. 
T+l 

T+-!
~+-} +, &c. 

expressions which we might continue to infinity merely by 
repeating the same numbers. . 

Thus, we perceive how we are to set about reducing to 
continued fractions the roots of evel'y equation of the 
second degree. 

41. Scholium. In Volume XI. of the New Commen
taries of Petersburg, M. EULER has given a method similar 
to the preceding; but deduced from principles somewhat 
different, for reducing to a continued fraction the root of 
any integer number, not a square, and has added a Table, 
in which the continued fractions are calculated for all the 
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natural numbers, that are not squares, as far as 100. 
This Table being useful on various occasions, and par
ticularly for the solution of indeterminate numbers of the 
second degree, as we shall afterwards find (Chap. 7), we 
shall here present it to our readers. It will be observed, 
that there are two series of integers answering to each 
radical number; the upper is that of the numbers po,_p', 
p". _P"', &c. and the under, that of the numbers, "', ",', ",If, 
","', &c. 

..; 21 1 1 1 1 &c . 
122 2 &c. 

..; 31 
1 2 1 2 1 2 1 &c . 
112121 2 &c . 

..; 5 II I 1 1 &c. 
244 4 &c. 

..; 6 /1 2 1 2 1 2 1 &c . 2 2 4 2 4 2 4 &c. 

..; 7 11 3 2 3 1 3 2 3 I &c • 
2 1 1 1 4 I I I 4 &c. 

..; 8 11 4 1 4 1 4 1 &c • 
2 1 4 1 4 I 4 &c. 

";10 11 1 I 1 &c. 
3 6 G 6 &c • 

..; 11 II 2 1 2 1 2 I &c. 
3 3 6 3 6 3 6 &c . 

..; 1211 3 1 3 1 3 I &c. 
3 2 6 2 6 2 6 &c • 

..; 1 il 11 4 3 3 4 1 4 3 3 4 1 &c. 
. 3 I 1 I I 6 1 I I I 6 &c • 

..; 14 11 5 2 5 1 5 2 5 I &c. 
3 I 2 1 6 1 2 1 6 &c . 

..; 1511 6 1 6 1 6 1 &c. 
3 1 6 1 6 1 6 &c . 

..; 17 II 1 1 1 1 &c. 
4 8 8 8 8 &c. 

1121212121 &c. 
";18 I 4 4 8 4 8 4 8 4 8 &c. 

11352531352531 &c. 
";19 4 2 1 3 1 2 8 2 1 3 1 2 8 &c. 

";20 11 4 1 4 1 4 1 4 1 &c. 
4 2 8 2 8 2 8 2 8 &c. 

11543451543451 &c. 
,,21 4 1 1 2 1 1 8 1 I 2 1 1 8 &c. 
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";22 11 6 3 2 3 6 1 6 3 2 3 6 1 &c. 
4 1 2 4 2 1 8 1 2 4 2 1 8 &c. 

123 II 7 2 7 1 7 2 7 I &c. 
v 4 1 3 I 8 1 3 I 8 &c. 

124 11 8 1 8 I 8 I &c. 
v 4 1 8 1 8 1 8 &c. 

II I 1 I &c. 
";26 5 10 10 10 &c. 

I I 2 1 2 1 2 I &c. 
";27 5 5 10 5 10 5 10 &c . 

. 128 II 3 4 3 1 3 4 3 1 &c. 
v 5 3 2 3 10 3 2 3 10 &c. 

";29 II 4 5 5 4 1 4 5 5 4 1 &c. 
5 2 1 1 2 10 2 1 1 2 10 &c. 

1
1 5 1 5 1 5 1 5 1 &c. 

,.; 30 5 2 10 2 10 2 10 2 10 &c. 

131 11 6 5 3 2 3 5 6 1 6 5 &c. 
v 5 1 I 3 5 3 1 1 10 1 I &c. 

,.; 32 11 7 4 7 1 7 4 7 1 &c. 
5 1 1 1 10 1 1 1 10 &c. 

133 II 8 3 8 I 8 3 8 I &c. 
v 5 1 2 1 10 1 2 1 10 &c. 

1
1 9 2 9 I 9 2 9 I &c. 

,.; 34 5 1 4 1 10 1 4 1 10 &c. 

1
1 10 I 10 1 10 1 10 &c. 

";35 5 I 10 I 10 1 10 ] &c. 

I 61 I I I I &c. 
";37 12 12 12 12 &c. 

138 II 2 1 2 1 2 1 &c. 
v 6 6 12 6 12 6 12 &c. 

1
1 3 I 3 I 3 I &c . 

..; 39 6 4 12 4 12 4 12 &c. 

I I 4 1 4 I 4 1 &c. 
,.; 40 6 3 12 3 12 3 12 &c. 

I I 5 5 1 5 5 1 &c. 
,.; 41 6 2 2 12 2 2 12 &c. 

1
1 6 1 6 1 6 1 &c. 

,.; 42 6 2 12 2 1'2 2 12 &c. 

1
1 7 6 3 9 2 9 3 6 7 1 7 6 &c . 

..; 43 6 1 1 3 1 5 1 3 1 1 12 1 ·1 &c. 

1
1 8 5 7 4 7 5 8 1 8 5 &c. 

,.; 44 6 1 1 1 2 1 1 1 12 1 1 &c. 

1
1 9 4 5 4 9. 1 9 4 5 4 9 1 9 4 &c. 

,.; 45 6 1 2 2 2 1 12 1 2 2 2 1 12 1 2 &c. 

CHAP. II. 
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v'46 11 10 3 7 6 5 2 5 6 7 3 10 I 10 3 &c. 
6 ] 3 1 1 2 6 2 1 1 3 ]] 2 ] 3 &c. 

v'47 11 11 2 11 1 11 2 11 1 &c. 
6 ] 5 I 12 ] 5 I 12 &c. 

v'4811 12 1 12 I 12 &c. 
6 1 12 I 12 I &c. 

II I I I &c. 
v'50 7 14 14 14 &c. 

v' 51 11 2 I '2 I 2 &c. 
7 7 ]4 7 14 7 &c. 

v' 5'" 11 3 9 4 9 3 1 3 9 4 9 3 1 3 &c. 
~ 7 4 I 2 1 4 14 4 I 2 1 4 14 4 &c. 

11 4 7 7 4 1 4 7 7 4 1 4 7 &c. 
v' 53 7 3 1 I 3 14 3 I I 3 14 3 1 &c. 

v' 54 II 5 9 2 9 5 I 5 9 2 9 5 1 5 &c. 
7 2 I 6 I 2 14 2 1 6 I 2 14 2 &c. 

v' 55 11 6 5 6 1 1 6 5 6 I &c. 
7 2 2 2 14 2 2 2 14 '2 &c. 

11 7 I 7 1 7 1 &c. 
v' 56 7 2 14 2 14 2 14 &c. 

v' 57 11 8 7 3 7 8 I 8 7 &c. 
7 I 1 4 1 1 14 1 I &c. 

v'58 II 9 6 7 7 6 9 1 9 6 &c. 
7 1 1 1 1 1 1 14 1 1 &c. 

v' 59 11 10 5 2 .5 10 1 10 .5 &c. 
7 1 2 7 2 1 14 1 2 &c. 

v'60 II 11 4 11 1 11 4 &c. 
7 I 2 1 14 I 2 &c. 

v'61 II 12 3 4 9 5 5 9 4 3 12 I 12 3 &c. 
7 1 4 3 1 2 2 1 3 4 I 14 1 4 &c. 

v'62\ ~ 13 2 13 1 13 2 &c. 
1 6 1 14 I 6 &c. 

v'63 \ ~ 14 I 14 I 14 &c. 
1 14 I 14 I &c. 

v'651 
1 1 1 I &c. 
8 16 16 16 &c. 

v'66\ 
I 2 I 2 1 &c. 
8 8 16 8 16 &c. 

'"' \1 3 6 7 9 2 9 7 6 3 I 3 6 &c. 
v'61 8.5 '2 1 I 7 I I 2 5 16 5 2 &c. 

\1 4 1 4 1 4 &c. 
v' 68 8 4 16 4 16 4 &c. 

v'69 11 5 4 11 3 11 4 5 1 5 4 &c. 
8 3 3 1 4 1 3 3 16 3 3 &c. 
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'70 /1 6 9 [j 9 6 1 6 9 &c. 
" 8 2 1 2 1 2 16 2 1 &c. 

'71 /1 7 5 11 2 11 5 7 1 7 5 &c. 
" 8 2 2 I 7 I 2 2 16 2 2 &c. 

I 8 1 8 I 8 &c. 
8 2 16 2 16 2 &c. 
1 9 8 3 3 8 9 1 g 8 &c. 
R 1 1 5 5 1 1 16 1 1 &r. 

'7411 10 7 7 10 I IO 7 &c. 
" 8 1 1 1 I 16 1 I &c. 

'75/1 11 6 11 I 11 (j &c. 
" 8 1 I 1 16 I 1 &c. 

1
1 12 5 8 9 3 4 3 9 8 5 12 1 12 5 &c. 

";76 8 1 2 1 I 5 4 5 1 I 2 1 16 I 2 &c . 

. '77 I 81 13 4 7 4 13 1 13 4 &c. 
" 1 3 2 3 1 16 1 3 &c. 

1
1 14 3 14 1 14 3 &c . 

..; 78 8 1 4 1 16 I 4 &c. 

'79 11 15 2 15 1 15 2 &c. 
" 8 1 7 1 16 1 7 &c. 

'80 11 16 I 16 I 16 &c. 
" 8 1 16 1 16 1 &c. 

/
1 I 1 1 &c. 

";82 9 18 18 18 &c. 

";83 11 2 1 2 1 2 &c. 
9 9 18 9 18 9 &c. 

'84 I 3;j 1 3 1 3 &c. 
" 9 6 18 6 18 9 &c. 

1 4 9 9 4 1 4 9 &c. 
9 4 1 1 4 18 4 1 &c. 
15 107 112 117 10 5 
9311181113 

1 5 10 &c. 
18 3 1 &c. 

CHAP. II. 

'87 11 ti I 6 1 6 &c. 
" 9 3 18 3 18 3 &c. 
'88 II 7 9 8 9°-=-';7~~I ~7~9-&=-c-.---------

" 9 2 1 1 I 2 18 2 1 &c. 

'89 11 8 5 5 8 1 8 5 &c. 
" 9 2 3 3 2 18 2 3 &c. 

'90 11 9 1 9 1 &c. 
" 9 2 18 2 18 &c. 

'91 11 10 9 3 14 3 9 10 I 10 9 &c. 
" 9 1 1 5 1 5 1 1 18 1 1 &c. 

'92 11 II 8 7 4 7 8 11 I 11 8 &c. 
v 9 1 1 2 4 2 1 1 18 1 1 &c. 
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",,93 /1 12 7 II 4 3 4 11 7 12 1 12 7 &c. 
9 I I 1 4 6 4 I 1 I 18 1 1 &c. 

",,94 \ 1 13 6 5 9 10 3 15 2 15 3 10 9 5 6 13 
9 123 1 1 5 I 8 1 5 I 132 1 

",,95 /1 14 5 14 1 14 &c. 
9 1 2 I 18 1 &c. 

",,96 11 15 4 15 1 15 &c. 
9 I 3 1 18 1 &c. 

",,97 11 16 3 II 8 9 9 8 11 3 16 1 16 &c. 
915 1 1 1 1 1 151 18 

",,98 11 17 2 17 1 17 &c. 
9 I 8 1 18 1 &c. 

""9911 18 1 18 I &c. 
9 1 18 1 18 &c. 

Thus, for example, we shall have 

",2=I+t+.1. 
II +. &c. 

",3=1+++.1. 
2+. &c. 

and so of others. 

1 &c. 

And, if we form the converging fractions. 
pO p' p" p'" 
qO' C/' 1" q'''' &c. 

529 

1 &c. 
18 &c. 

according to each of these continued fractions, we shall have 

" " (P0)2_2(qO)2= I, p2-2(l= -I, 

and likewise, 

II " 
(pO)2_3(q~2=I,p2_3q2= -2, 

!\'I III 
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CHAPTER III. 

Of tke Resolution, in Integer Numbers, of Equations of tlte 
first Degree, containing two unknown Quantities. 

[APPENDIX TO CHAP. I.] 

42. When we have to resolve an equation of this form, 

ax-hy=c, 

in which a, h, c, are given integer numbers, positive or 
negative, and in which the two unknown quantities, x and 
y, must also be integers, it is sufficient to know one solu
tion, in order to deduce with ease all the other solutions 
that are possible. 

For, suppose we know that these values, X=IlG, and 
y=(3, satisfy the conditions of the equation proposed, IlG and 
(3 being any integer num bers, we shall then have allG- h(3=c; 
and, consequently, 

ax-hy=aa-h(3, or a(x-IlG)-h(y-(3)=O; 
X-1lG h 

whence we find -(3 = -. Let us reduce the fraction 
y- a 

h ·1 d' . fl' - to Its east terms; an supposmg, m consequence 0 t lIS 
a 

reduction, that it becomes~, where h' and a' will be prime 
a 

h h .. ·d h h ,X-1lG h' to eac ot er, It IS eVI ent t at t e equatIOn, -(3 =" 
!/- a 

could not subsist, on the supposition of X-IlG, and y-(3, 
being integers, unless we have x-a=mh', and y- (3 = ma', 
m being any integer number; so that we shall have, in 
general, x=llG+mb', and y=(3+ma'; m being an indeter
minate integer. 

N ow, as we may take m either positive or negative, it is 
easy to perceive, that we may always determine the number 
m in such a manner, that the value of x may not be greater 

h' a' 
than 2' or that of y not greater than '2 (abstracting from 

the signs of these quantities); whence it follows, that if the 
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given equation ax-hy=c, be resolvible in integer num
bers, and we successively substitute for x all the integer 
numbers, positive as well as negative, contained between 

these two limits ~,and ;', we shall necessarily find one 

that will satisfy this equation: and we shall likewise find 
a satisfactory value of y among the positive, or negative , , 
whole numbers, contained between the limits ; , and -;a . 

.By these means we may find the first solution of the 
equation proposed; after which, we shall have all the 
others by the preceding formulre. 

43. But, without employing the method of trial, which 
we have now proposed, and which would sometimes be 
very laborious, we may make use of the very simple and 
direct method explained in Chap. I. of the preceding 
Treatise, or of the following method. 

First, if the numbers a and h are not prime to each 
other, the equation cannot subsist in integer numbers, un
less the given number, c, be divisible by the greates~ ~o.m
mon measure of a and h. Supposing, therefore, the dIVISIOn 
performed, and expressing the quotients by a', b', c', we 
shall have to resolve the equation, 

a'x-b'y=c', 
where a' and b' are prime to each other. 

Secondly, if we can find values of p and q that satisfy the 
equation, a'p-b'q= ± 1, we may resolve the preceding 
equation; for it is evident that, by multiplying these values 
by +c', we shall have values that will satis~v the equation, 

a'x-b'y=c' ; 
that is to say, we shall have 

x= ±pc', and y= ±qc'. 
Now, the equation a'p-b'q= ± I is always resolvible in 

integers, as we have demonstrated, Art. 23; and, in order 
to find the least values of p and q that can satisfy it, we 

shall only have to convert the fraction b;, into a continued 
a 

fraction by the method of Art. 4, and then deduce from it a 
series of principal fractions, converging to the same fraction, 
b' 
" by the formulre of Art. 10; the last of these fractions 
a 

b' 
will be the same fraction -,; and if we repI"esent the last 

a 
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but one by E, we shall have, by the law of these fractions, 
q 

(Art. 12) a'p-b'q= ± 1; the upper sign being for the 
case, in which the rank of the fraction is even, and the 
under for that in which it is odd. 

These values of p and q being thus known, we shall first 
have x= ±pc', and y= +fjc', and then taking these values 
for a and {3, we shall find, III general (Art. 42), 

X= +pc' +mb', y= ±qc' +ma'; 
expressions which necessarily include all the solutions of 
the given equation that are possible in integer numbers. 

That we may leave no obstacle to the practice of this 
method, we shall observe, that although the numbers a and 
b may be positive, or negative, we may notwithstanding 
take them always positive, provided we give contrary signs 
to x, when a is negative, and to y, when b is negative. 

44. Example. To give an example of the preceding 
method, we shall take t.hat of Art. 14, Chap. I. of the pre
ceding Treatise, where it is required to resolve the equation, 
39p = 56q + 11. Changing p into x, and q into y, we shall 
have 39x-56y=11. 

So that we shall make a=39, b=56, and c= 11; and 
as 56 and 39 a re already prime to each other, we shall 
have a'=39, b'=56, c'=] 1. We must therefore reduce 

the fraction b: = -n, to a continued fraction; and, for this 
a 

purpose, as we have already done (Art. 20), we shall make 
the following calculation: 

39)56(1 
39 

17)39(2 
34 

5)17(3 
15 

2)5(2 
4 

1)2(2 
2 

o. 
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Then, with the quotients 1,2,3, &c. we may form the 
fractions, 

I, 2, 3, 2, 2. 
t, t, 1.,f, n, -H, 

and the last fraction but one, H, will be that which we 

have expressed in general by .l!.; so that we shall have 
q 

p=23, q= 16; and as this fraction is the fourth, and con
sequently, of an even rank, we must take the upper sign; 
so that we shall have, in general, 

x=23 xlI +56m, and 
y=16x 11+39m; 

m being any integer numbel' whatever, positive or 
negative. 

45. Sc/wlium, We owe the first solution of this problem 
to M. Bachet de Meziriac, who gave it in the second 
edition of his Mathematical Recreations, entitled Pro
blemes plaisans et delectables, &c. The first edition of this 
work appeared in 1612; but the solution in question is 
there only announced, and is only found complete in the 
edition of 1624. The method ofM. Bachet is very direct 
and ingenious, and cannot be rendered more elegant, or 
more general. 

I seize with pleasure the present opportunity of doing 
justice to this learned author, having observed that the 
mathematicians, who have since resolved the same problem, 
have never taken any notice of his labors. 

The method of M. Bachet may be explained in a few 
words. After having shewn how the solution of equations 
of the form ax-b!J=c, (a and b being prime to each 
other), may be reduced to thatofax-by= ±l, he applies 
to the resolution of this last equation; and, for this pur
pose, prescribes the same operation with regard to the 
numbers a and b, as if we wished to find their greatest 
common divisor (and this is what we have just done) ; 
then calling c, d, e, f, &c. the remainders arising from the 
different divisions, and supposing, for example, thatfis 
the last remainder, which will necessarily be equal to 
unity (because a and b are prime to one another, by hypo
thesis), he makes, when the number of remainders is even, 
as in the present case, 

_ ed+l ~c+l yb+l 
e+ I =e, -- = a, -d- = y, -- =(3, 

e c 
$a+l . 
-"6-=(4, 
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and these last numbers, t3 and a, will be the least values of 
x and y. 

If the number of the remainders were odd, 9 for instance 
being the last remainder = 1, then we must make 

~e+l ed±l 
j± l=~, --r = e, -c- = 0, &c. 

It is easy to see that this method is fundamentally the 
same as that of Chap. I.; but it is less convenient, because 
it requires divisions. Those who are curious in such specu
lations, will see with pleasure, in the work of M. Bachet, 
the artifices which he has employed to arrive at the fore
going Rule, and to deduce from it a complete solution of 
equations of the form, ax-by=c. 

CHAPTER IV. 

General jJ;Iethod jor resolning, in Integer Numbers, Eq ua
tions with two unknown Quantities, oj which one does 
not exceed the first Degree. 

[APPENDIX TO CHAPTER III.] 

46. Let the geneml equation, 
a+ bx+cy+dx2 +exy+gx2y+jx3 +hx4 + kx3y+, &c. = 0 
be proposed, in which the coefficients a, b, c, &c. are 
given integer numbers, and x and y two indeterminate 
numbers, which must also be integers. 

Deducing the value ofy from this equation, we shall have 
a+bx+dx2 +jx3+hx4 +, &c. 

y = - c+ex+gx2 +kx3+, &c. 
so that the question will be reduced to finding an integer 
number, which, when taken for x, makes the numerator 
of this fraction divisible by its denominator. 

Let us suppose 
p=a+bx+dx2 + fX3+hx4 +, &c. 
q=c +ex + gx2 + kX 3 +, &c. 

and taking x out of both these equations by the ordinary 
rules of Algebra, we shall have a final equation of this 
form, 

A +BP+Cq+Dp2+Epq+Fq2+Gp3+, &c. =0, 
where the coefficients A, B, C, &c. will be rational and 
integer functions of the numbers a, b, c, &c. 
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Now, since y = - e, we shall also have p=-qy; so 

that by substituting th1s value of p, we shall get 
A-Byq+cq+Dy'lq'J.-Eyrl+Fq'J.+, &c. =0. 

where all the terms are multiplied by l(, except the first, 
A; therefore the number A must be diVIsible by the num
ber q, otherwise it would be impossible for the numbers q 
and y to be both integers. 

We shall therefore seek all the divisors of the known 
integer number A, and shall successively take each of 
these divisors for q; from each of which suppositions we 
shall have a determinate equation in x, the integer and 
rational roots of which, if' it have any, will be found by 
the known methods; then substituting these roots for x, 
we shall see whether the values of p and q, which result, 

are such, that l!.. may be an integer number. By these 
q 

means, we shall certainly find all the integer values of x, 
which may likewise give integer values of y in the equa
tion proposed. 

Hence we see, that the number of solutions of such 
equations, in integer numbers, must always be limited; 
but there is one case-which must be excepted, and which 
does not fall under the preceding method. 

47. This case is when there are no coefficients e,g, k, &c. 
So that we have simply, 

a+bx+dx2 +jx3 +hx'+, &c. 
y=- C 

In order to find all the values of x, that will render the 
quantity a + bx + dx~ + jx3 + Itx' +, &c. divisible by the 
quantity c, we must proceed as follows. Suppose we have 
already found an integel', n, which satisfies this condition; 
it is evident that every number of the form n±l"c will 
likewise satisfy it, I" being any integer number; farther, 

if n is >; (abstracting from the signs of n and c), we may 

always determine the number 1", and the sign which 

precedes it, so that the number n±l"c may become < i; 
and it is easy to perceive that this could only be done in 
one way, the values of nand c being given; wherefore if 

we express by n' that value of n±p.c, which is <~, and 
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which satisfies the condition in question, we shall have, in 
general, n=n'±(1-c, (1- being any number whatever. 

Whence I conclude, that if we substitute successively, 
in the formula, a + bx + dx2 + fx 3 +, &c. instead of x, all 

the integers, positive or negative, that do not exceed~, and 

if we denote by n', nIt, n"', &c. such of those numbers as 
will render the quantity, a+bx+dx2 +, &c. divisible by 
c, all the other numbers that do the same, will necessarily 
be included in the formulre n'+lc, n"±(1-"c, n"'±(1-lIIc, &c. 
(1-', (1-", (1-111, &c. being any integer numbers. 

Various remarks might here be made to facilitate the 
finding of the numbers n', nfl, nlll, &c. but it is the more 
unnecessary to enlarge upon this subject, as I have already 
had occasion to treat of it, in a Memoir published among 
those of the Academy of Berlin, for the year 1768, and 
entitled Nouvelle Methode pour resoudre les Problemes 
indetermines. 

48. I shall, however, say a word on the method of 
determining two numbers, x and y, so that the fract.ion 

a.ym + bym-1x +dym-2x2 + !ym-3x3 +, &c. 
c 

may become an integer number, as this investigation will 
be very useful to us in the sequel. 

Supposing that y and x must be prime to each other, 
and farther, that y must be prime to c, we may always 
make x = ny-cz; nand z being indeterminate numbel's; 
for, considering x, y, and c, as given numbers, we shall 
have an equation always resolvible in whole numbers by 
the method of Chap. III. because y and c have no 
common measure, by the hypothesis. Now, if we sub
stitute this expression of x in the quantity, 

nym+bym-lx+dym-2x2+, &c, it will become, 
(a+bn+dnz +fn3 +, &c.)ym 

-(b +2dn+3fn2 +, &c.)C!J'''-lZ 
+ (d + 3fn +, &c.)c2ym-2z2 

-, &c. 
and it is evident, that this quantity could not be divisible 
by c, unless the first term, (a + bn+dn2 +fn3 +, &c.)y,n 
were so, since all the other terms are multiplied by c. 
Therefore, as c and yare supposed to be prime to each 
other, the quantity a+bn+dn2 +fn3 +, &c. must itself be 
divisible by C; so that we shall only have to seek, by the 
lllethod of the preceding Article; all the values of n that 
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can satisfy this condition, and then we shall have, in 
general, x = ny - az; z being any integer number 
whatever. 

It is proper to observe, that although we have supposed 
the numbers x and y to be prime to each other, as well as 
the numbers y and c, our solution is still no less general; 
for if x and if had a common measure, a, we should only 
have to substitute ax' and rJ,y', instead of x and y, and 
should then consider x' and y' as prime to each other; 
likewise, if y' and c were to have a common measure, (3, 
we might put {3y", instead of y, and consider y" and cas 
prime to each other. 

CHAPTER V. 

A direct and general Metltad for .finding the values of x, 
that will render Quantities of the form v (a + bx + ex!!) 
Rational, and for resolving, in Rational Numbers, the 
indeterminate Equations of the second Degree, which 
have two unknown Quantities, when they admit of Solu
tions of this kind. 

[APPENDIX TO CHAPTER IV.] 

49. I suppose first that the known numbers a, b, c, are 
integers; for if they were fractions, we should only have 
to reduce them to a common square denominator, and 
then it is evident, that we might always abstract from 
their denominator; but with respect to the number x, we 
shall suppose that it may be integer, or fractional, and 
shall see, in what follows, how the question is to be 
resolved, when we admit only integer numbers. 

Let then v (a + bx + CX2) = y, and we shall have 
2cx+b= v(4cy2+b2-4ac); so that the difficulty will be 
reduced to rendering rational the quantity, 

v (4cy2 + b~-4ac). 
50. I.et us suppose, therefore, in general, that we have 

to make rational the quantity V(Ay2+B); that is to say, 
to make Ay2+B equal to a square, A and B being given 
integer numbers positive or negative, and y an indeter
minate number, which must be rational. 

It is evident that if one of the numbers A, or B, were I, 
or any other square, the problem would be resolvible by 
the known methods of Diophantus, which al'e detailed in 
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Chap. IV; we shall therefore abstract from those cases, 
or rather we shall endeavour to reduce all the rest to 
them. 

Farther, if the numbers A and B were divisible by any 
square numbers, we might likewise abstract from those 
divisors; that is to say, suppress them, only by taking for 
A and B the quotients, which we should have, after divid
ing the given values by the greatest squares possible; in 
fact, supposing A = a,2A', and {3 = {32B', we shall have to 
make the number, A'a,2!l + B'{32 a square; therefore, 

dividing by (32, and making a,; =!I'; we shall have to 

• I I I 
determine the unknown quantIty !I'; so that Ay2 + B may 
be a square. 

Whence it follows that, when we have found a value of 
!l that will make Ay2+B become a square (rejecting in 
the given values of A and B the square factors a,2 and (32, 

which they might contain), we shall only have to multiply 

the value found for y by f!., in order to have that which 
a. 

answers to the quantity proposed. 
51. Let us, therefore, consider the formula, Ay2+B, in 

which A and B are given integers, not divisible by any 
square; and, as we suppose that y lDay be a fraction, 

let us make y = E, p and q being integers prime to each 
q 

other, in order that the fraction may be reduced to its 
Ap2 

least terms; we shall therefore have the quantity -2 +B, 

which must be a square; wherefore, Ap2 + Bq2 mu~t be a 
square also; so that we shall have to resolve the equation, 
Ap2 + Bq2 = Z2, supposing p, q, and z, to be integer 
numbers. 

Now, I say that q must be prime to A, and p prime to 
B; for if q and A had a common divisor, it is evident that 
the term Bq2 would be divisible by the square of that 
divisor; and the term Ap2 would only be divisible by the 
first power of the same divisor; because p and q are prime 
to each other, and A is supposed not to contain any square 
factor; wherefore the number Ap2 + Bq2 would only be 
once divisible by the common divisor of q and A; conse
quently, it would be impossible for that number to be a 
square. In the same manner, it may be proved, that p 
and B can have no common divisor. 
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Resolution of the Equation AP~+Bqi=Z2 in integer 
Numbers. 

52. Supposing A greater than B, the equation will be 
written thus, 

Ap2=Z2_Bq2, 
and as the numbers p, q, and z, must be integers, Z2_Bq2 

must be divisible by A. 

Now, since A and q are prime to each other (Art. 51), 
we shall, according to the method of Art. 48, make 

z=nq-Aq', 
71. and q' being two indeterminate integers; which will 

• I 
change the formula, z2_Bq2, mto(n2-B)q2-2nAqq' +A.2q2; 
in which n£-B mnst be divisible by A, taking for 71. an 
. b A mteger num er, not> 2' 

We shall try therefore for 71. all the integer numbers 

that do not exceed ~, and if we find nOlle that make 

n2-B divisible by A, we conclude immediately, that the 
equation, Ap2=Z~-Bq2, is not resolvible in whole numbers, 
and therefore that the quantity Ay2 + B can never become 
a square. 

But if we find one or more satisfactory values of n, we 
must substitute them, one after the other, for n, and 
proceed in the calculation, as shall now be shewn. 

I shall only remark farther, that it would be useless to 

give n values greater than ~ ; for, calling n', 71', n"', &c. the 

values ofn less than ~,which will render n2 -B divisible by 

A,all the other values ofn, that will have the same effect, will 
be contained in these formulre, n' ±p/ A, rl' + ","A, n'" + ",III A, 

&c. (Chap. IV. 47). Now, substituting these values for 71., 
I 

in the formula, (71.2 - B)q2 -2nAqq' + AZq2, that is to say, 
(nq_Aq')Z_Bq2, it is evident that we shall have the same 
results, as if we only put n', n", n"', &c. instead of n, and 
added to q' the quantities +- ",'g, +- ","q, + ti"q, &c. so that, 
as g' is an indeterminate number, these substitutions would 
not give formulre different from what we should have, by 
the simple substitution of the values rt', nil, n"', &c. 
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53. Since, therefore, n~-B must be divisible by A, let A' 

be the quotient of this division, so that AA'=n2-B, and 
the equation, 

Ap2=z2-Bq2=(n2-B)q2-2nAqq' +A2q2, 
being divided by A, will become 

I 
p2=A'q2-2nqq' + Aq2, 

where A' will necessarily be less than A, because 
~-B A 

A'= -A-' and B< A, and n not> 2' 
First, if A' be a square number, it is evident this equa

tion will be resolvible by the known methods; and the 
simplest solution will be obtained, by making q' =0, q= I, 
and p="; A'. 

Secondly, if A' be not a square, we must ascertain whether 
it be less than B, or at least whether it be divisible by any 
square number, so that the quotient may be less than B, 
abstracting from the signs; then we must multiply the 
whole equation by A'; and, because AA'-n2= -B, we 

, I 

shall have A'p2 = (A'q - nq')2 - Bq2; so that Bq2+ A'p~ 
must be a square; hence, dividing by p2, and making 

q' =y', and A'=C, we shall have to make a square of the 
p 

formula, B/l + c, which evidently resembles that of Art. 52. 
Thus, if c contains a square factor, 712, we may suppress it, 
by multiplying the value which we shall find for y' by 71, 
in order to have its true value; and we shall have a for
mula similar to that of Art. 5], but with this difference, 
that the coefficients, Band c, of our last will be less than 
the coefficients, A and B, of the other. 

54. But if A' be not less than B, nor becomes so when 
divided by the greatest square, which measures it, then we 
must make q=vq' +q"; and, substituting this value in the 
equation, it will become 

/I I 
p2=A' q2-2n'q"q' + A"q2, 

where n'= n -VA', 

n2_B 
and A"=A'v2-2nv+A = -,-. 

A 

We must determine the whole number v, which is always , 
possible, so, that n' may not be > ~, abstracting from the 
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signs, and then it is evident, that A" will become < A', be
I 

II n2-B "A' 
cause A =~, and B=, or < A, ana n=, or < 2' 

We shall therefore apply the same reasoning here that we 
did in the preceding Article; and if A" is a square, we shall 
have the resolution of the equation: butif A" be nota square, 
and < B, or becomes so, when divided by a square, we must 
multiply the equation by A', and shall thus have, by making 
p I I ,,=y, and A"=C, the formula, By2+C, which must be a 
q 
square, and in which the coefficients, Band C, (after having 
suppressed in c the square divisors, if there are any), will 
be less than those of the formula, Ay2+B, of Art. 51. Hut 
if these cases do not take place, we shall, as before, make 
q' = I q" + q"', and the equation will be changed into this, 

/1/1/ " /If p2 = Aq2 _ 21l' q" q'" + A q2, 
where nil =n'-rl A", 

I /I 

and A"'=A"n2-2n'I + A'= n2-B 
A" • 

We shall therefore take for v'such an integer number, that 
A" 

n" may not be > 2' abstracting from the signs; and, as B 

/I 

is not> A" (hyp.), it follows, from the equation, A'" =n2-;,B, 
A 

that A'" will be < A"; so that we may go over the same 
reasoning as before, and shall draw from it similar con
clusions. 

Now, as the numbers A, A', A", Alii, &c. form a decreasing 
series of integer numbers, it is evident, that, by continu
ing this series, we shall necessarily arrive at a term less 
than the given number B; and then calling this term c, we 

I 
shall have, as we have already seen, the formula By2 + c to 
make equal to a square. So that by the operations we 
have now explained, we may always be certain of reducing 

• I 
the formula, Ay2 + B, to one more SImple, such as By'l + c ; 
at least, if the problem is resolvible. 

55. Now, in the same manner as \.Ve have reduced the 
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I 
formula, Ay2 + B, to BY'l + c, we might reduce this last to 

c'!l + D, where D will be less than c, and so on; and as the 
numbers A., B, C, D, &c. form a decreasing series of integers, 
it is evident that this series cannot go on to infinity, and 
therefore the operation must always terminate. If the 
question admits of no solution in rational numbers, we 
shall arrive at an impossible condition; but, if the question 
be resolvible, we shall always be brought to an equation 
like that of Art. 53, in which one of the coefficients, as AI, 

will be a square; so that the known methods will be ap
plicable to it: this equation being resolved, we may, by 
inverting the operation, successively resolve all the pre
ceding equations, up to the first Ap2+BQ2=Z2. 

We will illustrate this method by some examples. 
56. Example I. Let it be proposed to find a rational 

value of x, such, that the formula, 7+ 15x+ 13x2, may 
become a square."" 

Here, we shall have a=7; b=15, c=13; and there
fore 4c = 4 x 13, and b2 - 4ac = - 139; so that calling 
the root of the square in question y, we shaH have the 
formula 4 x 13y2 -139, which must be a square. We 
shall also have A=4 x 13, and B= -139, where it will at 
once be observed, that A is divisible by the square 4; so 
that we must reject this square divisor, and simply suppose 
A= 13; but we must then divide the value found for!J by 
2, as is shewn, Art. 50. 

Making, therefore, y = l!., we shall have the equation, 
Q 

13p'l- 139q2 = Z2; or, because 139 is > 13, let us make 

y= '1, in order to have - 139p2 + 13q'l = Z2, an equation 
P 

which we may write thus, -139p2=z2-13q2. 

We shall now make (Art. 52) z=nq=139q', and must 
take for n an integer number not> Jt9 , that is to say, 
<70, such, that nfZ-13 may be divisible by 139. As
suming now n=41, we have n'l-13 = 1668=139 x 12; 
so that by making the substitution, and then dividing by 
-139, we shall have the equation, I 

p'l= -12q2 + 2 x 41qq' -139q2. 

• See Chap. IV. Art. 57, of the pre£eding Treatise. 
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Now, as -12 is not u square, this equation has not the 
requisite conditions; since 12 is all'eady less than 13, we 
shall multiply the whole equation by - 12, and it will be-

I I 
come _12p2 = (-12q + 41q')2-13q2; so that 13q2-12p2 

, 
must be a square; or, making fJ.. = y', 13y 2 - 12 must be 

p 

so too. Where, it is evident, we should only have to make 
y' = 1; but as we have got this value merely by chance, let 
us proceed in the calculation according to our method, until 
we arrive at a formula, to which the ordinary methods may 
be applied. As 12 is divisible by 4, we may reject this 
square divisor, remembering, however, that we must mul
tiply the value of y' by 2; we have therefore to make a 

I • r 
square of the formula 13y2-3; or makmg y'= -. (sup

s 

posing rand s to be integers prime to each other; so that 

the fraction:' is already reduced to its least terms, as well 
s 

as the fraction'l.), the fOI"mula 13r2-3s2 must be a square. 
p 

J 
Let the root be z', which gives 13r2=z2+3s2; and, making 
z' =ms-13s', m being an integer not> til. that is, < 7, 
and such, that m2 +3 may be divisible by 13. Assuming 
m = 6, which gives m2 + 3 = 39 = 13 x 3, we have, by 
substituting the value of z', and dividing the whole equa-

tion by 13, r2=3s2-2 X 6ss' + 13~2. As the coefficient 3 of 
S2 is neither a square, nor less than that of .~2, in the pl"e
ceding equation, let us make (Art. 54) s= p,s' +s", and 
substituting, we shall have the transformed equation, 

" , r2=3s2-2(6-3p,)s"s' + (3p.2_2 x 6p,+ 13)s2; 
and here we must determine p, so, that 6-3p, may not be 
>t, and it is clear that we must make p,=2, which gives 

II J 

6 - 3p, = 0; and the equation will become r2 = 382 +S2, 

which is evidently reduced to the form required, as the 
coefficient of the square of one of the two indeterminate 
quantities of the second side is also a square. In order to 
have the most simple solution, we shall make i' =0, .5' =], 
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r 
and r = 1; therefore, s = "'= 2, hence y' = - = t; but 

s 
we know that we must multiply the value of y' by 2; so 
that we shall have y = 1; wherefore, tracing back the 

I 

steps, we obtain 2. = 1 ; whence" p; and the equation 
p 

-12p2=( -12q+4Iql)2-13q2 will give 
(_12q+41p)2=p2 ; 

that is, - 12q + 41p = p; so that 12q=40p; therefore, 

y= fJ. = -it = 'f; bllt as we must divide the value of y 
p 

by 2, we shall have y=1; which will be the root of the 
given formula, 7 + 15x + 13x2 ; so that making 
7 + 15x + 13x2 = ~, we shall find, by resolving the 
equation, that 26x + 15 = +i; whence, x = -·H, or 
=-i· 

We might have also taken-12q+41p = - p, and 

should have had y= '1.= ~1; and, dividing by 2, Y = tt; 
p 

then making 7 + 15x+ 13x2=(tt)2, we shall find 
26x+ 15=+%; whence, x =-th or =-i. 

If we wished to have other values of x, we should only 

have to seek other solutions of the equation r2=3~+:2, 
which is resolvible in general by the methods that are 
known; but when we know a single value of x, we may 
immediately deduce from it all the other satisfactory 
values, by the method explained in Chap. IV. of the 
preceding Treatise. 

57. Sckolium. Suppose, in general, that the quantity 
a+bx+cx2 becomes equal to a square g2, when x f, so 
that we have a+bf+cpl=g2; then a=g2-bf-cf2; 
substituting this value in the given formula, it will become 
g2+b(x-f)+c(x2_j2). Now, let us take g+m(x-f) 
for the root of this quantity, (m being an indeterminate 
number), and we shall have the equation, 

g'l.+b(x-f)+c(x2_j2)=g'l.+2mg(x-f)+m2(x-f)2; 
that is, expunging g2 on both sides, and then dividing 
by x-f, we have 

b+c(x+j)=2mg+m2(x-f); 
fm 2-2gm+b+cf ... whence we find x= 2 • And It IS eVident, 

m -c 
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on account of the indetenllinate l1umbel' m, that this ex
pression of x must comprehend all the values that can be 
given to x, in order to make the proposed formula a square; 
for whatever be the square number, to which this formula 
may be equal, it is evident, that the root of this number 
may always be represented by 9 + m(x-j), giving to m a 
suitable value. So that when we have found, by the 
method above explained, a single satisfactory value of x, 
we have only to take it for j, and the root of the square 
which results for 9; and, by the preceding formula, we 
shall have all the other possible values of x. 

In the preceding example, we found y=1-, and x= -t ; 
so that, making 9=1-, andj- -t, we shall have 

19-10m-2m2 
x = -~--o--o-=--

3(m2-13) 
which is a general expression for the rational values of x, 
by which the quantity 7 + 15x+ 13x2 may be made a 
square. 

58. Example 2. Let it be proposed to find a rational 
value of y, so that 23y2_5 may be a square. 

As 23 and 5 are not divisible by any square number, 
we shall have no reduction to make. So that making 

y = E., the formula 23p2_5(f must become a square, Z2; 
q 

so that we shall have the equation 23p2=Z2+5q2. 

We will therefore make Z= nq-23q', and must take 
for n an integer number, not> 2..f, such, that n2 + 5 
may be divisible by 23. I find n = 8, which gives 
n2 +5=23x3, and this value ofn is the only one that has 
the requisite conditions. Substituting, therefore, 8q-23q', 
in the room of z, and dividing the whole equation by 23, 

we shall have p2=3q2_2 x 8qq' + 23q2, in which we see 
that the coefficient 3 is already less than the value of B, 

which is 5, abstracting from the sign. Art. 52. 
Thus, we shall multiply the whole equation by 3, and 

I 

shall have 3pQ = (3q - 8q')2 + 5q2; so that making 
0' , / 
L=y, the formula-5y2+3 must be a square, the coeffi
p 
cients 5 and 3 admitting of no reduction. 

I l' 
Therefore, let .1f = s (r and s being supposed prime to 
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each other, whereas q' and p cannot be), and we shall have 
to make a square of the quantity - 5r2 + 3s2 ; so that 

calling the root z', we shall have - 5r2 + 3s2 = Z2, and 
, 

thence -5r2=z2-3s2 • 

We shall, therefore, take z' =ms + 5s, and m must be 
an integer number not >1-, and such, that m2 _3 may be 
divisible by 5. Now, this is impossible; for we can only 
take m=I, or m=2, which gives m2-3=-2, or =1. 
From this, therefore, we may conclude that the problem is 
not resolvible; that is to say, it is impossible for the formula 
23y2_5 ever to become a square, whatever number we 
substitute for y.* 

59. Corollary. If we had a quadratic equation, with 
two unknown quantities, such as 
a + bx + cy + dx2 + exy + f y2 = 0, and it were pro
posed to find rational values of x and y that would satisfy 
the conditions of this equation, we might do this, when it 
is possible, by the method already explained. 

Taking the value of·y in x, we have 
2fy+ex+c= .j(c-ex)2-4f(a+bx+dx2»); 

or, making a = c2 - 4af, f3 = 2ce - 4bj, "I = e2 - 4df, 
2fy + ex + c = .j (a + f3x + yx2); the question will be 
reduced to finding the values of x, that will render rational 
the radical quantity.j(a +f3X+yx2). 

60. Sclwlium. I have already considered this subject, 
rather differently, in the Memoirs of tlte Academy of 
Sciences at Berlin, for the year 1767, and, I believe, first 
gave a direct method, without the necessity of trial, for 
solving indeterminate problems of the second degree. The 
reader, who wishes to investigate this subject fully, may 
consult those Memoirs; where he will, in particular, find 
new and important remarks on the investigation of such 
integer numbers as, when taken for n, will render n2-B 

divisible by A, A and B being given numbers. 

* The impossibility of the formula 23y2-5=Z2 is readily de
monstrated: for y2 must be of one of the forms 4n, or 4n + 1. 
In the first case, 23y2_5 is of a form 23 X 4n-5, which is the 
same as 4n- 1, and this is an impossible form for square num
bers. In the second ca!;le, 23y2_5 is of the form 23 X (4n+ 1)-5, 
which is the same as 4n -18, or 4n -2~ and this again is an 
impossible form for square numbers. Therefore, the formula 
23y2-5=z~' is always impossible.-B: 



CHAP. VI. ADDITIONS. 547 

In the Memoirs for 1770, and the following years, in
vestigations will be found on the form of divisors of the 
numbers represented by Z2_Bq2; so that by the mere 
form of the number A, we shall often be able to judge 
of the impossibility of the equation Ap2=z.~-Bq2, where 
A!l+B= 0, (Art. 52). 

CHAPTER VI. 

Of Double and Triple Equalities. 

61. We shall here say a few words on the subject of 
double and triple equalities, which are much used in the 
analysis of Diophantus, and for the solution of which, 
that great mathematician, and his commentators, have 
thought it necessary to give particular rules. 

When we have a formula, containing one or more un
known quantities, to make equal to a pel'fect power, such as 
a square, or a cube, &c. this is ealled, in the Diophantine 
analysis, a simple equality; and when we have two formulre, 
containing the same unknown quantity, or quantities, to 
make equal, each to a perfect power, this is called a double 
equality, and so on. 

Hitherto, we have seen how to resolve simple equalities, 
in which the unknown quantity does uot exceed the second 
degree, and the power proposed is the square. 

Let us now see how double and triple equalities of the 
same kind are to be managed. 

62. Let us first propose this double equality, 
a+bx=o; 

where the unknown 
degree. 

c+dx= 0; 
quantity is found only in the first 

Making a + bx= t2, and c+dx = u2, and expunging 
x from both the equations, we have ad-bc = dt2 - bu". 
Therefore, dt2 = bu'l. + ad - bc; and, multiplying by d, 

d2t~=dbu2+(ad-bc)d: so that the difficulty 
will be reduced to finding a rational value of u, such, that 
dbu2 + ad2 - bcd may become a square. This simple 
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equality will be resolved by the method already explained; 

and knowing u, we shall likewise have x = u2 d ~. 
If the douhle equality were 

ax2 +bx= 0, 
e:t2 +dx= 0, 

we should only have to make x= ~, and then multiplying 

I 
both formulre by the square ,1:2 , we should get these two 

I 
equalities, a+bx= 0, and e+dx= 0, which are similar 
to the preceding. 

Thus, we may resolve, in general, all the double equa
lities, in which the unknown quantity does not exceed the 
first degree, and those in which the unknown quantity is 
found in all the terms, provided it does not exceed the 
second degree; but it is not the same when we have 
equalities of this form, 

a+bx+ ex2 = 0, 
a +,Bx + r,1:2 = D. 

If we resolve the first of these equalities by OUI' method, 
and callfthe value of x, which makes a+bx+ex2=g2, 
we shall have, in general (Art. 57), 

x=fm2-2gm+b+~f; 
m2-e 

wherefore, substituting this expression of x in the other 
formula, a+,Bx+rx2, and then multiplying it by (m2_e)2, 
we shall have to resolve the equality, 

a(m2_e)2 +,B(m2-e) X Cfm2-2gm+b+ef) + 
rCfm2-2gm+b+q()2= 0 ; 

in which, the unknown quantity, m, rises to the fourth 
degree. 

Now, we have not yet any general rule fOl' resolving 
such equalities; and all we can do is to find successively 
different solutions, when we already know one. (See 
Chap. IX.) 

63. If we had the triple equality, 
a,?; + byi 
cx+dy l.= 0, 
ltx+kyJ 

we must make a,1:+by=t2, ex + dy=u2, and ltx+hy=s2, 
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and expunging x and y from these three equations, we 
should have 

(ak-blt)u2-(ck-dh}t2=(ad-cb)s2 ; 

so that, making i- =z, the difficulty would be reduced to 

resolving the simple equality, 
ak-bh 0 ck-dh 
ad- cb z -- ad-cb = 0, 

which is evidently a case of our general method. 
Having found the value of z, we shall have u=tz, and 

the first two equations will give 
d- bz2 az2 -c 

x = -_.- t2, Y = --t2. 
ad-cb arJ-cb 

But if the given triple equality contained only one variable 
quantity, we should then again have an equality with the 
unknown quantity rising to the fourth degree. 

In fact, it is evident that this case may be deduced from 
the preceding, by making y= 1; so that we must have 
az'l.-c az2-c 
-d b[2=1; and, consequently, -d b= D. a -c a -c 

Now, calling f one of the values of z, which satisfy 
the above equality, and, in order to abridge, making 
ak-bTl . 

d b = e, we shall have, III general (Art. 57), 
a -c 

. fm 2-2gm +ef 
z ="- m2 ::::::e--·. 

Then, substituting this value of z in the last equality, 
and multiplying the whole of it by the square of m2 -e, we 
shall have a<.fm2-2gm+ef)2~c(m2-:!'l = 0 where the , ~-~ , 
unknown quantity, 171, evidently rises to the fourth 
power. 
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CHAPTER VII. 

A direct and general Method for finding all the values of y 
expressed iTt Integer Numbers, by which we may render 
Quantities of the form ..; (Ay~+B), rational; A alld B 
being given Integer Numbers; and also for finding all 
the possible Solutions, in Integer Numbers, of indeter
minate Quadratic Equations of two unknown Quantities. 

[APPENDIX TO CHAP'fER VI.] 

64. Though by the method of Art. 5, general formulre 
may be found, containing all the rational values of y, by 
whIch Ay2+B may be made equal to a square; yet those 
formulre are of no use, when the values of yare required 
to be expressed in integer numbers: for which reason, 
we must here give a particular method for resolving the 
question in the case of integer numbers. 

Let then Ay2+B=X~; and as A and D are supposed to 
'be integer numbers, and y must also be integer, it is evi
dent that x ought likewise to be integer; so that we shall 
have to resolve, in integers, the equation x2 _Ayl!=B. Now, 
I begin by remarking, that if B is not divisible by a square 
number, ?J must necessarily be prime to B; for snppose, if 
possible, that y and B have a common divisor, ct, so that 

I 
y=cty', and B=IJIB'; we shall then have X2=Act2y2=ctB', 
whence it follows that x 2 must be divisible by ct; and as ct 

is neither a square, nor divisible by any square (hyp.), be
cause ct is a factor of B, x must be divisible by ct. Making 

then x=d, we shall have ct2~2=ct2A;l+ctB'; or, dividing 

by ct, ~2=ctAfl+B'; whence it is evident, that B' must 
still be divisible by ct, which is contrary to the hypothesis. 

It is only, therefore, when B contains square factors, that 
!I can have a common measure with B; and it is easy to 
see, from the preceding demonstration, that this common 
measure of y and B can only be the root of one of the 
square factors of D, and that the number x must have the 
same common measures; so that the whole equation will 
be divisible by the square of this common divisor of x, y. 
and B. 
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Hence I conclude, I st. That if B is not divisible by any 
square, y and B will be prime to each other. 

2dly. That if B is divisible by a single square a2 , y may 
be either prime to B, or divisible by a, which makes two 
cases to be separately examined. In the first case, we shall 
resolve the equation x2-Ay2=B, supposing y and B prime 
to one another; in the second, we shall have to resolve 

the equation, x2-Ay2=B', n being = B2, supposing also 
a 

y and B' prime to each other; but it will then be necessary 
to multiply by a the values found for y and x, in order to 
have values corresponding to the equation proposed. 

3dly. If B is divisible by two different squares, a 2 and 
{32, we shall have three cases to consider. In the first, we 
shall resolve the equation x2-Ay2=B, considering y and B 

as prime to each other. In the second, we shall likewise 

resolve the equation, x 2 _ Ay2=B', B' being = B2• on the 
a 

supposition of y and B' being prime to each other, and we 
shall then multiply the values of x and y by a. In the 
third, we shall resolve the equation X 2-Ay2=B", B" being 

= ;, on the supposition of y and B" being prime to each 

other, and we shall then multiply the values of x and y 
by {3. 

4thly, &c. Thus, we shall have as many different equa
tions to resolve, as there may be different square divisors 
of n; but those equations will be all of the same form, 
x2_Ay2=B, and y also will always be prime to B. 

65. Let us therefore consider, generally, the equation, 
x2-Ay2=B; where y is prime to B; and, as x and y must 
be integers, X2-A.1l must be divisible by B. 

By the method, therefore, of Chap. IV. 48, we shall 
make x=nY-Bz, and shall have the equation, 
(n2-A)y2-2nByz + n2z2= B, from which we perceive, that 
the term, (n2_A)y2, must be divisible by B, since all the 
others are so of themselves; wherefore, as y is prime to 
B, (hyp.) n2-A must be divisible by n; so that making 

n2 
- A = c, and dividing by B, we shall have, 
B • 

cy2-2nyz+Bz2=1. Now, this equation is simpler than 
the one P"oposed, because the se~olld side is equal to unity. 
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We shall seek, therefore, the values of n, which may ren
der n2_A divisible by B; for this it will be sufficient 
(Art. 47), to try for n all the integer numbers, positive or 

negative, not>;; and if among these we find no one 

satisfactory, we shall at once conclude that it is impossible 
for n2-A to be divisible by B, and therefore that the given 
equation is not resolvible in integer numbers. 

But if, in tbis manner, we find one, or more satisfactory 
numbers, we must take them, one after another, for 71, 

which will give as many different equations, to be 
separately considered, each of which will furnish one, or 
more solutions, of the given question. 

With regard to such values of n as would exceed that of 

;, we may neglect them, because they would give no equa

tions different from those, which will result from the values 
B 

of 7l that are not> 2' as we have already shewn (Art. 52). 

J .. astly, as the condition from which we must determine 
7l is, that n2_A may be divisible by B, it is evident, that 
each value of n may be negative, as well as positive; so 
that it will be sufficient to try, successively, for n, all the 

B 
natural numbers, that are not greater than 2' and then to 

take the satisfactory values of n, both in plus and in minus. 
We have elsewhere given Rules for facilitating the inves

tigation· of the values of 71, that may have the property re
quired, and even for finding those values a priori in a great 
number of cases. See the Memoirs of Berlin for the year 
1767, pages 194, and 274. 

Resolution of the Equation cy2-2nyz+Bz2=1, in 
Integer Numbers. 

This equation may be resolved by two different methods. 

First Method. 

66. As the quantities c, n, B, are supposed to be integer 
numbers, as well as the indeterminate quantities y and z, 
it is evident, that the quantity cy2-2f1!Jz + BZ2 must always 
be equal to integer numbers; con seq ue~tly, unity will be its 
least possible value, unless it beco.mes 0, which can only 
happen, when this quantity may be resolved into two rational 
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factors. As this case is attended with no difficulty, we 
shall at once neglect it, and the question will be reduced 
to finding such values of y and z, as will make the quantity 
in question the least possible. If the minimum be equal to 
unity, we shall have the resolution of the proposed equa
tion; otherwise, we shall be assured, that it admits of no 
solution in integer numbers: so that the present problem 
falls under the third problem of Chap. II., and admits of a 
similar solution. Now, as we have here (2n)2-4Bc=4A 
(Art. 65), we must make two distinct cases, according as A 

shall be positive or negative. 

First Case, when n2-Bc=A<O. 

67. According to the method of Art. 32, we must reduce 

the fraction '!!., taken positively, to a continued fraction; 
C 

this may be done by the rule of Art. 4; then by the for
mulre of Art. lO, we shall form the series of fractions con-

verging towards ?!:, and shall have only to try, successively, 
C 

the numerators of those fractions for the number y, and 
the corresponding denominators for the number z. If the 
given formula be resolvible in integers, we shall in this 
way find the satisfactory values of y and z; and, con
versely, we may be certain, that it admits not of any solu
tion, in integer numbers, ifno satisfactory values al'e found 
among the numbers that are tried. 

Second Case, when n2 -Bc=A>O. 

68. We shall here employ the method of Art. 33 et seq. 
so that, because E=4A, we shall at once consider the 

. A 39) 1/+.j A. h' h d quantity (rt. ,a= - , m w IC we must eter-
C 

mine the signs both of the value of n, which we have seen 
may be either positive 01' negative, and of .j A, so that it 
may become positive; we shall then make the following 
calculation: 

pO=C, 

I 

pi = Q2 0 A, 
P 
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" < -Q!'+..; A 
P. ---p1r-. 

Q'" = p." p" + </', 
&C. 

Iff Q2_A 
P =---pn-' 

&C. 

Q"'- . I "'< - +v A P. p"" 

&C. 

and we shall only continue these series until two cor
responding terms of the first and the second series appear 
again together; then, if among the terms of the second 
series, pO, p', p", &c. there be found one positive, and 
equal to unity, this term will give a solution of the pro
posed equation; and the values of y and z will be the cor
responding terms of the two sel'ies pO, p', p", &c. and 
qO, q', q", calculated according to the formulre of Art. 25; 
otherwise, we may immediately conclude, that the given 
equation is not resolvible in integer numbers. See the 
example of Art. 40. 

Third Case, when A is a square. 

69. In this case, the quantity..; A will become rational, 
and the quantity cy2-2nyz+Bz2 will be resolvible into 
two rational factors. Indeed, this quantity is no other than 
(cy-nz)2-Az2 

,which, supposing A=a2, may be thrown c 
. t thO ~ (cy±(n+a)z) x (cy±(n-a)z) 
In 0 IS 10rm, . 

c 
Now, as n2-a2=Ac=(n+a)x(n-a), the product of 

n+a by n-a must be divisible by C; and, consequently, 
one of these two numbers, n+a, and n-a, must be divisible 
by one of the factors of c, and the other by the other fac
tor. Let us, therefore, suppose c=bc, n+a fb, and 
1l-a=gc,l and b being whole numbers, and the preced
ing quantIty will become the product of these two linear 
factors, cy±jz, and by+gz; therefore, since these two 
factors are both integers, it is evident that their product 
could not be = 1, as the given equation requires, unless 
each of them were separately = + 1; we shall therefore 
make cy+jz= ± 1, and by+gz= + 1, and by these 
means we shall determine the numbers y and z. If we 
find these numbers integer, we shall have the solution of 
the equation proposed; otherwise, it will be irresolvible, 
at least in whole numbers. 
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Second Method. 
70. Let the formula, C:y2 - 2nyz + BZ2, undergo such 

transformations as those we have already made (Art. 54), 
and we shall invariably be brought by the transformations 
to an equation, such as L;2_2M;++N+2, the numbers, 
L, M, N, being whole numbers, depending upon the given 
numbers c, B, n, so that we llave M2 - LN = 1/2 - CB = A ; 
and farther, that 2M may not be greater (abstracting from 
the signs) than the number L, nor the number N; the 
numbers; and --I- will likewise be integer, but depending 
on the indeterminate numbers y and z. 

For example, let c be less than B, and let us put the 
formula in question into this form, 

, I 

B'y2-2nyY+B!l, 
making C=B', and z = y'; if 2n be not greater than B', it 
is evideut that this formula will already of itself have the 
requisite conditions; but if 2n be greater than B', then we 
must suppose y=my' + y"; and, by substitution, we shall 
have the transformed formula, 

, 
n2-A 

n'=n-mB', and B"=m2B'-2mn+B=---:::r-. 
B 

Now, as the number m is indeterminate, we may, by 
supposing it an integer, take it such, that the number 
n-mB' may not be greater than lB' abstracting from the 
sign; then 2n' will not exceed B'. SO that, if 2n' does 
not even exceed B", the preceding transformed formula 
will already be in the case which we have seen; but if 2n! 
is greater than B", we shall then continue to suppose 
y'=m'y" +y"', which will give this new transformation, 

/I 
I I I n2-A 

n"=n'-m'B", and B"'=m2B"-2mll+B'=~. 

We shall now determine the whole number m', so that 
B" 

rl-m'B" may not be greater than 2' by which means 211' 

will not exceed B"; so that we shall have the required 
transformation, if 2n" does not even exceed B"'; but if 2n" 
exceed B"', we shall again supposo'y"=m"y'" +yh, &c. &c. 
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Now, it is evident, that these operations cannot go on to 
infinity; for since 2n is greater than B', and 2n' is not, n' 
will evidently be less than 11; in the same manner, 2n' is 
greatel' than B', and 2n" is not, wherefore n" will be less 
than n', and so on; so that the numbers n, n', ,/', &c. will 
form a decreasing series of integers, which of course can
not go on to infinity. We shall therefore arrive at a for
mula, in which the coefficient of the middle term will not 
be greater than those of the two extreme terms, and which 
will likewise have the other properties already mentioned; 
as is evident from the nature of the transformations 
emploved. 

In order to facilitate the transformation of the formula, 
C:y2 - 2nyz + BZ2 into this, 
L~2_2l\1~++N+2, 

let us denote by D the greater of the two extreme coeffi
cients c and B, and the other coefficient by D'; and, 
vice ·versa, let us denote by 0 the variable quantity, whose 
square shall be found multiplied by n', and the other 
variable quantity by 0'; so that the given formula may 
take this form, I 

I D'02-2nOO' + D02, 

where D is less than D; then we have only to make the 
following calculation: 

I 
n 

m = D" rt' =n -mD', " n2 _ A iJ =mo' 
D =-nr-' +0" 

/I 
/1' n2 _ A 

rn' = -7" rl' =n' -m'D", D"'= --,,-, U' =n/O" +fI", 
D D 

Ii} 

UN ". n~-A nt" = -,.,-" h'" = n" -11/." D"', D -
D -7" 

&c. &c. &c. 
where it must be observed, that the sign =, which is put 
after the letters m, m', m", &c. does not express a perfect 
equality, but only an equality as approximate as possible, 
so long as we understand only integer numbers by m, m', 
m", &c. The sign = being only employed for want of a 
better. 

These operations must be contiuued, until in the series 
11, n', nfl, &c. we find a term, as ng, which (abstracting from 
the sign) does not exceed the half ofthc"corresponding term, 
Dg of the series D', D", D"', &c, any more than the half of 



('rIAl'. VIT. ADDITIONS. 557 

the following term De+!. Then we may make De=L, 
ne = N, De+ 1 = M, and oe=+, oe+ 1 =;, or De=M, De+1 = L, 
and oe=;, oe+1=+. We must always suppose, as we 
proceed, that we have taken, for M, the less of the two 
numbers De, ne+ 1 • 

71. The equation, 0,1;2- 211yZ + DZQ= I, will therefore be 
reduced to this, 

L;~-2N;+ + M+2 = 1, 
where NQ-LM=A, and where 2N is neither >L, nor >M, 
(abstracting from the signs). Now, M being the less of 
the two coefficients Land M, let us multiply the whole of 
the equation by the coefficient M; and making 

U=M+-N;, 
it is evident, that it will be changed into 

u2 _A;2=M, 
in which we must make a distinction between the two 
cases of A positive, and A negative. 

1st. Let A be negative, and = -a (a being a positive 
number), the equation will then be 

u2 +a;2=M. 
Now, as N2-LM = A, we shall llave a = LM-N2 ; whence 
we immediately perceive, that the numbers Land M must 
have the same signs; otherwise, 2N can neither be > L, 

nor >M; wherefore N 2 will not be > L:; therefore, a=, 
or >{LM; and since M is supposed to be less than L, or 
at least not greater than L, we shall have, a fortiori, a =, 

4a 
01' >{M2; whence M=, or <v3 ; and M <tva. 

Hence, we see that the equation, u2+a;2=M, could not 
exist on the supposition of u and; being whole numbers, 
unless we made; = 0, and u2 = M, which requires M to be 
a square number. 

Let us, therefore, suppose M = p.z, and we shall have 
;=0, u= ±,u.; wherefore, from the equation, u=M+-N~, 

I 
we shall have ,u.2+= +,u., and, consequently, += + -; so 

,u. 
that + cannot be a whole number, as it ought, by the 
hypothesis, unless ,u. be equal to unity, or = + I, and, 
consequently, M = 1. 

Hence, therefore, we may infer, that the given equation 
is not resolvible in integers, unless.M be found equal to 
unity, and positive. If this condition take place, then we 
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make g = 0, -+ = ± 1, and go back from these values to 
those of y and z. 

This method is founded on the same principles as that 
of Art. 67; but it has the advantage of not requiring any 
trial. 

2dly. Let A be now a positive number, and we shall 
LM 

have A = N 2 - LM. And as N 2 cannot be greater than 4' 
it is evident that the equation cannot subsist, unless -LM 
be a positive number; that is to say, unless Land M have 
contrary signs. Thus, A will necessarily be < -LM, or at 
farthest =-LM, ifN=O; so that we shall have -LM=, 
or <A; and, consequently, M2 =, or < A, or M =, or 
<vA. 

The case of M = v A cannot take place, except when A 
is a square; consequently, this case may be easily resolved 
by the method already given (Art. 69). 

There remains, now, only the case in which A is not a 
square, and in which we shall necessarily have M< v A 
(abstracting from the sign of M); then the equation, 
u2_Ag2=M, will come under the case of the theorem, Art. 
38, and may therefore be resolved by the method there 
explained. 

Hence we have only to make the following calculation: 

QO = 0, pO = I, p. < .; A, 

Q' =p., p' 
I 

= Q2_A, p.' -Q' -v A < p' , 

" 
Q" = p.'p' +Q', 

Q2_A 
p." < -Q"+vA 

p" = --,-, pI/ P 

/II _"If _.; A 
"" = p." pIt + Q", 

/II Q2_A 
p.'" < P =-p;r-' P'" 

&C. &c. &c. 
continuing it until two corresponding terms of the first and 
second series appear again together; or until in the series 
p', pIt, pili, &c. there be found a term equal to unity, and 
positi~'e; that is to say, =pO: for then all the succeeding 
terms will return in the same order in each of the three 
series (Art. 37). If in the series P', p", pili, &c. there be 
found a term equal to M, we shall have the resolution of 
the given equation; for we shall only have to take, for 
u and ;, the corresponding termS' of the series, p', p", p"', 
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&c. q', q", qlll, &c. calculated according to the formulre of 
Art. 25; and we may even find an infinite number of 
satisfactory values for u and ~, by continuing the same 
series to infinity. 

Now, as soon as we know two values of u and ~. we 
shall have, from the equation, tI = M+- N~, that of +, 
which will also be a whole number; then we may go back 
from these values of ~ and +, that is to say, ofaHI, and ae, 
to those of a and 0', or of y and z (Art. 70). 

But if in the series p', p", pili, &c. there is no term =M, 
we are sure that the equation proposed admits of no solu
tion in whole numbers. 

It is proper to observe, that, as the series po, p', p", &c. 
as well as the two others, QO, Q', Q", &c. and /N, /N', /N", 
&c. depend only on the number A; the calculation, once 
made for a given value of A, will serve for all the equa
tions in which A, or n2-cB, shall have the same value; 
and hence the foregoing method is preferable to that of 
Art. 68, which requires a new calculation for each 
equation. 

Lastly, so long as A does not exceed 100, we may make 
use of the Table given, Art. 41, which contains for each 
radical"; A, the values of the terms of the two series po, 
_pI, pll, _P'", &c. and /N, /N'. /Nil, &c. continued, until one 
of the terms p', pll, p''', &c. becomes =1; after which, all 
the succeeding terms of both series return in the same 
order. So that, by means of this Table, we may judge, 
immediately, whether the equation, u2 - A~2 = M, be 
resolvible, or not. 

Of the Manner of finding all the possible Solutions of the 
Equation, cy2 - 2nyz + BZ2 = 1, when we know only one 
of them. 
72. Though, by the methods just given, we may succes

sively find all the solutions of this equation, when it is 
resolvible in integer numbers; yet this may be done, in a 
manner still more simple, as fonows : 

Call p and q the values found for y and z; so that we have 
cp2-2npq + Bq2= 1, 

and take two other whole numbers, rand s, such, that 
ps-qr= 1; which is always possible, because p and q are 
necessarily prime to each other; then suppose 

y pt + ru, and z=qt + su, 
t and u being two new indeterminate numbers; substi
tuting these expressions in the equation, 

cy2 - 2nyz + B';~= 1, 
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and, in order to abridge, making 
P =Cp2 -2npq + Bq2, 
Q=cpr- n(ps+ qr)+Bq.~, 
R=cr2 - 2nrs+ BS2 , 

';HAP. VII. 

we shall have the equation transformed into this, 
pt2 + 2Qtu + RU'J.= I. 

Now we have, by hypothesis, P = I; farther, if we call 
e and If, two values of rand s that satisfy the equation, 
ps-qr= I, we shall have, in general (Art. 42), 

r=g+mp, s=lf+mq, 
m being any whole number; therefore, putting these 
values into the expression of Q, it will become 

Q=cPg-n(plf+qg) +Bqlf+mp; 
so that, as P= I, we may make Q=O, by taking 

m=-cpg+n(plf+qg)-Bqlf. 
We now observe, that the value of Q2_PR is reduced 

(after the above substitutions and reductions) to this; 
(n2 - CB) x (ps - qr)2; so that as ps - qr = I, we shall 
have Q2 - PR= n2 - CB = A; therefore, making P = I, 
and Q=O, we shall have -R=A, that is, R= -A; 
so that the equation before transformed will become 
t2 - Au'J.=I, Now, as y, Z, p, q, r, and s, are whole num
bers, by the hypothesis, it is easy to perceive, that t and u 
will also be whole numbers; for, deducing their values 
from the equations, !J=pt+l'U, and z=qt+su, we have 

sy-rz qy-pz 
t =' ,and u = ; 

ps-qr qr -ps 
that is to say, (because ps - qr = 1), t = sy - rs, and 
u=pz-q!J. 

We shall therefore only have to resolve, in whole num
bers, the equation t2-Ail2 ""': 1, and each value of t and u 
will give new values of y and z. 

For, substituting the value of the number m, already 
found, in the general values of rand s, we shall have 

r=g(l-cp'J.)-Bpqlf+llp(plf+qg), 
S=If(l-Bq2)-cpqg +nq(plf+qg); 

or, because cp2-2npq+Bq2=1, 
r=(Bq-Tlp) x (qg-plf)=-Bq+np, 
s=(cp-nq) x (plf-qg)=cp-nq. 

Therefore, putting these values of rand s in the fore
going expressions of!J and z, we 'shall have, in general, 
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y=pt-(Bq-np)u, 
Z=qt+(Cp -nq)u. 

561 

73. The whole therefore is reduced to resolving the 
equation, t2-AU2=1. 

Now, lst, if A be a negative number, it is evident, that 
this equation cannot subsist, in whole numbers, except by 
making u = 0, and t = I, which would give y = p, and 
z = q. Whence we may conclude that, in the case of A 

being a negative number, the proposed equation, 
cy2-2n!Jz+Bz2=I, 

can never admit but of one solution in whole numbers. 
The case would be the same, if A were a positive 

square number; for making A = a2 , we should have 
(t + au) x (t - au) = 1; wherefore, t + au = ± 1, and 
t-au= ± 1; wherefore, 2au=0, u = 0, and consequently, 
t= ±l. 

2dly. But if A be a positive number, not square, then 
the equation, t2-AU2= I, is always capable of an infinite 
number of solutions, in whole numbers (Art. 37), which 
may be found by the formulre already given (Art. 71) . 
.But it will be sufficient to find the least values of t and U; 
and, for this purpose, as soon as we have arrived, in the 
series p', pII, pili, &c. at a term equal to unity, we shall 
have only to calculate, by the fOl'n1lllre of Art. 25, the 
corresponding terms of the two series p', p", pili, &c. and 
q', gil, gill, &c. for these will be the values required of 
t and u. Whence it is evident, that the same calculation 
made for resolving the equation, u2 - A~2 = Y, will serve 
also for the equation, 

t2-Au2=1. 

Provided that A does not exceed 100, we have the least 
values of t and u calculated in the Table, at the end of 
Chap. VII. of the preceding Treatise, and in which the 
numbers a, m, n, are the same as those that are here 
called A, t, and u. 

74. Let us denote by t', 14', the least values of t, u, in 
the equation, t~-AU2=1; and in the same manner as 
these values may serve to find new values of y and z, in 
the equation, cy2-2nyz+Bz2=1, so they will likewise 
serve for finding new values of t and u in the equation, 
t2-AU2= 1, which is only a particular case of the former. 
For this purpose, we shall only have to suppose c = 1, 
andn=O, which gives -B=A, and then take t, u, instead of 
y, z, and t', u,', instead p, q. Making these substitutions, 
therefore, in the general expressions of y and z (Art. 72), 

00 
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and farther, putting T, V, instead of t, u, we shall have, 
generally, 

t =Tt' +AVU' 

u = Til +vt' , 
and, for the determination of T and V, we shall have the 
equation, T2_A v2= 1, which is similar to the one proposed. 

Thus, we may suppose T=t' , and v=u', which will give 
I I 

t=t2+AU2, u=t'u' +t'u'. 
Calling tff, u", the second values oft and u, we shall have 

I I 

t" = t2 + AU2, tI' = 2t'u'. 
Now, it is evident, that we may take these new values, 

t", u", instead of the first t', u'; so that we shall have 
t =Tt" +AVU", 
U=TU" +vt", 

where we may again suppose T=t', v=u', which will give 
t=t't" + AU'U", u=t'u" +u't". 

Thus, we shall have new values of t and u, which will be 
I I 

t'" = t't" + AU' U" = t( t 2 + 3Au2), 

and so on. 
75. The foregoing method only enables us to find the 

values, tff, t"', &c. u", u"', &c. successively; let us now 
consider how this investigation may be generalised. We 
have, first, 

t=Tt' + AVU' , U=TU' +vt'; 
whence this combination, 

t±u.j A=(t' ±u'.j A) X (T+V.j A); 

then supposing T = t', and v = u', we shall have 
tff + u" .j A=(t' ± u' .j A)2. 

Let us now substitute these values of tff and u", instead 
of those of t' and u', and we shall have 

t±u.j A=(t' ±u' .j A)2 X (T± v.j A), 

where, again makingT=t', and v=u', and calling t"', u"', 
the resulting values of t and u, there will arise 

t"'±u"'.j A=(t'±U'.j A)3. 
In the same manner, we shall find 

tiV+Uiv.j A=(t'±U'.j A)4, 
and so on. 

Hence, in order to simplify, if we now call T and v the 
first and the least values oft, u,which we before called t', u', 
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we shall have, in general, 
t±u'; A =(T+ V'; A)"', 

m being any positive whole number; whence, on aecount 
of the ambiguity of the signs, we derive 

t _ (T+V'; A)'" + (T-V .; A)'" 
- 2 

(T +v'; A)m-(T_V'; A)'" 
u= 2';A . 

Though these expressions appear under an irrational 
form, it is easy to see that they will become rational, if we 
involve the powers of T±V'; A; for it is well known that 

m(m-I) 
(T+ v'; A)'" = Tm + mTm-1V'; A + 2 Tm--2V2A 

m(m - 1) x (m - 2) + 2 x 3 T11I
- 3V3 A'; A +, &c. 

Wherefore, 
m(m-I) 

t = T'" + ATm- 2V2 
2 

+ m(m-l)x(m-2)x(m-3) 2 ",-4 4+ & 
2 x 3 x 4 A TV, C. 

m(m-l)x(m-2) u = mTm-lv + AT"'-3V3 
2x3 

+ m(m-I) x (m-2) x (m-3) x (m-4) 2 "'-5 5 & 
2 x 3 x 4 x 5 A T V +, c. 

Where we may take for m any positive whole numbers 
whatever. 

It is evident that, by successively making m= 1, 2, 3,4, 
&c. we shall have values of t and u, that will go on in
creasing. 

I shall now shew that, in this manner, we may obtain 
all the possible values of t and '11, provided T and V are 
the least of them. For this purpose it is sufficient to 
I)rove, that, between the values of t and u, which answer 
to m, any number whatever, and those which would 
answer to the number, m + 1, it is impossible to find 
any intermediate values, that will satisfy the equation, 
t2-AU2=1. 

For example, let us make the values (", u!", wllich 
result from the supposition ofm=3, and the values ti', uiV , 

which result from the supposition of m=4, and let us 
suppose it possible that there are other intermediate 
values, 0 and tI, which would likewise satisfy the equation, 
t 2-AUr=1. 
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III II/ i... iT 

Since we have t2_Au2= 1, t2_AU2= 1, and 02_Au2= 1, 
/II III i' iv 

we shall have 02_t2=A(u2 _U2), and t2_D2=A(U2-U2); 
whence we see that, if 0> till and <th, we shall also have 
u>u'" and <uiY • Farther, we shall also have these other 
values of t and U; namely, t = Btl. - AUU", U = Duiv - ut", 
which will satisfy the sallle equation, t2 - AU2 = 1; for, by 
substitution, we shall have 

i'l' iv 

(8th _ AU7.t'V)2- A(utiV - OUiV)~ = (02_ Au2) X (t2 - AU2) = 1, 
h' iT 

an identical equation, because D2-Au2 = 1, and t2 -AU'2= 1 
(It!lP')' Now, these two last equations give 

I d Iv h./ I h O-U,.jA=O+U,.jA,an t -u ",A=tiV+u",.jA; ence, 

substituting instead of 0, in the expression, 

u=Ou" _utiV, 

I 
the quantity u,.j A + 0 ,.j; and, instead of tl', the 

+1.1 A 

quantity ul • ,.j A + iv Ii.,.j ,we shall have 
t +U A 

liV 1.1 
U= -... 

D+U,.jA t"+U .. ,.jA 

In the same manner, if we consider the quantity, 
• /II /II 

t"IUI. - UII/tiv, It may likewise, on account of t2 - AU2 = I, 

ui' u'" be put into the form, III III +. . . 
t + u ,.j A t:v + u" ,.j A 

Now, it is easy to perceive, that the precedin9; quantity 
must be less tban tbis, because O>t''', and u>u ll ; there
fore, we shall have a value of u, which will be less tban 
the quantit.y t"'uiV - ufllt'v; but tbis quantity is equal 
to v; for 

till _ (T + v,.j A)3+(T-V,.j A)3 
- 2 ' 

tlY = (T+V,.jA)4+(T-V,.jA)4 
2 ' 

III (T+V,.j A)3_(T-V,.j A)' 
U = 2,.jA • 

i' (T+V,.jA)4_(T-V,.jA)4 h 
U = 2,.jA ,w ence, 
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(T-V.j A)3 X (T + V.j A)4_(T-V.j A)4 X (T +V.j A)3 
2.jA 

Farther, (T - v.j A)3 X (T + V .j A)3 = (T2 - AV2)3 = 1, 
since T2_AV2 = 1, by hypothesis; whence 

(T-V.j A)3 x (T+V.j A)4=T +v.j A, and 
(T-V.j A)4 X (T +v.j A)3=T-V.j A; 

so that the value of t"'u;V_ulfft;V will be reduced to 
2v.j A 

2.jA =v. 

It would follow from this, that we should have a value 
of u <v, which is contrary to the hypothesis; since v is 
supposed to be the least possible value of u. There 
cannot, therefore, be any intermediate values of t and u 
between these, tiff, th, and 11", uiv• And, as this reasoning 
may be applied, in general, to all the values of t and u, 
which would result from the above formulre, by making 
m equal to any whole number, we may infer, that those 
formuire actually contain all the possible values of t and u. 

It is unnecessal'Y to observe, that the values of t and u 
may be taken either positive or negative; for this is 
evident fmm the equation itself, t2_AU2=]. 

Of tlte Manner of finding all tlte possible Solutions, in 
whole numbers, of indeterminate Quadratic Equations 
of two unknown quantities. 

76. The methods, which we have just explained, are 
sufficient for the complete solution of equations of the 
form A!/ + B = x2 ; but we may have to resolve equations 
of a more complicated form; for which reason, it is 
proper to shew how such solutions are to be obtained. 

Let there be proposed the equation, 
ar2 + brs + cs2 +dr+es+ f 0, 

where a, b, c, d, e, j, are given whole numbers, and rand 
and s are two unknown numbers, that must likewise be 
integers. 

I shall first have, by the common solution, 

2ar + bs +d=.j (bs+ d)2-4a(cs2 +es+ d») 

whence we see, that the difficulty is reduced to making 
(bs+d)2-4a(cs2 +es+d) a square. 

In order to simplify, let us suppose 
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b2 -4ac=A, 
bd-2ae =g, 
d2 -4af=!t, 

CHAP. VII. 

and AS2 + 29S + It must be a square. Representing this 
square by yZ, in order that we may have the equation, 

AS2+2gs+ h=y2, 
and taking the value of s, we shall haye 

AS+g= ,./(Ay2+g2_Ali); 
so that we shall only have to make a square of the 
formula, All+gZ-tJI. 

]f, therefore, we also make g2 - Ali = E, we shall have 
to render rational the radical quantity, ,./ (A!}2 + B); which 
we may do by the known methods. 

Let "/(Ay2+ B)=X, so that the equation to be resolved 
may be Ay2 + B = X2; we shall then have AS + 9 = ±x. 
Now, we already have 2ar+bs+d=±y; so that, when 
we have found the values of x and y, we shall have those 
of rand s, by the two equations, 

±x-g ±y-d-bs 
s= A ,r = 2a . 

Now, as rand s must be whole numbers, it is evident, 
1st, tllat x and y must be whole numbers likewise; 2dly, 
that ± x - 9 must be divisible by A, and ± y - d- bs 
by 2a. Thus, after having found all the possible values of 
x and y, in whole numbers, it will still remain to find those 
among them that will render rand s whole numbers. If A 

is a negative number, or a positive square number, we have 
seen that the number of possible solutions in whole num
bers is always limited; so that in these cases, we shall only 
have to try, successively, for x and y, the values found; 
and if we meet with none that give whole numbers for 
rand s, we conclude that the proposed equation admits of 
no solution of this kind. 

There is no difficulty, thel'efore, but in the case of A 

being a positive number, not a square; in which we have 
seen, that the number of possible solutions in whole num
bers may be infinite. In this case, as we should have an 
infinite number of values to try, we could never judge of 
the solvibility of the proposed equation, without having a 
rule, by which the trial may be reduced within certain 
limits. This we shall now investigate. 

77. Since we have (Art. 6.5), x=nY-Bz, and (Art. 72), 
y = pt - (nq - np)u, and z = qt + (cp + nq)u, it is easy 
to perceive, that the general expressions of rand swill 
take thi;; form, 
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at + {3u+ 'Y 
r= 0 ,s 

a't+{3'u+'Y' 
0' , 

a, $, 'Y, 0, a', {3', '1', 0', being known whole numbers, and t, 
u, being given by the formulre of Art. 75, in which the ex
ponent, m, may be any positive whole number; thus, the 
question is reduced to finding what value we must give 
to TIl, in order that the values of rand s may be whole 
numbers. 

78. I observe, first, that it is always possible to find a 
value of u divisible by any given number, .D. ; for, sup
posing u = .D. w, the equation, t2 - AU2 = ], will become 
t2-A .D. 2w2 =1, which is always resolvible in whole num
bers; and we shall find the least values of t and w, by 
making the same calculation as before, only taking A.D. 2, 

instead of A. Now, as these values also satisfy the equa
tion, t2-AU2= 1, they will necessarily be contained in the 
formulre of Art. 75. Thus, we shall have a value of m, 
which will make the expression of u divisible by .D.. 

Let us denote this value of m by fJ', and I say that, if we 
make m=2/k, in the general expressions of t and u of the 
Article just quoted, the value of u will be divisible by.D. ; 
and that of t, being divided by .D., will give 1 for a re
mainder. 

For, if we express by T' and v'the values of t and u, 
in which m=/k, and by T" and v" those in which m=2/k, 
we shall have (Art. 75), 

'If ± v'..; A = (T ±v ";A}U, and 
T"± v""; A = (T ±V ..; A)2(J-; therefore, 

('1/ ± v' ..; A)2= (T" ± v" ..; A), 
that is to say, comparing the rational part of the first side 
with the rational part of the second, and the irrational 
with the irrational, 

, , 
T"=T2 +AV2, and V"=2T'V'; 

hence, since v' is divisible by .D., v" will be so likewise; 
, 

and T" will leave the same remainder that T2 would leave; 

I , I 

but we have 'l,2-AV2= 1 (hyp.), therefore T2-1 must be 

divisible by.D., and even by.D. 2, since ~2 is so already; 

wherefore, ,{,2, and, consequently, 'r" likewise, being 
divided by .D., will leave the remainder 1. 
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Now, I say that the values of t and u, which answer to 
any exponent whatever, m, being divided by A, will leave 
the same remainders as the values of t and u, which would 
answer to the exponent m + 2,u.. For, denoting these last 
by Band u, we shall ha,"e, 

t ±Uv'A=(T±Vv'A)m, and 
B ± vv' A=(T±V v' A)m+2,..; wherefore, 
B ±vv' A=(t±uv' A) x (T±V v' A)2,.., 

but we have just before found 
T"±V" v' A=(T+Vv' A) 2,.. ; 

whence we shall have 
a± vv' A=(t±u v' A) X (T" ±v/ v' A); 

then, by multiplying and comparing the rational parts, 
and the irmtional parts, respectively, we derive 

B=tT" + AUV", v=tvl/ +UT". 

Now, v" is divisible by A, and Til leaves the remainder 1 ; 
therefore B will leave the same remainder as t, and u the 
same remainder as u. 

In general, therefore, the remainders of the values of t 
and 1l, corresponding to the exponents m + 2,u., m + 4,u., 
m + 6,u.. &c. will be the same as those of the values, which 
correspond to any exponent whatever, m. 

Hence, therefore, we may conclude, that if we wish to 
have the remainders arisin~ from the division of the terms 
t', til, t"', &c. and u', u", u"', &c. which correspond to m= I, 
2, 3, &c. by the number A, it will be sufficient to find these 
remainders as far as the terms t2,.. and u2,.. inclusive; for, 
after these terms, the same remainders will return in the 
same order; and so on to infinity. 

With regard to the terms t2,.. and u2,.., at which we may 
stop, one of them u2,.. will be exactly divisible by A, and the 
other t2,.. will leave unity for a remainder; so that we shall 
only have to continne the divisions until we arrive at the 
remainders 1 and 0; we may then be certain that the 
succeeding terms will always give a repetition of the same 
remainders as those we have already found. 

We might also find the exponent, 2,u., a priori; for we 
should only have to perform the calculation pointed out, 
Art. 71, in the first place, for the number A, and then for 
the number A A 2; and if'7r be the rank of the term of the 
series P', pII, pl/', &c. which, in the first case, will be = 1, 
and g the rank of the term that will be = 1, in the second 
case, we shall only have to seek the smallest multiple of '7r 
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and g, which being divided by 'If, will give the required 
value of p,. 

Thus, for example, if we have A=6, and .6. =3, we 
shall find for the radical..; 6, in the Table of Art. 41, 
pO=l, p/=-2, p"=l ; therefore, 'If=2. Then we shall 
find, in the same Table, for the radical..; (6 x 9)=..; 54, 
pO=l, p/=-5, p"=9, p"'=-2, p;v=9, pV=_5, pvl=l ; 
and hence g=6. Now, the least multiple of 2 and 6 is 6, 
which being divided by 2 gives 3 for the quotient; so that 
we shall here have p,=3, and 2p,=6. 

Therefore, in order to have, in this case, all the re
mainders of the division of the terms tf, t", t"', &c. and 
u' , u", zl", &c. by 3, it will be sufficient to find those of 
the six leading terms of each series; for the succeeding 
terms will always give a repetition of the same remainders: 
that is to say, the seventh terms will give the same re
mainders as the first, the eighth terms, the same as the 
second; and so on to infinity. 

Lastly, the terms; tf!- and Uf!- may sometimes happen to 
have the same properties as the terms t 2f!- and U2f!-; that is 
to say, Uf!- may be divisible by.6., and tf!- may leave unity 
for a remainder. In such cases, we may stop at these very 
terms; for the remainders of the succeeding terms, tl'-H, 

tf!-+2, &c. uf!-+t, uf!-+Z, &c. will be the same as those of the 
terms t', ttl, &c. u' , u", &c. and so of the others. 

In general, we shall denote by M the least value of the 
exponent m, that will render t-l, and u, divisible by .6.. 

79. Let us now suppose that we have any expression 
whatever, composed of t and u, and of given whole num
bers, so that it may always represent whole numbel's; and 
that it is required to find the values, which must be given 
to the exponent m, in order that this expression may 
become divisihle by any given number whatever, .6. : we 
shall only have to make, successively, m= 1,2, :3, &c. as 
far as M; and if none (If these suppositions render the 
given expression divisible by .6., we may conclude, with 
certainty, that it can never become so, whatever values 
we give to m. 

But if in this manner we find one, or more values of m, 
which render the given expression divisible by .6., then 
calling each of these values N, all the values of rn that can 
possibly do the same, will be N, N+M, N+2M, N+3M, &c. 
and, in general, N + Al\I; A being any whole number 
whatever. 

In the same manner, if we had another expression com
posed likewise of t, u, and of given whole numbers, and, at 
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the same time, divisible by any other given number what
ever, A I, we should in like manner seek the corresponding 
values of M and N, which we shall here express by M' and N', 
and all the values of the exponent m, that will satisfy the 
condition proposed, will be contained in the formula N ' + ".'M'; 
A' being any whole number whatever. So that we shall 
only have to seek the values, which we must give to the 
whole numbers A and A', in order that we may have 

N +AM=N' +).'M, 01' MA-MA/=N'-N, 
an equation resolvible by the method of Art. 42. 

It is easy to apply what we have just now said to the 
case of Art. 77, where the given expressions have the form, 
at + pu + y, c/t + p'u + y', and the divisors are a and a'. 

vVe must only recollect to take the numbers t and u, 
successively, positive anod negative, in order to have all the 
cases that are possible. 

80. Scholium. If the equation proposed for resolution, 
in whole numbers, were of the form 

ar2 + 2br8 + cs2 = J, 
we might immediately apply the method of Art. 65; for, 
1st, it is evident that rand 8 could have no common 
divisor, unless the number J were at the same time divisible 
by the square of tl1at divisor; so that we may always 
reduce the question to the case, in which rand 8 shall be 
prime to each other. 2dly, It is evident, also, that 8 and J 
could have no common divisor, unless that divisor were 
one also of the number a, supposing r prime to 8; so that 
we may also reduce the question to the case, in which 8 

andfshall be prime to each other. (See Art. 64.) 
Now, 8 being supposed prime to J and to r, we may 

make 1'=1/8-Jz; and, in order that the equation may be 
resolvible in whole numbers, there must be a value of n, 

positive or negative, not greater than {, which may render 

the quantity an2 + 2bn + c divisible by f This value 
being substituted for n, the whole equation will become 
divisible by j, and will be found reduced to the case of 
Art. 66, et 8eq. 

It is easy to perceive, that the same method may serve 
for reducing every equation of the form, 

m,m+brm8+crm- 1s2 +, &c. + ksm=j: 
a, b, c, &c. being given whole numbers, and rand s being 
two indeterminate numbers, which must likewise be in
tegers, in another similar equation, but in which the whole 
known term is unity, and then we may apply to it the 
general method of Chap, 2. See the Sclwlium of Art. 30. 
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81. Example 1. Let it be proposed to render rational 
the quantity, ';(30 + 62s- 7s2), by taking only whole 
numbers for s. 

We shall here have to resolve this equation, 
30 + 62s-7s2=y2, 

which being multiplied by 7, may be put into this form. 
7 x 30+(3I)2-(7s-31)2=7y 2, 

or, making 7s-31 =x, and transposing, 
x2=1l71-7y2, or x2+7y2=1l71. 

This equation now comes under the case of Art. 64; so 
that we shall have A= -7, and B= 1171, from which we 
instantly perceive, that, y and B must be prime to each 
other, since this last number contains no square factor. 

According to the method of Art. 65, we shall make 
x=ny-II7Iz; and, in order that the equation may be re
solvible, we must find for n a positive, or negative integer, 

not>;; that is, not> 580, such that n2-A, or n2+7, 

may be divisible by B, or by 1171. 
I find n=+321, which gives n2+7=1l71 x 88; so that 

I substitute, in the preceding equation, + 321y-II7Iz, 
instead of x; by which means, the whole is now divisible 
by II7I, and when the division is performed, it becomes 

88.y2 =+642yz + 1I71z2= I. 
In order to resolve this equation, I shall employ the 

second method explained in Art. 70, because it is in fact 
simpler and more convenient than the first. Now, as the 
coefficient of y~ is less than that of Z2, we shall here have 
D=ll71, D'=88, andn= ±32I; wherefol'eretaining,fol' 
the sake of simplifying, the letter y, instead of~, and 
putting y', instead of z, I shall make the following calcu
lation, first supposing n=321 ; 

m = 3li =4, n' =321-4x88= -3]~ 

" 
_ 312+7 _ II 4y''' 

D Y = +y, - ~8 - , 

, -31 
m =-rr=-3, 

'" 4+7 1 
D =11= , 

m" =f=2, 
Di • =-1=7, 

n" = -31 +3 x 1l=2~ 

y' = -3y" +y"', 

11m =27"~ X 1=0, 
y" =iy'" + yi •• 
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D'" Div 
Since n'" =0, and consequently < 2' and < '2' we shall 

here stop, and make D"'=M=I, Div =L=7, n"'=O=N, 
and y"'=;, yiV=+, because D'" is <Diy. 

Now I ol)serve, that A being = -7, and consequently 
negative, in order that the equation may be resolvible, we 
must have M= 1, as we have just now found; so that we 
may conclude, that the resolution is possible. We shall 
therefore suppose ;=y"'=O, +=yiY= ± 1; and we shall 
have, from the foregoing formulre, 

y"= + I, y'= =F3=z, y= +=12± 1= +11, 
the doubtful signs being arbitrary. Therefore, 

x=321y-117Iz= + 18; and, consequently, 
x+31 31 += 18 

8=-7-= 7 =1..,p,or=4-,(=7. 

N ow, as the value of 8 is requil'ed to be a whole number, 
we can only take 8=7. 

It is rem'arkable, that the other value of 8, namely, y, 
although fractional, gives nevertheless a whole number 
for the value of the radical, v (30 + 62s- 782), and the same 
number, 11, which the value 8=7 gives; so that these two 
values of 8 will be the roots of the equation, 

30 + 628-782 = 121. 
We have supposed n=321. Now, we may likewise 

make n= -321; but it is easy to foresee, that the whole 
change that would result from it, in the preceding formulre, 
would be a change of the sign of the values of m, m', mil, 
and of n', nil, by which means the values of y', and of y, 
would also have different signs; we should not therefore 
have any new result, since these values already have the 
doubtful sign +. 

It will be the same in all other cases; so that we need 
not take the value of n, successively, positive and negative. 

The value 8=7, which we have just found, results from 
the value of 'fI = ± 321 : and we may find other values of 8, 
if we have found other values ofn having the requisite con
dition; bllt, as the divisor B= 1171, is a prime number, 
there can be no other values of n, with the same property, 
as we have elsewhere demonstrated,* whence we must 
conclude, that the number 7 is the only one that satisfies 
the questiou. 

* .J/cmoil'S of Bcrlin, for the year 1767, page 194. 
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The preceding problem may be resolved more easily by 
mere trial; for when we have arrived at the equation, 
x2= 1171-7y2, we shall only have to try, for y, all the 
whole numbers, whose squares multiplied by 7 do not ex
ceed 1171; that is to say, all the numbers <../ 1 V 1, 

or <13 .. 
It is the same with all the equations, in which A is a 

negative number; for when we are brought to the equa
tion, XIl=B + Ay2, where making A= -a, and X 2=B_ay2, 

it is evident, that the satisfactory values of y, if there are 
B 

any, can only be found among the numbers, <../ -. So 
a 

that I have not given particular methods for the case of A 

negative, only because these methods are intimately con
nected with those concerning the case of A positive, and 
because all these methods, being so nearly alike, recipro
cally illustrate and confirm each other. 

82. Example 2. Let IlS now give some examples for the 
case of A positive, and let it be proposed to find all the 
whole numbers, which we may take for y, in order that 
the radical quantity, ../(13y2+101), may become rational. 

Here, we shall have (Art. 64) A= 13, B= 101; and the 
equation to be resolved in integers will be, x2 _13y2= 101, 
in which, because 101 is not divisible by any square num
be,', y must be prime to 101. 

We shall therefore make (Art. 65), x=ny-lOlz, and 
nll-13 must be divisible by 101, taking n<li1 , or <51. 

I find n=35, which gives n2=1225, and 

n2-13=1212=101 x 12; 
so that we may take n= +35, and substituting 
+35-10lz, instead of x, we shall have an equation 
wholly divisible by 101, which, after the division, will be 
12y2=F70yz+ 10lzll=1. 

In order to resolve this equation, let us also employ 
the method of Article 70; making D'=12, D=lOI, and 
n= + 35; but, instead of the letter 0, we shall preserve the 
letter y, and shall only change z into y, as in the preced
ing example. 

1st. If 11=35, we shall make the following calculation: 
m =11=3, n'=35-3 x 12= -1, 

" 1-13 1 3t•J . " 
D =12=-' Y=,'1f+Y, 
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, -1 
m =_1=1, 

"'_ -13 -13 
D - -1 - , 

71' = -1 + 1 =0, 

y'=y" +'11". 

CHAP. VII. 

D" nfll 
As 11."=0, and consequently, < 2' and < 2' we shall 

stop here, and shall have the transformed equation, 

"'" '"'' " '" DyZ_2n"y"yfll + D!/=I, or 13,!/-y2= 1 ; 

which being reduced to the form, y2-13y" = -I, will admit 
of the method of Art. 71; and, as A = 13 is < 100, we may 
make use of the Table, Art. 41. 

Thus, we shall only have to see, whether, in the upper 
series of numbers belonging to ..; 13, there be found the 
number 1 in an even place; for, in order that the preced
ing equation may be resolvible, we must find in the series 
pO, P', P", &c. a term = -1; butwehavepo=l, -P'=4, 
p"=3, &c. wherefore, &c. Now, ill the series, 1,4,3,3, 
4, 1, &c. we find 1 in the sixth place; so that p'= -1 ; 
,and hence we shall have a solution of the given equation, 
by taking'll" =p', and y" =q', the numbers p', q', being 
calculated according to the formulre of Article 25, giving 
to /N, /N', fl.", &c. the values 3, 1, 1, 1, 1,6, &c. which form 
the lower series of numbers belonging to ..; 13 in the same 
Table. 

We shall therefore have 

pO =1 
p' =3 
pIt =p' +po=4 
p'" p" + p' =7 

pi. = p'" + p" = 11 
p' =p" +p"'=18 
qO =0 
1]'=1 

So that yfll = 18, and y" =5; therefore, 

q" =1 
q'" = q" + '}' = 2 
qi. =q'" + q" =3 
q' =qi. +'1"'=5. 

y'=y" +y'''=23, and y=3y' +y"=74. 
We have supposed n=35; but we may also take 

n= -35. 
2. Let tberefol'e n= -35, we shall make 

-35 
m =-r2 = -3, n'= -35+3x 12=1, 

,,_1-13 _ 1 
D-~--, y == -3y' +y", 
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rrl=~I=-I, 
-13 

D"'---- -13 - -1 - , 

n"=I-I=O, 

y' = _yff + y"'. 

575 

Thus, we have the same values of D", D"', and n", as be
fore; so that the transformed equation in y', and y"', will 
likewise be the same. 

We shall, therefore, have also y'" = IS, and y" =5 ; 
wherefore, y'= _yff +y"'=13, and y= -3/ +y"= -34. 

So that we have found two values of y, with the cor
responding values of y, or z; and these values result from 
the supposition of n= =+35. Now, as we cannot find any 
other value of n, with the requisite conditions, it follows 
that the preceding values will be the only primitive values 
that we can have; but we may then find from them an in
finite number of derivative values by the method of Art. 72. 

Taking, therefore, these values of y and z for p and q, 
we shall have, in general, by the same Article, 

0/=74t- (101 x 23-35 x 74)u= 74t+267u 
z=23t+ (12 x 74-35 x 23)u= 23t+ S3u; or 

y= -34t- (101 x 13-35 x 34)u= -34t-123u 
z= 13t+(-12x34+35x 13)u= 13t+ 47u; 

and we shall only have farther to deduce the values oft and 
u from the equation, t2 -13u2=I. Now, all these values 
may be found already calculated in the Table at the end of 
Chap. VII. of the preceding Treatise: we shall therefore 
immediately have t=649, and u= 180; so that taking 
these values for T and v, in the formulffi of Art. 75, we 
shall have, in general, 

t _ (649 + ISO'; 13)"'+ (649-1S0'; 13)m 
- 2 ' 

(649 + ISO'; 13)m-(649-1S0.; 13)'" 
u= 2.; 13 ; 

where we may give to m whatever value we choose, pro
vided we take only positive whole numbers. 

Now, as the values of t and u may be taken both posi
tive and negative, the values of y, which satisfy the ques
tion, will all be contained in these two formulffi, 

y= ±74t±267u, 
and y= ±34t± 123u, 

the doubtful signs being arbitrary. 
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Ifwe make m=O, we shall have t= I, and u=O; where .. 
fore, y= ±74, or = ±34; and this last value is the least 
that wiII resolve the problem. 

I have already resolved this problem in the :Memoirs of 
Berlin, for the year 1768, page 243; but as J have there 
employed a method somewhat different from the foregoing, 
and fundamentally the same as the .first method of Art. 
66, it was thought proper to repeat it here, in order that 
the comparison of the results, which are the same by both 
methods, might serve, if necessary, as a confirmation of 
them. 

83. Example 3. Let it be proposed to find whole num
bers, which being taken for y, may render rational the 
quantity, ../(79y2+ 101). 

Here we shall have to resolve, in integers, the equation, 
x2-79y2=Wl, 

in which y will be prime to 101, since this number does 
not contain any square factor. 

If we therefore suppose x=ny-Wlz, n2-79 must be 
divisible by 101, taking n< IJp, or <51 ; we find n=33, 
which gives n2-I3= 1010= 101 x 10; thus, we may take 
n= ±33, and these will be the only values that have the 
condition required. 

Substituting, therefore, ±33y-1Olz instead of x, and 
then dividing the whole equation by 101, we shall have it 
transformed into 1Oy2+=66yz + IOIz2= 1. Let us, there
fore, make D'=IO, D=lOI, n= ±33, and first taking n 
positive, we shall work as in the preceding example: thus, 
we shall have m="i!=3, n'=33-(3x 10)=3, 

D"- 9-79 -- 7 y-3y'+y" - 10 --, - . 
D' D" 

Now, as n'=3 is already < 2,and < 2' it is not neces-

sary to proceed any farther: so that the equation will be 
transformed to this, 

J II 
-7y 2_6y'y" + lOy2=1, 

which, being multiplied by -7, may be put into this form, 
II 

(7y' +3y")2_79y2= -7. 

Since, therefore, 7 is < ..;79, if this equation be resolvible, 
the number 7 must be found among the terms of the upper 
series of numbers answering to ..; 79 in the Table (Art. 41), 
and also hold an even place there, since it has the sign -. 
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But the series in question contains only the numbers], 15, 
2, always repeated; therefore, we may immediately con
clude, that the last equation is not resolvible; and, conse
quently, the equation proposed is not, at least when we 
take 11=33. 

It only remains, therefore, to try the other value of 
n= -33, which will give 

m = -~; =-3, n'=-33+3x 10=-3, 

,,9-97 7 3'/ .If 
D = ---yu-=- ,.'1=- :/ +:/ ; 

so that we shall have the equation transformed into 

" -7.'1' + 6.'1'.'1" + 10.'12=], 
which may be reduced to the form, 

II 
(7y' _3.'1")2_79.'12= -7, 

which is similar to the preceding. Whence I conclude, 
that the given equation absolutely admits of no solution in 
whole numbers. 

84. ScltOlium. M. Euler, in an excellent Memoir printed 
in Vol. IX. of the New Commentaries of Petersburg, finds 
by induction this rule fOl" determining the resolvibility of 
every equation of the form x2_Ay2=B, when B is a prime 
number. It is, that the equation must be possible, when
ever B shall have the form 4An + 1,2, or 4An + r2 - A; 

but the foregoing example shews this rule to be defective; 
for 101 is a prime number, of the form 4An + r2 - A, 

making A = 79, n= - 4, and r = 38; yet the equation, 
x 2 -79y2=101, admits of no solution in whole numbers. 

If the foregoing rule were true, it would follow, that if 
the equation x2-Ay2=B were possible, when B has any 
value whatever, b, it would be so likewise, when we have 
taken B=4An+b, provided B were a prime number. We 
might limit this last rule, by requiring b to be also a prime 
number; but even with this limitation the preceding ex
ample would shew it to be false; for we have 101 =4An +b, 
by taking A=79, n = - 2, and b=733; now, 733 is a 
prime number, of' the form x2 _79y2, making x=38, and 
.'1=3; yet 101 is not of the same same form, x2 _79y2• 

l' P 
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CHAPTER VIII. 

Remarks on Equations of the form p2=Aq2+ 1, and on 
the common method of resolving them in Whole Numbers. 

85. The method of Chap VII. of the preceding Treatise, 
for resolving equations of this kind, is the same that Wallis 
gives in his Algebra (Chap. XCVIII.), and ascribes to Lord 
Brouncker. We find it, also, in the Algebm of Ozanam, 
who gives the honor of it to M. de Fermat. Whoever was 
the inventor of this method, it is at least certain, that M. de 
Fermat was the author of the problem which is the subject 
of it. He had proposed it as a challenge to all the English 
mathematicians, as we learn from the Commercium Epis
tolicum of Wallis; which led Lord Brouncker to the in
vention of the method in question. But it does not appear 
that this author was fully apprised of the importance of 
the problem which he resolved. We find nothing on the 
subject, even in the writings of Fermat, which we possess, 
nor in any of the works of the last century, which treat of 
the Indeterminate Analysis. It is natural to suppose that 
Fermat, who was particularly engaged in the theory of in· 
teger numbers, concerning which he has left us some very 
excellent theorems, had been led to the problem in ques
tion by his researches on the general resolution of equations 
of the form, 

X2=Ay2+B, 

to which all quadratic equations of two unknown quantities 
are reducible. However, we are indebted to Euler alone for 
the remark, that this problem is necessary for finding all 
the possible solutions of such equations. * 

The method which I have pursued for demonstrating this 
proposition is somewhat different from that of M. Euler; 
but it is, if! am not mistaken, more direct and more general. 
For, on the one hand, the method of M. Euler naturally 
leads to fractional expressions, where it is required to avoid 
them; and, on the other, it does not appear "ery evidently, 
that the suppositions, which are made in order to remove 
the fractions, are the only ones that could have taken 
place. Indeed, we have elsewhere shewn, that the finding 
of one solution of the equation X2=Ay2 + B, is not always 

'* See Chap. VI. of the preceding Treatise, Vol. VI. of the 
Ancient Commentaries of Petersburg, and Vol. IX. of the New. 
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sufficient to enable us to deduce others from it, by means 
of the equation p2=Afl+ I; and that, frequently, at least 
when B is not a prime number, there may be values of x 
and y, which cannot be contained in the general expressions 
of M. Euler.* 

With regard to the manner of resolving equations of the 
form p2=AQ2+ 1, I think that of Chap. VII., however in
genious it may be, is still far from being perfect. For, in 
the first place, it does not shew that every equation of this 
kind is always resolvible in whole numbers, when a is a 
positive number not a square. Secondly, it is not demon
strated, that it must always lead to the solution sought for. 
Wallis, indeed, has professed to prove the former of these 
propositions; but his demonstration, if I may presume to 
say so, is a mere petitio principii. (See Chap. XCIX.) Mine 
I believe, is the first rigid demonstration that has appeared: 
It is in the Melanges de Turin, Vol. IV.; but it is very 
long, and very indirect: that of Art. 37 is founded on the 
true principles of the subject, and leaves, I think, nothing 
to wish for. It enables us, also, to appreciate that of 
Chap. VII., and to perceive the inconveniences into which 
it might lead, if followed without precaution. This is 
what we shall now discuss. 

86. From what we have demonstrated, Chap. II., it fol
lows, that the values of p and q, which satisfy the equation 
p2_AQ2=1, can only be the terms of some one oftheprin
cipal ii'actions derived from the continued ftaction, which 
would express the value of v A; so that supposino- this 
continued fraction to be represented thus, 0 

we must have, 

1 p..+, 1 
i" + 17 I 

p.. + p..'" +, &c. 

E=p..+!, I 
q p.. + p.." +, &c. 

I +-p..e; 
p..e bei ng any term whatever of the infinite series p..', p..", &c. 
the rank of which, g, can only be determined a posteriori. 

We must observe that, in this continued fraction, the 
numbers, p.., p..', ,uP, &c. must all be positive, although we 

* See Art. 45 of my Memoir on Indeterminate Problems, m 
the Memoirs of Berlin, 1767. 
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have seen (Art.3) that, in general, in continued fractions, we 
may render the denominators positive, or negative, accord
ing as we take the approximate values less, or greater, 
than the real ones; Llllt the method of Problem 1. (Art. 
23, et seq.), absolutfoly requires the approximate values 
p., p.', p.", &c. to be all taken less than the real ones. 

87. Now, since the fraction E is equal to a continued 
q 

fraction, whose terms are p., p.', /', &c. it is evident, from 
Art. 4, that p. will be the quotient of p divided by q, that p.' 
will be that of q divided by the remainder, p.", that of this 
remainder divided by the second remainder, and so on ; so 
that calling r, s, t, &c. the remainders in question, we shall 
have, from the nature of division, p=p.q+r, q=p.'r+s, 
r=/'s + t, &c. where the last remainder must be =0, and 
the one before the last = I, because p and q are numbers 
prime to each other. Thus, p. will be the approximate 

integer value of E, p.' that of fJ.., p." that of~, &c. these 
q r s 

values being all taken less than the real ones, except the 
last p'e, which will be exactly equal to the corresponding 
fraction; because the following remainder is supposed to 
be nothing. 

Now, as the numbers p., p.', p.", &c. p'e, are the same for 

the continued fraction, which expresses the value of E, and 
q 

for that which expresses the value of..; A, we may take, as 

far as the term me, l!. = ..; A, that is to say, p2 - Aq2 =0. 
q 

Thus, we shall first seek the approximate, deficient value of 

E; that is to say, of..; A, and that will be the value of p. ; 
q 
then we shall substitute in p2_Aq2=0, instead of p, its 
value p.q + r, which will give 

(p.2_A)q2 +2p.qr +r2=0, 
and we shall again seek the approximate, deficient value of 

fJ..; that is, of the positive root of the equation, r 

(p.2_A) x (;)2 +2p.; + 1=0, 

I 

and we shall have the value of p.. 

Still continuing to substitute p.'1f' + s, instead of q, in the 
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transformed equation (,u.2-A)q2+2.u-q1'+1'z = 0; we shall 

have an equation, whose root will be:'; then taking the 
s 

approximate, deficient value of this root, we shall have 
the value of .u-". Here again we shall substitute .u-"r+s, 
instead of r, &c. 

Let us now suppose, for example, tllat t is the last re
mainder, which must be nothing, then s will be the last but 
one, which must be = 1; wherefore, if the formula p2_Aq2, 
when transformed into terms of sand t, is PS2 + QSt + Rt2, 

by making t=O, and s=I. it must become=l, in order 
that the given equation, p2_Aq2= 1, may take place; and 
therefore p must be = I. Thus, we shall only have to con
tinue the above operations and transformations, until we 
arrive at a transformed formula, in which the coefficient of 
the first term is equal to unity; then, in that formula, we 
shall make the first of the two indeterminates, as T, equal 
to 1, and the second, as s, equal to 0; and, by going back, 
we shall have the corresponding values of p and q. 

We might likewise work with the equation p2_Aq2= 1 
itself, only taking care to abstract from the term 1, which 
is known, and consequently from the other known terms, 
likewise, that may result from this, in the determination of 

the approximate values .u-, .u-', pl', &c. of E, '1, :., &c. In 
q T s 

this case, we shall try at each new transformation, whether 
the indeterminate equation can subsist, by making one of 
the two indeterminates = 1, and the other =0. When we 
have arrived at such a tram,formation, the operation will 
be finished; and we shall have only to go back through 
the several steps, in order to have the required values of 
p and q. 

Here, therefore, we are brought to the method of Chap. 
VII. To examine this metllOd in itself, and independently 
of the principles fl'om which we have just deduced it, it 
must appear indifferent whether we tak.e the approximate 
values of .u-, .u-', .u-", &c. less or greater than the real values; 
since, in whatever way we take these values, those of r, 
s, t, &c. must go on decreasing to O. (Art. 6.) 

Wallis also expressly says, that we may employ the limits 
for .u-• .u-', .u-", &c. either in plus, or in minus, at pleasure; 
and he even proposes this, as the proper means often of 
abridging the calculation. This is likewise remarked by 
Euler, AI,t. 102, et seq. of the chapter just now quoted. 
However, the following example will shew, that by setting 
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about it in this way, we may run the risk of never 
arriving at the solution of the equation proposed. 

Let us take the example of Art. 101 of that chapter, in 
which it is required to resolve an equation of this form, 
pZ=6q2+1, or p2_6g2=1. We havep=.j(6q2+1); 
and, neglecting the constant term I, p=q.j6; wherefore 

12 = .j 6 > 2, < 3. Let us take the limit in minus, and 
q 
make 11-=2, and then p=2q+r; substituting this value, 
therefore, we shall have - 2q2 + 4qr + r~ = 1; whence, 

2r+ .j(6rZ-2) .. 
q = :2 ; or, reJectmg the constant term -2, 

_ 2r+r.j6 . q _ 2+.j6 
q - 2 ' whence, r - 2 > 2, and < 3. Let us 

again take the limit in minus, and make q=2r +8; the last 
equation will then become r2 - 4rs-2s2= 1; where we 
at once perceive, that we may suppose s= 0, and r= I ; 
so that we shall have q=2, and p=5. 

Let us now resume the former transformation~ 
_2q2+4qr+r2= 1, 

where we found fJ.. > 2, and < 3; and, instead of taking 
r 

the limit in minus, let us take it in plus, that is to say, let 
us suppose q=3r+s; or, since 8 must then be a negative 
quantity, q = 3r - s, we shall then have the following 
transformation, - 5r2 + 8rs - 2S2 = I, which will give 

48+..;(6s2 -5) . 
r = 5 ; wherefore, neglectmg the constant 

4s + s.j 6 r 4 + .j 6 
term 5, T= --5--' and s = --5-> 1, and < 2. 

Let us again take the limit in plus, and make r=2s-t, 
we shall now have -682 + 128t-5t2 = I; therefore 

6t + .j(6t2 -6) . . 
s = 6 ; so that, rejectIng the term -G, 

6t + t";6 s .j6 
8= 6 ' and t = 1 + 6>1, and<2, 

Let us continue taking the limits in plus, and make 
s = 2t - u, we shall next have - 5t2 + 12tu - 6uz = I ; 
wherefore, 

611+ .j«(j1l~-5) i 6+ v'u 
l = ---1';----; and - = --~-->1, ulld<:! 

v 'It D 
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Let us, therefore, in the same manner, make t = 2u - x, 
and we shall have -2u2 +8u.x-5xl!=1 ; wherefore, &c. 

Continuing thus to take the limits always in plus, we 
shall never come to a transformed equation, in which 
the coefficient of the first term is equal to unity, which 
is necessary to our finding a solution of the equation 
proposed. 

The same must happen, whenever we take the first 
limit in minus, and all succeeding in plus. The reason 
of this might be given a priori; but as the reader can 
easily deduce it from the principles of our theory, I shall 
not dwell on it. It is sufficient for the present to have 
shewn the necessity of investigating these problems more 
fully, and more rigorously, than has hitherto been done. 

CHAPTER IX. 

Of the Manner of finding Algebraic Functions of all De
grees, which, when multiplied together, may always 
produce Similar Functions. 

[APPENDIX TO CHAPTERS XI. AND XII.] 

88. I believe I had, at tlle same time with M. Euler, 
the idea of employing the irrational, and even imaginary 
factors of formulre of the second degree, in finding the 
conditions, which render those formnlre equal to squares, 
or to any powers. On this subject, I read a Memoir to 
the Academy in 1768, which has not been printed; but 
of which I have given a summary at the end of my 
researches On Indeterminate Problems, which are to be 
found in the volume for the year 1767, printed in 1769, 
before even the German edition of M. Euler's Algebra. 

In the place now quoted, I have shewn how the same 
method may be extended to formulre of higher dimensions 
than the second; and I have by these means given the 
solution of some equations, which it would perhaps have 
been extremely difficult to resolve in any other way. It 
is here intended to generalise this method still more, as 
it seems to deserve the attention of mathematicians, from 
its novelty and singularit.y. 

89. Let a. and (3 be the two roots of the quadratic equation, 
s2-as+b=O, 
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and let us consider the product of these two factortl, 
(x+a,y) x (x + (3y), 

which must be a real product; being equal to 
X2 + (a, + (3)xy + a{3y2. 

Now, we have a,+{3=a, and a{3=b, from tile nature of 
the equation, s2-as+b=O; therefore, we shall have this 
formula of the second degree, 

~'~ + axy + by'l, 
which is composed of the hiO factors, 

x+a,y, and x+{3!J. 
It is evident, that if we have a similar formula, 

I I 
x 2 +ax'y' +by'l, 

and wish to multiply them, the one by the other, we have 
only to multiply together the two factor!'! x + a,y, x' + a,Y', 
and also the other two factors x + {3y, x' + (3y', and then 
the two products, the one by the other. Now, the product 

of x + a,y by x' + a,y' is, x~ + a,(a:y' + yx') + a2yy'; but since 
a is one of the roots of the equation, s2-as + b=O, we 
shall have a,2 - aa, + b = 0; whence, a,2 = aa,- b; and, 
subst.ituting tIlis value of a,2, in the preceding formula, it 
will become, xx' - byy' + a(xy' + yx' + a!JY'); so that, in 
order to simplify, making 

x=xX'-byJl 
y=xy' +yx' +ayy', 

the product of the two factors x + a,y, x' + rxy', will be 
X+aY; and, consequently, of the same form as each of 
them. In the same manner, we shall find, that the product 
of t.he two other factor!:', x + {3!J, and x' + {3y', will be x + {3y; 
so that the whole product will be (x + aY) X (x + (3y) ; 
that is, X2 + axy + by2, which is the product of the two 
similar formulre, 

I I 
x 2 + axy + by2, and x2 + ax'!!' + by~. 

If we wislled to have the product of these three similar 
formulre, 

I I I I /I /II/ II 
x2+axy+hy2, x2+axy+by2, x2+axy+by2, 

we should only have to find that of the formula, X2 +axy 
1/ /I /I /I 

+ by2, by the last, X2 + axy + by2; and it is evident, ft'om 
the foregoing formulre, that, by making' 

x'=xy" - bY,l/' 
yf = xy" + y.,!!' + flY!l', 
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the product sought would be 
I I I I 
x~+axy+by2. 

In the same manner, we mig1lt find tlle product of four, 
or of a still greater number of formulre simila.· to this, 

x\! + ax.1J + by2, 
and these products likewise will always have the same form. 

I I 
90. If we make x=x, and y=y, we shall have 

x=x2_by2, y=2xy+ay2; 
and, consequently, 

(x2 + axy + by2)'!. = X2 + axy + by2. 
Therefore, if we wish to find rational valnes of X and y, 

such, that the formula, X2 + axy + by2, may become a 
square, we shall only have to give the preceding values 
to x and y, and we shall have, for the root of the square, 
the formula, 

x2+axy+by'!. ; 
x and y being two indeterminate numbers. 

If we farther make x" = x' = x, and y" = y' = .'If' we 
sllan have x, = xx-byy, yl = xy+ yx+ ayy; that is, by 
substituting the preceding values of x and y, 

x, =x3 _3bxy2 + aby3, 
yl=3x2J1 + 3axy2 + (a2_b)y3 ; 

wherefore, I I I I 
(X2 +axy + by2)S=X'!. +axy +by2. 

TIms, jf we proposed to find the rational values of x, and yl, 

I I I I 
such, that the formula, x'!. + axy + by'!., might become a 

I I 
cube, we should only have to give to x and y the foregoing 
values, bv which means we should have a cube, whose 
root wouid be x2 + axy + by'!.; x and y being both indeter~ 
minate. 

In a similar manner, we may resolve questions, in wllich 
it is required to produce fourth, fifth powers, &c. but we 
may, once for all, find general formulre for any powel' 
wllatever, m, without passing through the lower powers. 

I,et it be proposed, therefore, to find rational values of x 
and y, such, that the formnla, x 2 +axy+/Jy2, may become 
a power, m; that is, let it be required to solve the equation, 

x2+axy+by2=zm. 
As the quantity, x~ + axy + by'!., tS-i'ormed from the pro
duct of the two factors, x + aY, lind x + (3y, in order that 
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this quantity may become a power of the dimension m, 
each of its factors must likewise become a similar power. 

Let us, therefore, first make 

x+ay=(x+ay)"', 

and, expressing this power by Newton's theorem, we shall 
have 

m(m-l) 
x'" + m:r!"-'lya + 2 xm-J},y2a'J 

m(m-1)x(m-2) m-3 3 3 & + 2 x 3 x ya +, c. 

Now, since a is one of the roots of the equation, 
S2 - as + b = 0, we shall also have a2 - aa + b = 0; 
wherefore, at}. = aa - b, a3 = aa2 - ba = (a2 - b)a - ab, 
a4 = (a2 - b)a2 - aba = (as - 2ab) a - a2b + b2 ; and so 
on. Thus, we shall only have to substitute these values 
in the preceding formula, and then we shall find it to be 
compounded of two parts, the one wholly rational, which 
we shall compare to x, and the other wholly multiplied 
by the root a, which we shall compare to aY. 

If, in order to simplify, we make 
A' =1 B' =0 
A" =a B" =b 
A"'=aA" -bA' B"'=aB" -bB' 
Aiv =aA'" -bA" Biv =aB'" -bn" 
AV =aAlv _bA"', BV =aBIv - bB"', 

&c. &c. &c. we shall have, 
a =A'a. -B' 
a 2=A"a -B" 
«.3= A'" a-B'" 
a 4=Ai • a_Bh , &c. 

Wherefore, substituting these values, and comparing, we 
shall have 

m(m-1) 
x = x'" - mxm-1YB' - 2 ~y2B" 

m(m-1) X (m-2) "'-3 3 III & 
- 2 X 3 x Y B -, c. 

m(m-1) 
y = mxtn-ly A' + 2 xtn-2y" A" 

m(m-l) X (m-2) 
+ 2 X 3 xm- 3ys A.'" +, &c. 

Now, as the root a; does not enter into the expressions of 
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x and Y, it is evident, that, having x + aY = (x + ay)m, 
we shall likewise have x + (3y = (x + (3y)m; wherefore, 
multiplying these two equations together, we shall have 

X2 + axy + by2 = (x2 + axy + by2)m ; 

and, consequently, z = x 2 + axy + b!l. The problem, 
therefore, is solved. 

If a were = 0, the foregoing formulre would become 
simpler; for we should have A' = I, A" = 0, A'" = - b, 
AiT = 0, AV = b2, Avi = 0, Avii = - b3, &c. and, likewise, 
B'=O, B"=b, B"'=O, Biv =_b2, BV=O, B·i =b3 , &: 

m(m-l) 
Therefore, x=x"'- 2 Xm-2y2b+ 

m(m-l) x (m-2) x (m-3) m-4 4bz & 
2 x 3 x 4 x y -, c, 

m(m -1) x (m-2) 
y=mxm-1y + 2x 3 x m - 3y 3b + 

m(m-l) x (m-2) x (m-3) x (m-4) m-5 3b2 & 
2 x 3 x 4 x 5 x Y + , c. 

And these values will satisfy the equation, 
X2 + by2=(X2 + by2)m. 

91. Let us now proceed to the formulre of three 
dimensions; in order to which, we shall denote by a, (3, r, 
the three roots of the cubic equation, S3 - as2 + bs-e = 0, 
and we shall then consider the product of these three 
factors, 

(x + alJ + aZz) X (x + (3y + (32z) x (x + rY + r 2Z) , 
which must be rational, as we shall perceive. The 
multiplication being performed, we shall have the fol
lowing product, 

x 3 + (a + (3 + y)XZy + (a2 + (32 + y2)X2Z + (a(3 + ay + (3r)xy2 
+ (a2(3 + a2r + (32a + (32r + 'la + l(3)xyz + 
(a2(32 + a2y2 + (32r2)xz2 + a(3ry3 + (a2(3y + (32ar + r 2a(3)yZz 
+ (a2(32r + a2r2(3 + (32r 2a )yz2 + a2(32r Zz 3. 

Now, from the nature of equations, we have 
a+(3+y=a; a(3+ay+(3r=b; a(3y=e. 

Farther, we shall find 
a2 + (32 + y2 =(a + (3 + r)2- 2(ap + ar + (3'1 )=a2_ 2b ; 
a2(3 +a2r + (32a + (32r + r 2a +y2(3=( a+ (3 +y) x (a(3 + ar+ (3r) 
-3a(3r=ab-3e; and a2(32+ a2r 2+(32y2=(a(3+ay+pr)2 
- 2(a + (3 + r)a(3r=b2-2ae; also, a2(3r + (32ay + y2a(3= 
(a + (3 + r )a(3y = ae; and a2(32y + a2y2{3 + (3z'la = 
(a{3 + ay + (3y)a(3r = be. 
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Therefore, making these substitutions, the product in ques
tion will be 
x 3 +ax2y+ (a2-2b)x2z + bxy'l.+(ab - 3c)xyz+ (b2-2ac)xz'l. 
+ Cy3 + acy2z + bcyz'l. + C2Z3• 

And this formula will have the property, that if we mul
tiply together as many similar formulre as we choose, the 
product will always be a similar formula. 

Let us suppose that the product of the foregoing formula 
by the following was required, namely, 

II I I II I 
+ (b2-2ac)xz'l. + cy3 + acy2z' + bcyz2+C2Z3 ; 

it is evident, that we have only to seek the product of these 
six factors, 

x + a,y +a,2Z, x +{3y +(32z, x +rY +r2z, 
x' + a,y' + a,2Z ', x' + f3y' + (32z', x' + ry' + r'l.z'; 

if we first multiply x+ a,y+ u2z, by x' + a,y' +a,2z', we shall 
have this partial product, 

xx' + a,( xy' + yx') + a,2(XZ' + zx' + yy') + a,3(yz' + Z'y') + a,4ZZ'. 

Now, a, being one of the roots of the equation, 
sS_as2 + bs- c=O, 

we shall have a,3_aa,2 + ba,-c=O; consequently, 
a,3=aa,'l._ ba, + c; whence, 

a,4=aa,3-ba,2 + ca,=(a,2-b)a,2_(ab-c)a, +ac; 

so that substituting these value8, and, in OJ·der to abridge, 
making 

X = xx' -c(yz' +zy')+aczz', 
Y = xy' +yx'-b(yz' +zy')-(ab-c)zz', 
z = xz' +zx' +y!/ +a,(yz' +zy') + (a2-b)zz', 

the productinquestion will become of this form, x + aY +a,~z; 
that is to say, of the same form as each of those from which 
it ha.s been produced. Now, as the root a, does not enter 
into the values of x, Y, z, it is evident that these quantities 
will be the same, if we change a, into {3, or r; wherefore, 
since we already have 

(x + a,y+ a,2Z) X (x' +a,y' +a,2Z')=X + a,Y + a,2Z, 
we shall likewise have, by changin?,' a, into {3, 

(x+f3y+(32z) x (x' +f3y' +f32z )=x+{3y+(32z; 
and, by changing a, into r, 

(x+ry+r2z) X (x' +ry' + 'i~:/)=x +rY +rQz. 
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Therefore, by multiplying these three equations together, 
we shall have, on the one side, the product of the two 
given formulre, and on the other, the formula, 

x3 +ax2y + (a2-2b)x2z + bXy2 + (ab-3c)xyz + 
(b2-2ac)xz2 + Cy3 + acy2z + bCYZ2 + C2Z3, 

which will therefOl'e be equal to the product required; and 
is evidently of the same form as each of the two formulre 
of which it is composed. 

If we had a third formula, such as 
u ~ u uu 
x 3 +ax2y" + (a-2b)x2z" + bx'!l+ (ab-3c)x"y"z" 

1111 U 1/ 1/11 U 

+ (b2-2ac).'Cz2 + C}/ + acy2z" + bcyz2 + e2z 3, 

and if we wished to have the product of this formula and 
the two preceding, it is evident, that we should only have 
to make 

x' = xx" - c(YZ" + zy") + aczz", 
y'=xy" +yx" -b(yz" +zy") -Cab -c)zz", 
z, =xz" +zx" + yy" +a(yz" + zy") + (a2-b)zz", 

and we should have, for the pl'oduct required, 

I{ { I {' { 
+ (b2 _ 2ac)xz2 + Cy3 + acy2Z' + bCYZ2 + C2Z3• 

92. Let us now make x'=x, y'=y, z'=z, and we 
shaH have, 

X= x2 -2cyz+acz2, 
y=2xy -2byz- (ab-c)z2, 
z=2xz+ y2+2ayz+(a2-b)z2; 

and these values will satisfy the equation, 
x 3 + ax2y + bXy2 + Cy3 + (a2 _ 2b )x2z 
+ (ab-3c)xyz + acy2z + (b2-2ac)XZ2 
+bCYZ2+C2Z3=V2, by taking 

v =,7,.3 + ax2y+ bXy2 + cy3 + (a2-2b)x2z + (ab-3c)xyz 
+ acy2z + (b2 _ 2ac)xz2 + bCYZ2 + C2Z 3• 

Wherefore, if we had, for example, to resolve an equation 
of this form, x3+ax2y+bxy2+ Cy3=v2, a, b, c, being any 
given quantities, we should only have to destroy z, by 
making 2xz + y2 + 2ayz + (a2 - b2)Z2 = 0, whence we 

y2 + 2ayz + (a2 _b2)z2 
derive x= - 2z ; and, substituting this 
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value of x in the foregoing expressions of x, Y, and v, we 
shall have very general values of these quantities, which 
will satisfy the equation proposed. 

This solution deserves particular attention, on account 
of its generality, and the manner in which we have arrived 
at it; which is, perhaps, the only way in which it can be 
easily resolved. 

We should likewise obtain the solution of the equation, 

" , I 'I , 
+ (b2-2ac)xz2 + cy3 + acy2z' + bcyzZ + CZZ3 =V3, 

by making, in the foregoing formulre, 
x"=x'=x, y"=y'=y, z"=z'=z, 

and taking 
v=x3+ax2y + (aZ-2b)x2z+bXy 2+(ab-3c)xyz 
+ (b2-2ac)xz2 + cy3 +acy2z + bcyz2 + C2Z 3• 

And we might resolve, successively, the cases in which, 
instead of the third power v3, we should have v4, v5 , &c. 
But we are going to consider these questions in a general 
manner, as we have done Art. 90. 

93. Let it be proposed, therefore, to resolve an equation 
of this form, 

x3 +ax2y + (aZ-2b)x2z + bXy2 + (ab-3c)xyz + 
(b2 _ 2ac)xz2 + Cy3 + acy2z + bcyz2 + C2Z 3 = v"'. 

Since the quantity, which forms the first side of this equa
tion, is nothing more than the product of these three 
factors, 

(x + aY + aZz) X (x +,By + ,B2Z) X (x + yY + yZz), 

it is evident that, in order to render this quantity equal to a 
power of the dimension m, we have only to make each of 
its factors separately equal to such a power. 

Let then x+aY+a2z=(x+ay+aZz)m. 

We shall begin by expressing the mth power of x + ay + a2z 
according to Newton's theorem, which will give 

m(m-l) 
xm +mxm- 1(y + az)a + 2 xm-Z(y+az)ZaZ 

m(m-l) x (m-2) 
+ 2x3 xm- 3(y+ az)3a3+ , &c. 

Or rather, forming the different powers of y + az, and then 
arranging them, according to the dimensions of a, 
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m(m-l) 
x". + mxm- 1yl1. + (mxm-1z + 2 xm-J.l!l)uiJ. 

( m(m-l) x (m-2) ) + m(m-] ),x'n-2yz + 2 x 3 X-3y3 11.3 +, &c. 

But as in this formula we do not easily perceive the law 
of the terms, we shall suppose, in general, 

(x + l1.y + 11.2z)m=p+ p'a+ p"11.2 + p'''11.3 +phu} + , &c. 

and we shall find, 
P=x"', 

1>' = myp, 
:r 

" (m-l )yP' + 2mzp 
p = 2x ' 

", (m - 2)yp" + (2m - 1 )zp 
p = 3x ' 

iv (m-3)yp'" + (2m-2)zpff 
p = 4x ,&c. 

which may easily be demonstrated by the differential cal
culus. 

Now, since a. is one of the roots of the equation, 
S3_ as2 + bs-c=O, we shall have 
a.8 -aa.2 +ba-c=0; whence, 
a.3 =aa2 -ba.+c; wherefore, 
a.4 =aa.3 _ ba.2 + ca = (a2 _ b )a.2 _ (ab-c)a. + ac, 
a5 = (a2 -b)a.3 -(ab-c)a.2 +aca=(a3 -2ab +c)a.2 

-(a2b-b2 -ac)a+(a2 -b)c; and so on. 
So that if, in order to simplify, we make 

A' =0 AiV=aA'" -bA" +CA' 
A" = 1 AV =aAiv _bA'" +CA" 
A"'=a Avi=aAv -bAh +CA"', &c. 

B' =1 
B" =0 
B'" =b 
Biv = aB'" - bB" + CB' 
BV =aBiv -bB'" =CB" 
Bvi =aBV _bBiv +CB"', &c. 

we shall have, 

C' =0 
e" =0 
c", =c 
0" = ao''' - be" + ce' 
CV =aeh -be'" + ce" 
c·i =aeV _be'V +cc"', &c. 

a. =A'a.2 -B'a. +c' a.3=A""I.2-B"'11.+ e'" 
a.2=A"a2-B"a.+C" a4=Ai·a2 _Biva. +e'., &c. 

Substituting these values, therefore, in the expression 
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(x+ay+a~z)m, it will be found composed of three parts, 
one all rational, another all multiplied by a, and the third 
all multiplied by a2 ; so that we shall only have to com
pare the first to X, the second to aY, and the third to a2Z, 

and, by these means, we shall have 
x=p+p'c' +pflC" +p"'c''' +p;vdv, &c. 
Y = - p'n' - P"B"- P"'BIII- P;vB;v, &c. 
Z =¥ At + p" A" + pili Alii + p;vA;V, &c. 

These values, therefore, will satisfy the equation, 
X +aY+a2z=(x +ay+a2z)m; 

and as the root IX does not enter into the expressions of x, 
Y, and z, it is evident, that we may change a into (3, or 
into')'; so that we shall have both 

x+{3y+{32z =(x+{3y+f32z)m, and 
X + yv + y2Z=(X + yy + ')'2Z)"'. 

If we nGlV multiply the above three equations togethel', it 
is evident, that the first member will be the same as that 
of the given equation, and that the second will be equal to 
a power, m, the root of which being called v, we shall have 

v=x3 + ax2y + (a2 -2b)x2z + bxy2 + (ab- 3c)xyz 
+ (b2 _ 2ac)xz2 + Cy 3 + acy2z+ bcyz2 + C2Z 3• 

Thus, we shall have the values required of x, Y, Z, 

and v, which will contain three indeterminate quantities, 
.x,y,z. 

94. If we wished to find formulre of four dimensions, 
having the same properties as those we have now examined, 
it would be necessary to consider the product offour factors 
of this form, 

x+ay+a2z +a3t 
x + {3y + f32z + {33t 
x+yy+y2Z+ y3t 
x+ oy + 02Z + 03t, 

supposing a, {3, '1',0, to be the roots of a biquadratic equation, 
such as S4_ as3+b.s2-cs+d=O; we shall thus have 

a+ {3+ '1'+ o=a, 
a/3+ ay+ ao+ /3y+{3~+y~=b, 

a{3y + a{3o + ayo + {3yo = C, 
a/3,o=d, 

by which means we may determine. all the coefficients of 
the different terms of the product i~question, without know
ing the roots Cl, {3, '1', 0. But as this requires different re-
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ductions, which are not easily performed, we may set about 
it, ifit be judged more convenient, in the following manner. 

Let us suppose, in general, 
X+sy+S2Z+S3t=g; 

and, as s is determined by the equation, 
s4-as3 + bs2-cs + d=O, 

let us take away s from these two equations by the common 
rules, and the equation, which results, after expunging s, 
being arranged according to the unknown quant.ity g, will 
rise to the fourth degree; so that it may be put into this 
form, g4_Ng3+pg~_Qg+R=O. 

Now, the cause of this equation in g rising to the fourth 
degree is, that s may have the four values a., (3, r, 0; 
and also that g may likewise have these four corresponding 
values, 

x + a.y + a.2z + a.3t 
X + (3!J + (32z + f33t 
x+rY+'lz+r3t 
x+ 01+ 02Z+ 03t, 

which are nothing but those factors, the product of which 
is required. Wherefore, since the last term R must be the 
product of all the four roots, or values of g, it follows, that 
this quantity, R, will be the product required. 

But we have now said enough on this subject, which we 
might resume, perhaps, on some future occasion. 

I shall here close these Additions, which the limits I 
prescribed to myself will not permit me to carry any far
ther; perhaps they have already been found too long: but 
the subjects I have considered being rather new and little 
known, I thought it incumhent on me to enter into several 
details, necessary for the full illustration of the methods 
which I have explained, and of their different uses. 

ERRATA. 
Page 378, line 1,fO'1' 14p-14, read 14p-14y • 
. • • • 205, line 6, j~r 20 miles, read 10 miles. 

THE END. 

QQ 
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