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PREFACE TO THE REPRINT

Although this text has been available in Russian (Moscow University
1965) and more recently in Japanese (Kyoto University 1975), it has been
out of print in Inglish for more than a decade, therefore I am most pleased
that Petroleum Publishing Company has elected to make it available again
in English.

In view of the growing demand for improved technology in secondary
and tertiary recovery of petroleum, a great need exists for a simple text on
fundamentals of flow through porous materials to assist in training engi-
neers and scientists, and although many developments in the field have
occurred in the fifteen years since original publication of this volume it still
seerns to meet this need.

R. BE. CoLLiNg
Houston, Texas
February, 1976
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1. STRUCTURE AND PROPERTIES OF POROUS MATERIALS

1.10: Structure and Classification

In the most general sense, a porous material iz a solid containing holes.
However, a hollow metal eylinder, for example, is not usually classed as a
porous materiad; consecuently, a more precise speeifiestion of the ferm
porous material is required. For the purposes of this study, a solid containing
holes or voids, either eonnected or non-conneeted, dispersed within it in
either a regular or random manner will be classed as a porous material
provided that such hales oecur relatively frequently within the solid.

A great variety of natural and artificial materials are porous; a bucket
of sand, a picce of limestone, a tuft of cotton or a loaf of bread are examples
of porous materials. In Figure 1-1 some examples of porous materialy are
shown. From these, it is obvious that great variations in the size and struc-
ture of pores exist in such materials. Some classification of pores is possible,
however.

Pores are either interconncefed or non-interconnecied. A fluid can flow
through a porous material only if at least some of the pores are intercou-
nected, The interconnected pore space iz termed the effective pore space,
while the whole of the pore space is termed the tetal pore space,

The voids within a porous material can further be classified according
to their size. Three main elassifications are possible, based on the behavior
of fluids within the void space, In the smallest void spaces molecular forces
between the molecules of the solid and those of the fluid are significant.
These tiniest void spaces are termed molecular énlerstices. In the largest
void spaces the motion of a fluid is only partially determined by the walls
of the void: these largest spaces are referred to as caverns. Those spaces
which are intermediate in size betweer meolecular interstices and caverns
are termed pores. A further classification of these pores is sometimes made,
particularly in limestone or dolomite rocks. Solution cavities of small size
are referred to 18 vugs and the void space formed by these is called vugular
pore space.

An additional classification of porous materials divides them into two
groups, ordered or random., The meaning is obvious. A regular packing of
uniform. spheres is ordered while a loaf of bread is random in its porous
structure.
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Figure 1-1. xamples of natural porous materials (X10): (a) beach sand, (b) sand-
stone, (¢} Himestone, (d) rye bread, (e) wood, (f) humen lung,

1.20: Structure and Properties

Most naturally and artificially porous materials have a random void
structure. In fact the structure of such materials can be described only in
stutistical terms. Even so, it is possible to treat the flow of fluids through
such materials on a macroscopic basis in precise terms. The situation is
much like that in the kinetic theory of gases; on a microscopic scale the
variables in question must, because of their great number and complexity,
be treuted as random variables but on the magcroscopic scale the system
cait be treated in terms of a few completely determinable quantities.

Muny theories have been devised which attempt to relate in a detailed
manner the macroscopic properties of porous materials to the statistical
propertics of their microscopic structure. Most of these theories attempt
to relate “pove size distribution” to the macroscopic properties of the mate-
riak.* Some attempts have also been made to relate the “grain size distribu-
tion™? of uneconsolidated materials to their macroscopie properties. While -
sieh theories contribute greatly to our understanding of basic physical
processes within porous media, they do not, in general, contribute to the
selution of problems on g macroscopie seale,
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The macroscopie theory of fiuid flow through porous materiads can be
developed in either of two ways. One can begin with a statisticul mievo-
scopic theory and show how this leads to certain mueroscopie faws, just as
the kinetic theory of gases predicts the macroscopie Boyle's Law, or one
can begin with the marroscopic laws as empirical laws established by gxperi-
ment.

Since none of the existing statistical theories of flow through porous
nedin sutisfactorily aecounts for all macroscopic phenotmens, the latter
course is followed in this volume. Where consideration of microscopie
processes is necessary to the understunding of macroscopic phenomena the
details of the struciure of porous materials are brought into the diseussion,

The macroscopic propetties of porous materials which ure important in
the study of fluid flow through porous media are defined and diseussed in
the following sections. All of these properties are bulk propertics nnd as
such have significance only for samples of porous materials containing
relatively large numbers of pores.

1.30: Porosity

The porosity of a porous material is the fraction of the bulk volume of
the material occupied by veids. The symbol usually employed for this
parameter is ¢ though f is sometimes used. Thus

_ Ve _ Volume of pores an
Vu Bulk volume

which is a dimensionless quantity.

Since that portion of the bulk volume not occupied by pores is occupied
by the solid grains or matrix of the material, it follows thut
Vi Volume o of solids

L — ¢ =~

= T {1-2)
Vi Bulk volure

Two classes of porosity can be defined, namely, absolute ov tofal, and
effective porosity. Absolute porosity is the fractional void space with respect
to bulk volume regardless of pore connections. Effective porosity is that
fraction of the bulk volume constituted by interconnecting pores. Mauny
naturally oceurring rocks, such as lava and other igneous rocks, huve a high
total porosity but essentially no effective porosity.

Effective porosity is an indication of permeability but not a measure of it.

1.31: Porosity and Structure

The manmer in which porosity depends on the structure of a porous
material can be seen by considering simple models, such as regular paekings
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Cubic Rhombohedral
Figure 1-2. Packing of uniform spheres, (After Graton end Fraser, 1935}

Cubic Rhombohedrai

Figure 1-3. Pore space in packing of uniform spheres. (After Graton and Fraser,
1835

of uniform spheres or rods. For such systems, one can consider unit eells
such as shown in Figure 1-2.

Figure 1-2 shows two types of regular packiog for uniform spheres. Case
1 is the cubic packing and Case 2 is the rhombohedral packing. These two
arrangements represent the “loosest” and “tightest’’ packing that can be
obtained with uniform spheres. The shapes of the pores contained within
the unit. cells for these two cases are shown in Figure 1-3.

These “pores” are extremely simple in form when contrasted to those
of a natural materinl, as is shown in Figure 1-4. This figure shows the actual
form of the pore structure in & consolidated sandstone. This was obtained
by impregnating the sandstone with Woods meta] and then dissolving the
sand.

Graton and Fraser® consider six different packings of uniform spheres.
The porosities of thesa various packings fall between the limiting values
of 0.2595 for the rhombohedral packing and 0.4764 for the cubic packing,

1t i nearly impossible to obtain anything approaching a regular packing
by pouring a container full of spheres. “Bridging” invariably occurs and
very high porosities result. Sand packs of uniform grain size usually consist
of small regiong of more or less regular packing separated by regions of
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Figure 1-4. Cast of pore space in sandstone.

irregular packing in which “bridging’ has occurred. In the bridged regions,
the porosity is invariably greater than that corresponding to the “loosest’
regular packing,

Theoretically, the porosity of a packing of uniform spheres should be
independent of the size of the spheres, but for natural materials this proves
not to be the case. Actual measurements show that, for sands of essentially
uniform grain size, the porosity increases as the grain size decreases, As a
general rule, the smaller the grains the greater will be the porosity in any
naturally unconsolidated material of uniform grain size.

For naturally occurring unconsolidated materials of non-uniform grain
size, the porosity is dependent on the distribution of grain size. A variety
of grain sizes permits the smaller grains to fill the pores formed by larger
grains thus resulting in lower porosities. Generally, a poorly sorted material
will have a considerably lower porosity than will a fine-grained but well-
sorted material,

1.32: Effects of Consolidation and Compaction on Porosity

Compaction is the process of volume reduction due to an externally
applied pressure. Consolidation refers to the binding together of the ele-
ments of the solid matrix by a cementing material.

For some naturally porous materials, such as clays and silts, and fibrous
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materials, such as cloth and paper, compaction may produce significant
chunges in porosity, Fixtremely hard materials like silica sand suffer only
slight changes in porosity under rather large compaction pressures,

For extreme compaction pressures, all materials show some irreversible
change in porosity. This is due to distortion and erushing of the grains or
matrix elements of the material and, ib some cases, recrystallization,

The most significant factor in the determination of the porosities of
rocks is cementation, Consolidated sedimentary rocks are regarded as
initially unconsolidated sands which have undergone significant cementa-
tion during geologic time. This cementation, which exists principally at
what were originally grain contacts, can be distinguished, in most cases,
from the original grain material by its chemical composition, As the pore -
space s filled with cementing material, great reduction in porosity can
ocoegr,

Another type of cementing oceurs in some artificinlly consolidated porous
materials. Ceramics, sintered glass and sintered metals represent porous
materials which have been consolidated essentially by fusion,

Naturally occuring clays exhibit the greatest range of porosity of all
natural materials. Clays occur in the form of plate-like grains. These mate-
rials are generally speaking very hygroscopic; some, such as montmorillonite,
can absorb several times their own volume in water, undergoing consider-
able swelling in the process,

Since clays are composed of very small plate-like grains, it should be
expected that they would be very susceptible to compaction. Consequently,
the porosities of clays should be lower for inereasing depth below the earth’s
surfuce. Athy' has, indeed, found that the variation of elay porosity with
aepth can be represented hy

& = doe”** (1-3)

where ¢y is the average porosity of surface clays, o is a constant and z is
depth below the surface. His data show that while the porosity of surface
clay is between 0,40 and 0.50, the porosity of shale {which is highly com-
pacted clay) at a depth of 6,000 feet is only 0.05,

Although cementation and compaction tend to reduce the porosities of
natural rocks, other secondary factors tend to increase their porosities.
Chemical leaching and physicul erosion due to the fow of ground water
through the porous rocks enlarge the pores. Extreme examples of this
process are seen in natural eaverns, such ss Curlsbad Cavern in New
Mexico.
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1.33: Measurement of Porosity

From the definition of porosity, it is evident that the porosity of a stunple
of porous material can he determined by measuring any two of the three
quantities: bulk volume, pore velume or solids volyme.

Direct Method. The most direct procedure is to measure the bulk
volume, crush the specimen, remove all pores, and then mensure the remain-
ing volume of solids. This technique is often used for brick and ceramics.
This method yields a measure of total porosity.

Gas Expansion Method. Perhaps the most widely used method of
measuring effective porosity is that based on gas expansion. By enclosing
the specimen, of known bulk volume, in a container of known volume under
a known air (or gas) pressure and then connecting this with an evacuated
contajner of known volume, the pore volume cun be computed from the
observed pressure change using the Boyle-Mariotte gas law. Thus

Py

Pore Volume = Vg — V, — V, — B (1-4)
2 " 1
where
Vs = bulk volume of sample
Va = volume of sample chamber
Vi = volume of second (evacuated) chamber

P, = initial pressure, and
P, = final pressure.

A variety of instruments of many different forms hos been developed
using this basic principle. Methods based on gas expansion are not so
accurate as another technigue.

Mercury Injection Method. The mercury injection method of meas-
uring effective porosity is based on the fact that, due to the surface tension
and non-wetting properties of mereury, a porous sample can be immersed
in mereury without entry of mercury into the sumple at atmospherie pres-
sure. Thus, the bulk volume of the sample can be determined by displace-
ment of mercury from a sample chamhber of known volume.

If the sample chumber iy closed and the hydrostatic pressure of mercury
in the chamber is increased to a very great value, the mereury will enter
the pores compressing the trapped air in the pores to negligible volume,
The volume of mercury injeeted is, therefore, equal to the pore volume.

An advantage of this method is that both bulk volume and pore volume
are directly determined. This method is not very precise sinee the volume
occupied by compressed air is not determined. It is undesirable sinee the
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sample invariably contains mercury contamination even after extensive
cleaning procedures and hence is not suitable for further tests.

Density Methods. Since the mass of a porous material resides entirely
in the grains, or matrix, it follows that

M = o,V, = pgVp (1-B)
where
M = mass of sample

ps = density of grain material, and
pa = bulk density of sample,

In view of equation (1-2), it follows that

$=1-2 (1-6)
D

Bulk density can readily be determined by weighing the sample and
measuring the bulk volume by a volumetrie displacement technique, Mer-
cury immersion can be used but it is best to apply a waterproof coating
and employ water immersion.

The density of the solid material ean be determined by crushing a sample
of the material, weighing and then employing a displacement technique
on the parts for volume determination. This method yields total porosity.

Imbibition Method. A very direet method of measuring effective pore
volume, and hence effective porosity, is widely employed in the petroleum
industry. Since most clean rocks are strongly water wet, they imbibe water
readily. Thus, if a sample of rock is immersed in water under vacuum for
a woek or so, the pore space becomes completely water filled. Then, the
mass of the saturated sample is

=M+ Ve (1-7)
where p,, is the density of water (=1) and M is the dry mass of the sample.
Henre

Vp = MM {1-8)
fu

With the sample completely saturated with water, a volumetrice displace-
ment measurement in water gives directly the value of ¥V without any
coating procedure and ¢ can be computed,

Except for the great length of time required for complete saturation
to occur, this is perhaps cne of the hest methods of porosity measurement
in current, use,

Statistical Method. Since, for naturally oceurring porous materials,
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the porous structure is of a spatially random nature, the plane porosity of
& random section must be the same as the volumetric porosity. The plane
porosity is defined as the fraction of the area of a plane section constituted
by voids or pores. The probability for a random point on such a section to
lie within a pore is simply the porosity, ¢.

This principle has been employed by Chalkley, Cornfield and Park® to
measure porosity. A pin is dropped many times in a random manner on an
enlarged photomierograph of a section of the porous material. It can be
shown that in the limit, as the number of pin tosses is increased, the ratio
of the number of times the point falls in a pore to the total number of tosses
approaches the value ¢,

Note that, since both isolated and connected pores are exposed, this
method yields total porosity.

1.40: Specific Surface

The specific surface, =, of a porous material is defined as the inter-
stitial surface area of the pores per unit, of bulk volume of porous material,
It is obvious that finely structured materials will exhibit a much greater
specific surface area than will coarse materials.

Specific surface plays an important role in the design of filter columus,
reactor columns and ifon exchange columns. It is also an important param-
eter with regard to the fluid conductivity or permeability of a porous
material. This point is diseussed at greater length in connection with the
Kozeny equation. (Section 1.51.)

Bince specific surface is the ratio of area to volume its dimensions are 1,71,

1.41: Measurement of Specific Surface

Since the internal surface of any natural porous material is of extreme
complexity the specific surface area, Z, can only be determined by statis-
tical or indirect means. Three such methods are described here,

Statistical Method. The statistical method of determining porosity
developed by Chalkley, Cornfield and Park® was also extended by them to
the determination of specific surface. In their method an enlarged photo-
micrograph of a section of the porous material is used.

If a needle of length / is dropped a great number of times on the picture
and counts are made of the number of times the end points fall within
pores, and the number of times the needle intersects the perimeter of pores,
then an equation baged on probability theory can be employed to compute
Z.

Denoting the number of times the points fall within pores by h and the
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number of perimeter intersections by ¢, this equation is
I=—m (1-9)

where m is the over-all magnification in the picture.

"I'his method is the hest method in current use for determining specifie
surface,

Adsorption Methods. The quantity of a vapor which ean be adsorbed
on a surface is dependent on the area of the surface. Several theories? have
been employed to determine surface area in this way. However, all adsorp-
tion methods of determining specific surface are subject to the same eriti-
cism. The quantity of a gas or vapor adsorbed is proportional to a surface
area which includes the tiny molecular interstices of the porous material,
whereas the surface area pertinent to fluid flow does not include this portion
of surface area.

Methods Based on Fluid Flow. The Xozeny equation, or the Kozeny-
Carman equation, both of which are discussed in section 1.51, relates the
fiuid conductivity, or permeability, of a porous medium to the specific
surface. Consequently, measurements of fluid eonductivity have been used
extensively to compute specific surface from these equations.

Since, as is poinfed out in section 1.51, the Kozeny equation is not
strictly correct, the values of specific smface determined in this manner
are suhject to serious uncertainties.

The delermination of speelfic surface by use of the Kozeny equation is
compared to other methods by Brooks and Purcell?

1.50: Permeability

DPermeability is that property of a porous material which chsracterizes
the ease with which a fluid may be made to flow through the material by an
applied pressure gradient. Permeability is the flutd eomductivity of the
porous material,

That o parameter characterizing the fluid conduetivity of a porous
material can be meaningfully defined was first demonstrated by Darcy in
18565 In fact, the equdtion which defines permeability in terms of mess-
urable guantities is ealled Darcy’s law.*

Tf horizontal linear flow of an incompressible fluid is established through
u sample of porous material of length I in the direction of flow, and cross-
sectional area A, then the permeability, K, of the material is defined as

)
A (AP/L)

{1-10

* See sections 3.11 and 3.30, chapler 3.
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Here q is the fluid flow rate in volume per unit time, g is the viscosity of the
fluid and AP is the applied pressure difference asross the fength of the
specimen,

The value of the permeability, K, is determined by the structure of the
porous material. From the defining equation (1-10), it is seen thai X has
dimensions of length squared. K is roughly a measure of the mean square
pore diameter in the material. Many porous materials have a directional
quality in their structure. As a consequence, the permeabilities measured
with flow perpendicular to each face of a cube of such material are not all
equal. Such materials are termed anisotropie porous media. The properties
of such materials are diseussed further in section 3.32.

The unit most widely employed for permeability is the darey {(d). This
unit is defined: For a material of one darcy permeability s pressure differ-
ence of 1 atmosphere will produce a flow rate of 1 cubic centimeter per
second of & fluid with 1 centipoise viscosity through a cube having sides
1 centimeter in length. Thus

1{em3/sec)- Lep)
PAAIEY = o) Latmom) G-t
For very “tight’’ materials the millidarey, (md) = 0.001 d, is used.

Digcussion of methods of measuring permeability will be deferred until

a more complete discussion of this fundamental law of Aow is given.

L.51; Structural Tnterpretation of Permeability

The permeability of a porous material as defined by Darey’s law is a
macroscopic property of the material. As such, it has significance only for
samples sufficiently large to contain many pores.

It is obvious that permeability must be determined by the geometry of
the porous structure in & more or less statistical fashion. Many attempts
have been made to construct a theory which relates this structure to
permeability. A rather complete review of such theorics is given hy Schei-
degger.® A few of these theories are deseribed here.

The theory of Kozeny! treats the porous medium as a bundle of capillary
tubes of equal length. These tubes are not necessarily of circular cross
section. By considering the solution of the classical hydrodynamic equa-
tions for slow, steady flow through such a system, Kozeny was able to show
that the permeability for such a system must have the form

o

K= {1-12)

where c is a dimensionless constant depending only on the geometrical form
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of the capillary tube cross section and K is in units of length squared. For
a circle: ¢ = 0.50; for a square, ¢ = 0.5619; and for an equilateral triangle,
¢ = 0.5974. The value ¢ is called the Kozeny constant.

Numerous modifications of the Kozeny equation have been proposed.
One such modification is proposed to account for the fact that the tubes of
flow in a porous medium are not straight, and hence the path length of
flow is greater than the length of the sample of porous material. Thus, if
tortunsily, r, is defined as the ratio of flow-path length to sample- path
length, the modified Kozeny equation is

-

1-1
22 (1-13)

Other modifications are diseussed by Brooks and Purcell.”

It is difficult to verify equations of the Kozeny type since the factors Z
and r are difficult to determine independently. Furthermore, ¢ is in practice
only an empirical factor which shows considerable variation from sample
to sllmplo Foven so, the Kozeny theory does show quite conclusively that
¢, & and K are interrelated.

Another approsch to the relation between pore structure and permea-
bility is also based on a eapillary-tube model. This is the ealculation of
permeability from “pore-size distribution.” In this scheme, the porous
material is treated as a bundle of capillary tubes having equal lengths and
cireular eross seetions with a distribution of radii. Since the flow through
each tube is given by the Hagen-Poiseuille law, the flow through the system
can be related to the radius-distribution function, which, in turn, yields an
expression for permeability. Burdine, Gournay and Reichertz® have applied
this theory with pore-size distributions determined by the mercury-injec-
tion method (section 2.30) rather successfully to sedimentary rocks.

In the case of unconsolidated porous materials, such as sand, one would
expect the geometry of the pore space to be very closely related to the
shape and size distribiition of the grains of solid. Krumbien and Monk*?
have shown that it is possible to relate certain parameters of the grain-size
distribution function of sands to their permeability.

tior sande having moderately spherienl grains and cssentially a normal
(Gaussian) distribution oi giaiu Size (as determined by a sieve analysis),
these investigators found a correlation between permeability, the geometric
mean particle diameter and the standard deviation of the distribution fure-
tiom.

Without going further into discussion of the various structural theories
of permenbility, certain general conclusions are possible, Permeability must
be proportional to some sort of mean square pore diameter, or radius
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squared, and the spread of pore size must also be an important factor in the
determination of the permeability. Of course, these factors also determise
the specific surface of the material and hence the Kozeny theory also
relates to pore size distribution.

1.52: Factors Affecting the Permeability of Porous Materials

Compaction, Just as compaction reduces porosity, it also reduces the
permeability of & porous material. Fibrous materials, such as paper, insula-
tion materials, and wood suffer great reduction in permeability upon com-
paction. Unconsolidated materials, such as hard-grained powders and sands
require relatively large compaction pressures to produce very significant
reductions in permeability. :

In the ease of well-consolidated materials, such as sedimentary rocks,
rather extreme compaction pressures are required to reduce the permeability
significantly. However, for many materials, above a certain level of com-
paction pressure further increase in pressure does not significantly alter
the permeability. This is shown in Figure 1.5 for some sedimentary rocks.

Clay Swelling. Many consolidated sandstones contain clays and. silt
to some degree. Since montmorillonite-type clays absorb fresh water to a
considerable degree, with resultant swelling, the permeabilities of natura
sandstones are generally greatly reduced when measured with fresh water

Lo
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_ Figure 1-5. Effect of compaction on permeability of consolidated rocks. (Afier
Falt and Davis, 1958.)
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The addition of salts, such as sodium chloride or potassium chloride,
will, in most cages, eliminate this swelling of clays.

Leaching. Since calcium carbonate is relatively soluble in fresh water,
the flushing of fresh water through a porous Hmestone tends to leach or
dissolve the walls of the pores. This results in an increase in permeability.
Such leaching effects can generally be eliminated by employing a saturated
solution of caleium carbonate for permeability measurements.

Mechanical Alteration of Structure. Unconsslidated porous mate-
rials are subject to alterations in structure hy mechanical forces acting on
the grains or particles due to the flow of a viseous fluid through the struc-
ture. Such alteration may change the permesbility.

1.60: Typical Values of Porosity, Permeability and Specific Surface

Table 1-1 gives typical values for the three basic characteristics of various
types of porous materials. These examples serve to indicate the ranges in
values which may he encountered for these basic physical characteristics,

1.76: Porosity and Permeability Bistributions in Naturally Porous
Materials

Since naturally porous materials possess a more or less random pore
structure, it is not surprising that small samples of the same material do
not have the same porosity or permeability. 1t is generally observed that
the greater the volume, for the individual samples, the more likely will

TapLe 1-1. PHYSICAL CHARACTERISTICS OF Tyrical Porous MATERIALS

Substance (Izg‘?ﬁ?% SP?E;{:,C / g‘::,‘f)ace Pe(r f‘)‘ :f’ L!;i;i}l}' Reference
Silica, 0.37-0.49) 6.8 X 10°-8.9 X 10° | 1.3 X 107%-5.1 X 107 | Carman 1938
powder
Loose 0.37-0.50] 1.5 X 102-2.2 X 102 2(-180 Carman 1938
sand
Soils 0.43-0.54 2 X 104 105 20-140 Peerlkamp
1948
Sandstone|0.08-0.38; 1.5 X HH-10 > 10 5 X 107-3.0 Muskat 1937
Limegtone (0, 04-0.10] 0,15 X 104-1.3 X 104* 2 X 14,5 X 1072 | Loeke & Blias
1850
Brick 0.12—0.34; 3 X 1085 X 10#* 4.8 X 107322 X 107t § Stull & John-
son 1940
Leather (0.56-0.591 1.2 X 104-1.6 X 10¢ [ 9.5 % 1072-1.2 X 107t | Mition 1945
Piber 0.88-0.93 5.6 X I0%7.7 X 1»® 24-51 Wiggens et al.
glags 1939

* Supplied by the author.
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the same values be observed. This characteristic of porous materials can
be understood by the following analysis.

Consider a great bulk of porous material and imagine it divided into
very small rectangular parallelopipeds. These elements will possess u
distribution of poresity due to the random porous structure. Let this
distribution function be denoted by F(¢), 50 that F($)de is the fraction of
elements having porosity between ¢ and ¢ + de,

The meun porosity of these elements, and hence the actual porosity of
the great bulk of material, is

1
G- [ oF($) di (1-14)

0

Also the standard deviation, ¢, of the distrihntion in g i= defined by
t
- f 6 — $F) da (1-15)

Now suppose that samples of the porous material are taken. Let the
volume, ¥, of each sample be composed of n of the elemental parallelopipeds.
The porosity of a sample is then

N ;1 & (116
where the ¢; are the porositics of the elemental blocks.

According to the central limit theorem,” the distribution function for
¢. must approach, for large n, the Gaussian distribution. Thus, denoting
the distribution function of ¢, by @(¢.), we have by the central limisg
theorem

1 (¢a — $2° ,
o = e (L) P {zw-ﬁﬁ} (1-17)
AV
provided that 0 << ¢ < 1, That is, the mean of the sample distribution is
the same as the mean of the parent distribution of elemental blocks, and
the standard deviation of the sample distribution is the standard deviation
of the parent distribution divided by A/n.

Sinee the number of elements, n, in a sample is proportional to the
volume V, of the sample, it follows that the standard deviation observed
for the samples is inversely proportional to the square root of the volume
per sample. Thus, if we denote the volume of an elemental block by ¢, we
have
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7 =

{118

gy = 1/; a {1-19)
14

where o, is the standard deviation for the sample distribution.

For very small elemental blocks (e — 0), a unique distribution is ob-
tained. As e upproaches zero, only two values of porosity are possible for
the elemental blocks, namely 0 or 1. Turthermore, the fraction of blocks
having zero porosity approaches I — @, and the fraction having porosity
equal to | approaches &. Thus, it can be expected that for some critically
small value of €, say &,

¥
€

and therefore

Ay
lim f Flg)dp =1 — ¢ (1-20)
ey Jy
and
1
lim Flg)dd = & a-2n
!v—-ifo 1""A¢

where A is an infinitesimal increment in ¢.
Then from the definition of ¢, we have

1
ot = lim (p — $1F(p) dp = F(1 — &) (322}
©rEn 0
and, therefore, the porosity distribution function for samples with volumes,
7 €, 18

S o T
' {-—~"V(¢" 2 (1-23)

Clo) = 4/ ¥V 5
(@ ’\/ el — ) | 2add — @

The extent to which this equation is applicable to naturally porous
materials has been only slightly investigated. Certainly, the only assump-
tions involved are that the porous structure is spatially random and that
V>3 oe. -

The characteristic volume, e, should be related to the size and uni-
formity of the pores and, consequently, should be related to permeability,
This has been investigated for certain sandstones. Figure 1-6 shows two
typical porosity distribution curves (porosity interval = 0.01) for the
Wouodbine sandstone of the Texas Gulf Coast, Figures 1-7 and 1-8 illustrate
the observed dependence of the characteristic elemental volume, ¢, and
the average porosity, &, on permeability.
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Figure 1-6. Porasity distribution for 20 cm? samples of Woodbine sandstone, over
400 samples for each curve,
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Figure 1-8. Distribution parameter ¢ versus permesability for Woodbine sandstone.

A completely adequate theory describing the permeability distributions
of nafurally porous materials has not heen devised. This is primarily be-
cause the measured permeability of a heterogeneous sample depends upon
the direction of fluid flow employed in the measurement.

Several investigators have reported data of permeability distributions
for sandstones. One such distribution is shown in Figure 1-9, An important

.20

Average Porosity = .26

.05

0 200 400 600 BOC 1000 1200 1400

Permeability, K, millidarcles

Figure 1-9. Permeability distribution for s natural sandstone. (After Law, 1947.)
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Figure 1-10. Pore compressibilities of rocks, (After Hall, 1953.)

characteristic of permeability distributions is their skewness, Thus, the
most. frequently oecurring value of permeability is usually much closer to
the harmonic mean of the distribution thon to the arithmetic mean permea-
bility. This is in direct contrast to the case of porosity, where the arithmetic
mean porosity is the most frequently oecurring value,

1.80: Mechanical Properties of Porous Materials

The mechanical properties of porous materials are not usually of im-
portance in problems of fluid flow through such media, However, in the
particular cuse of deeply buried sedimentary rocks, these propertics may
have some bearing on the flows of oil, water and gas.

In the petroleum industry several studies of rock compressibilities and
rock strength have been made.

Compressibilities of Porous Rocks, Compressibility is defined hy

o o (1-24)

where p denotes externally applied hydrostatic pressure.

For porous rocks, it is found that rompressibility depends explicitly on
porosity. This is shown in Figure 1-10 for a variety of rock types.*

* Pore compressibility and grain compressibility can be detined in a similar manuer

to bulk compressibility ; as indicated in problem 3, these compressibilities are related.
Actually, the separate effects of pore and confining pressures should be considered,
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Figure 1-11. Failure of rock samples under compressive loading. Left, typical
sample; Center, brittle failure; Kight, malleable deformation with high confining
pressure. (4 fler Robinson, 1968.)

Compressive Strength. Studies conducted on porous limestones, sand-
stones and shales show that the state of stress of a porous rock greatly
affects the compressive strength of the rock. In particular, differences in
internal Auid pressure and external pressure on a sample determine the
type of mechanieal failure that wiil occeur. As the excess of external over
internal pressure inereases, the mode of failure changes from brittle failure
to malleable failure, The yield strength increases as this pressure difference
is increased.™®

Figuree 1-17 illustrates the two types of failure: (a) is a typical rock
sample, (b) is a sample which suffered brittle failure, and (¢) is a sample
whieh has been malleably deformed.

Some studies, particularly in the ceramic industry,® show that the manner
in which consolidation of a porous material takes place determines o a
major extent the mechanieal strength of a consolidated porous material.
In particular, when consolidation of a dry porous material is produced by
recrystallization due to applied pressure, the compressive and tensile
strength of the material increases with inereasing consolidation pressure.

EXERCISES

1. From the definition of porosity, show that if a sample of porous material of volume
Vy having porosity ¢» i8 cut into n pieces having volumes Vi, 4 = 1,2, ..+ | n,
then

1 13
__“HZ Vi
T VT{] i

where the ¢; , £ = 1,2, -+« n are the porosities of the pieces. Also consider the
case in which the V, are all equal.
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Show that for a cubic packing of spheres with radius &,

= ¢ = - and, minimum pore radins = {(v2 - 1)R.

T
= ap?

2R 6
Compare the minimum pore radius with K/¢ as given hy the modified Kozeny
equation. Use 7 = 1.5, and ¢ = 0.56, (Note that for dimensions in centimeters
the Kezeny equation gives K in em?.)

. With the bulk, pore and solid compressibilities defined as

WooZldVe o —taV, —1av,
- T = e 18 Cyp = o
8 VB ap V-p Vl ap

respectively, show that the definition of porosity implics
eg = (1 — ¢)es + dop

where B, s and p refer to bulk, solid and pore quantities, respectively.

References

. Athy, L. F., Bull. Am. Assoc. Petroleum Geol., 14, 1 (1930).
. Brooks, C. 8. and Purcell, W. R., Truns. AIME, 195, 280 (1952).
. Burdine, N. T., Gournay, L. 8., and Reichertz, P. P., Trons. AIME, 188, 195

(19530},

. Carman, P. C., J. Svc. Chem. Ind., BY, 225 (1938).
- Chalkley, J. W., Cornfield, J., and Park, H., Science, 110, 205 (1949).

Darey, H., “Les fontainer publiques de la ville de Dijon,” Tralmont, Paris {1858).

. Fatt, T, and Davis, D. H., Trans. ATME, 195, 320 (1952).
. Graton, L. C., and Fraser, H. J., J. of Geol., 48, 785 (1935).
. Gregg, 8. J., “The Surface Chemistry of Solids,” Chapman & Hall, London,

Reinbold Publishing, New York (1951).

. Hall, H. N., J. Petroleum Technol. Tech. Note 149, Jan. (1953).

. Kozeny, I., 8.-Ber, Wiener Akad. Abi. IT a, 186, 271 (1927a).

. Krumbien, W. C., and Monk, G. D., Trans. ATME, 161, 153 (1943),

. Law, J., Truns. ATME, 156, 200 (1947).

. Locke, L. C., and Bliss, J, E., World 041, 181, No. 4, 206 {1950).

- Mitton, R. B., J. Iniern. Soc. Leather Trades Chem., 29, 255 (1945).

- Muskat, M., “Flow of Homogeneous Fluids through Porous Media,” McCraw-

Hill Book Co., New York (1937); 7. W. Edwards, Inc., Ann Arbor (1946).

- Peerlkamp, P. K., Landbowwkund. Tijdschr., 60, 321 (1948).
. Robinson, L. H., Trans, AIME, 218, 26 (1050).
- Scheidegger, A, E., “The Physics of Flow through Porous Media,” Macmillan

Co., New York (1957).

. Searle, H. B., and Grimshaw, R. W., “The Physics and Chemistry of Clays,”

Interscience Pub. Co., New York (1959).

. 8tull, R. T., and Johnson, . V., J. Res. Naél. Bur, Standards, 35, TL1 (1940).
. Uspensky, “Introduction to Mathematical Probability,” McGraw-Hill Book Co.,

New York (1937).

. Wiggens, E. J. et ol., Canadian J. Res., 317, 318 (1930).

wWww.petroman.ir


www.petroman.ir
www.petroman.ir

¢ PETROMANR

2. STATICS OF FLUIDS IN POROUS MEDIA

2.10: Fluid Saturations

The void space of a porous material may be partially filled with a liquid,
the remaining void space being occupied by air or some other gas. Or, two
immiscible liquids may jointly fill the void space. In either of these cases
or the cage of three immiscible fluids jointly filling the void space, the ques-
tion as to how much of the void space is occupied by each fluid is very
important.

The saturation of a porous medium with respect to a particular fuid is
defined as the fraction of the void volume of the medium filled by the fluid
in guestion. Thus, denoting the saturation with respect to fluid w by S, ,
the definition of saturation is

volume of fluid in the medium
* total volume of voids in the medium

1w

(2-1)

‘Thug for two fluids, w and nw say, jointly filling the void space, it follows
that

Su + S = 1 (2-2)

with a similar relation holding for three immiscible fluids,

Observe that saturation ig a bulk property which ignores the relative
distributions of the fluids within the porous structure of the material. Also
note that saturation is a dimensionless quantity.

2.11: Measurement of Fluid Saturations

Several methods have been rather widely used for measuring fluid satura-
tions. These are deseribed as follows.

Yolumetric Balance Method. If s sample of porous material whose
porosity is known is initially devoid of a fluid w and then a volume of the
fluid, V., is introduced into the material, the saturation is ealewated
directly by conservation of volume, Thus

Se = — ) {2-3)
A similar procedure applies if the sample of porous material is initially

saturated with the Auid and a volume ¥, is withdrawn,
22
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Birect Weighing. In the case of twe immiscible ftuids jointly saturating
8 porous medium the respective saturations can be determined by direct
weighing. Thus, for example, if the weight of the porous material is deter-
mined in an evacuated (or gas-filled) stete and again when partially satu-
rated with a liquid of density p;, the saturation with respect to the liquid
Is given by

W, — W,

8 =
! ¢oiVs

(2-4)

Here W, is the weight at liquid saturation S; and W, is the weight when
no liquid is present.

Electrical Resistivity Method. If a porous material is a poor con-
ductor of electrical current then when the void space of the material is
partially filled with a fluid which is a good conductor, such as a sodium-
chloride solution, the saturation with respect to this fluid can be determined
by electrical resistivity meagsurements.

This technique of saturation determination is based on Archie’s Law
which is discussed in section 2.60. It is particularly applicable in situations
in which the fluid saturation is relatively uniform throughout the sample
and weighing is impractical or irapossible.

X-Ray Absorption Method. When x-rays traverse any material the
intensity of the rays is attenuated in accordance with the exponential
equation

I = I&™ (2-5)

Here I denotes intensity, J, the intensity of the beam for zero penetration
distance, @ is the thickness of material traversed and @ is the absorption
coefticient for x-rays in the material in question.

If, in a porous material jointly saturated by Lwe Saiscible fuids, one
of the fluids containg a dissolved salt which is & good absorber of x-rays,
then variations in the saturation of this fluid will be reflected in significant
changes in the over-all x-ray absorption coefficient of the sample. Conse-
quently, x-ray absorption can be used as a measure of saturation® 1

This technique is particularly applicable to studies of saturation distribu-
tion in two-phase fow problems, though it is not very precise.

2,20: Capillary Pressure

When two immiscible fluids are in contact a discontinuity in pressure
exists between the two fluids which depends upon the curvature of the
interface separating the fluids. This pressure difference, which we call the
eapillary pressure and denote by p, , is given by Laplace’s equation’
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Po = (£ + ,—f) (26)

r

Here r and ' are the prineipal radii of curvature of the interface and Tz
is the specific free energy of the interface.’ Frequently, the specific free
energy is interpreted as surface tension,

For two immiscible fluids in contact within a bounding solid surface,
a capillary tube for example, the fluid-fluid interface intersects the solid
surface at an angle termed the contaet angle 8. This angle is determined
by Young’s equation’

T T e

cos § = L {2-7)
Y2

. ¥a 18 the specific free energy of the interface between the solid and fuid

number 1 and v, is the corresponding quantity for the interface between
the solid and fiuid number 2.

Interfacial tension (or specific free energy of an interface) has the dimen-
sion of foree per unit length. In most tables and handbook references, it is
expressed in dynes per centimeter.

If yi > 4.2 then 6 is an acute angle and fuid t is said to wet the solid.
That is, fluid 1 has a greater tendency to spread over the solid surface than
does fluid 2. For 4, < v, the converse is true.

The foregoing equations ean be shown to be the consequence of the
equilibrium requirement that the total free energy of a system in equilib-
rium be a minimum,’

If a porous material is completely saturated with fluid 2 and some of
fluid 1 is introduced on its surface, v > 7., then fluid 1 tends to flow
spontaneously in along the walls of the pores, displacing fluid 2. The
wetting fluid is said to displace the non-wetting fluid by imbibitign, Equi-
librium results when the wetting fluid has accumulated in those pores
and interstices which permit the greatest curvature of the fluid-fluid inter-
face, consistent with Young’s equaition. Thus, the wetting fluid tends to
fill the smallest pores first, '

The capillary equilibrium described ean be most easily understood by
considering & porous structure composed of cylindrical rods arfanged in a
parallel cubic packing as shown in Figure 2-1, Taking v,; to be 0 and vy, =
ya, €08 # is 1 and hence 6 is 0. This cortesponds to fluid 1 being water,
fuid 2 being air and the rods being glass, For this case 7 is infinite; that
is, the fluid-fluid interface is a cylindrical sheet.

In cross section the rods and interfaces are as shown in Figure 2-2, The
porosity of this simple structure is readily computed to be

=1 x/d 28
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Figure 2-1. Cubic packing of circular rods,

- Figure 2-2. Liquid-air interfaces in packing of glass rods.

and for interface radius, r, the saturation of fluid 1 is

4 ry L W ry. R T )
81 3"’[1/(E) +2Fﬂ cos Iy (R) smlr+R’| (2-9)

where R is the rod radius.
The capillary pressure is simply

pe= = (2-10)
T

Thus, a relationship between capillary pressure and saturation has been
obtained for thiz simple structure which holds until adjacent interfaces
make contact. After the interfaces have made contact, this interface
geometry becomes unstable. This relationship between eapillary pressure
and saturation is illustrated in ¥Figure 2-3.

In naturally porous materials the porous structure is of an extremely
complex random nature. Consequently, it is not possible to deduce the
relationship between capillary pressure and saturation for such structures
ag was done for the simple model above. However, it is possible to measure
capillary pressure at various saturations.

2.21: Capillary Pressure-Saturation Relationship

The displacement of one fluid by another in the pores of a porous medium
is either aided or opposed by the surface forces of eapillary pressure. As a
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Figure 2-3, Computed eapitlary pressure-wetting fluid saturation relationship
for water in cubic packing of glass rods.

consequence, in order to maintaina porous medivm partially saturated with
non-wetting fluid, while the medium is also exposed fo wetting fluid, it is.
necessary to maintain the pressure of the non-wetting fluid st a value
greater then that in the wetting fuid.

Denoting the pressure in the wetting fluid by p, and that in the non-
wetting fluid by p,.. , we have

Paw = Pu = po{Su) @11y

That is, the pressure excess in the non-wetting fluid is the capillary pressuro,
and this quantity is a function of saturation. This is the defining equation
for capillary pressure in a porous medium.

2.22: Measurement of Capillary Pressure

Gravity Method. The first method developed for determining the
capillary pressure-saturation relationship of porous materials was developed
for unconsolidsted materials, This method is extensively employed in soil
science, _

Consider a vertical tube, filled with an unconsolidated porous material,
having its lower end immersed in a basin of wetting fluid. The column is
initially saturated with non-wetting fAuid.

Taking the liquid level in the basin as zero elevation and measuring the
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vertical distance, z, from this point, the pressures in the two fluids at any
height, z, are

P (2} = pu (0) ~ puge (2-12)
and

Prow {2) = Duw (0) — puugz (2-14)

Here p,, and pn, are the respective mass densities of the fluids and g is the
acceleration of gravity. These equations must hold when hydrostatic
equilibrium has been established. This may require a considerable period
of time.

Subtracting the first equation from the second, und usmg the definition
of eapillary pressure (2-11), there results

P. (z) = p. {0y + (Pw ~ paw) 9% {2-14}

But since at z = 0 the material is completely saturated with wetting fluid,
p, {0) is zero and this becomes

pe (2) = (po — pau) 02 (2153

If, after equilibrium has been established, the column is quickly divided
into small segments along its length, and the saturations of the pieces
determined, the capillary pressure-saturation relationship is determined.
('The modern technique is to employ & series of ring electrodes along the
column snd determine saturation by measuring electrical resistivities.)

Displacement Method. Capillary pressure can be measured by placing
a sample of the porous material, saturated with wetting fluid, in a chamber
filled with non-wetting fluid. The lower swrface of the chamber, on which
the sample rests, must be a semi-permeable plate, through which only
wetting fluid can pass. Extending from thiy porous plate (which is also
saturated with wetting fluid) is a graduated tube.

With the sample in this apparatus, the pressure of the non-wetting fluid
in the chamber ean be slowly elevated to some value and maintained. This
cauges some wetting fluid to be displaced from the sample. The amount
displaced is read from the graduated tube. Since in this case py is main-
tained at atmospheric pressure, and pu, and S, ave directly measured
(8, may be measured electrically), p, can be compited. This ean be re-
peated for a variety of values of p,., thus obtaining points defining a
curve of p, versus S, .

Centrifuge Method. Although capillary pressures cannot be measured
directly by the centrifuge method, this method can furnish data which can
be converted, under certain circumstances, to a capillary-pressure curve.'®

In the centrifugal capillary-pressure experiment a small uniform sample
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of the consolidated porous material, initially saturated with a wetting
fluid, is rotated successively at a selected series of angular velocities and
the quantity of the wetting fluid expelled at each velocity measured. The
saturated sample is placed in s cup device containing a non-wetting fluid.
During rotation both the fluid in the sample and the non-wetting fAuid
surrounding the sample are subjected to a centrifugal foree which produces
n pressure gradient directed outward from the axis of rotation. In the usual
ease the wetting fluid hoe o greater density than does the non-weliing
fluidd ko tlint o higher prossurs is doveloped in the fluid within the sample.
This cnuses the wetting fluid to flow out from the sample at the outer
raclivs, being simultancously replaced by non-wetting fluid entering at the
iner rading. At o constant rate of rotation an equilibriun saturation l
distribution is formed. This distribution is determined by the ecapiliary |
pressure-saturation relationship characteristic of the material.

If it is assumed that in any cross section of the sample, normal to the
radius of rotation, the saturation is uniform, then by considering the forces
acting on the fluids within the sample and applying Newton’s second law
of motion the following approximate equation can be derived,"™ ©

Petr
SupPsr = f S.(p.) dp, {2-16)
0

Here S, is the average saturation of wetting fluld in the sample and p,, is
the capillary pressure at the inner radius of rotation of the sample, which
is given by

A 2
P = o (= ) 217
where
Ap = density difference in Auids
w = angular rate of rotation (radians/time)
ry = outer radius of rotation of sample
r1 = inner radius of rotation of sample,

Differentiating equation 2-16, there results

]

So+ 20 2 = 8.0p,0 218)
apa
Since S. is measured and pa can be computed from equation 2-17, one
ean plot 8, versus p., from the data and estimate from the resulting curve
the value of d8,/dp.s. Then these values can be inserted into equation
2-18 and 8,(px) computed. This yields the data finally necessary to plot
D versus S, .
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2.23: Capillary Hysteresis

In the foregoing discussions of methods of determining capillary-pressure
curves it was stated in ench cage that the sample was to be initially satu-
rated with either wetting or non-wetting fluid. Actually, some of the fore-
going methods can be applied with either initial state. However, the capil-
lary pressure-saturation curves obtained for the two initial states are not
the same. This phenomenon ia termed eapillary hystorisiz,

The two copillnyy prossare-salaration enrves have been given specitiv
names, Tho curve obtained beginning with the sample soturaded with
wetting fluid is called the drainage curve, and that beginning with the
sample saturated with non-wetting fluid is ealled the imbibition curve,
These two curves for a sandstone and a kerosene-water lquid system are
shown in Figure 2-4. These are typical of all such curves.

This difference in the saturating and desaturating cspillary-pressire
curves is closely related to the fact that the advancing and receding eon-
tact angles of fuid interfaces on solids are different. Furthermere, it fre-
quently happens, particularly with natural crude oil-brine systems, that
the contact angle, or wettability may change with time. Thus, if 2 rock
sample which has been thoroughly cleaned with volatile solvents is exposed

6
5
3
H ‘L Curve Process
"E- 4 i (1) Displocement. __|
E (2)  lmbibitien
A
0 \
\
¢
0
(1} o
5 2 (2)\ \
&
L]
1 \\}\I\\
N
0 \“*N
0 .2 A K] 8 1.0

Watting Fluid Saturation, 5,

Figure 2-4. Typieal capillary pressure-wetting fluid saturation relationship for a
porous rock showing hysteresis,
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to crude oil for & period of time, it will behave ag though it were ail wet.
But if, after cleaning, it is exposed to brine, it will appear water wet. At
the present time ove of the greatest unsolved problems in the petroleum
industry is that of wettability of reservoir rocks.s

Another mechanism which has been proposed to account for capillary
hysterisis Is the so-called “ink bottle” effect, This phenomenon can be
casily observed in a capillary tube having variations in radius along its
length.

Consider o capillary tube of axial symmetry having roughly sinusoidal
variations in radius. Wheun such a tube has its lower end immersed in water,
the water will rise in the tube until the hydrostatic fluid head in the tube
becomes equal to the capillary pressure.

If then the tube is lifted to a higher level in the water, some water will
drain oul, establishing a new equitibrium level in the tube.

When the menisens iy advancing and it approuches o constriction it
“jumps” through the neck, whereus when receding it halts without pussing
through U neck. This phenomenon explaing why u given cupillary pressure
corresponds to s higher saturation on the drainage curve than on the
Imbibition curve.

In most fluid-flow problems of practical interest, capillary hysterisis is
not a serious problem beeause the flow regime usually dictates that.one or
the other capillary pressure-saturation curve will apply.

2.24: Irreducible Saturation (Connate Water)

All capillary pressure-saturation curves show a characteristically large
slope for some low vablue of wetting fluid saturation, In most cases, the
drainage eapillary-pressure curve shows that extremely high (approaching
infinite) pressures are required to produce an infinitesimal reduction in
wetting finid saturation when a particular limiting saturation is approached.
This limiting saturation is ealled the irreducible saturation {or in the case
of water, the connate water saturation),

"Though the rerouining Huid at the irreducible saturation can be removed
(by heating for example), for all practical purposes it eannot be removed
by injection of not-wetting fluid, Thus, in most physieal problems, it will
be assumed that p, becomes infinite at & finite irreducible wetting fluid
saturution. _

For most porous materials a correlation exists between the irreducible
saturation, S, , and permeability, Such a correlation should exist since
both quantities are related to “pore size.” Figure 2-5 illustrates such a
correlation for some samples of Woodbine sandstone from the Texas Gulf
Coast.
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Figure 2-6. Relationship between minimun wetting fluid saluration (connate
water saturation) and permeability for Woodbine sandstone,

2.25: The Leverett j-Function

The fact that the eapillary pressure-saturation curves of nearly all
naturally porous materials have many features in common has led to
atternpts to devise some general equation describing all such curves.
Leverett!t approached the problem from the standpoint of dimensional
analysis,

Reasoning thet capillary pressure should depend on the porosity, the
interfacial tension and on some sort of mean pore radius, Levereti defined
the dimensionless function of saturation which he called the j-function as

jSa =& ,‘/ L (239)
Yiz &

In doing so he interpreted the ratio of permeability, K, to porosity, ¢, as
being proportional to the square of a mean pore radius.

This dimensionless capillary-pressure function serves quite well in wany
cases 1o remove discrepancies in the p, versus S, curves and reduce them
to a common eurve. This is shown for various unconsolidated sands in
Figure 2-6. An extension of this correlation technique is discussed in section
9-3 in eonjunction with model scaling techniques.

2.30: Pore-Size Distribution

Capillary pressure-saturation curves have been employed to ifer what
is termed the pore-size distribution of porous materials. If the porous
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Figure 2-6. The Leverett j-function for unconsolidated sands. (After Leveret!,
1841.)

medium i imagined as composed of a collection of “pores” having some

distribution of radii, then equations can be derived whieh relate this dis-

tribution funciion to the capillary pressure-saturation function.’* These

equations are: the capillary pressure for a eylindrical tube of radius, ry,
212 003 8

Pe(rs) = ——r:-‘—*- (2-20)

and the relation between p, and the distribution function, D(r,),

D) = i dp,

(2-21)

Here D(r;)dr; is the fraction of the pore volume contributed by pores with
radius between riand r; + dry.
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Figure 2-7. Typical pore size distribution fer a sandstone as determined by the
mercury-injeetion technique. (After Burdine et al., 1950.)

In these equations 7, is the “pore entry” radius. In particular, if mereury
is injected into & porous medium the surface tension will give rise to an
“entry pressure.” "Uhus, if injection pressure is applied, the mereury enters
the larger pores first and the pressure (capillary pressure) required to
establish a certain saturation, 8,., of this non-wetting fluid ean be re-
corded. These data in conjunction with the above equations can be used
to compute D{r;), Typical curves of this type are shown in Trigure 2-7,
~ Pore size distribution curves such as these suffer a serious lmitation
which applies to all attempts to dofine pore size. Tn this procedure the pore
entry is treated as cylindrical and certainly this is a gross simplification.*
The complexity of naturally porous struetures defies all attempts to define
“pore size.” Iven so, simple definitions such as that emploved above do
have some utility and contribute to our understanding of the parl played
by pore size in determining the characteristics of flow through porous
materials.

2.40: Vapor Pressure of Fluids in Porous Media

In studies of adsorption an important concept has been developed which
has applications to the general theory of fluid behavior in porous malerials,
This concept is that of a force field! at the surface of a solid which acts on
the molecules of liquid vapor. Thus, a wetting fluid is held within a porous
material in two ways: one, by the force field which holds the liquid &s a
molecular film completely covering the surfaces of the porous structure,

* Recently Kruyer!® has investigated thia point. He has investigated an alternate
procedure of treating a porous medium as a packing of spherical particles.
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and two, by capillary forces which hold the liquid as bulk fuid with curved
interfaces separating the liquid and vapor phases.

‘T'he properties of adsorbed fluid films have been the subject of consider-
able study.! In general, it appears that the properties of adsorbed liquid
films are grossly different from those of the liquid in bulk. Such films ex-
hibit properties more analogous to the solid phase, ie. ice. Various
theories have been developed to deseribe adsorption. These are reviewed
by Scheidegger.!s

For liquid hekd within a porous material in equilibrium with its vapor,
an important factor appears. The partial pressure of vapor in equilibrium
with bulk liquid depends upon the curvature of the vapor-liquid interface.
Thus, since the curvature of the vapor-liquid interface in a porous medium
depends upon saturation, it follows that the vapor pressure of a hiquid in
a porous material depends wpon saturation. This dependence can be deduced
as follows.

From thermodynamics, we know that the absolute free energy, }’f‘,l of a
fluid phase is & measure of the tendeney for molecules to leave that phase.
Thus, for a liquid and its vapor in equilibrium the free energy of the liquid,
7y, must be equal to that for the vapor, F, . If a transition from one equi-
librium state to another occurs, then we must have

ary = dF, (2-22)
Suppose then that the hydrostatic pressure in the liquid phase is changed
by an amount dp. A corresponding change, dP, must oceur in vapor pres-
sure. If-these ehanges oceur under isothermal conditions, we have
dF; = Vidp (2-23)
and
dF, = V4P (2-24)

where Vyand V, are the specific molar volumes for liquid and Vapor, respec-
tively. Thus

Vidp = V,dP (2-25)
If the vapor can be treated as an ideal gas, we can write
v, = &L (2.26)
Ao, Vyenn be exprossod i
Vi = {:-? (2-27)

where M is the molecular weight of the liquid and p is the liquid density.
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Substituting these expressions for ¥V, and V, into equation 225, ther
results

M
— g —— 2.9
P~ GRT dp (2-28)

Now integrating with p going from atmospherie pressure, py , to a different

pressure, p, and P going from a corresponding value Iy to 12, we obtaiu

M
= S (g — 2.04)
P = Pyexp LRT (p Pu)] (2245

When a wetting liquid is imbibed by a porous medium the difference in
pressure between the vapor and the liquid is the capiliary pressure

F—p=up (2-30)
Thus
P = Pyexp —M/pRT(ps + p. ~ P) (231

A further simplification can he made if the approximation

fig— P =0 (2-32)
ig used. This is valid for
P> py— P {2-33)
Then
P = Pyexp — (M/pRT)p. COTH

which iz the approximate relationship between vapor pressure within a
porous medium and capillary pressure. Since capillary pressure is a hanetiou
of the liquid (or vapor) saturation, it follows that the vapor pressure is &
funection of saturation.

Neither the exact nor approximate expressions can be expected to he
strictly valid since the vapor does not hehave exactly us un ideal gas. Fur-
thermore, the sbove-described force field will play o dominant role at low
fluid saturations. This is reflected in the dependence of p. on suturation as
well o in the depiendence of * on saturation,

2411 Measuremaent of Yupor PPressure<Saturation Curves

The vapor pressurc-suiuration relutionship for w particular hopid oo
porous medium can be determined by equilibrating a sample of the porous
material in an atmosphere of fixed vapor pressure and measuring the liquid
saturation of the sample. Such technigues have been intensively employed
in soil seience.*
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Figure 2-8, Typical curves of vapor pressure versus wetting fuid saturation.
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Typical eurves of P versag S, oblained in this manner are shown in
[Figure 2-8,

2.50: Heat of Wetting and Heat of Swelling

When any dry substance is wetted several phenomena are observed.
There is frequently a change in color, an increase in volume and an merease
in temperature. Since heat is usually liberated at the same time that a
change in volume takes place, considerable attention has been devoted to
what has been called heat of swelling, This quantity is also closely related
to the heat of wetting. The effects described here are most pronounced in
soils, particularly clays, This is due to the presence of colloidal material,

The differential heat of swelling is defined as the quantity of heat liber-
ated per unit change in volume. Thus

aff
o= { 35
h (aVB)T (2:5)

where h, is the differential heat of swelling, i denotes quantity of heat
liberated, ¥4 is bulk volume of porous material and the subseript 7 indi-
cates that A, is measured at constant temperature,

The relationship between the differential heat of swelling and the differ-
ential heat of wetting is determined by the rules of caloulus as
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oH ol avy, .
Z1 — [ or 934
(a VB)T (al’L)T (aVB)T (2-36)
o o\ oV -
P (Pcn iy (L [ A 23
b (GVL)T (aVa)r (BVL)T @un

Here V. is the volume of ligquid in the porous material and A, iz defined
as the differential heat of wetting,
Defining the swelling coeficient as

IV
A=1- 2.38)
("‘””L)T (

Foy = My {2-30)

or

there results the relationship

:  The differential quantities defined above are diffienlt to measure direetly
but the eorresponding integral quantities ean he measured directly,

The integral heat of wetling is defined as the totad heat liberated when
a volume of liquid is added o dry material. Thus

Ve
= { he (¥, (24
]

The total heat of wetting 7, can be defined as the heat liherated when
the liquid saturation is changed from zero to one hundred per cent.

4 The addition of the liquid to the porous material creates an arca of new
liquid-solid interface and destroys an equal area of air-solid interface,
f Since the respective free surface energies for these interfaces are yer and
; Ye4 » the total energy gained in the proeess is

o = (ver — v34)dVaE (2-41)

Then, in view of Young's equation (2-7), this cun be written as

! . B, = v, a0V aT cos 8 (2-42)

i We see that the total heat of wetting depends on the specific surface, the
: chemical nature of solid and liquid, and the porosity. 1t is easy to see from
} this relationship that clays, which have very great specifie surfaces, should

exhibit large total heats of wetting. For montmorillonite clay the total
! heat of wetting is about 15 to 20 calories per gram, whereas for most soils
{ it is the order of 1 to0 5 calories per gram.’
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2,60: Electrical Properties of Fluid-Filled Porous Materials

Some of the electrical properties of fluid-filled porous materials are
extremely important i studies of fluid flow. For example, electrical resis-
tivity is used widely as a measure of brine saturation in rocks and uncon-
solidated sands, Those electrical properties of significance in studies of
fiuid flow through porous materials are deseribed.

Formation Factor. The formation factor, F, is defined as the ratio of
the resistivity® of the porous material saturated with an fonic solution to
the hulk resistivity of the same ionic solution. (A sodium-chloride solution
with over 10 g per liter of NaCl is usually used.) Thus

F=— (2-43)

where Ry is the resistivity of the saturated sample and R, is the resistivity
of the brine solution.

Au empirieal relstionship between porosity and formation factor first
pointed out by Archie’ has been found to apply to most isotropic porous
materials which do not contain electrically conducting solids. This rela-
tionship is

¥ o= gm (2-44)
where the exponent, m, has a value of upproximately 2 for sands. For other
materials m i3 generally less than 2.

The relationship found empirically by Archie is ondy statistically correct

und has no theoretical basis. By considering a porous medium to be equiva-

fent to a bundle of tortuous circular capillaries of equal size, a relationship
w ohtained which has been well sabstantisted by experiment. This is
e (2-45)

where 7 i3 the tortuosity defined as the ratio of the tortuous capillary length
t the bulk length of the porous sample and 7 is 4 pure number,

Measurements of 7 by an ion-migration technique have been carried out
by Winsauer and co-workers.® Their values of 7, F and ¢ for a wide variety
of porous rocks satisfy equation (2-45). Even so, this relationship is open
to question because of the simple capillaric model employed.

However, 7 is very difficult to measure and for practical purposes Archie’s
relationship is widely used.

Archie’s Law. For porous materials partially saturated with a eonduct-

* Resistivity is defined as the resistance of & cube having sides of unit length,

measured with uni-directional eurrent flow through one face and out the opposite
face.
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ing solution, which wets the solid, another empirical relationship, usually
called “Archie’s Law,” exists. That part of the pore space not filled with
the wetting-conducting solution is filled with non-wetting, non-conducting
fluid. Arehie’s Law states that the resistivity of the partially saturated
medium is related to S, , the wetting-fluid saturation, by ‘

= RS, {2-48)

&

Here R is the resistivity at S, and » is o constant ealled the saturation
exponent. ‘

For clean sands n has o value of approximaiely two. For other materials
n may be either greater than or less than two.
; Typical plois of F versus ¢, and R/Ry versus S, for sandstones are
shown in Figures 2-9 and 2-10.

In general, the above relationships between porosity, saturation and
H electrical resistivity hold only approximately even for clean sands. For
g porous materials containing chemically active mmponents such as clays

and shales, these laws must be significantly modified.”

Resistivity Measurements. The most widely used technique {or meas-

uring the resistivities of fluid-filled porous materials is the “four electrode

el Ly
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Figure 2-0. Correlation between formation factor and porosity for a aandstone.
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Figure 2-10. Typical correlation between resistivity ratio and wetting fluid sat-
uration,

 Spring—- (o=

Loaded . .

A,A" = Current electrodes

B,B‘ - Potential electrodes
C ~ Care somple

D,B" - Contacts 1o potential electrodes
F - Hinged box core holder (insulater)

Figure 2-11, Apparnlus for measaring electrion] resistivity of eylindrieal rock
samplea.

[ ——Spring
Looded

method.” In this technique the sample, in the form of a short eireular
eylinder, is placed in a non-conducting jacket as indicated in Figure 2-11.

The current electrodes are in the form of plates placed on the ends of
the sample, with contact being established by saturated sheets of blotting
paper between plate and sample, The potential measuring electrodes are
in the form of brass rings mounted on the inside walls of the jacket.
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A square wave generator of about §0-cycles frequency is the hest current
supply. This avoids polarization, and nulifies ion separation.i?
With this arrangement the resistivity, R, is given by

AV
R = 77 (247}

where A is the cross-sectional area of the sample, L is the distanee hetween
potential eleciiodes, ¥V is the potential difference measured between these
electrodes and I is the current,

2,70: Osmosis

A semi-permeable, or osmotic, membrane is o material through which

- ftuids may pass but dissolved substances in these flulds will not pass,

Generally if two solutions, one more dilute than the other, are separated
by an osmotic membrane the solvent (usually water) will flow spontanceusly
through the membrane from the more dilute to the more concentrated
solution, :
In order to prevent this flow of solvent an applied pressure is required.
This pressure is termed the osmotic pressure. For ideal membranes and
ideal solutions, this pressure is determined by an equation identical to the
ideal gas law. In particular, for an ideal solution having n moles of dissotved
substance in a volume V of solution, separated from pure solvent by an
ideal membrane the osmotic pressure is?
ECUN

2-48
e (2-48)

where E is the gas eonstant and T is the absolute temperature. (Note that
n i8 the number of moles in ions.)

Many porous materials behave as semi-permeable membranes, paréicu-
larly clays and shales. However, such materials are not perfect osmotic
membranes.

2.80: Electrochemical Potentials

Closely associnted with the phenomenon of osmosis is that of cleetro-
chemical potentials.

A boundary potential results from the separation of electrical charge
which occurs at the interface of two saline solutions of different coneentra-
tiona when the speeds of migration of the positive and negative 1ons com-
posing the salts are dissimilar.

This electrochemical potential is given appreximately* for dilute solu-
tions of binary electrolytes by®

* The resistivities replace activities.
I
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RT fo —u By
E = — — -
T (v T u) g (2-49)

where

I

gaa constant

= valenee of ions

= the faraday

absolute temperature
anion mobility

cation mobility
resistivity of solution 1
2 = Tesistivity of solution 2.

- R
}

Il

Sme s
i

I'or sodium chloride at 25° C this becomes

E = 49934 ln%l {millivolts) {2-50)
2
These clectrochemical potentials are modified when the solutions are
scparated by a chemically active porous material, such as clay or shale.
"The expression for solutions separated by such a membrane is approxi-
mately

By
E=0(Cln— .
¢ In R (2.51)
where the value of €' in general depends upon the nature of the membrane
and the types of ions in the solution. For & in millivolts (' has values ranging
from about 5 to 25 millivolts.

2.90: Static Fluid Distributions in Porous Materials

The eapillary und osmotie churceteristies of fluids in porous modia just
dhmeribed enn he employed to deduee the statin disteibution of flulds in
porons medin wrising in various physieal problen, Kxamples of such
probletns are presented here.

Saturation Discontinuity at a Discontinuity in Medium. Consider
two dissimilar porous materials in Intimate comtact, such as a layer of
voarse sand overlaying a stratum of tight consolidated sandstone in the
carth. Suppose the capillary pressure-saturation eurves for the two sand
hodies are as indicated in Figure 2-12. The upper curve, 4, is that for the
tight lower sand, while the lower curve, B, is that for the upper, uncon-
solidated sand, '

Assuming that both sands contain some water and some air (and water
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Capiliary Pressure

8) (A}

contact plane

Sub $
Watting Fluid Saturation

Figure 2-12, Basiz for discontinuity in saturation at a disconiinuity in porous
medium.

vapor), the saturations in the two sand bodies in the vieinity of their eon-
tact plane are to be determined.
Trom the definition of capillary pressure, we have

Ped = Prwd — Pud {2-52)
and
Posi " Pl = Puh (2()3)

Minee botl the gas and liguid phasos sre continuous at the plane of contact,
it follows that

Prws = Prob (2-54)
and
Pus = Dun | (2-55)
at the plane of contact. Thus, we have
Ped = Pen (2-56)

at the discontinuity in medium.
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The horizontal line in Figure 2-12 connects two equal values of p, on
curves 4 and B, Urum wnis, 1L is scen that in order for this equality to ob-
tain it is necessary for a discontinuity in saturation to exist at the plane
of contaet separating the two media, the magnitude of this discontinuity
being S, — S». Thus, for any water saturation in the loose sand less
than one hundred per cent, a water saturation greater than this value
will exist in the tight sand.

Shale Barriers, Salinity and Aquifer Pressures. An aquifer is a
sand or rock stratum of the earth completely saturated with water (brine).
Two distinet aquifers may be separated by a thin bed of shale or clay, If
the salinities of the water in the two aquifers are unequal, then by osmosis
water will percolate through the shale bed from the aquifer of lower salinity
tuto the aguifer of higher salinity.

During this osmotic process, the salt jons in the dilute brine cannot
move freely through the shale. Consequently, the salinity in this aquifer
increases with time while ‘that of the more concentrated aquifer decreases,
As the salinitics approach equality, the osmotic pressure decreases.

Equilibrium is attained when the difference in hydrostatic pressure
between the aquifers becomes équal to the osmotic pressure across the shale
bed.

Such osmotie phenomena can account for some of the observed water
sslinities and aquifer pressures observed in nature. This mechanism can
also aceount for springs and other artesian flows observed at high elevations.

Distribution of Water in Surface Sands and Soil. The surface and
near surface layers of soils, sands and clays of the earth’s crust present a
very complex problem with regard to the distribution of moisture. How-
ever, certain gross features of this distribution can be deduced from con-
sideration of the properties of porous materials already diseussed, provided
that the investigation is restricted to an isothermal ecuilibrium state.

In order to simplify the problem as much as possible the discussion will
be limited to fresh water, although the basic theory necessary for the
inclusion of saline waters has been outlined.,

Consider a multilayer system of sands, soils and elays arranged as hori-
zontal strata of various thicknesses. For each layer unique drainage capil-
lary-pressure curve exists. It is assumed that equilibrium has been estab-
lished by drainage. ‘

Suppose that a water sand, ie. a sand completely saturated with water,
exists at a depth k. Bince equilibrium exists in the earth Iayer overlaying
this sand, we have

Po = pug(h — 2) (2-57)
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Figure 2-13. Determination of moisture distribution in surface sands and seils,

where p,, is the density of water, g is the acceleration of gravity and (b — 2)
is the height above the water sand. Here p., denotes the capillary pressure
in the first earth layer above the water sand.

The earth layers above the water sand are numbered 1, 2, 3, ote. con-
secutively upward and have corresponding thicknesses 7, 7%, ete.

Now plot all the capillary-pressure curves on one graph as

ES.

=h — 2z versug S, (2-58)
pud

Such a plot is shown in Figure 2-13. Then one can trace directly the com-
posite representation of h ~ 2 versus &, by noting, for example, that curve
1 ig followed until A — 2 = 7',. At this point a discontinuity oceurs and
curve2 is followeduntilh — z = T, 4+ T, ete, Proceeding in this manner the
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heavily lined composite curve is obtained. This composite curve represents
the water saturation versus height above water-table curve, that is, the
nisture distribution,

At the surface, here taken as 40 {eet above the water table, vapor equi-

librium between soil moisture and the atmosphere must obtain. Thug,
according to equation (2-34), the temperature T must be adjusted.

Do

10.
11.
12.
13.
14,
15.
146.
17,
. Behetdegger, A. E., ““The Physics of Flow through Porous Media,” Macmillan

19,
20.

EXCERCISES

. Derive equation (2-21).
- A thin stratum of porous sundstone is tnelined st gn abgle # 0 the horizontal, A

thin horizontal layer of shale divides the stratum into two portions. Buppose the
shale layer is u perfect osmotie membrane of 30 em thickness and the pore space
of the sundstone flled with saline {NaCl) water of ionic concentration 0.3 mol/
liter ab:ove the shalo and 0.1 mol/liter below ihe shale, Caleulate the static pressure
distribution in the sand assuming no fow.

- Of the various types of surface soils, which hold II‘lOiStill‘e most effectively? Why?

Constdering gravity drainage to lower layers and evaporstion to the atmosphere
which mechanism: would usually deminate in drying of surface soiir
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3. PHYSICAL AND MATHEMATICAL THEORY OF FLOW

3.10: Mechanisms and Types of Flow

Several meehanisms of fluid flow through porous materials are known
to exist, The primary mechanism ig, of course, of a purely “mechanical”
naturce, namely, flow as a result of an applied force in the form of a pres-
sure differential. However, flow may also oceur under certain circumstanees
as a result of applied electrical or thermal gradients.

Since mechanical flow, or flow induced by externally applied pressures,
may be of several different types depending upon the range of pressure
difference, average pressure, pore sizes. ete., it is necessary to discuss
types of flow as well as mechanisms of flow.

3.11: Laminar Viscous Flow Through Porous Media

Darcy’s Law. Laminar flow of a fluid is charaeterized by a fixed set of
streamlines. A fluid element which at one peint is traversing the sume
path as another element must follow the path of this element throughout
its course. This is in contrast to turbulent flow in which only partial cor-
relation between particle paths exists.

The viscosity of a fluid is o measure of internal friction associated with
laminar flow. Shear forces exist apparently between lamellae of fluid having
different velocities. An fdeal viscous fiuid flowing over a solid surfuce
adhers to the surface. At the surface of the solid the fluid velocity is zero.
As a result of this fluid sticking and the viscosity of the fluid, a drag foree
is exerted on the solid by the flui¢. The fluid tends to drag the solid along
with it.

Conversely, if the solid is held fixed, a foree opposing the fluid motion
is exerted on the fluid by the solid. This viscous resistanee is a foree cqual
and opposite to the drag foree on the solid,

For a flat plate, the shear force per unit area between the solid surface
and a fluid tangent to it is given by Newton’s equation

p=a(® 31
dz solid

Here u is the fluid viscosity, ¢ is fluid velocity which is a function of posi-
tion above the plate, and 2 is distance from the surface into the fluid. The
derivative is evaluated at the surface of the solid.

47
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Since fluids have mass it follows from Newton’s second law of motion
that, forces must be exerted on a fluid to change either the direction or
magnitude of the fluid velocity, When a fluid flows through a porous
medium the velocity of a fluid element changes rapidly from point to
point, along its tortucus flow path. The forces which produce these changes
in veloeity vary rapidly from point to point.

However, in a naturally porous material the porous structure and hence
the multitude of flow paths have a random character. It is reasonable to
suppose that the random variations in flow path for any particular fluid
element are uniformly distributed. Also the variations in magnitude of
velocity can be expected to be distributed uniformly with mean zero. Thus,
for steady laminar flow the lateral forces associated with the miecroscopie
random variations in velocity ean be expected to average to zero over any
macroscopi¢ volume. However, the inertial forces in the direction of flow
will not average to zero and hence will only be negligible for Jow flow rates.
(See section 3.12.)

The only non-zero macroscopic force exerted on the fluid by the solid
is that associated with the viscous resistance to flow. For steady laminar
flow, this force must be in equilibrium with the external and body forces
on the fluid. To formulate this equilibrium condition consider the flow ap-
paratus shown in Figure 3-1.

Cross-Sectional
flow rate, q=—% \/ Area, A

Pressurs, P
| , / @/

POROUS

] %,w

@/Pr.s.ur-, Py
g

Figure 3-1. Flow apparatus,

N\
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A cylindrical sample of porous material having parallel ends, cross-
sectional area A4, and length L is mounfed in a tube. The walls of the {ube
are tightly bonded to the sample. It is supposed that the system is filled
with fluid.

For flow upward through the sample o net viscous resistnnee dircetod
downward opposes the flow. In prineiple, this foree could be computed by
integrating equation (3-1) over the internal pore surface. Since the geometry
of the pore surface is beyond roathematical deseription, this eannot be
done. Even s0, certain facts about this force can be stated mathematically.

Since for laminar flow the relative distribution of velocity within the
pores ig independent of the magnitude of the velocity, it follows that @
and hence dv/dz must be everywhere proportional to ¢/ A4 where g is volu-
metric flow rate. Furthermore, since the total surface involved must be
proportional to the bulk volume, AL, of porous material, it follows that
the viscous drag on the fluid can be written as

F_u = le.qL (32)

B is a constant with dimensions of reciprocal length squared which is
characteristic of the pore geometry.* The force I is dirceted downward for
upward flow,

The external forees acting on the fluid contained within the porous sam-
ple can be expressed in terms of the pressures p, and p; at the ends of the
sample. Sinee the pore areas on which these prossures act arc given by ¢,
where ¢ is the porosity of the sample, the net upward foree on the fluid
due to these pressures is

Fo= {ps — palepd (3-3)

The body force on the fluid is simply the weight of the fluid in the sam-
ple. This corresponds te & downward force

Fy = plddl)g {3-4)

where p is the mass density of the finid and g is the acccleration of gravity.
For steady flow, the forces F,, F, and F, must be in equilibrium. Fhus

BugL + p(@AL)g = (py — po)A @ 5)
ar
KA
¢=- [lp= — po) + pglLl] (3-0)
#
where

* Note that B is proportional to the specific surface.
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i
K B (3-1

is a constant characteristic of the porous medium,

The constant K is the permeability of the porous medium discussed in
seetion 1.50 and equation (3-6), which constitutes the operational defini-
tion of K, is Darcy’s law. Actually, this is an empirical law® and the “deriva-
tion” given here is intended only as a heuristic guide to the understanding
of its physical content. It should be noted that, for horizontal linear flow,
gravitational effects do not come into play and the term pgL must be
omitted in equation (3-6). This corresponds to the case cmploved in the
discussion of permeability in section 1.50.

The derivation of Darey’s law could lead one to think that it applied
ouly for steady flow. Actually, the viscous forces involved in laminar flow
through porous media are so much greater than any inertial forces as-
socisted with even relatively rapid variations in flow rate that inertial
factors can in nearly all practical eases be neglected. Thus, for practical
purposes Darcy’s law is also valid for variable rate, g.

Darcy’s Law for Gases. Darcy’s law of laminar flow in the form of
equation (3-0) is also valid for gases provided the flow rate, g, is taken as
the volumetric flow rate as measured at the mean pressure {pe + p)/2,
and provided this mean pressure is sufficiently large. Writing § for the flow
rate of the gas measured at mean pressure (po -+ ps)/2 and ¢, for the flow
rate meayured at pressure Pa, it follows from the ideal gas law that for
jsothermal conditions:

4+

. Pa Ps
L

= GuPa (3-8)

Thus Darey’s law for ideal gases can be written as

KA | pd — m? Pa -+ p Xt M
WPu = - L 3-8
Yupp L [ 2 +( > ) w7 ! {3-9)

Here the density, p, i also obtained from the ideal gas law as

M Mup+p
PTRTE T R T2

(3-10)

Of course, gravilational effects are essentially negligible for gases so g can
be put equal to zero in most cases.

Actually, in the case of gases the fluid does not stick to the walls of the
pores as required in Darcey’s law and a phenomenon termed slip occurs.
This slipping of the fluid along the pore walls gives rise to an apparent
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dependence of permeability on pressure. This dependence was pointed out
by Klinkenberg" and is usually called the Klinkenberg effect. The relation
between permeability and pressure proposed by Klinkenberg is

K=K, (I + %) (3.1}

where K .. is the permeability as observed for incompressible fluids (liquids),

p is the mean flowing pressure and b is a constant characteristic of both
I the gas and the porous medium.

! From this equation, it is evident that for sufficiently hioh flowing pres-

sures slip can be neglected and equation (3-9) applies with K beiug re-

] placed by K. . When such is not the case, the Aow is called slip flow und
' Darey’s law as modified by Klinkenberg must be employed. Thus, for slip
flow
KA 2b Pt — Pa’) .
aPe = ——— 11 3-12
Qu " (+pn+m)( 5 {3-12)

where gravitational effects are considered negligible,

At very low pressures the flow process reduces to essentially a diffusional
process. At very low molecular density gas flow becomes molecular stream-
ing. Flow phenomena of this type are diseussed by Barrer.!

The Measurement of Permeability, Permeability, X, is measured by
establishing linear flow through the sample and applying the appropriate
form of Darey’s law. Most frequently, gas flow is employed. Measurements
at several mean pressures are necessary. Then these values can be plotted
versus 2/(p, + ps). This plot yields a straight line with slope 8K, and
intercept K. . When liquids are used, a single value X, equivalent to K.,
is obtained.

The main precaution to be observed in such messurements is in prevent-
ing bypass flow around the sample.

Techniques for special types of permeability measurements are discussed
in sections 4,20 and 4.40.

3.12: Turbulent Flow through Porous Media

The laminar flow regime breaks down for sufficiently high flow rates, g.
For high flow rates, Darey’s law is not valid. The range of flow rate for
which laminar flow exists has been studied by numerous investigators.™’
Generally, this range is defined in terms of the Reynolds number. For
example, in sands and sandstones, the transition from laminar to turbulent
flow occurs rather gradually in the range of Reynolds number from one to
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ten.* The Reynolds number is defined as

]
R - 22

3.13
WAS (3-13)

where g is volumetric flow rate, p is fluid density, u is viscosity, ¢ is poros-
ity, A the cross-sectional area of the porous sample and 8 is the average
sand-grain diameter,

Usuadly, ns in flow through pipes, for example, & dimension of the flow
channel is employed in defining the Reynolds number. However, for porous
media it is difficult to define, in terms of measurable quantities, a channel
diameter. The grain diameter is ususlly employed as a measure of pore
diameter. An alternate possibility is to employ (K/$)" with K expressed
in em®, as & measure of pore diameter.

By analogy to flow through pipes, the flow of fluids through porous
media can be studied in both laminar and turbulent states by considering
the correlation of Reynolds number, R, and “friction factor,” A. The fric-

tion factor is defined as
A T
=3P (‘L) (3-14)
Lo\ ¢

Here Ap is the pressure differential across the length of the sample, L.
For the Reynolds number less than unity, the correlation between R and
A is found to be

A= gl
where ¢ is & constant. This yields

N
- % 2 (3-15)

which corroborates Darcy’s law. In fact, if (K/¢}"" is used in lieu of & in
the definitions of & and A the constant ¢ turns out to be unity.

Due to the {act that in porous media a distribution of pore sizes exists,
the transition frora laminar to turbulent flow is not abrupt at a critical
Reynolds number as is the case for flow through pipes. Instead the transi-
tion is rather gradual, )

An alternate procedure to empirical correlations between ) and R is to
base the law for transition and turbulent flow on analogy to flow through
tubes. Thus, Forchheimer' proposed an equation of the form

dp _ (4 2y )
L= (M) e (M) (316)

* Btrietly speaking, this transition region represents the onset of inertial effects.
True turbulence veeurs only at the higher Reynolds numbers,
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where a and b are constants depending on the properties of both fluid and
porous media. An equation of this form describes experimental results
rather well for sufficiently high flow rates.*

Fortunately, the flow regime in most cases of practical interest is of the
slow laminar type and Darey’s law applies. The mathematical theory of
How through porous media is generally formulated with Darcy’s law being
taken as the fundamental law of flow,

3.13: Simultancous Laminar Flow of Immiscible Fluids Through
Porous Media -

Relative Permeability. Two immiscible fluids, such as an oil and
water, may flow simultaneously through a porous medium. Experimentally,
this can be accomplished by mounting a eylindrical sample of porous
material within a tube so that the wall of the tube is tightly bonded to the
sample. On each end a mixing and dispensing plate is mounted. The two
fluids are introduced simultaneously through one plate and flow out {from
the other plate. The plates assure the uniform entry of the fluids over the
entire cross section of the sample."”

Flow experiments conducted with such apparatus show that the permea-
bility eoncept, and Darey’s law, can be extended to such multiphase flow,
That is, & permeability can be defined for each fluid and Darcy’s law then
describes the relationship between the flow rate of each fuid and the pres-
sure differential. The important fact in this is that these permeabilities nre
independent of flow rate and fluid properties. In fact, these permeabilities
depend only on the fluid saturation within the porous sample.”” Thus, with
K;(8u) and Ky(8.) denoting the permenbilities for the two fluids as fune-
tions of wetting-fluid saturation, equation (3-6) with the viscosity, 4, and
density p of the fluid in question, can be written for the flow rates, ¢, and
@z, of the two fluids. '

The permeabilities, Ky and K, » can be expressed as fractions of the single-
phase permeability, K, of the porous medium. If, instead of the numerieal
subseripts, the subscripts w and nw for wetting and non-wetting fuid re-
spectively are‘employed, then relative permeabilities are defined as

bne = Kopu/K (3-17)
and
ky = Ku/K (3-18)

These telative permeabilities are each less than unity. However, their
sum is not unity, Typical relative permeability curves are shown in Figure

* The analysis of flow through & non-uniform capillary tube given in Chapter 9
indicates that an equation of this form should describe flow including inertial effects.
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Sy —

Tigure 3-2. Typical relative permeability curves,

3-2, Ilere it can boe seen vhat by, 4 k0 18 less than unity for all saturations,
exeept possibly zero and one,

While relative permeabilities are essentially independent of fluid proper-
ties wnd flow rule in the laminar region, it is always necessary to distinguish
belween the wetting and non-wetting fluids.

Chatenever and Calhoun® have made visual studies of two-phase flow
through packings of smal glass and/or Lucite beads. The beads were
packed hetween glass plates and the flow was observed with a microscope.
The Huids used were ofl and water, with one fluid being colored.

Such studies show that, when mnmiscible fluids flow simultaneously
through = porous medium, cach fuid estublishes its own tortuous channels
of Aow through the medium, These ehannels are very stable snd no turbu-
lenee or eddies are observed., A unique set, of channels appears to oceur for
every range of suluration.

As the suturation of the non-wetting fluid is reduced, the channels for
this fluid tend to break down until iselated islands of non-wetiing fluid
remuin. These islands are stutionary for all reasonable pressure gradients
{luminar flow). The saturation of non-wetting fluid corresponding to this
immobile stute i, in the cagse of oil-water systems, called the residual oif
saturation, FFigure 3-3 shows the form of a residual oil globule in a sand.
Generally, prossure gradients of the order of several atmospheres per
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Tigure 3-3. Residual oil globule. {(After Jordan el al., 1957.)

centimeter are required to reduce the residual oil saturation, Sueh gradients
correspond to turbulent flow.

Similarly, as the saturation of wetting fluid is reduced, the channels of
| flow for this fluid terd to break down and become discontinuous. The
wetting fluid ceases to flow. The wetting-fluid saturation corresponding to
this case is for water-oil systems called the connate-water saluration. (UL
section 2.7.) ‘

In the case of a gas-liquid system the slippage phenomenon noted for
gas flow alone also oceurs. Estes and Tulton® have shown that the per-
meubility to gas in such flow regimes exhibits the Klinkenberg effect. As
the meun flowing pressure is inereased, the relative permeability curves
approach those corresponding to an oil-water system,

The understanding of relative permenbility and also capillary pressure
; saturation relationships has been greatly advanced by the work of Fait”
1 TFatt has shown that these relationships, as well as other characteristics of
porous media, can be understood in terms of a random netwnrk of simple
capillary tubes.

The Measurement of Relative Permeabilities. Relative permeabili-
ties can be measured by employing simultaneous linear flow of immiscible
finids. However, a detailed discussion of such measurements is best deferred
until the mathematical theory of such multiphase flow has been developed.
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Relative permeability messurements are discussed in section 6-10 in con-
junction with the boundary effect and in section 6-21 in conjunection with
the Welge integration of the Buckley-Leverett equation,

3.14: Streaming Potential and Electro-Osmosis

When two chambers containing water are separated by a plate of porous
material and a difference of electrical potential between the chambers is
maintained with a battery or power supply by two metal electrodes placed
on each side of the porous plate, a flow of water occurs from one side to the
other. This phenomenon is called electro-osmosis. quulds other than water
also exhibit this behavior.

Conversely, when water or other liquid is forced through a porous plate
by a pressure differential an electrical potential difference across the plate
is observed. This potential is called the streaming potential.

Both of these phenomena are associated with the existence of charged
layers at the solid-liquid interfaces within the porous plate. SBuch charged
layers are generally present at an interface separating two phases. Actually,
these charged layers are diffuse in nature but by treating them as discrete
layers a simple mathematical treatment can be applied to elucidate the
basic features of the electrokinetic phenomenon described above,

Nhe diffuse charged layers at s solid-liquid interiace behave as two
parallel surfaces of opposite electrical charge separated by a distance of
molecular dimensions. A layer of one charge is on the solid surface and a
layer of opposite charge in the Huid adjarent to the solid surface. The
potential difference between these layers of charge is called the zefa po-
tential.

If the charged double layers are treated as a condenser with parallel
plates, & distance d apart the zeta potential, ¢, can be related to the charge
per unit area, ¢, on a plate. If the dielectric constant of the medium between
the plates is D, then from electrostatics®

ed
= Do (volts) (3-19)

When an electrical potential iz applied across the porous medium a po-
tential gradient, E, exists within the fluid-filled pore space. Denoting the
component of B parallel to the pore surface by I, , the foree tending to
displace the charged layer of fluid parallel to itself is e, per unit surface
area. As the electrieal force displaces the charges, the fluid is dragged along
with the charges.

The total displacement force on the fluid within the porous plate is given

* M.K 8. units with: e = 8.85 X 10~12 (coulombs)?/newton- {meter)t
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by the integral of eF. over the pore surface. As in the case of the viscous
drag, this cannot be evaluated since the pore gu.metry cannot be mathe-
matically described. However, e should every- here be the same and I,
should everywhere be proportional to V /L where V is the potential differ-
ence acrose the porous plate and L is the plate thickness. Furthermore, the
total force should he proportional to the total pore surface arca, which, in
turn, is proportional to the bulk volume, AL, of the porous plate. Thus.
the displacement force can be written as

Fg= CeAV (3-20)

where €' is a constant, having dimensions of reciprocal length, which is
characteristic of the porous material.

For steady flow the displacement force, Fy , and the viscous foree, F,,
opposing flow must be in equilibrium. Thus, from equation (3-2)

CeAV = BugL (3-21)
which neglects gravity forces, Then,
Ce V
q = B A 7 (3-22)

=—4 = 3-2
q o 7 {3-23)
or, in view of equation (3-1%)
KeD | V c
= (g —— 4 - 3.
q & don 7 (3-24)

The direction of flow relative to the direction of the applied potential
difference, V, will depend upon the sign of the charged layer within. the
fluid. In most eases, the solid surface is negatively charged. This, of course,
depends on the nature of the fluid and the solid surface.

Equation (3-24) gives the magnitude of the electro-osmotic flow rate.
Actually, this equation also gives the magnitude of the streaming potential
arising from fluid flow. Thus, if, due to an applied pressure differential, a
flow rate ¢ is produced, then a polential difference, V, as given by equation
(8-24) would be produced across the porous plate. This is so because as the
fluid is mechanically displaced, it carries the charged fluid layer with it and
this flow of charge constitutes an electrical current.

‘While the factors ¢ and ¢ are only qualitatively defined in the above
discussion, the resulting equation shows how electro-osmosis and streaming
potential are related to eertain properties of fluid and solid.
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Generally, electrokinetic phenomena are of little significance in most
problems of fluid flow through porous media. The magnitudes of these
electrokinetic effects are discussed by Glasstone.!2

3.15: Thermw-Osmosis

Another mechanism of fluid transport through porous media is that
produced by & temperature gradient. This phenomenon oceurs only when
the porous medium is just partially saturated with a liquid, the remaining
portion of the pore space is filled with a gas and liquid vapor.

If, under such conditions, a temperature gradient is applied across the
porous medium, it is observed that a movement of Tiquid from the warmer
to ecooler regions oecurs, Several mechanisms for this phenomenon have
been proposed: vaporization and recondensation of liquid and hence motion
of the vapor phase; viscous flow of liquid due to the gradient of vapor
pressure; and viscous flow of liquid due to a gradient of capillary pressure
resuiting from the temperature dependence of surface tension.

Studies of this phenemenon have been reported in the literature," * but
apparently a complete quantitative theory is still lacking,

3.20: Limitations of Classical Hydrodynamics

Classical hydrodynamics describes the flow of ideal viscous fluids within
prescribed boundaries. In order to apply the mathematical equations of
this theory to a particular fluid-Aow problem, it is necessary that the
boundaries of the system in question be mathematically described. In the
case of flow through natural porous media, the complexity of the porous
structure prohibits such deseription. Thus, if a mathematica theory of
flow through porous media is possible at all, it must take the form of a
statistical theory, or a theory based upon laws describing only the macro-
scopie features of the flow. The latter course has proved to be not only
possible but also very suecessiul,

3.30: Differential Form of Darcy’s Law

Homogeneous Incompressible Fluids, In section 3.11 Darcy’s law of
flow was interpreted as resulting from equilibrium of the forces acting on
the fluid flowing within a macroscopic sample of porous material. This line
of reasoning can be extended to obtain a general expression for the law of
flow in three dimensions in differential form. _

Consider an element of volume in a field of fluid fAow through a porous
material. Let the element be of length ds and plane cross-sectional area
84. The vector 8s, perpendicular to the eross seetion, defines the orienta-
tion of the element in the field of flow. Let the mean flow rate per unit area
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in the region of the element be 9. Then, a viseous force
F, = —uBsAs- s {3-25)

acts parallel to 6s on the fluid within the element of volume, Also acting
parallel to ds is the net force due to the pressures on the ends of the cle-
ment. This can be expressed as

Fop= —¢34 V p-55 {3-26)

The remaining force acting on the fluid within the element of volume is
the weight of the fluid ftself. Thus

Fy = —popdAl,-5s (3-27)

is the component of this force parallel to 8, Here, {; is a unit vector tuken
positive upward.
For steady flow, these forces must be in equilibrium, thus

=(Vp + u f 8 + liog)-35gs4 = 0 (3-28)

But since this must hold for every orientation of the volume element, it
follows that

B
VP+M;!‘)+1wU=0 (3-29)
or

§= L (Vp + Ly {3-30
ub

Or with K = ¢/B defined as before

6o =+ Ty = K [11 22y (fa—’l + pg)] (3-31)
i “ axy 2 G
where 1,, 1, and I, are unit vectors parallel to the respective orthogonal
Cartesian axes, o, z; and 2y, The coordinate, zy, i3 measured positive
upward. This equation is the logical generalization of the linear form given
in section 3.11,

Note that in this equation all quantities, including K represent average
values over the infinitesimal element of volume 5448s. This is, of course, &
pure abstraction since K ceases to have physical meaning for infinitesimal
samples of porous material. However, it is not this differential law which
is compared to experiment for verifieation, but integrals of this law must
agree with observation. Indeed, it is found that predictions based un this
differential law of flow are in agreement with observation.
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The differential law of flow for incompressible fluids can be expressed in
very compact form by defining a flow potential as

¥ = p -+ pgza (3-32)

Then, the law of flow becomes

PR SN (3-33)

m
Homogeneous Compressible Fluids. For homogeneous fluids under
isothermal conditions the fluid density, p, is a single-valued function of the

pressure, p, within the fluid. Consequently, a flow potential, ¥, can be de-
fined as™

? dp
- f ol 354
b= fm plp (2-34)

Then the differential form of Darcy’s law (equation 3-31) is retained for
compressible fluids as well as for incompressible fluids if thoe flux density,
8, is defined by

§= =2 vy - (3-38)
®
Thus, substituting in this equation the definition of ¢ given ahove, there
results

K u
9= == (p + lg) (3-36)

which is the same form as given for incompressibie fluids. The minus sign
in equation (3-35) indicates that flow takes place in the direction of de-
creaging potential. Here § is measured at the local value of pressure.

3.31: Simultaneous Flow of Immiscible Fluids through Porous
Media. Relative Permeability

Darcy’s law for the flow of a homogeneous fluid through a porous medium
can be extended readily to the simultaneous Aow of two immiscible fuids
by extending the concept of permeability and bringing in the concept of
capillary pressure presented in section 2.21,

It is postulated that for the simultanecus flow of two immiscible fuids
through a porous wwdium where exists an effective permeability and o flow
potential for each fluid, These effective permeabililies, say K, for the wet-
ting fluid and K., for the non-wetting fluid, must each be less than or equal
to the single-fluid permeability, K, of the medium. Therefore, relative per-

WwWWw.petroman.ir



www.petroman.ir
www.petroman.ir

¢ PETROMAN

PHYSICAL AND MATHEMATIOAL THEORY OF FLOW tif

menbilities for the respective fluids ean be defined as

K.
= — 3.-37
K z < 1 (3.37)
and
Kow
Ense <1 (32
% < [3-38)

where &, and k.., are dimensionless positive quantities.
The flow potentials for the two fluids are defined as

Puw d
Yu = gz3 + J’. P (3-39)
o Pw(p)
and
Paw
Ve = 023 + f dp (3-40)
LT in(p)

Here g is a reference pressure, p, and p,,. are the pressures within the re-
spective fluids and py, and p.., are the respective fluid densities.
Then for each phase, Darcy’s law is applied in the form
Kpw

bo = —ky—— YWy (3-41)
o

for the volume flux density of wetiing fluid, and

Vi (3-42)

for the volume flux density of non-wetting Auid, Here py and g, are the
fluid viscosities of wetting and non-wetting fluids, respectively,

The fluid pressures, p. and p.., are related by the capillary-pressurc
equation

Pe = Paw = Pu (#-43)

This, of course, constitutes an assumption. It is assumed, and this is borne

out by experiment® that the capillary pressurc-saturation relationship de-

termined at static conditions also applies to the dynamic conditions of flow.

It is necessary to distinguish which fluid ig displacing the other so that

& choice beiween the imbibition and drainage capillary-pressure curves can
be made.

This coneept and also that of capillary pressure can be extended to the

simultaneous flow of three immiscible fluids, such as an oil-water-gas sys-

wWww.petroman.ir


www.petroman.ir
www.petroman.ir

6 PETROMAN| rrow or rrvivs rasoven roxous MATERIALS

fem, Thus, if the theee fAuids are denotad hy the subseripts o, w, and g for
oil, water and gas respectively, then relative permeabilities, ko, &, and
ks can be delined as was done for two fluids, Also, three flow potentials,
Yo, ¥u and ¢, can be defined.

"The pressures i the respective fluids cannot all be equal at any point
heeause of interfacial tensions, Therefore, two capillary-pressure functions
are defined by

_ Po — Puw = Pow (3'44)
and
Pw = Py = Py {8-45)

Here p, , p, and p, are the pressures in the respective fluids, p,., is the capil-
lary pressure between oil and water, and p., is the capillary pressure be-
tween water and gas, The capillary pressure between oil and ga3 is then
given by

Pos = Pow -+ Puy (3-46)

With these definitions, Darey’s Iaw ean be used to write an expression
for the volume flux of each fluid.

3.32: Darcy’s Law for Anisotropic Porous Media

In the foregoing discussion of the laws of fluid flow through porous
media, it was tacitly assumed that permeability, and also relative permea-
bilities, are independent of the direction of fluid flow within the medium.
This is not gencrally true for all porous media.

Many porous materials exhibit a distinet anisotropie character, particu-
larly fibrous materials, such as wood as well as some sedimentary rocks.
Thus, the fluid transmissibility in such materials is not the same in all
directions. To take this characteristic of porous media into account re-
quires a further generalization of the luws of Aow. This extension is achieved
by heuristic reasoning just as the previous extensions from the fundamental
experimental lsw were made. The correctness of such extengion can be
established only by appeal to experiments for confirmation of predictions
based on such extensions.

For isotropic porous media, Darey’s law presents simple proportionalities
between the components of the volumetrie flux and the corresponding
components of the gradient of low potential. Thus

_ Kp oy
»odz’

!

i= 128  (347)

The most general linear relationship between the v; and the components
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o¢/d.e; that ean be postulated takes the form

& a
o=t (K“_ Yor ke 4 ks 1") i= 123 (448
3»1:1 7R ) iy

Of course, an additive constant could be included but this is physically
impossible. Here the nine quantities, K, (¢ = 1,2,3;7 = 1,2,3) form the
elements of a tensor.

The generalization of Darcy's law postulated here retains o lnear de.
pendence of the »; upon the components of potential gradient, which is a
heuristic reason for assuming this form. This same form can also be arrived
at by a basic set of postulates concerning the nature of the flow in aniso-
tropic media.’ However, our approach is to postulate a particular form
and consider the consequences.

The three equations given in equation (3-48) eani be written as the single
matrix eguation

il
ax
51 /Ku K K '
i}

w | =" Ky Ko Ky id (3-42)
M axs
?3 Ky Ku Ku v
9

Then, if a rotation of the corrdinate axis is cansidered, the manner in which
the K-matrix transforms under such a rotation can be investigated, Such
an investigation shows that, if the K-matrix is symmetrie, then rotation

of the axes to a particular orientation produces a diagonal K-matrix.
Thus, if

IEI'J' = K.fl' ] 1= 112)33;.3; = 1J2)3J (3‘50)

then for a particular set of rectangular axis, z/, ¢ = 1,23 (i.e. a particular
orientation of the coordinate system) the K-matrix takes the form (de-
noted as the K'-matrix)

K, 0 0
(K’ matrix) =[ 0 K, 0 {3-51)
6 0 K,

The directions of the particular set of coordinate axis to which this K'-
matrix corresponds are called the prineipal axes of the porous medium.
Note that these principal axes are orthogonal to each other. Thus, the con-
verse statement is also correct; for a porous medium having orthogonal
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principal axes the K-matrix is symmetric for any orientation of the coordi-
nate system, and is diagonal for a coordinate system congruent with the
principal axes,

For the coordinate axes oriented parsllel to the principal axes of the
porous medium having orthogenal principal axes, the postulated form of
Darcy’s law becomes

K2 i=123 (352
w x|
Thus, cach component. of 8 is proportional to the eorresponding component
nf the potmalinl gradient but the constants of proportionality are not equal
since the K, are not all equal,

It should be noted that this rotation of axes also requires a change in the
form of . Thus, since, in general, not one of the primed coordinates is
parallel to the vertical (direction of the gravitational force), ¥ must be
written as

g‘z-:] ¢ coqa.—}-j;ﬂp(p) (3-53)
Hpre the a;, 7 = 1,2,3, are the angles between the respective primed axes,
.+ = 1,2,3 and x; which was assumed vertical.

It has been experimentally demonstrated that some anisotropic porous
media can be deseribed by a permeability matrix ag presented above.”
Furthermore, the particulsr materisls investigated possessed orthogonal
principal axes. However, it cannot be expected that all anisotropic porous
media would have orthogonal principal axes.

In the ease of the simultaneous flow of immiscible fluids through aniso-
tropie porous media, no experimental data have been reported to guide the
extension of Darey’s law to such cases. However, the simplest and most
reasonable postulate is that the relative permeabilities are independent of
direetion in the medium, Thus, for the coordinate axes oriented parallel to
the prineipal axes <f the wadiwn only the diagonal K's need be considered.,
Therefore, postulate that the relative permabililies defined as

_ Kie Ko Ky

Ky =
Ky K, K,

{3-54)

and

K]nw K'zw K&nw
e = " R T K (3-55)

are functions of saturation only. Here the K., and Ky, § = 1,2,3 denote
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the values of the permeabilities for the respective fluids, during simultaneous
flow while the K;, ¢ = 1,2,3 are the principal values for a single fluid.

3.40: Equations of State for Fluids*

The flow potential, ¢, defined by equation (3-34), involves the fluid
density, p, a5 & function of the pressure, p, within the fluid. Thus, in order
to apply the law of flow to a particular problem the dependence of pon p
must be determined. For the cases of most interest this dependence can be
given in rather simple analytical form. ‘

The trivial case of inecompressibility is, of course, the most simple. Vor
this case, the equation of stale is simply

de
L = 9
dp (3-56)
which gives
p = constang {3-57)

The next most simple case is that corresponding to constant compressi-
bility. Thus, since the compressibility of the fluid, ¢, is defined, for iso-
thermal conditions, by

1 vy
V_( dp

==

(3-58)

where V denotes fluid volume; and the mass of fluid is invariant, it follows
that

€= - — (3-50)

Hence, for ¢ independent of p integration yields
p = pogm(p—pu) (3-60})

where pg is the value of p at the reference pressure, po .

This particular equation of state applies rather well to most liquids,
though the presence of large quantities of dissolved gases causes devia-
tions.

For isothermal variations in pressure the equation of state for an ideal
gas is given by the Boyle-Mariotte law, Thus

PV = :% RT (3-61)

where V is the volume oceupled by the mass, m, of gas of molecular weight

* Multicomponent fluids and phase equilibrium are considered in chapter X.
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M, R is the gas constant and 7 is the absolute temperature, Since the fluid
density is defined as m/V, it follows that

M
R —— 3-62
PP (3-62)
Observe that in this case
1d 1
e 2 (3-63)
pdp p

s0 that the compressibility of an ideal gas is just the reciprocal of the
absolute pressure of the gas.

For real gases deviations from the ideal gas law are taken into account
by introducing the Z-factor. This factor is simply a function of » empirically
determined from the definition

M »
P T RT Z(p (3-64

In this ease, the dependence of p on p may be rather complex,

Other cases, such as an ideal gas under adiabatic conditions, can also be
considered. However, the particular cases considered above constitute the
most important cases and are the only ones to be treated specifically in
the discussions to follow.

3.50: The Continuity Equation

In flow phenomena of any kind, fluid flow, the flow of electricity, or heat
flow, one of the most useful mathematical tools is that obtained from a
conservation principle. A conservation principle is simply the statement of
the fact that some physical quantity is conserved; that is, neither created
nor destroyed,

To formulate a general statement of the conservation of some physical
quantity consider, in the field of flow, an element of volume in the form
of a rectangular parallelopiped having sides Az, Az and Az;. Let the
concentration of the quantity be I, expressed in units per unit volume, and
let the flux density of the quantity be denoted by &, expressed in units
transported per unit time per unit area. Since { is a vector quantity there
are three independent components, @, @, and Qs parallel to the respactive
coordinate axes. Furthermore, let the physical quantity in question be re-
leased within the field of flow at the rate G units per unit time per unit vol-
ume. I', { and @ are all variable quantities.

With the above definitions the conservation of the physical quantity can
be mathematically stated. The average flux density across each face of the
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Figure 3-4, Volume ¢lement in region of fluid flow,

volume element can be indicated as shown in Figure 3-4. Here &1(x; , 22,
a3, ), for example, is the average value of &; over the face with sides Axy
and Az located at z, ; similarly, §i(2 + Az, 42, 73 , 1) I8 the average value
of €, over the corresponding face located at a3 4+ Az, and similarly for the
other faces.

The amount of this physical quantity entering the volume element dur-
ing the time interval { to ¢ + Af is

W (x, 22, 71, DAZAT + ez, 5, 3, )ATIAT + Gy , %2, T2, t)AZrAZ]AL
Similarly, the amount leaving the volume element during this time is
Wulz 4+ ATy, 22, B2, DowsAry + Go(3, 32 + Aze, 70, HATIAZ:
4 dgral , 4%, T3+ ATy, HATAT:]A!
Also, during this time, an amount
Gy, 21, T3, ATIAZ AT AL

is released within the element of volume. Here G indicates the average
value of G within the element at time .

As a result of the possible excess of inflow over outflow and the release
of material within the element, the amount of the physical quantity within
the element is increased during the time Af by an amount

[Fx, 22, Ts, b+ AL = Dy, Bz, T3, )]ADATAT,
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where T' denotes the average value of T' within the volume element at the
indicated time,

Since the physical quantity in question must be conserved, it follows
that

(amount in) — (amount out) + {amount generated) == finorease in content)

Therefore, aubstituting in this equation the expressions given above, divid-
ing through by Ax,Az:Az,At and teking the limits as Ar, , Az, , Awg and
At are each allowed to approach zero, there results
o | o . o0y ar

(a:ﬂl aﬂ's + ax; + G ;74 (3-65)
This iz the eyuation of continuity including s generation term, . This
can be written in more concise form by employing the divergence operator
(v-). Thus

—ati 6= (3.66)
al
While the above formulation of the equation of continuity gives some in-
sight into the physical meaning of this equation, it is rather clumsy. A
more concise and rigorous derivation is as follows.
Since the physical quantity in question must be conserved, it follows
that for an arbitrary element of volume

- % $dA + f f f Gdadredr, = fﬂ f f f T'dzidardzs (3-67)

where the first integral is a surface integral taken over the closed surface
of the volume element and the volume intograls are extended over the vol-
ume, ¥, of the elemont.

Since the volume element is considered fixed, ihe time derivative can be
taken inside the integrals as a partial derivative operator on I'. Then
applying the divergence theorem to the surface integral and rearranging,

there results
. §r
fff (-—V‘ﬂ + -~ 5‘{) d-’tldﬂfzdx: = (3 (3*58)

and since this must hold for any arbitrary volume element the integrand
must be zero. Therefore, equation (3-66) follows,

Applications of the continuity equation to problems of fluid flow through
porous materials are considered in the next section.
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3.60: The Differential Equations of Fluid Flow through Porous
Materials

Having formulated the mathematical statement of the law of flow
through porous media and eonstructed the equation of continuity the
differential equations describing fluid flow through porous media can be
written. While it is possible to write these differential equations in a very
general form it is more convenient to consider different types of flow in-
dependently. Furthermore, the differential equations formulated are not
unigue in form. The form selected will, in general, he different for different,
types of problems, Many of the equations formulated here are trented at
greater length in later chapters.

Single-Phase Incompressible Flow, For incompressible fluids the
volume of an element of fluid is not altered by changes in pressure. Hence,
fluid volume is conserved and in the general equation of continunity {
becomes the volumetric flux density 8. Also, the concentration I' becomes
the concentration of fluid volume which is just the porosity, ¢.

Thus, since ¢ is here considered constant, the equation of continuity in
rectangular Cartesian coordinates becomes

vo= 0L G, ) (3-60)
ar  dxz O
Or, if, as is usually the case, there are no fluid sources or sinks within the
region of flow, G is zero and this becornes V-8 = (.

In this equation the components of flux density, vy, v2, 0 are to he cx-
pressed in terms of the components of potential gradient by Darcy’s law.
Thus, several different equations result depending on the nature of the
porous medium.

Tor an isotropic porous medium equation (3-35) apply for the 2, and
the resulting differeiitial equation is

d [ Kp oy d {Kp oy d [Kpoy
—_— 52 — — == —l— =)= 3.7
dn ( " 6:61) + dxp ( u 3:52) + daz ( H 61;) ¢ @70

Here the fluid viscosity, g, is usually considered constant but, the permeabil-
ity, K, may, in general, be a function of the z;.

If the medium is homogeneous then the permeability, K, is constant, and
if x is also constant the differential equation of flow takes the form of
Laplace’s equation. Thua

' 3-7]
i drd  am®  dxd ®-71)
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where the modified flow potential, ¢ , 13 defined as

!b" = P + PYTs (3-72)
Since p and ¢ are both eonstant, this can be written as

dip g ap
B T Ut LA -73
L T S @73

Hence the only differences in the distributions of V' and p arise from the
boundary conditions. These will be discussed elsewhere.

For the case of a homogeneous anisotropic porous medium, the compo-
nents of volumetric flux density, v, ¢ = 1,2,3 are given by equation (3-52)
provided the coordinate axes are assumed oriented parallel to the prineipal
axes of the porous medium. In this case, K, » Kz and K are distinet con-
stants and the differential equation of flow takes the form

az ’ 7 4
K1£%+K2%+Ka%=0 374
Here the fluid viscosity, 4, has been taken as constunt and hence could be
eliminated by multiplying the equation through by 4.
Note that in this ease the modified flow potential, ¢, is given by

3
YA p+pg}: T CO8 ay
i1

where the @, 7 = 1,2,3 are the angles between the respective axes and the
vertical,

For this case o purticular modification of the coordinate system permits
aniportaut simplifiention. Deline the contracted eoordinatey, 5, 1 =
1,23 as :

S 1/ ;_({",i - 123 (3-75)

Then, the differential equation of flow can be written as

Py o’ T

LY 376

dnt - ot + angt 376
with ¢ expressed in terms of the 5; as

3
¥ o= pln,meym, O 4 eg 3,0 £ vos o {(3-77}

f=1 i

Thus both ¢’ and p satisfy Laplace’s equation in the ni-coordinate sys-
tom.,
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The differential equations given above are all expressed for the case of
three-dimensional flow. Of course, if the geometry and bhoundary conditions
insure either one- or two-dimensional flow, the equations can be modified
by setting the proper derivatives equal to zero.

Flow of a Single-Phase Compressible Fluid. In the flow of 2 com-
pressible fluid through a porous medium the volume of an element of fiuid
may change due to changes in pressure. Therefore, fuid volume is not
conserved. However, the mass of an element of fluid remains unehanged
during such variations in volume and hence mass is conserved.

The mass flux density now plays the part of ¢ in the equation of cou-
tinuity and the fluid mass concentration plays the part of concentration.
Thus

§ = pb (3-78)
and

I = ¢p {3-79)
where, as always, ¢ denotes fractional porosity and p denotes the fluid den-
sity.

Now the equation of continuity appears as
a(ge)

ot

Vo lpf) + G = (3-80)

Since regions free of sources and sinks are of most general interest, ¢ wiil
be taken as zero in the following discussion.

Usually the porosity, ¢, may be considered constant and hence ean bhe
placed outside the derivative operator,

In the case of an isotropic porous medium this becomes, with the o, ex-
pressed in terms of the potential gradieni components by Darey’s law

Hp? dp
N A Y e 3-
v (F_ lp) ¢ at (3-81)

Or, in terms of the pressure gradient,

K R a
v. [ﬂ'? (Vp + 13 pg):l = ¢ 2 (3-82)
u o

In the event that gravitational effects are negligible, as is usually the
case, this can be written as

K d,
v. (wf Vp) =g (3-83)
m at

Now several different cases arise as various equations of state for the
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fluid may apply. For an ideal liquid

¢ = } d_g = constant (3-84)
s dp
and, therefore
1
oVp = (; Yo (3-85

Thus, if ¢ is considered constant, the differential equation for the flow of
an ideal compressible liquid through an isotropic incompressible medium
is for negligible gravitational effects

a3,
V- (KVp) = guc —5‘; (3-86)

If, in addition, the porous medium is homogenecus, then K is uniform
and this becomes

puc dp
Vi = —— L 3-87
Y (3-87}
or, in rectangular Cartesian coordinates
a 2 & @
Te TP O duce (3-88)

gr? | azd | Az K &

'This equation is of exactly the same form as the Fourier equation of heat
eonduction.

For hquids of slight compressibility a further medification of this equa-
tion is sometimes employed. If

3
ap \?
L ¢ El (ax;)

—ep A VR X
?;.‘1 3 14 elp — po) (8-89)
then equation (3-88) can be written in the approximate form
Pp P P _gwi 590

azt 8z 0wt K at

This can be demaonstrated by noting that the equation of state ean be
written ag

1
p = pet (PP = [1 +elp = po) + 5 o — o + ] S 2Y

Then performing the required differentiation for substitution into equa-
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tion (3-88) but retaining only those terma up through ¢, the above result
ig obtained, '

In the case of flow of an ideal gas through a porous medium, gravity
effects are negligible. Thus, upon employing the equation of state (3-62)
in equation (3-86), there results i

v. ({‘2 Vp) - P (3.99)
il 3l

If both K and u are considered constant, this can be written in the very
simple form
op opt .
Vit = y (3-0m
which though non-linear is quite similar to the corresponding equalion
for the compressible liquid above.

The flow equation for a real gas or for gas low under adiabatic condi-
tions can be obtained in the same manner as the above equations were
derived. Also, one may consider the Klinkenberg effect in which case K
is made to depend upon the pressure,

Simultaneous Flow of Immiscible Fluids. I'or the simultancous flow
of immiscible fluids two independent conservation principles must be in-
voked. Since the conservation of mass includes the conservation of volume
as & special case for incompressible fluids, the conservation of mass can be
applied to each fluid.

Denoting the fluids by the subscripts w and nw for wetting snd nomn-
wetting fluids, respectively, and noting that for the wetting fluid, for ex-
ample, the mass concentration is given by

I' = ¢Supw {3-94)
the continuity equation is

#(Swpe)

3.05
at (3-95)

—V(pube) = ¢

Here it is assumed that ¢ is constant and that no sources or sinks are pres-
ent. Upon employing Darey’s law in the form of equation (3-41) this

yields
}
v(Eﬂ Vlf’u) = ¢ M (3-08)
Bo al
Similarly, the equation applicable to the non-wetting phase is
2z
V_(Kmnﬂmo V\bmg) - ¢ B(Smpm) (3_97)
MBnw o
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In these two equations, the proper equations of state relating py, to P, ,
and puu t0 paw must be introduced; also Puw and p,, must be related by
the proper capillary-pressure function.

These equations are quite general. Particular cases offer many interesting
problems. Furthermore, extension to three immiscible fluids can be carried
out exactly in the same manner. However, further consideration of these
equations will be deferred to a later section.

3.70: Boundary Conditions*

In all cases the equations governing the flow of fluids through porous
media are second-order partial differential equations. Thus, in order to
arrive at a solution of such flow problems, it is necessary to speeify boundary
conditions for the dependent function or its derivatives. This funetion is
either the pressure or a flow potential, although, in some cases, another
function may be introduced.

In the case of compressible fluids, the equations also involve a time
derivutive and hence the initial distribution of pressure, fluid density or
other dependent variable must also be specified.

When the simultaneous flow of immiscible fluids is considered there are
two dependent variables to he obtained simultaneously. Hence boundary
conditions on both must be given as well as initial conditions,

'The mathematical form of such boundary and initial conditions for
various physical conditions are deseribed here.

The Closed Boundary. Since at a closed boundary the fluid velocity
normal to the boundary is zero, Darcy's law gives

a
U = fof = _Ke VY i = _Ke o =0 (3-98)
i u al,
or simply
0
LA X

Here 7 is & unit veetor normal to the boundary and I, is distance measured
parallel to #. This must be modified for anisotropic media.

Fluid Entry or Exit. On any section of boundary across which fluid
enters or leaves the porous medium several different conditions may ob-
tain. For a homogeneous fluid, entry or exit may be from or into a reservoir

maintained st uniform pressure (or more generally at uniforin potential, .

* I'ie neeessary boundary and initial conditions are, of course, determinable by
the method of characteristics; however, for the simpler cases at least, physical rea-
soning is adequate,
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¥). In this case, the boundary condition is simply, either

plxy, 2y, 21, 1} = constant (3-100)
or

¥l , &y, 2., 1) = constant (3-101)

as the case may be. 8till more generally, the pressure or potential may be
a specified function of time and position on the boundary.
The boundary condition most often applying to boundaries scross which

flow occurs is the specification of the veloeity normal to the boundary.
Thus, most often

Ko o

Y, =
" u Oy

is & specified function of position and time on the boundary.

Discontinuity in the Porous Medium, Very frecquently flow problans
must be considered in which a discontinuity in the permeubility of the
medium exists. The proper boundary conditions at such a boundary are
arrived at from physical considerations. Suppose, for example, that the
domain of flow is composed of two regions, 1 and 2, having different per-
meabilities, K and K, . Then, in the case of a homogeneous fluid, for exam-
ple, the mathematical problem is that of finding two functions, py(21, 2.,
3, t) applying in region 1 and pp(a,, 25, 5, ) applying in region 2. Ob-
viously, since only one value of pressure may obtain at any point, one
requirement, is

pL= (3-102)

on the boundary.
Also since what enters the boundary from one side must come out on the

other side, the velocities normal to the boundary must be equal on the two
sides

K, K o )
Lid p =2 o (on the boundary) {3-103)
u ol u ol

Here y; and ¢, are the flow potentials in the two regions, p is the fluid density
at the pressure existing at the boundary and {, is distance measured normal
to the boundary.

Simultaneous Flow of Immiscible Fluids. Consideration of boundary
conditions applying to the simultaneous flow of immiscible fluids is deferred
to those sections in which particular problems are considered.
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EXERCISES

1. A vertical column of sandstone with lateral surface sealed is filled with dilute salt
water; permeable electrodes are placed over the ends, Write the equation for the
electrical potential difference between electrodes which will prevent the water
from draining (rom the column.

2. Show that a discontinuity in flow potential, ¢ or ¢/, always exists at a flnid-floid
interface separating regions of a porous medium containing different fluids.

3. Show that a discontinuity in the direction of Aluid flow exists at a discontinuity
in permeability, unless flow is everywhere normal to the discontinuity in medivm.

4. Show that if the porous medium is itself compressible, the equation of continuity
for mass flow has the form

6} 7
~V-pD) 4 O = ¢ (1 - 5*) 4
cJ ol
where ¢, = ~—¢~! d¢/dp is the pore compressibility and ¢ is the compressibility of
the fluid.
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4.10: The Steady-State Regime

'The steady-state flow regime is characterized by invariance with time
of all physical variables. Thus in the steady state the distributions of
pressure and fluid velocity are independent of time.

The continuity equation redaces to ‘

V- (o) = 0 @1)

for steady flow, since all partial derivatives with regpect to time are zoro,
Special cases of such steady flow are treated in this chapter,

Techniques for the solution of problems of steady flow of homogencous
fluids are rather well developed and many solutions of such problems are to
be found in the literature. Consequently, no attempt is made here to
present a complete survey of problem types or methods of solution. The
basic formulation of such problems is given and some of the most useful
analytical tools for solution of problems are described. A few examples are
given here and some additional examples are to be found in Chapter 7.

4.20: Linear Flow and the Measurement of Permeability

For linear, horizontal flow of a homogeneous incompressible fluid through
an isotropic porous medium the combination of Darey’s law and the equa-
tion of continuity yields the differential equation

2 (K a_p) =0 (4-2)
ar ax

Here the fluid viscosity, considered as constant, has been eliminated.

In general the permeability, K, may be a function of position. If the
sample of porous medium is in the form of & long thin eylinder, then at any
cross section the permeability can be considered uniform. Then K and
hence p are functions of z only.

Integrating once with respect to z yields

a
QL conefant (4-3)
dx

Then multiplying by — A /u, where A is the cross-sectional arca, yiolds by
Daroy’s law

77
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KA
—-:*%*: = o = conatant (4-4)

where ¢ is the volumetric flow rate. Now rearranging gives

dp _ g 1
—d e R 4-5
dr A K{x) @8
and integration yields
L [T de }
p0) — plz) = L K@ (4-6)

I then the length of the sample is Z, and
Ap = pl) — p(L) (4-7)
the above result can be written ag

K A
gm =g = (4.8)
u L
where

1% de
F=1), kG @9
The quantity K is the harmonic mean permeability.

This shows that the permeability actually measured in a linear flow ex-
periment is the harmonic mean pirmeability. If the sample is homogeneous,
then & becomes simply the homogeneous permeability K.

IF & gas is employed in the measurement of permeability, then aceount
must be taken of both compressibility and gas-slip. For linear flow of an
ideal gas the flow equation becomes

a K oap ap
—|l—p=)=9¢= 4-30
ax (# P 6:1:) *a (=10

In the steady state the pressures are stationary and independent of time,
so that

-= =0, (411
Now the Klinkenberg equation relates K and p, thus
K=K, (1+ E) (4-12)

where Ko is Lo be considered a funetion of &, The equation of flow is then
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4 [K.,p (1 + P) d—p] =0 (4-13)
dx P/ ax )

where again u is considered as invarinnt and hence could be eliminated.
This equation can be integrated once immediately, thus

by o
K. p (1 + - ) L constant = g {(4-14)
pl dz

Rearranging then gives

(»+ ) 5’3 - Kj(xi (4-15)
and then integration yields
L0) — L+ BIp(0) — (D] = a / b (10
2 s K@
ar
R P (1 + 7—3) %’ =a (4-17)
Here
P = 30O + p(L)] (4-18)
Ap = p{0) — p(L) -1
and
v
}%; - I}[ﬂ Ej‘?;) (420
Thus, from Darey’s law
a= ij%ﬁ (4-21)

where ¢ is the volume flow rate at the mean pressure § and 4 is the eross-
sectional area. So again a harmonic mean value is obtained, this time for
K., however.

A fault of the above treatment lies in considering the constant b as
independent of . Strictly speaking, in most naturally porous materials not,
ouly K, but b also is a function of position.

The two cases of linear flow considered above point up an important
consideration in permeability measurements, In naturally porous malerials,
the permeability js a random function of the space coordinale and henee
very short speeimen presents a stutistically poor sample, On the other
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hand, long samples are difficult to handle as well as to prepare. Conse-
quently, the best solution to good measurement of a mean value is to

compute the harmonic mesan of many measured permeabilities on short
samples.

4.30: Horizontal Plane Flow in Homogeneous Media;
Mathematical Formulation

Here a horizontal stratum of a uniform porous medium is eonsidered.
It is assumed that both the upper and lower boundaries are impermeable.
It is also assumed that the boundary conditions on other boundaries are
such that no vertical flow occurs.

If, in addition, the vertical axis is a principal axis of permeability, then
the condition of no vertical flow is by Darey’s law

w= S _, (4-22)
u dr
whore
»
o f (-i—l) + gxz {4-23)
po P

as defined in section 3.31. Thus ¢ is a function of the coordinates x; and x,
only. However, both p and p will depend on the vertical coordinate z; .
Thus from equation (4-23) above

&
dxz

Under these conditions the horizontal components of velocity are by
Darcy’s law

(4-25)

and

Ky oy Kzap
g o= wmo— g Im e —— —

4.26)
® Pa:r,: [T (

Then the continuity equation becomes

a (Ki ap 8 (K ap) .
A g 4 S (i £ 4 | 4.97
axl(yp6$1)+axz(p pﬂi‘«g ¢ )
Two general cases ean be considered, either the fluid is a liguid or a gas.
If the fluid is a gas, then the Klinkenberg effect must be taken into account
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but gravity effects can be neglected. Thus, for an ideal gas of molecular
weight, M, equation (4-24) beécomes

§%==-—%¥p (4-98)
for isothermal conditions. Hence
PiT, 22, g) = plzi, 2o, 0o (MelRTIz, (4-29)
and since Mg/RT is small, it follows that for values of z; not too great
P, T2, %) = pla, 22, 0) (4-30)

This shows that for gases gravity can be neglected. Thus, g is put equal
to zero for gases, but the Klinkenberg effect must be taken into aceount.
This is done by assuming

Ry = K, (1 + b), K = K, (1+ E)) (4-31)
P P

Strictly spenking, the eonstant b may not have exaetly the sane value
along hoth principal axes but the error thus introduced is far outweighed by
the mathematical simplification obtained. With this assumption and the
density expressed in terms of the pressure, the equation of flow becomes

a M ap a[ M ap
— 1 - i o ] a9
Kia om [RT,u (b + & aa:l:l + K dxp [RT;.: (p+ ) ax;e:I 0 4-32)

This can be reduced to a much simpler form by defining o funetion U(p)
as

r
U(p) = 1Y KKy f (0 + 0 dp = TV KK plp +2) ) o,
wRT [, uRT 2
Then equation (4-32) ean be written as
2
U KU st

ar® Ky, dud

where y is considered constant. Or defining the new rectangular coordinates

T =4, y=I Ky (4-35)
K,
this can be written as
*U  *U .

which is Laplace's equation for U(z, y).
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I the cuse of liguids, compressibility effects are usually negligible but
gravity effeets may be significant, Thus p is taken as constant and gquation
(4-21) yields

)
plae, 2, ) = plr, o2, 0) - pgy (4-37)
for lucompressible liguids. Thus, a simple linear transformation exists
between the pressure distributions in parallel horizontal planes.
For this case, the equation of flow can be written as

KpZp K itp

piel - =) 4-38
woarn? B Oyt ¢ )
or, in the z, y coordinates (equation 4-35)
9% | ap c
Gt =0 (4-39)

But p is » function of 3 as well as 2 and y. For this reason, it is best to
introduce the function

VE K,
U= T=22 o pgide {4-40)
4 ,
which, in view of equation (4-37), is independent of z, . Thus
»U’ i IN
= = (4-41)
a2 it

Henee for the stendy horizontal flow of either an ideal isothermal gas or
an incompressible liquid, there exists & potential function satisfying La-
plice’s equation in the @, y coordinate system. I is to be noted that, if the
medinn is isotropic as well as homogeneous then the coordinates x and y
are identieal with the nietrie coordinates o wd &y, respectively.

Minee aowenkth of mathematical teehniques exist for the selution of
Laspluee’s equidion in Two ditsensions, the formulntion of stendy Torigontad
How given here s most uselul, These mathematicnl techuiques ave ro im-
portant that o few of the more useful ones are described in the following
seelions, 1'or a more complete treatment of mathematiend mothods, the
reader is referred to treatises on heat conduetion or potential theory.

4.31: The Stream Function and Complex Potential

Many problems of steady horizontal flow are most easily treated in
terms of another funetion satisfying Laplace’s equation. This function is
alled the stream function.,

‘The stream function is intimately related to the potential funetion U, or
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{7, diseussed in the previous section, The nature of this relation and s
physical meaning of the stream funection are established as follows.
Writing the V-operator in the x-y coordinate system as

v

i
-
|
-
—

2 — 1-42}
ax Y oy (

the differential equation for steady horizontsl flow is (from scetion 4-30)

Vvl o= 0 (4-44)

Here {7 15 to be vonsidered as the funetion defined by equation (1-33), or
equation (4-40), or some generalization thereof corresponding to a ditferent
equation of state. In any event, U is to be defined so that

alt
—_h —
dax Y

represents rate of mass Aow through the vertical strip of aren Adr, in the 2,
direction and similarly
|
—h il dx
ay i
]
represents the rate of mass flow through the vertical strip of area hde; in
the &, direction.
In the case of the functions 7 and U7 defined in the previous seetion,
this condition is fulfilled,
Now an identity from vector caleulus is

vOXTVT)y=0 {4.44)

where Vs any veetor funetlon, Thus, in view of equndion (4-43} above,
and the faet that only two dimensions are to be considered

VI e v % P o1y
and
Vo= 1V i, ) 46}
This yvields the equations
sl _ov
ar ay
(4-47)
su_ _av
ay Az

Al » . . . . . 1
These equations are identical with the Cauchy-Riemann equstions of
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complex variable theory. This shows not anly that a function V (x, v) exists
but also that the analytic function Z{z) of the complex variable

z=x+1dy, {=+/~1) (4-48)
defined by ' '
) = Ulx, ) + iVix, ) (4-40)

exists,

To see that Vir, y) also satisfles Laplace’s equation differentiate the
first of equations (4-47) with respect to y, the second with respect to x and
subtract the second result from the first. There results

&V PV
o + :3;; =10 {4-50)

Furthermore, in view of this result and Laplace’s equation for I/, it

follows that

#Z  PZ

P + 3‘;; =0 (4-51)

and the complex potential satisfies Leplace’s equation.

The physical meaning of the stream function, V{x, y}, follows from equa-
tions (4-47) and the properties of the fow potential Ulwx, 3). Thus, the
mass rate of flow through the vertical strip of area hdxs in the — =, direction
is given by

h— d
ay Y

and the rate through the strip fidr, in the z, direction is given by
h— dx.
az

Constder the element of displacement,
al = fde + 1, dy,

in the z, y plane as shown in Figure 4-1. Since mass 18 conserved, it follows
that for steady flow

Vil

is the rate of mass flow through the strip of area

h dﬂh’ + (l:l:az
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"

dx2 —~—— mass rate

dX]

T moss rate
av

w—d
ax x

Tigure 4-1. Geametry for interpretation of the stream function.

That is, across the line clemont
A= o dey 4 1a des

as indicated in the figure.

This formulation of steady-plane flow shows that the field of flow can be
deseribed by two familics of curves in the «, y plane, the two scls being
orthogonal. The family of curves V(x, ) = constanl is everywhere parallel
to the direction of fluid flow, while the family U(r, 1) = constant is overy-
where perpendicular to the direction of flow. Note that these two families
sre not orthogonal in the xyz, plane unless the medium is otropic.

It also follows from this formulation that every analytic function of the
complex variable z = 2 + 4y represents the solution of a problem of steady-
plane flow. The utility of this fact is illustrated by the examples presented
in following sections.

In applying this formulation to flow problems the distinetion between the
x, y and 7, 2, planes must be borne in mind if the medium is anisofropic.
In the @, y plane the lines of flow and the iso-potentials are always orthog-
onal but in the @, %, plane this will be the ease only if the medium is iso-
tropic. Furthermore, the transformation of houndary contours must he
noted. In general, a circle in one plane is an ¢llipse in the other and vice
versa. Similar remarks apply to other geomctrical figures.

The proper procedure is to set, up and solve the problem in the z, y plane
and then to transform the results to the 2, , 2, plane

It is to be observed that the solution of a problem of flow in an isotropie
medium is also the solution of a problem of flow in an anisotropis medium
of different geometry,
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1.32: Radial Flow between Coneentrie Circular Cylinders

This problem illustrates the application of the mathematical formula-
Hons given in seetions 4-30 and 4-31,

Frequently, the steady flow of oil into o well from the surrounding
porous rock is represented as plane radial flow between concentric eireulur
bounduwies. The medium i considered isotropic. The interior circle repre-
aents the wall of the bore hole and the outer virele represents a bountdary
of cunstant potential called the “drainage radius.”

A flow problen: of this type can be formulated in several different ways.

Thus, one may write Laplaee’s eguation for the potential {/ in plane polar
coordinates

. ¥3 T a1 .
o (?‘ (""t“/) T e CR

Tar\ ar O B 13 = tan! y/z

and solve for (4 Here it is observed thut the symmetry of the problem,
radial flow, reguires thut 7 be independent of ¢ and hence

|
ta ( _@__U) 0 (4.53)
roor ar

i= the eguation to be solved,
Lastead, one muy write Laplaen’s equation for Voin polar coordinales

] av 1 gV
LA C e = 4-54)
roar (r :'ir) + g (

and observe that the flow lines, lines of constant V, must he a family of
stradght lnes rdiating from the ovigin, Hence V must be independent, of r
awd the equation to be solved ig

rv

= (} 4-55)
pon (

T liea of either of these, one may write the complex variable z = » + iy
in polar form as
2 = e (4-56)
and consider the complex polential
Z(re®y = Ulr, 8) -+ iV (r, §) (4-57)

Sinee the flow is radial, the lines of constant ¢ must be eireles about the
origin and the lines of constant V must, be a radial tamily of straight lines.
Thus

Z(re'®) = ) 4+ 1V (8) (4-58)
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The simplest funetion Z(z) yielding such a separation is
Z=Alnz-+ B =41 (rey + B 454

Thus, tentative solutions for U and ¥ are

U=Alr4b (4£-60)
and
V= d¢ + v’ (4-61)
Here
5= b 4 4b (1.62)

The houndary conditions to be employed for Ufr} are

{U(-"w) = Uw

(4-63)
Ulr) = U,

Here r,, is the weli radius and 7, 1s the drainage radius. Using these to evalu-
ate A and b yields
i, -, : .
U=l lwy Do (464)
o rry I
The Loundary conditions on V(8 follow from the fuet that the total
mass flow into the well must pass Urough an are between 8 = 0and 8 == 2x.
Thus

Vioy=o0

Ven = —’1‘;@‘3 (4-65)
L

are the houndary conditions on V(8). Here p, and g, are the fluid density
and volume flow rate at the well und & is the thickness of the siratum. Note
that flow dnto the well Is negative, These, when used to evaluate A and i,
yield

Putf

R
Ik ¢

Furthermore, since the constant 4 was evaluated by two different pro-

cedures and the result must be the snme

v, — 1/, .
—Pulfe = 2irh lm]]“f_-}_f_ (1571

The solutions for U and 7 thus obtained eould have been obtained
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separately from the first procedures indicated. Also this Jast result, equa-
tion (4-67), could have been obtained directly from the solution 4-64 and

Darcy’s law, i.e.
2 y
ol
Pow = h f Yo (-—a;) dﬂ (4768)
M) Fmry

Observe that for steady radial flow the mass flow rate is the same across
all concentric circular evlinders.

4.33: Conformal Mapping

One of the most useful mathematical tools for the solution of steady-
plane flow probiems is conformal mapping of the complex plane, T'o under-
stand the basis for this method of solution the properties of the complex po-
tentinl, Z(2), are considered.

The coroplex potential

Z(z) = U, yi + 4V (s, o) (4-69)

generates the two families of curves, U(x, y) = constant and V{z, y) =
eonstant, These sets of curves are orthogonal. Thus, in any infinitesimal
region about a point 2 in the z plane a small rectangle can be consiructed
having curves I7 = constant as two parallel sides and curves V' = ronstant
as the other two parallel sides.

If a transformation of eoordinates, from x, ¥ to u, v is introduced, then
one must consider the form which such an infinttesimal rectangle assumes
i the w = » 4+ 9o plane. If thiz small rectangle in the z plane also has a
rectangular form in the w plane the transformation is said to be conformal.
With respect to such transformations, the following theorem ean be proved.?

“At cach point where o function f(2) is analytic and df/dz = 0, the
HMapping

w = f(z) (4-70)

is conformal.” TFor example, the transformation

w=1Inz {4-71)
1= conformal, Thus
nok ty o= I orett wm In oy 4 4@ (1-72)
or
w o= In (22 4 y)us ‘
{u ) tan(_l ;;xy) (4.73)

i= & conformal transformation,

www.petroman.ir

B

s st O i e e


www.petroman.ir
www.petroman.ir

¢ PETROMANR

STEADY LAMINAR FLOW OF HOMOGENEOUN FLUIDS ]

Another important property of conformal transformations is thai such
transformations preserve the form of Laplace’s equation, Thus suppose that
Uz, y) is a solution of

#U @U

- i) . <74
azt F a? ) 7

and a conformal transformation is invoked

z = flw), {“ = =lww) (4.75)
¥ = wliw

Then when Uz, ¥) is expressed in terms of w and », Ulz(w, »), u(w, )],
it can be shown that
FU 6"2 -~

P (*-76)
also. This can be stated in the form of a theorem as:? “Ivery harmonic
iunction of = and y transforms info a harmonic function of # and v under
the change of variables £ 4 4y = f{u + @) where [ is an analytic function.”
A harmonic {unction js a function satisfying Laplace’s equation in the
plane.

The manner in which these properties of conformal fransformatinns,
or mappings, facilitate the solution of fluid-flow problems is illustrated
by several exarmples in later sections. The following example is designed
to show how these techniques are applied.

Consider the problem of plane radial flow treated in the previous seetion.
One can write the equation to be solved as

el PU

E + 5—;; =0, r2 <at+ P <rd (4-77)

with the boundary conditions

= % A o=t
{U Up on a2+ ¢f =r (478)

U=U, on 24 ¢ =17/

In the # = z + 4y plane the region of flow is bounded by fwo eomeentrip
circles szhout the origin. Observe the mapping of this region under the
logarithmie transformation given by equation (4-71) or {(4-73). This is
illustrated in Figure 4-2.

The region of flow in the w plane is & rectangle and the equation to be
solved is equation (4-76). The solution of the flow problem in this plane
can be written down immediately since the flow regime is obviously just
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z pline w plane
¥ v
umlnry
k_xh-,‘-az vaty
U=y, o /-(//' e
Wk //A

X g v

L vning,

x2+y2ur3’ U'Uu
Uul,
walnZ

Figure 4-2. Mlustrating the mapping of a radial flow geometry into a linear form.

linear flow. Thus
U= 4 4 By (4-79}

where 4 and B are constants, Employing the boundary conditions

U=U, on uwe=lInr, (4.80)
U=U, on u=1Inr,
there results
U= Uy (U, — U ~2TA0 481
Inr, — ln+r,
But {from (4-73) this ig
U= U+ U, — U, n V#E F (4-82)

Inr./ry Tw

which is the solution of the problem in terms of z and y.

The procedure employed above is quite general. One simply constructs
a conformal mapping w = f(z) which maps the region of flow into some
simple geometric form for which the solution is known, and then expresses
this solution in terms of the original varisbles. The construction of the
proper transtormation is sometimes difficult, however, and there is no
substitute for experience in such problems,

Observe that while the gross geometry of the above problem is radically
altered by the transformation the microscopic features are preserved, T hus,
in the original domain the curves U = constant are circles orthogonal to
the lines V' = constant, while in the transformed domain these ‘same
curves are the straight lines ¥/ = constant whieh are orthogomal to the
lines V' = constant.
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4.34: The Schwarz-Christoffel Transformation; Conformal Mapping
of a Rectangle

In the previous section the utility of conformal mapping in the solution
of problems of steady plane flow was pointed out. However, the discovery -
of the proper mapping function for a given problem is not at all straight-
forward. Fortunately, there exists a procedure for constructing & mapping
function which transforms the interior of a polygon in the 2 plane into the
upper half of the w plane, the boundary of the polygon becomes the real
axis in the w plane. This transformation is the Schwarz-Chrisioffel trans-
formation. ’

Thus, suppose that the region of flow in the 2 plane is some figure bounded
by straight-line segments, some of which are iso-potentials, others are
slrearnlines. By applying the Schwarz-Christoffel transformation, this
region is mapped into the upper half of the w plane. Now another Schwarz-
Christoffel transformation is eonsiructed which tales o rodangle from the
n plane, say, into the w plane. The inverse of this transformation then tukes
the region of flow from the w plane to the interior of a rectangle in the g
plane. Usually, this can be accomplished so that two parallel sides of the
rectangle are strearnlines and the other two sides are isopotentials. Thus,
in this domain, linear flow obtains and the solution can be written down
immediately.

Without digressing into the mathematical details of the formulation of
the Schwarz-Christoffel transformation, a deseription of this transformation
will be given.

Consider a polygon A BC'D in the 2 plane having external angles «, 8, v, &
ag indicated in Figure 4-3. Note that

a+B+v+8=2r 4-83)

The interior of this polygon is to be mapped on the upper half of the w
plane by

w = fiz) {4-84)
the boundary of the polygon going onto the real axis, u. Thus, the vertices,
A, B, (', D map into the points w = a, b, ¢, d on the real axis as indicaied
in Figure 4-3. The transformation which accomplishes this must satisfy
the equation

Q

" AQw — @)~y — p)~EMw — g)-bini(y — 4)-0mn {4-85}

Here the constant 4, which may be complex, determines the size and orien-
tation of the polygon in the 2 plane.
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f\\\\\&\\

z plana w plans

Figure 4-3. Mapping of a polygon on the upper half of the complex plane.

In general, equation (4-85) will have as many factors on the right, ex-
tlusive of the constant 4, as there are vertices in the polygon. The excep-
tion ocours when s vertex is mapped into w = =teo, In this case, the factor
corresponding to this vertex will be omitted.

Equation (4-85) leads to rather complieated integrals for most cases of
interest. Since the rectangle is the most useful case, it will be deseribed in
some detail.

To construet the Schwarz-Christoffel transformation for the rectangle we
begin in the w plane. Let the images of two vertices, B, C, be located at
w = —1and w = 1, and the other twoat —1/x and 1/, respectively. For
the rectangle, the external angles all have the value #/2, so equation (4-85)
takes the form

dz Ax
& 86
diw (1 — wf) (] — )i {4-86)
Then il the origin in the 2 plane coincides with w = 0, this yields
= fv dw
=4 4-87
¢ /; (1 — wBRa{] — i (4-87)

where A« is replaced by A. But since 4 now only affects the scale in the z
plane, it will be put equal to unity, thus

== fo - w’)”:i(ﬁJ = e “58)
Evaluating this integral for w = 1 yields
z(w = 1) = K(x) (4-89)
and for w = —1 it yields I
2w = —1) = ~K(x) (4-90)
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Figure 44, Schwarz-Christoffel mapping of the rectangle.

where K(x) is the complete elliptic integral of the first kind with modulus «.
Numerical tables of K(«) are available®, This shows that the width of the
rectangle in the z plane is 2K («).

Similarly, it can be shown that forw = 1/«

2w = 1/6) = K{} + tK{*) (4-91)
and similarly for w = —1/x
z{w = —1/x) = —K{(x) + iK (") (4-92)
where
k* = (1 — W31 {4-93)

is the complementary modulus. Thus the rectangle in the z plane has height
equal 1o K{«*) as indicated in ¥igure 4-4.

In view of the availability of tables of complete clliptic integrals, these
expressions for the width and height of the rectangle are very useful, but
for interiar points in the rectangle, equation (4-88) represents an elliptic
function and is rather difficult to employ. IEven so, this transformation is
extremely useful as is shown in the following section.

For a more complete discussion of conformal mapping and the Schwarz-
Christoffel transformation, the reader may refer to Gibbs? or Churchill!

4.40: Transverse Permeabilities of Cylindrical Cores

The problem freated here is one of practical importance in the petroleum
industry and is presented to illustrate the utility of conformal mapping,
In particular, the Sehwarz-Christoffel transformation for the rectangle is
employed.

Cores, or samples of reservoir rocks, are obtained from oil wells during
drilling in the form of right eircular cylinders with axis generally per-
pendicular to the bedding planes of the roeks.
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Figare 4-5, Plan view of transverse permeability apparatus,

Usually, the permenbility of o sedimentary roek is not the same paralle]
and perpendicular 1o the bedding planey. Since the flow of oil to the well
bore is generally parullel to the bedding planes, it is the permeability in
this direction which is of most importance,

Thus, one may cut small cireular plugs transverse to the axis of the
tore sample and measure the permeabilities of these plugs by linear-fow
experiments, or one may attempt to employ a long section of the core itself
and employ transverse flow. In the oil industry, the first course is usually
followed hut frequently the second course is called for. Thus, if the rock
is & vugular limestone, small plugs are far from representative of the core,

An arrangement for producing transverse Aow through a right cireular
cylinder of porous rock having plane ends is as follows, Rows of smallt eoil
springs are placed very close together in two groups parallel to the axis of
the eylinder and vunning the full length of the eylinder. This is shown in the
plan view in Figure 4-5.

Fitted around the eylinder and the groups of coil springs is a rubber
sleeve. Thick cireular disks of rubber are placed on the ends of the eylinder
in the sleeve. The whole is then mounted within a large metal eylinder and
serew plugs fitted into the ends so as to compress the rubber disks against
the core, thus achieving an end seal.

Conneeted o the rubber sleeve at the center over each group of coil
springs 18 a rigid tube leading through a seal out of the metal eylinder.
The fluid to be used in the flow experiment enters the core through one of
these and leaves through the other.

The anmular space between the rubber sleeve and the metal cylinder is
pressured up with eompressed air to a pressure considerably in excess of
the pressure in the core. This seals the rubber sleeve to the core thus pre-
venting bypass flow arcund the core.

With this arrangement steady-plane flow of a gas transverse to the axis
of the core ean be achieved. For such flow, we have from section 4.30
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L

*#u  FU
o i 0 (4-64)
with the boundary conditions shown in Figure 4-6. Here only one-half of
the eircle is considered because of the symmetry in the flow geometry.
The diameter eonnecting the midpoints of the entrance and exit sections
is a streamline. This symmeiry condition constitutes the basis for the
boundary conditions in the figure. Note that since there is no flow across
any streamline, i streamline is equivalent to a sealed boundary and hence
the derivative of 7 normal to the streamlive (or boundary) is zero,
To obtain the solution to this houndary-value problem, we first apply
the conformal transformation
wm —ilnk (4-95)
B
where R is the radius of the core. This yields the region of flow as a semi-
infinite strip in the w plane as shown in Figure 4-7. Then we apply a second
conformal mapping

w = {4-96)

which transforms the region of flow to the whole upper half of the w0’ plane.
This is shown in Figure 4-8. Here

« = sin (’; - a) = cos a {4-97)

z plane

Figure 4-6. Boundary conditions for the transverse permeability problem.
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Figure 4-7. First mapping of the tranaverse permeability problem.

w' plane
Figure 4-8. Second mapping of the transverse permeability problem.

We can now apply the Schwarz-Christoffel transformation. In the previ-
ous section, it was shown that a rectangle of width 2K («) and height K(x*}
maps on the upper half of the image plane with the vertices going into the
points —& %, ~1, +1, +«*. Thus the inverse of the transformation

e

' v dat
v ,,; (1 — (U1 — SR (4-98)

transforms our domain of flow from the upper half of the w' plane into the
rectangle in the w” plane as shown in Figure 4-9. Here K’ denotes Kis*).
Now we can write the equation for the flow rate through the core in terms
of the geometry and fow-potential difference.
Letting the length of the core be L, the mass flow rate be m and noting
that only one-half of this flow passes through the domain employed, we have
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Figure 4-9. Final mapping of the transverse permeability problem.
Kﬂ
o= 2, —— — U 99

In particular, since an ideal gas is used and the Klinkenberg effect must be
considered, I/ is represented by equation (4-33) of section 4.30. However,
the core is considered isotropic in the plane, so Kiew = K = K. Also we
can write i as

t - (4-100)

™= R P :
where p1 is upstream pressure {entry) and g; is the volumetrie flow rate of
gas messured at this pressure. Thus

K, K’
nmi - T L (K—) Ipeps + 28} — palps + 20)] (4-10%)
or
K .
K, = ”‘9""b (E) (4-102)
25L |1+ =) 4ap
where
1
7= é(Pl + ) (4-103)
and
,ﬁp = P — Py . (4-104)
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Figure 4-10. Geometric factor versus one-hali angular opening for transverse per-
meability ealeulation.

Tables of elliptic integrals have been employed to plot the geometric
factor K/K’ versus a. This is shown in Figure 4-10. Note that for an angular
opening of #/2 for entry and exit, this factor is unity, )

Thus, the technigue of conformal Inapping has yvielded a formula for

computing the transverse permeability of a eircular core from measurable
quantities,

4.50: Sources and Sinks

Quite frequently in problems of steady flow, the fluid is introduced into
the porous medium over a very small region, or the fluid leaves the region
of flow through such a small region. For example, in the waterflood technique
of secondury recovery employed in the petroleum industry water is injected
into the plane horizontal oil stratum at selected wells and oil and water
are produced at other wells. From the standpoint of plane horizontal flow,
the injection wells are circular sources of small radius, and the production
wells are cireular sinks of small radius,

In many problems of steady flow such sources and sinks can be treated
a8 mathematical points. The distribution of flow potential due to such a
source is deduced as follows,
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We first consider steady incompressible flow in an infinite three-dimen-
sional region and assume 4 flow potential ' to exist,
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§ow - Gy {1.105)
M

is the volume flux density, and

az! I ’
AN

= 4-106
drd  duf i 0 (4-106)

Further, it is assumed that at the point @, b, ¢ fluid is introduced at a
volumetric rate g. Since the flow has spherical symmetry about this point,
the spherical coordinates

re= (o — @)t + (m — B + (2 — )2

— ¢
. (4-107}

z
§ = cost X

I — 4a

o = cos™! -
Ty BIN &
are introduced.
Due to the spherical symmetry 4/ is a function of r, only and Laplace’s
equation is

1o [ o
T4 Ora _T" a'r.] =90 (4-168)
A solution of this equation is
V= A + B (4-10%)

Ta

For this solution, the volume flux density is
; K4

{ =
¥ “le

(4-110}

where i, is a unit vector in the r, direction. Then, since the totul rate of flow
through any spherical surface about the souree point is g, it follows that:*

K.
q = fr’u df = 4y K4 (4-111)
&

or

* Here df denotes the element of solid angle.
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qu '
L 4112
A=K w2

Thus, taking as a second-boundary condition

lim ¢ = ¢,/ = constant (4-113)
s
we havo
gu 1 ;
! = e 4-11
¥ K + ¥ {4-114)

as the representation of a point source,

It should be noted that this solution also represents the potential dis-
tribution for a spherical source of any radius. Consequently, the point source
can be considered as a limiting case of the spherical source. Also observe
that if the point a, b, ¢ is a sink then ¢ is simply a negative quantity.

The property which makes point sources of such great utility in the solu-
tion of fluid-flow problems is that these solutions of the flow equation are
subject to a superposition principle. This is shown as follows.

Consider two-point sources of strengths ¢ and ¢ located at points a, b, ¢
and o', ¥, ¢, respectively. If only the source ¢ is present, the potential
distribution is given by

o= T o — @ a0 (o — o g (4-115)
4nK ;

while if only ¢ is present a similar expression applies with ¢, a, b and ¢ re-
placed by ¢, o', & and ¢/, respectively. We now show that, if both point
sourees are present, the potential distribution is given by

¥ = 4_:"_% [{zy ~ @)t 4+ (o — B2 4 {2y — o)A
' {4-116)
+ pr_ ee — @ + (ra — 002+ (25 — P12 g !
=K

When this is substituted into equation (4-106) it is found that the differ-
ential equation for ¢’ is satisfied. Also it is noted that the boundary condi-
tion at infinity, equation (4-113), is satisfied.

That this solution represents the two-point sources is verified by first
writing equation (4-116) in the form

+
Vo= ot @~ 2 d oon g SE 1

K Wk TW @D

where d is the distance between the two-point sources, and v is the angle
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Figure 4-11, Geometry of two-point sources,

indicated in Figure 4-11. Then the flux out from the point source ¢ is
given by
E¥ ¢ —008 (0 + ) q
B oory e [ri2 4 d? — 2r/ dcoay] ' dnrl?

(4-118)

Now if this is integrated over the surface of a small sphere of radius 7,/
about the souree ¢', the total flux will be obtained. However, if

T <& d (4-119)
then equation (4-118) can be approximated by

Ko g (ZZeosy) g

4-120
& ar, 4w of dxr} ¢ : J

Then integration over the small sphere of radius r, yields

}
y = j’ K (f;\‘f) da RRTE)
i T, ‘4

where da i# the element of area on the sphere. The approximation for small
7, need not be employed in order to obtain this result but it. simplifies the
integration. Thus the solution represented by equation (4-116) vields the
proper flow rate for the point source. A similar ealeulation vields a cor-
responding expression for the other point source.

This shows that the contribulions of the point sources to the potential
distribution are additive. Hence the potential distribution corresponding to
any number of point sources can be written simply as a sum of terms of the
form corresponding to a single-point source.

"In two-dimensional flow the potential is a function of z and z. only.
IPor this case, a point source in the plane is a line souree in three dimensions
that is normal to the plane of flow.

The line source can be obtained as a superposition of point sources or by
a direct procedure as follows.

Suppose fluid to be introduced at a constant rate g/ per unit length
along a vertical line located at a, b in the horizontal z,, z; plane. The
potential ¢’ must satisfy Laplace’s equation in 2;, 2. if the medium is
isotropie.
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Au elewentary solution of Laplace’s etjuation in z; and 2, is
¢ = Al (e — ¥+ (4 — B)IPI f (4-122}
This potential distribution yields the proper flow rate from the line if

qu
EE e nees .
2rih

A

{4-123)

Thus

¢ = 45—1’;—;‘ In (@ — @2 + (z — B + ¢ (4-124)
represents an isolated point sink in the plane except for the arbitrary con-
stant e. This funetion is unbounded as 2, or 1, approaches infinity and henece
docs not represent a physically realizable potential distributior. Even 50,
this does adequately represent a realistic distribution of velocity in the
neighborhood of o well,

Note that both the three-dimensional point source and the plane point
source are represented by funetions which are singular at the source. That
i5, the potential function is infinite at the source. It is just this property
which permits the superposition of such sources because the flow distribu-
tion at the source is unaffected by other sources,

In the foregoing considerations an isotropic medium was assumed. This
is not necessury. The same type of analysis ean be carried out for the aniso-
tropic case. Thus, for example, a plane point source in an anisotropic me-
dium is represented by

p o= — |, [(xl e B, b)ﬂ] + ¢ (4-125)

i KK, Ky
where it is assumed that the coordinate axes coincide with the principal
axes of permeability,

Also note that it is not necessary that the fluid be incompressible in order
to construet a point sink. I'or example, in steady plane flow the potential U,
equution (4-33), may be employed and a point source constructed for the
flow of an ideal gas. Point sources can be defined also for the transient flow
of homogencous compressible fluids.

4.51: System of Wells Near a Plane Discontinuity in Medium: The
Method of Images

The superposition principle for point sources offers a method of solution
to problems involving sources in inhomogeneous media. The problem of &
systen: of oil wells in a plane horizontal stratum composed of two regions of
different permeability meeting at a vertical plane can be solved.
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To solve a problem of this type the method of images is employed. This
procedure is formulated here for puint sources in the plane but the method
is quite general and can be formulated for point sources in three dimensions
equally well.

We eonsider a horizontal isotropie stratum of uniform thickness and infi-
nite in areal extent, This stratuni is eomposed of twu purts separated by o
vertical plane, oue part having permeability K, and the other having
permeability K, .

The stratum is supposed filled with an incompressible fluid of density p
and viscosity . A well, here to be represented by a point source, is supposed
located in mediam (a) at & distance d from the discontinuity.

The mathematical problem to be solved can be formulated by tuking the
origin of coordinates at a point on the discontinuity, the sarfuce of dis-
continuity coinciding with the x; axis. Thus

0%, 3k,
*"l‘{’ = _Ilb,j = (), <0
63'12 aiﬂz"
32

AN Y >0
art 0‘-1“2 (4-126)
V’/u‘ = 4’5’; Ly = 0

a ﬂ, - 4
K.."’—:K,,%, =10

O3y 3xry

Here ¢, (9,1 , ©2) is the potential function in medium (a} with permeability
K. and ¢y {x;, z.) is the potential function in medium (b) of permeability
K, . In addition to the above requirements, which are very general, we fix
a point source of strength ¢ at 2: = —d, z; = 0. Now the function

' = In Lo + (o + {4-127)

41rK h
satisfles the point-source requirement but does not satisfy the boundary
condition on flow at the discontinuity, As a nwans of correeting this, we
place another point source of strength Ag at 2y = 4d, 2y = 0 in medium

{b). This is the “image” of the point source at a2y = —~d, x; = 0. Here A
is a constant to be determined.
Assume
b= e In et 4 G %+ A I+ G )
and also
W' = B 4“‘11'{ % In [#d + (xz + 4N (4-128)
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Here B is another constant to be determined. Then at the discontinuity
T = 0, we have

144 =8 (4-129)
and
K .
1 - A = a B {4-130)

from the houndary conditions, Hence

Kﬁ =l
B = (1 4 I_{;) {4-131)

Ka K(, —1
A= (1 - ff.,_) (1 + f(:) (4-132)

Therefore, a point source of strength ¢ at a distance —d from the dis-
continuity is represented by

and

KR lm+ (KK In [z + (xs — d)’]} (4-133)

for zs < 0, and

qu
4z K h

b = (1 + %—i) "In (x* + (2 + 29 {4134)
for x, > 0.

Particularly extreme cases arise as one considers different values of K, .
For example, putting K, equal to zero makes the surface of discontinuity
an impermeable barrier. In this case ¢, is of no physical significanca. On
the other hand, letting K become infinite forces region (2) to be at zero
potential everywhere. This makes the surface of discontinuity an equi-
potential surface.

Obviously, multiple wells can be treated by superposition, each well heing
represented in the same manner as the single well. Multiple regions of differ-
ent permesbility or multiple impermeable plane boundaries can be treated
by extensions of this method,

Consider a single well located at a distance ¢ from one boundary within
an infinite strip of width L. The method of solution by images is most casily
understood by considering an infinite array of such strips arranged side hy
side as shown in Figure 4-12,

An image well is placed in each strip as indicated. Note that the arrange-
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Figure 4-12, 8ystem of images for point source in an infinite strip.

ment of images is just that which would result by reflections in mirrors
coincident with any adjacent pair of the boundarics, thus the terminology
“image wells.” Due to symmetry the impermeable boundaries can he re-
moved and still no flow oceurs across these lines. An infinite line of wells of
equal strengths placed in a plane as shown would yield a potential distribu-
tion such that no flow across these lines would oceur.

Further application of point sources and the method of images are treated
in Chapter 7,

4.60: Gravity Drainage: Free Surfaces

In the field of hydrology the dominant mechanism of fow is that fre-
quently referred to as gravity drainage. For example, flow of water through
an earthen dam will oceur as a result of the gravitational force on the fluid.
If capillary effects are neglected, such flow gives rise to what is called a
free surface or a surface which is simultaneously a streamline and a surince
of constant pressure. This ig illustrated as follows.

Consider an earthen reservoir as shown in Figure 4-13. The dam and
reservoir are underlaid by an impermesble stratum. The water flows
through the dam under the action of gravity.

Within the dam s surface separating that portion of the porous medium
filled with air {(and water vapor) and the portion filled with water must
exist. Bince the air is at uniform pressure it follows that the pressure has
the same value everywhere on this surface. On the other hand, under

Figure 413, Seepage through an earthen dam showing a free surface and a surface
of seapage.
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steady-state conditions this surface is stationary; there is no component of
fluid velocity normal to this surface. The fluid veloeity is everywhere
tangent to this surface and the surface is therefore a streamline. This is the
free surface.

hn general, the free surface intersects the downstream surface of the dam
at some point which may be above the liquid surface of the downstream
reservoir. The portion of the dam face between this point and the surface
of the downstream reservoir represents a surface of seepage. This is a
surfuce of constant pressure across which flow oceurs,

In the ubsence of free surfaces and seepage surfaces the mathematical
solution of gravity-flow problems is relatively straightforward. For example,
in two dimensions, 2, horizontal and z; vertical, the equation of flow is

ot 62 -
= @ + pgesd + = (p+ pgxsd = 0 {4-135)
axl a.‘Ea

The porous medium is considered to be homogeneous and isotropic and the
fluid of density p to be incompressible. For specified boundary conditions,
this may be solved by the methods already discussed or other suitable
methods.

Ii a free surface does exist, it is specified by the two conditions

_ ¥ = P
a on free surface (4-136)
YN (0 + ppa) w 0,

Here pq is the uniform pressure in the gas region and 8/al, denotes the space
derivative normal to the free surface. The form of the free surface and the
distribution of pressure must be determined simultaneously.

Methods for the solution of problems of this type are not highly de-
veloped. One method is based on the mapping of the region of flow in the
hodograph plane, that is, the velocity plane. The application of this method
to problems in hydrology is discussed by Muskat in his “Flow of Homogene-
ous Fluids Through Porous Media.,”

Due to the complexity of problems of this type most practical studies of
such problems have been carried out with models, either physieal or analog,
The theory of such models is deseribed in Chapter 9.

EXERCISES

1, For steady horizontal flow in a plane stratum of uniform thickness employ the
conformal mapping w = z 4 27! to solve the problem of flow around a eylindrical
obstacle of unit radius normal to the plane, Consider linear fow to exist at great
distance from the impermeable obstacle.

2. Use the transformution w = z~! and the method of images to show that a plane
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point sink located at o, yo in & plane region bounded by a eircular impermenble
barrier of radius B and center at (K, 0) is represented by

2w Pofy e
qu EE S T T e o

‘ V= 4wKh In x l+ Za ’+ ¥ _ o !
X @+ R ow oyl @+ ot

3. Bhow that for a single well in a uniform plane anisotropie stratum the curves of
i equal potentinl in the plane are confocal ellipses with ratio of major 1o minor sxes
! given by K1/K. , where K, is permenbility along major axis and K, is permenbility
, along minor axis.
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FLUIDS '

5.10: Transient Flow of Compressible Liguids

A vast number of important problems in the production of oil can be
treated approximately in terms of the flow of homogeneous compressible
liquide with negligible gravity effects.

From section 3.70 the differential equation describing this type of flow
can be written as

P Fo Fo i

(5-1}
ar®  Jzd  dxt K a

for a fluid of constant compressibility flowing through an isotropic homo-
geneous porous medium.

1f the medium is homogeneous but not isotropie, the differential equa-
tion has the form

Ky — + K. + 2 o e (5-2)

or

o Fo_ oudp

- 5-3
dmt  ant ot K, ot (&-3)

in terms of the coordinates defined by

mmm g/ K, i=123 (5-4)
K

In equations (5-2) and (6-3) the coordinates are parallel to the principal
axes of permeability. Note that, according to section 3-70, p can be replaced
by p if the fluid is only slightly compressible.

A number of general technigues for the solution of such equations exists.
Some of these are described and llustrated in the following sections. For
a more complete discussion of methods of solution of these equations the
reader may consult mathematical texts or the treatise on heat conduction
by Carslaw and Jaeger.4

108
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5.20 The Laplace Transform and Duhamel’s Theorem

Duhamel’s theorem, or Duhamel’s formula, is so fundamental to the
study of transient-flow phenomens that it is developed in some detail, and
in various formms. The Laplace transform is also of great utility in transient.
flow problems and offers & convenient means of deducing the several forms
of Duhamel’s formula. Thus, we present first the definition and basic prop-
erties of the Laplace transform.

The Laplace transform of a function f(t) is defined as

LIF®) = f i d = o) 55)
1]

provided the integral exists. The parameter s is usually called the transform
variable.

" The inverse transformation is defined in terms of a contour integral in
the complex plane as

1 el
L g} = — lim j egls) ds = 10 (5-6)
PLO c—iy

the particular contour heing selected so that all poles of the function g(s)
are to the left of 5 = ¢

In practice the complex inversion integral given by equation (5-6) rarely
needs to be employed. Extensive tables of Laplace transforms!® are avail-
able so that given a transform function, g(s), one ean usually find the cor-
responding function, f(¢), in a table.

The utility of the Laplace transform in problems of transient flow of
homogeneous fluids arises from the following property.

If the integral in equation (5-5) is integrated by parts, there results

L0 1T
gls) = _8—+ 3]; e 0 dt (5-7)
The integral appearing here is the transform of df/dt. Rearranging gives:

L{%&Q} w gle) — f{0) (5-R)

Similar relations exist for higher derivatives.

Now consider a linear partial differential equation, in the variables z; ,
¥z, Ty and 1, having a first partial derivative with respect to ¢ of the dopend-
ent variable, p. Thus

F)
Dilplay, 2y, 23, 8] = 5? (71, 22, @, O (5-9)
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where D is » differential operator in the space variables, the left member of
equation (5-2), for example, '

Applying the Laplace transform operation to both sides of this equation
yields

DIpGes 2o, 73, 8)} = 8play, we , 8y, 8) = plo , X2 4 23, 0) (5-10}

Here g(ay, 22, 25, ¢) is the transform of the function ply, 29, xy, 1) with
respect to £ 1t is ussumed here that the order of differentiation with respect
to the space eoordinates and integration with respect to £ can be inter-
changed.

Whereas the original differential equation was a partial differential equa-
tion it the four variables @, au, 23 and ¢ we now have a differential equation
in just three variables, &y, @y, and ;. The quantity s is treated as a fixed
pariineter. '

If the initial distribution of p is uniform, then

pler, o, 25 ,0) = py = conatant (6-11)

and

Lips) = &

w 1®

(5-12)

Tu this case it is convenient to take as the dependent variable
Y =05~ (5-13)
Then cquation (5-10) becomoes
DV (@, 2,20, 8)] = sV (i, 20,25, 8) (5-14)

where ¥ is the Laplace transform of ¥ on the variable ¢,

Now suppose that the surface bounding the region of flow is composed
of parts on which ¥V is zero, parts across which no flow oceurs and one part
on which Y iy a specificd funetion of ¢, say

Y = F(l) on surface ¢ {5-15)
Let us solve the flow problem first for F(¢) = 1, and denote the transform
of this solution by ¥,

Now Yi(ay, ¥z, 2y, £) satisfies all the boundary conditions of the original
problem except on the surface o. On o

¥ = Fs) (5-16)
and
Pyl (5-17)
&
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Consider as a trial solution of the original problem the function whose
transform is

}7($1 &2y T, 8) = 8F(3) ?1{-’171 y Ly y Ta , 8) {5‘18)

This function satisfies the differential equation and the boundary condition
on o as well as alt other boundaries. Hence this is the transform of the ve-
quired solution.

1t ean be shown that the inverse transform of the right member is such
that

H
Y, 1, 2y, 0} w f F(t — 1 M«ﬁui‘-t--f-)- dr (5-19)
9
This is Duhamel’s formula.® This shows that the solution of problem with
a variable boundary condition can be obtained from the solution of the
same problem with ¥ being unity on this boundary. This is especially use-
ful in eertain problems of oil production.

In particular, if the fluid is & liquid of only slight compressibility, we have
from Chapter 3

Fp  Fp ¥ _ ducop

9x*  dxd Bzt K at (5-20)

if the medium is homogeneous and isotropic. Introducing the new variable
P=p—pm (5-21)

where py is the initial uniform pressure in the region of flow, this hecomes

= $ue 08

vz
a K at

(5-22)
Now let P, denote the value of F? on the bounding surface o. From equa-

tion (5-18), we have in this case
Play, en, 25, 8) = sB,(2)P, (1, 22,02, 8) (5-23)

Here Py is the transform of the solution for P, = 1.
Differentiating both sides of this equation with respect to distance normal
to o, multiplying by —K/u and integrating over o yields

K b,
mmasaw[_:f(a;)w] (5-24)

Here ¢,(¢) is the flow rate through ¢ for P = P.{(t) on s,
An equation of exactly the same form can be written for ¢.' (¢} correspond-
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ing to P = P,(t) on o. The factor in brackets would be the same, It fol-
lows that

aG,(8)  af,/(s8)

P ~ B (5-25)
or
8P (9)8,(8) = 8P, ()g."(8) (5-26)
The inverse Laplace transform then yields
I O it N A
j; g () i ) dr - j; g'(n BT dr (5-27)

If P is a known funetion of ¢ on o, P,(1), for a given flow rate ¢,({), one
ean use this equation to compute P,/({) which would exist on o if the flow
rate through « were ¢,/ ().
Tt ¢,/ is a constant this equation takes the form
1 ! ar/ (4 —7)
P = fn wi) T gy 528
This has applications in studies of pressure build-up tests in oil wells dis-
cussed in section 5.40.
Another useful result also follows from Duhamel’s formula. Both sides
of equation (5-26) may be divided by s to yield

20 T o p o T (520)
The inverss transform then yields
i ¥
f P~ }dQ’(') f Pt — dQ ) dr (5:30)
[
Here
: 3
Q) = (1) dr {5-31)
fu @

and @,/ is similarly defined. That is, @,” is the cumulative flow across ¢
when the pressure on ¢ is given by P,/ ().

If P/{t) has the constant value, P,/, then equation (5-30} can be writ-
ten as _
Q. (+

7 dr

1 H
Q0 = 5, fu Pt = ) 5.3
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"This result has important applications in the study of natural water drive
petreleurn reservoirs. This is elaborated in section 5.50.

5.30: Sources and Sinks; the Method of Images

The representation of fluid sources and sinks by mathematical singular-
ities, point sources, introduced in Chapter 4 is extended to problems of
compressible fluids.

Consider a homogeneous isotropic porous medium of infinite extent which
is filled with a compressible liquid. When time ¢ = 7 let a bit of fluid MAass,
&m, be added to the fluid at the point z; = 2/,7 = 1,23,

The fluid density p must satisfy the differential equation (5-1). Ad time
t = r, p = pyeverywhere except at the point (z/, 2y, x'). The function

- B '—'¢,uc[{m1 - :C;f)z + (272 - 1‘2'}2 -+ (‘J’Ia - zﬂ’)”]
p=m+t (t — r)t exp{ 4Kt — 1) } 633

satisfies the differential equation. Also as ¢ — 7 this function approaches pg

at all points except (ir, zo/, 24).
The excess mass of fluid in the medium is

o ~+o 4
dm = f f f o(p ~ po) dry dme dry (5-34)
] e 00 —ot

When equation (5-33) is substituted for p in $his equation there results

7\ 3
bm = 84B (3’—{“)” (5-35)
bpc
The solution
_ L ml ewe 3l —guel{my — 20+ (50— 202 + {15 — 2" (5-36)
P gk | P K~ ‘
corresponds to a mass of fluid ém liberated in the medium at the point

(z', 2o, '), at time ¢ = 7, If fluid is being introduced continually at the
point in question, then

sm = mlr) dr (5-37}

where 72 is the rate at which fluid mass is introdueed. Thus, it follows that

in this case
L gue ¥ 18 _sin) ( wR_*__)
P ¢(4wK) o = P\ TiRe - ) (5-38)
Here the notation

Rt = (xl b 331,}! + (952 - a:z')’ + (553 -— x;’)’ (539)
has been used.
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For the particular case in whieh 7 is a constant, this takes the form*

o w TRBE ..|/¢MCR"’ :
f— @ KR arfe R {5-40)

which represents s point source of strength m at the point {(zy, 24/, 2y').
The point source in the plane is deduced from this result as an infinite
uniform line source in three dimensions. Consider fluid introduced into the
medium at the constant mass rate #/ per unit length along the line 2, = zy/,
*y = zy’. By addition of solutions of the form of equation (5-40), there re-

sults
2 e ouck?
P—m= _[m KE erfe 1/41(: diy (5-41)
which ean be shown to be
' uc f uert
L [“E’ (_ 4K1 )] (6-42)
Here
¢ = (LIJz — fﬂx")’ + (22 - 332'}2 (5-43)
and
—E—1) = [ - an (5-44)

is the exponential integral function.
For small values of the argument this function can be approximated as

—EHi(—z) = —y — Inz (5-45)

where v = 0.5772 is Euler's constant,
When the liquid is only slightly compressible the point sources ean be
expressed In terms of the pressure p. Since 1

p = poeclFmyY (5-46)

it follows that for small ¢ and small values of P — Po
& — po = cpa(p — pa) (5-47)
Also the mass flow rate can be expressed in terms of the volume rate of

* Here erfo denotes the eomplementary error function defined by

2 o
orfo 2 m = [ e d)

Vil
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flow. For example, let the volume rate of flow per unit length Le g/k for
the line source, as measured at the originai press.s.. #u . Then

o Pl .
th h (5-48)

and the line source is represented by

I Y X
P=m= oK [ E'( 4Kt)] (5-49)

Note that this deseribes a line source normal to » stratum of uniform
thickness & bounded above and below by impermeable boundaries, the flow
rate from the line being ¢. If ¢ is replaced by —g¢ this is an approximate
representation of an oil well producing at constant rate ¢ from a uniform
stratum by Huid expansion.

The point sources deseribed above were restricted to isotropic media.
Bimilar treatment is possible for homogeneous anisotropic media. For ex-
ample, the point source in the plane is in the anisotropic case

[T e = '
P=pe= ’_—KlKa{ B [I—— h ( xl + %, )]} (5-50)

Here it is assumed that the liquid is only slightly compressible and the co-
ordinate axes coincide with the principal axes of permeability, the permea-
bilities being K; and K, , respectively.

As in the case of steady flow, these point sources represent mathematical
singularities at the source point. Thus, for example, equation {5-49) yields
P — po—+ 0 as the source point is approached. Even so, such point sources
have great utility in practical problems. Equation (5-49), for example, with
¢ negative is & very good representation of a eireular well of some radius
ry provided » > r, and

pucr?
G < 0.25
This is established by comparison with the exact analytical solution for a
well of finite radius,™
The fact that point sources represent mathematical singularities makes
possible the superposition of such point sources to obtain solutions of the
flow equations corresponding to several diffrent sources. That is, the pres-
ence of one point source in the region of flow has no effect on the flow rate
of another point source.
Thus the distribution of pressure in s uniform isotropic medium contain-
ing a slightly compressible liquid kaving a line source of strength g./k per
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unit length beginning at time ¢ = r, , and another of strength gu/h per unit
length parallel to the first beginning at time ¢t = = is, for 74 > 7,

ot {—Ei [——M‘—]} Ta <l <m
4xKh 4Kt — ) 6-51)

Qait \ dporst Qom , ducrg?
- - - 2 S & vkl M
4th{ E”[ 1K f,.)]} +41rKh{ "[ aK(t —~ ﬂ,)]} rm <

Here r, nod 7, are the distances from line source a to the point at whieh p
exists and from line source b to this point, respectively.

Taking r. = 75 and g. = gn, we see that the distribution of pressure
i« symmetric about the plane which bisects the normal line conneeting the
two line sources. Furthermore, the space derivative of p normal to this
plane is zero. This plane is equivalent to an impermeable barrier. The source
b is then the image of source a across this plane. This procedure can be ex-
tended to construct multiple images corresponding to multiple boundaries
in much the same manner as was done for the steady-flow case.™

The superposition of sources employed above can also be employed as
purely superposition in time to represent a well having step-wise variations
in rate. Thus, in equation (5-51) let the two sources coincide in space, that
is o = 7. Then we have a representation of a single source with

PP

¢g=0,0 <t <7,
= Ga,Ta <t <7
=g+ qp, e <1

By introducing any number of sources at the point with suitable strengths,
either positive or negative, we can represent any step-wise rate history de-
sired. This result also follows from Duhamel’s formula and has applications
in the study of pressure huild-up tests in oil wells,

5.40: Pressure Duilt-up Tesis in 0§l Wells

Pressure build-up tests are conducted in oil wells for several purposes:
to determine the static pressure in the region of the well, to estimate the
permeability of the formation being drained by the well and in conjunction
with drawdown tests to estimate the extent of any permeability reduetion
in the vicinity of the well. Attempts have also been made fo estimate from
such tests other factors, such as the proximity of fault boundaries, or the
porogity of the formation.

In this section the elementary theory describing such tests is developed
following the work of Horner® and a few examples of & more complex nature
are included to illustrate the fact that many factors have a bearing on the
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Figure 5-1. Pressure distribution about a circular well in an infinite plane stratum.

results of a pressure bu1ld-up test, far too many to permit an unambiguous
interpretation of such tests in most cases.

Single Well in Infinite System. First we consider s homogeneous iso-
tropic medium of uniform thickness k, porosity ¢ and permeability & con-
taining a liquid of small compressibility ¢ and viscosity u.

At time ¢ = 0 a well which completely penetrates the formation starts to
produce fluid from the formation at a constant rate ¢. The upper and lower
boundaries are assumed impermeable and for the moment the formation
will be considered of infinite areal extent.

We represent the producing well by a line sink of strength — g/h per unit

length, thus
L ucr? L
plr, t) = po “h[ E@( 1 f):l B-52)

where py is the initial pressure in the formation and r is the radial distance
from the axis of the well. This distribution of pressure has the form indi-
cated in the graph in Figure 5-1.

At the well bore, » =+ r,., this can be written in the approximate form

4Kt
= Do — r}.;:h l:l n pypey - ’}'] (5-53)
for
[
4K, > 2 (5-54)
ucrd
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hy using the logarithmic approximation for the exponential integral fune-
tion, This shows that the flowing pressure in the well deelines &8 the loga-
rithm of time.

If at some time ¢, the well is shut in, the fluid in the formation will re-
distribute itself so as to establish a uniform pressure in the formation, The
pressure ag a function of » and ¢ during the shut-in period is represented by
the superposition of & line source of strength ¢/h per unit length on the al-
ready existing sink starting at time ¢ = 1, . Thus, at the well bore

du A guert . pucrt
w = po— - | B [ T2 i -2 -
Pu = Po— o [ i ( iR ) + E{ ( IR t,)):l (5-55)

during the shut-in period, ¢ > ¢, .

Applying the logarithmic approximation to both exponential integrals
now yields

qp 4

v = Pp— e |y e g
Pem BT KR T, (&-56)
Or defining the shut-in time as
=1t (5-67)
- RCHE L
R (5-58)

which is valid for sufficiently large s,
(4 + 80

This shows that a plot of p, versus the natural tog of B yields
a straight line of slope —qu/4nKh, If g, u, and h were known quantities
one could, from measurements of p,, as a function of ¢ during such a shut-in
test, compute the value of K from the slope of this line. However, in the
practical application of this result many precautions must be observed.
Note that the porous stratum must be uniform and of infinite extent, the
fluid st be o homogencous slightly compressible liquid and the well must
huve been produced at a constant rate prior to shut-in. Also the well ig
shut-in at the formation, not at the surface which may be several thousand
feet above the formation. Obviously, all of these requirements cannot be
met, particularly the requirement that the stratum be infinite in extent,
However, for small ¢, , boundaries may produce only negligible effects.

Well Near a Plane Barrier. To illustrate the manner in which various
factors may produce deviations from this simple behavior consider the cases
in which the uniform porous stratum terminates at a plane impermesble
barrier near the well, say at a distance { from the well.

Applying the method of images an image well having exactly the same
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production history as the real well must be placed at a distance ! ou the side
of the barrier away from the real well on the normal to the barrier passing
through the well.

This gives for the well pressure during the shut-in period

_gs L g W_d’) o | 2l
Ptk ki t,~}~6£+4th[ E‘( ke )PP\, )| O

for moderate values of 82. Here £* is so large that for moderate values of 8¢
the logarithmic approximation is not applicable. The exponential integrals
appearing here change relatively slowly with 8t for moderate 8. These terms
are nearly constant and for moderate values of §¢ 7w Dlotted versus

t: + 8t
In

&t

again yields a straight line of slope —gu/4xKh.
However, for large values of 5t the logarithmic approximation can be
applied to these terms to yield

i &t
Po= o+ 2 Ifzﬂd In ﬁ-;tt— {5-60)

for large 8f. On semi-log paper this is & straight line having twice the slope
of the line corresponding to small values of &, {Figure 5-2.)

Py
(1} infinite reaservair
(2) plone boundary
[3) closed circvlar reservoir
Pt
Py
3]
{2
(3]
0
0 1y + 8t
I ——
5t

Typical Prossurs Bulld-up Curves
Tigure 5-2. Typical pressure build-up curves.
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s i

This change in slope is characteristic for a system of this geometry and
can be used to detect the presence of such a plane “fault” boundary. Fur-
thermore, detailed analysis shows that this change in slope oceurs at a value
of 8 which is dependent on [, the distance to the boundary. This then offers
a method of estimating { from such build-up data,

Bounded System. In both of the cases considered above the ultimate
value of p, for § — o« is just pe, the original pressure in the stratum,
This is because the system is of infinite extent in both cases. Obviously, the
behavior of a finite system must be quite different. A single well i a uni-
form stratum of thickness A bounded by a closed impermeable boundary
producing at a constant rate g will in time {, produce a volume of fluid

& =g, {5-61)
This volume is supplied by expansion of the fluid within the reservoir. Thus g
gte = ¢{po — pr)V, (5-62) ‘i

where p; is the final uniform shut-in pressure in the system and V, is the
pore volume of the reservoir,

Thus, even though the pressure build-up curve may follow the simple
theory outlined up to relatively large values of 3! it must break away from
the straight line described to approach the value

A, s i,

gls
cVy

Pr = po— (5-63)
as a limiting value.

The analytical solutions of the flow equation for wells in bounded systems
have been worked out for several cases. Hurst and Van Evergingen' have
published the solution for the case of a well of radius r,, at the center of a
eircular reservoir of radius, r,. The reservoir is assumed of uniform thick- K
ness h and porosity ¢; the fluid has compressibility ¢ and viscosity g, and "’
the well produces at the constant volumetric rate ¢, as measured at the
original pressure po . This solution yields for the pressure at the well, p.,

O 1, K
Pe =B~ Kne - 0 (4 + q'a,ucr..‘)

o R s e

Kt )\ (5-64)
2 — b I,
L m [ -4RMR-R-1 2 JiB.R) exp( B e,
SeKh R — Dt L TR AGE) ~ ThE)

Here R denotes r./re , J1 1 the Bessel function of the first kind of order one
and the 8, are roots of the equation

JUBRYY1(Bn) — Ji(Bn)Y1(FR) = 0 (5-65)
¥, denoting the Bessel function of the second kind of order one.
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Figure 5-3. Compressible liquid flow; flowing pressure in a well at the center of a
ciroular reservoir. {After Hurat and Van Fyerdingen, 1048.)

This solution shows that, for very large values of ¢ the flowing pressure
in the well (at r., = r) declines linearly with time.

Figure 5-3 shows the behavior of p,, with time for various values of r,/7., .
These curves show quite clearly the effect of a boundary on flowing pres-
sure. The straight-line portion corresponds to an infinite system. Thus, in
all cases, the well behaves as though the reservoir were infinite up to some
¢ which is determined by the value of /7y, .

Duhamel’s formula can be employed to construet the pressure build-up
curve obtained after the well is shut-in. Thus, in equation (5-28), suppose

that
L <t
LA (5-66)
0, fh<t
then
bdps (-
Pt = f B8y (567
Py t
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or

P,(t) = P,'(1) — P/t - t,) (5-68)

In terms of our p,/, this is
Po = pot o' (8) — p{t — 1) (5-69)

where p,/(t) corresponds to continuing constant rate. Thus, a simple super-
position of solutions yields the desired build-up curve. Such a curve s shown
in Figure 5-2.

This build-up curve shows quite clearly the effect of the elosed boundary.
Indeed, the asymptotic value is just that predicted by equation (5-63).

Variable Produetion Rates, Pressure build-up curves for a well having
variations in production rate prior to shut-in can be constructed from the
solution corresponding to a constant continuing production rate by em-
ploying Duhamel’s formula,

Thus, suppose that p,’(t) corresponds to the constant praduction rate
—¢.'. Then for any production rate —g¢,,(¢) we have from equation (5-28)

t t

N wit — 7

Pu = f 9ln) dpu'lt — ) (5.70)
0 Gu dat

for the well pressure corresponding to the variable rate.
1f the well is shut in at time ¢, then ¢,(¢) is zero for ¢ > 4, , and this takes
the form

[ - d w’ ¢ —
pult) = f q-q(i)”—(dt—*) i, t> (5-71)
0 1w

for the pressure history during shut-in. This formulation applies without
regard to the geometry of the well or reservoir.

The behavior of the flowing pressure when the well is reopened following
& shut-in period can be obtained by an obvious extension of the above pro-
cedure, i.e., g, = 0fort > & > 4, .

Limitations of Simple Theory. The few examples of pressure build-up
in oil wells discussed in the preceding sections should not be applied without
due consideration of their limitations. Many important factors have been
neglected in order to illustrate the main characteristics. A more adequate
treatment is possible but it would form a book in itself. Effects due to non-
uniform thickness, non-uniform permeability, shutting in at the surface
instead of at the sandface and multiphase flow can be handled, but this is
beyond the scope of this volume. Some of these problems have been treated
in the literature. 15 16, 1
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5.530: Performance of Water-Prive Reservoirs

Many oil reservoirs produce oil (and gas) by a mechanism termed water
drive. Often this is called natural water drive to distinguish it from artificial
water drive which involves the injection of water into the oil-bearing forma-
tion as is discussed in Chapter 7.

Natural water drive arises because most oil reservoirs are in direet contact
with large aquifers, or water-filled porous strata. As the pressure in the oil
reservoir is lowered by the produetion of oil, expansion of the remaining oil
oceurs and also expansion of the water in the aquifer. There is an influx or
flow of water into the region of the porous stratum originally filled primarity
with oil. This is 2 simplified description of the natural water drive process.

An important problem for the reservoir engineer is the estimation of the
extent of the aquifer and the prediction of the future decline of average
reservoir pressure for a given schedule of oil production. This is so because
the reduction in pressure gives rise to the evolution of gas from the oil with
resultant reduction in the oil-production eapacities of the weils in the reser-
voir,

Even though water is only very slightly compressible the very great ex-
tent (billions of barrels) of aquifers gives rise to sizable influxes, Hence water
influx is o dominant factor in the control of reservoir pressure,

A variety of methods has been developed for treating the problem of
water influx. All of these have the same physical and mathematieal basis,
namely that the aquifer can be described in terms of fow of a slightly esm-
pressible liquid through a porous medium, To illustrate the general method
of treatment of this problem, we employ the following conceptual model.

Consider a reservoir containing oil, water and gas (some gas in solution
in the oil}. The free gas may be partly or completely segregated from the
liquids, the segregated portion occupying a volume termed the gas cap. This
reservoir has contact at a surface ¢ with a very large region of porous
medium filled with water. The geometry and properties of this water region
{the aquifer) are unknown.

The pressure in the aquifer can be described by a differential equation of
the form

3

Dlp(er, 22, 22, 0 = 5-72)

Here D denotes some differential operator. The form of this operator de-

pends on the properties of the aquifer. In any event if gravity effects are

negligible, this equation is linear and homogeneous in p. Thus Duhamel’s
formula can be applied.
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It is assumed that the pressure p.(t) is uniform throughout the oil reser-
voir so that the pressure on the surface ¢ is identical to p,(¢) at all times.

Now the equation describing the aquifer can in principle be solved for
either constant pressure on o or consiant flow rate across o. Suppose it is
solved for constant pressure on o with an initial uniform pressure p,,
everywhere. If it is solved for

Po—Po=1 {5-73)

then from this solution we can compute the cumulative influx of water
across ¢ as @i(f). Then, by Duhamel’s formula in the form of equation
(5-32}

Q) = f po — prlt — 7)) 22 dQ“’) (5-74)

is the cumulative influx which results for p, = p,(¢).

1f the size of the reservoir is known, as well as its initial contents, and the
physical properties of its fluids are known then a volumetrie balanee can be
written

Qo+ Qu + Qa = f{p) + Qu() (6-75)

Here Q,, ¢, and @, are the cumulative withdrawals of oil, water and gas,
respectively, from the reservoir. f(p,) is a function of p, which represents
the net, expansion of reservoir fluids due to the reduction in reservoir pres-
sure,

For a period of several years data may be obtained on Q,, Q. , @, and
Pr - Thus, from ¢ = 0 to the current time, ., these are essentially known fune-
tions of time. Combining these two equations

Q0+ Qu+ Q0 — Fip) = [ o — mt — 1 242

(5-76)
for 0 < t < 1., is obtained.

The procedure to be followed is to construct a function Q:(¢) which satis-
fies this equation for 0 < ¢ < {.. When such a function has been found
it may be extrapolated for { > t, and equation (5-76) can then be used for
predictions of p,.(1) for specified withdrawals from the reservoir.

Note that the function Q,(¢} is determined solely by the properties of the
aquifer,

The other procedure for treating the aquifer problem is to consider the
solution of the differential equation of the aquifer for constant rate of in-
flux across o. In particular, if the solution for

g =1
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is obtained, then we denote the drawdown at o by
(Do = Peltie,me = F 1) (5-77)

‘This is called the influence function of the aquifer.
Duhsamel’s formula in the form of equation (5-28) yields

aF(t — 1) dr

£
P — plt} = f %l) i
i1}

(5-78}
Then, by differentiating the volumetric balance equation (5-75) with re-
spect to time, there results

d ¥,
ot 0+ g =224 0 5.70)

Here ¢,, g. and ¢, are the withdrawal rates of oil, water and gas, respec-
tively,

Agein date on ¢, , ¢., ¢, and p, are available for 0 < 7 < ¢. and hence
¢.(1) is known for this time interval, The problem is to construct a function
F(t) satisfying equation (5-78) for 0 < ¢ < ¢, . This function can then he
extrapolated for ¢ > ¢, and equations (5-78) and (5-79) used for prediction
of future reservoir behavior.

The methods used to estimate the functions @, and F are many and var-
ied.” ' To gain some insight into the nature of these functions several sim-
ple cases are described in following sections.

5.51: The Infinite Linear Aquifer

The simplest case of compressible liquid flow which can be applied to the
aquifer problem is that of linear flow in a semi-infinite homogeneous me-
dium. The mathematical description of this Aow regime takes the form

¥Fp  puc dp
axt K ot (5-80)
with
plx, 0) = py
KA ap0, 1y - tant
T Taa T = €= conatan (5.81)

lim p(z, 8) = p,
EE ]

This is reduced to a much simpler form by introdueing the dimension-
less variables,

T Kt {m — PEA/A
= N —— P o ¥ .
t i ucd” and p”» {5-82)
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Thus
#;P P
W (5-83)
With the boundary and initial conditions
P00 =0
af
'5}" (0, )\) o ] (5-84)

lim PN =0
Taking the Laplace transform of equation {5-83) with respect to X then
yields

gg (t, 8) = 8B, 8) (5-85)

The total derivative can be used since P(£, 8) is a funetion of ¢ only. The
characteristic solutions of this equation are

Vi and ¢ 'VE
In view of the last of the boundary conditions in (5-84) the negative expo-
nent must be used. Thus, take
@, ) = Be VF (5-86)

where B is a constant.
Taking the Laplace transform of the boundary condition at ¢ = 0 yields

%? 0, #) = g (5-87)

Then, substituting the solution above, yields
B o= —git (5-88)
Thus

B, 8) =~ gV (5-89)

pEL

1z the Laplace transform of the desired soluiion.
From a table of Laplace transforms, we obtain

I {_\l/.; —r\/:} - \/1_)\ gt . {5-90)
L
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and also for any function H({A)
: . X
I {“ h(s)} = H{z) dy {5-91)
8 9
whete
LYh(3)) = H) (5-92)
Thus
o6 N =~ [ P e g (5-93)
! Jo Var .

ig the desired solution of the flow problem.
This solution can be put into a more convenient form by a change of
variables in the above integral. Let

¢

gﬂ
- - 5-94
e o 2y (6-04)
then we obtain
Y = _mt dn
®E, N - —= " — (5-95)
: Vir -[mv’i i
Integration by parts then gives*
Y (Tt AN) 2 [ T o
®EN) = 2 Le — e Ty (5-08)
1 4 - Vrlhaws

Thus, at { = 0, that is on the surface o, we have

GO, N = 2 /‘/ A (5-97)

ar
2gen Kt
W U (5-98)
F P E~A xpucA
or
2¢. ul
.= — s (5-99)
P e 4 ok

* The integral appearing here is the complementary error function:

2 o
erfcy==—:f e dy =1 — erf v
¥

ar
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The form, (5-98), with ¢, = 1 represents the influence function for this
aquifer. Thus, if ¢, = ¢,({) is variable we have by Duhamel’s formuia
(Equation 5-78)

1 ' dr
- Dy — — |/ ¥ o O R -100
Pe= o — w.cKj; qelT) T (5-100)

The case of constant p, can be derived from this,
Taking the Laplace transform of both sides with respect to { yields for
Pp. = constant

P pe 2 bg Vr 5-101
P 4 -y g, s {5-101)
Thus
A sokK V'
YA Y .4 s .
% 2 V -:’-‘— (po — o) Vs (5-102)
and the inverse transform then yields
A ok 1
) == 4 /P8 (- po) S 51
¢ 21/7“ ) p)v’i {5-103)

This shows that initially, at # = 0, the flow rate from the aquifer would
be infinite if at ¢ = 0, a constant drawdown was imposed on the outfow
surface o.

Integrating with respect to ¢ gives

Q0 = A ,‘/ #cK {pe — P Vi {5-104)
u

for the cumulative influx from the aquifer for constant Do — P, . Putting
Po — p» = 1yields what we called @,(f) in the previous section for this type
of aquifer. I'or variable p, we then have from equation (5-74)

— t
Q.1 = 4 gck f Ipe — it — )] ir~: (5-105)
2 xu Jo r

for the cumnulative influx from the infinite linear aquifer.

5.52: The Infinite Radial Aquifer

The solution of the equation of flow for a liquid of slight eompressibility
in a plane radial system of thickness A, inner radius r, and outer radius .
was given in equation (5-64), for » = r, . This solution represents the pres-
sure on the inner surface ¢(r = r,) for constant influx rate ¢ from a uniform
aquifer.
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If only a portion of the full circle is considered, a radial segment of angu-
lar width & measured in radians, then the factor » must everywhere be re-
placed by /2 in this equation.

This representation of the radial aquifer is not very useful because of its
complexity. For the case of r, — = an approximate representation of p,, (1)
can be constructed.

For very small ¢, p,{{) should be approximately the same as for a linear
aquifer, i.e. equation (5-99) should apply for small £. For very large values
of ¢, p..(¢) should be approximated by the point sink solution, (the straight
line in Figure 5-3), or equation (5-53). A function having these characteris-
ties and in good numerical agreement with the exact analytical solution
shown in Figure 5-3 for r./r, —» o ig: (v = 0.5772)

- _» - 2 R AR
Po = ot 2aKh [2 [l o ( Vv V ¢pcrw’)] +1n (1 + w’wcrw’)] (5-106)

This representation with ¢ = 1 can be used to write the influence func-
tion for an infinite uniform radial aquifer as

K 2 Kt Ki
H -t ta|1- -—= 1 -107
F® 2aKh { [ P ( '\/‘; rp,ucr.,,’):l +in ( + Tei‘ﬁﬂcrw’)} (@10

From this one can obtain §1(2) as was done for the linear aquifer but the
analysis is more complex.

5.53: The Tilted Aquifer

The preceding discussion of aquifers applies only for horizontal aquifers,
or the neglect of all effects of gravity, The exact formulation for a two-di-
mensional system (z; horizontal and x; vertical) yields by Darcey’s law, the
equation of state and the equation of continuity

@ & @ i du dp
—_ 3 — —_— -— F= -
T [p axl] + azy [pl Ba:;:l K 9t (5-108)

Here the medium is assumed homogeneous and isotropic and ¢ is given by

LI .
v - f Loy gy (5-109)
o olpl

If the aquifer is treated as a thin stratum at an angle a with respect to
the horizontal, then we neglect variations in p and p aeross its thickness
and introduce the length variable x measured parallel to the stratum. Thus

21 =T 008 a — ¥ sin e
. {5-110)
Tz = 28N a+ Y Cos

WWW.petroman.ir


www.petroman.ir
www.petroman.ir

W D| PLOW OF FLUIDS THROUGH POROUS MATERIALS
¢ PETROMAN

where y is measured perpendicular to the stratum. In terms of z and y, we

have
d N a & Pu dp
— 4 ¥ _] g X o PEEE 111
3x[p 6x]+6‘y|:p ay] K at 6-111)
and
P dp ,
¥ o= f —= + g(w sin @ + y cos &) (5-112)
2o ¥
Then
W _1 8__1) + ¢ sin « (5-113)
dx p O
% g cos a (5-114)
dy
and
L I N . Pude X
ax[pax+pgalna:|—Kat (5115)
since
dp  dp
bl AR A 1
ay " 3y 0 (5-118)
is assumed.

We also have for an ideal liquid

dp  lap
A -117
e dx ¢ dx 6-11 )
and thus
3 [ dp . . Puc dp
= =T -1
oz [ax 4% ge sin “:I K a (6-218)

Note that in this equation z is positive updip. If we take ' = —z to be
positive downdip (as in the paper by Howard and Rachford)® we have
9 | dp - uc dp
. — X e e -1
P [ax, e sin a:l 2y (5-119)
The important point here is that this differential equation is not linear
in the dependent variable, p. Hence the usual analytical means of solution
are not applicable. Howard and Rachford have solved this equation by
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; numerical methods and shown that several approximate methods for in-
cluding the effects of gravity yield resulis in rather close agreement, with the
i exaet solution,

‘ Here we show how an appreximate solution to equation (5-119) can be

obtained.
With ¢ defined by
? dp
= [ = - e i 5.1
¥ ',;M o) g4’ in o (5-120)

for &’ positive downdip and y = 0, we have

o [, ] euar XY

ax’ [_pz é?:l " Kot (¢-120

as another form of the flow equation. Then noting that

ép  op 3y

PN Qi 5.122
; at - Pa Ty (6-122)
& we have
: a [ o] euc  ov
PR [ ;r] “E"a (6-128)
Thus
aH H dp duc &
P o = P 5-124
e 9" + ax’ ox’ K £ at ¢ )

But from equation (5-120) and the equation of state

i
' @; = ppt (?lp; 4 g 8in a) (5-125)
ax ax
and hence
Y W f . puc 3
-————— — N [ SR .lm
arh + % dx' (ax’ + o uin t") K a (5-126)

This shows that if the fluid s only very slightly compressible und the
} gradient of potential is not too large then ¥ satisfies

= 5-127
ax't K o ( )

to a high degree of approximation.
Initially, at ¢ = (, the system is in hydrostatic equilibrium.
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Thus
—E f éﬁ 0 (5-128)
dx’

at ¢ = 0 for all 2/, and hence ¢ is a constant. We denote the initial value by
¢(r, 0) = o = constant (5-129)
Then introducing the new variable
A = ¢ — ¥z, &) {5-130}
we have

Pav _ due ok
dx’ K &

(5-131}

and Ay is zero at ¢t = 0.

This ean now be solved by the same methods as employed for the linear
horizontal aquifer. Imposing a constant drawdown at ' = 0 is equivalent
to fixing & constant value of A¢, say (A¢), at ' = 0.

The Laplace transform of the solution for constant drawdown at ' = 0

is
AF = (Af), exp (-_x' 1/ ?%{E_’) (5-132)

Thus the Laplace transform of the gradient of A is
v w% = {Ay), puc /'3 exp (—a:’ /‘/@‘ff) (5-133)
K K

ax’ az'

and hence the flow rate at 2 = 0 has the transform

G = K"’A (A, 1/ _;f_s (5-134)

where A 14 the area and p, is the value of p at 2 = 0. From this, we obtain
Q) = Wund 4/ ¥E Vi (5-135)
T

which is exactly the same as the cumulative influx from the horizontal
aquifer except that p,(A¢). replaces pe — p.. For very small compressi-
bility

Pr(ﬁ'f’)c Py - Pe (5‘136)

and hence for sufficiently small ¢ and also small po — p, the tilt of the aquifer
does not affect the cumulative influx.
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The ahove analysis shows that the distribution of ¢ in the tilted aquifer
ig essentially the same as in the horizontal aquifer, but the pressure dis-
tributions are very different.

5.60: Flow of An Ideal Gas, Numerical Integration

All the preceding discussions of transient-flow problems and methods of
solution have been concerned with compressible liquids. Many problems
of practical importance in the chemical industries and in the production of
natural gas ean be considered in terms of the flow of ideal gases through
porous media. These problems are of a type very different {rom those of
liquid flow.

The differential equation describing the flow of an ideal gas can be writ-
ten as outlined in Chapter 3 to include the Klinkenberg effect. We obtain
with Darcy’s law, the ideal gas law and the equation of continuity

a K, b\ ap a K, b\ ap ap
o — 11 Bl B e e B i el Bl et 5-137
i) I:;D I ( * p) azl] + 81y [? m ( * p) 6:52] ot ( )

for flow in two dimensions.
This equation can be put in a more useful form by introducing
pwbtl
pi b

o = K. lp:i + bjt

5-138
W, (5-138)

where p; is the initial uniform pressure in the system and L is a characteris-
tic dimension of the system. In terms of these variables the differential
equation takes the form

#P PP 0P
LR oLt o

(5-139)

This is a non-linear second-order partial differential equation and hence
is not amenable to solution by any of the conventional analytieal methods.
Approximate solutions can be obtsined by writing the equation in the
form

;P P, 1 ar
osi Vori TP w (6140)

and ohserving that if the variations in P are small compared to the average
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value of P then the coefficient of 42%/38 on the right can be treated as a
constant.

Thus if over the whole region of flow, and for all values of 8, P differs
only slightly {rom its initial value, then

#;P gpr ] g;
7 T~ h (5141
or, in terms of the original variables
#p + 82 Fp + b i #(p + b
- 142
amd dzt K {p; + b} at (5-142)

This is similar in form to the corresponding equation for a compressible
iguid,

The equation in exact form, equation (5-133) can be solved by numerical
integration by employing the method of finite differences. Such solutions
have been carried out by Jenking and Aronofsky" * and by Bruce, Peace-
man and Rachford.® This method of solution is described for the case of
linear flow in a system of length L. One end is closed to flow while at the
other the pressure is suddenly reduced and held constant. Thus the bound-
ary and initial conditions are

P, 0) =1
Y
E’__ (L, =0
oF (5-143)
P+ b
F,0) = H = -
0,8 b b

Here po is the constant value of p at the opened end of the system,

Most of the numerical results reported in the forementioned papers are
reported for the case of b = 0; that is, neglecting the Klinkenberg effect,.
However, the mathematieal formulation and, indeed, the numerical results
are the same whether b is considered zero or not, provided one considers
the results expressed in terms of the dimensionless variables defined above,’

The procedure for solving the equation

[ I ) o

_— = — 5-144
a3z ae ¢ )

consists of replacing  and 8 by the discrete variables,
z; = JAE and 8. = nag,

where j and n are integers and replacing the derivatives by finite differ-
srees,
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Thus, if we expand P* in a Taylor series, we obtain

Plaw = Pia + (‘Wl) an \ {AEN + . ... {5-145)
i 2 N\ a5 s
and similarly
? Y i L3 s‘ﬁ’) N
Fiam = Pi. (az )wm AE + 21(61, . (@zp 4 -0, (5-146)

where P;,. denotes the value of P(x;,6,). Adding these two equations
vields

(agj) = Dinnt Piaw ~ 2P, + ol{azy] (6-147)

axr {az)y

where 0[{ AZ)*] denotes & term of the order of (A%)%
A similar expansion for P; .4 in terms of Af yields

apP _ P,'.;q.l - P,
(30); . = o + (AR} (5-148)

Then, neglecting terms of the order of A8 and (AZ)*, yields

Pinpm Py —— Pl + Ply, — 2P0 (5-149)

{l")
as the difference equation approximating to the differential equation, equa-
tion (5-144). This is called the predictive form of the difference equation
sinee P; .41 is given in terms of quantities evaluated at 8 = ¢, .

This equation must be supplemented with the initial conditions

Pijo = 1, 0<j<N (5150
where

NAag =} (5-151)
and the boundary conditions

Pyn=H (5-152)

and

P 2
FPriin — Pyt

= = { {(5-153)
AT

This last condition introduces an image point at £ = (N -+ 1)AZ to assure
no flow at the closed end. The value of P* at this point is never used since
equation (5-153) is just used to eliminate Py, . from the difference equg-
tion (5-140), at § = N,
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The integration begins by using (5-149) to compute P;, from the initial
values, making use of the boundary conditions.

This procedure is limited by errors. Thus, certain errors are introduced
by the truncation of the Taylor series in setting up the difference equations.
Also errors are introduced by round off in the calculations, These errors
may either accumulate or decay as the difference equation is applied itera-
tively for succeeding time steps. It can be shown that errors will not ac-
cumulate if

@25 p, (5-158)
A8
Here P, denotes the average of the ;.. at the nth {ime step.

Obviously, the truncation errors are made small by making both A8
and AF small bul hera n further reatriction i imposed, This stability eomdi-
tion, equation (A-154), must be satisfied and imposes a limitation on the
size of time steps which can be used,

Other forms of the difference equation can be constructed which are less
severely limited than the one above. Thus Bruce et al used’

o a3

BlwaPt = Pro + 2o

WP (5-155}

0
Biwt = Gisap

where
85P = Pl + Pl — 2 Pla (5-156)

as the difference representation of the differential equation. This equation
is of implicit form, that is, P; .,x cannot be expressed explicitly in terms
of values at the nth time level, Special methods must be used in this case:
however the stability requirement

------ > 2(Py — Pooy) {5-187)

is much less restrictive. The reader is referred to the literature cited above
for details of this methed.

The results of the numerical integrations obtained by the workers cited
above are exemplified in Figures 5-4 and 5-5. Figure 5-4 illustrates the re-
sults obtained by Aronofsky’ for the linear case including the Klinkenberg
effect. Here the system of length L and initial pressure p; has the end at

= 0 opened to the constant pressure, py, at time ¢ = 0. Observe that as
the parameter H = (po + b)/(p; + b} is nearer to unity the solution ap-
proaches the liquid solution.

The radial case of a well at the center of a closed circular reservoir is
shown in Figure 5-5. Here the gas is withdrawn at a constant mass rate.
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1.0 ;
. H« 0.918

aft 40 —
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2 022 T ]
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o H=

- pr + b

E 1

_§.' .2 Py = pressura at X = ) —

u?s" Pi = initial pressure

] | ] ]
0 2 o 6 8 Lo 1.2 1.4 1.6 1B

Dimensionless Time &

Figura 5-4. Flow of an idoad gan in o linowr aysttn whowing Uhe prossnrn varintion
with time at the closed ond of o (ube when the pressurs al the otbar end is auddenly
reduced. (After Aronofsky, 1854.)

0 N I I LY I I

Py, = well pressure, atm. re/ry = ]128 J256 512 f1024
[ p; = hitial pressure, atm.
| q = flow rate, em?/sec at press. p;

8
e H = viscosity, ep, 4
o | K « permachility, darcies / /
; “ ¢ = porosity, fraction /
ol 6 Ft = time, seconds / -~
s | Yo = woll radivg, cm,
14 = boundery radius, cm. /
4 " !
- - @
A
2 L
»
0
10-2 167! 1 10 102 0? 104
Kp;t
ur, 2

Figure 55, Radial flow of an ideal gas; circular well at center of eiraular reservoir
producing at constant mass rate. (Afler Jenkens and Aronofsky, 1968.)

Observe that in terms of p° — p,’ the solution is very similar to the liquid
ease shown in Figure 5-3.

EXERCISES

1. Use the superposition of point sinks in the plane to show that shutting in one well
and producing another yields pressure information which san be used to deduce
properties of an oil reserveir. (This is a pressure interference test.)
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2.

3.

14,
16.
16,
17.

Use superposition of point sinks in the plane to deduce the form of the pressure
build-up eurve for a shut-in test following a brief period of production after an
earlier shut-in test, Consider the flow rate constant prior to the first shut-in and s
different constant following the first shut-in.

Show that for b = 0

p_?_:_:"ﬁf= _ b — B _ et
2 4nKh 4K pit

with g; = volume production rate measured at pressure p, and r* = z,9 + ozt s
apoktution of equation (5-135), and hence the pressure build-up for a well in an in-
finite uniform gas reservoir is approximated by

Pt~ pd gipis id

P 1 &t
2 ankh Ly 0
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6. SIMULTANEOUS FLOW OF IMMISCIBLE FLUIDS

6.10: Steady Linear Flow and the Measurement of Relative
Permeabilities; the Boundary Effect

The concept of relative permeability as described in Chapter 3 is fun-
damental to the study of the simultaneous flow of immiscible fluids through
porous media. However, the determination of relative permeability as a
function of saturation in the lubcratory is not so simple as it might seem at
first sight. This becomes evident when we consider the mathematical de-
seription of the phenomenon of two-phase flow.

We consider a linear system of length I initially containing s wetting
fluid at irreducible saturation, §. (connate water saturation), and u non-
wetting fluid at saturation, t — §.. A mixture of the two fluids is intro-
duced uniformly over one end of the system, z = 0, and removed at the
other end. Both fluids are considered incompressible and the input rates of
the two fluids are to be held constant, This process brings about changes of
saturation within the system, but if the input is maintained indefinitely
the outflow composition will eventually become the same as the inflow
composition. The saturation distribution within the system ceases to change
with time. Steady linear flow then exists.

For steady flow the equation of continuity applied to each of the two in-
compressible fluids yields

Bt
— =0 6-1
pw (_ )
and
i 6-2)
ox
And by Darey’s law
Uy = _Kyape = constant (6-3)
W B
and
Kll‘lll 6 HED
Vg = ——— e, constant (6-4)
e OB
139
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—
Here the pressures in the two fluids are related by
Prwe — Pu = Pa (6"5)

where p, i3 the capillary pressure. In this case the imbibition capillary-
pressure curve applies,

If the saturations, S, and S,., are uniform within the medium then
K., K., and p. are independent of z. Then equations (6-3) and (6-4)
can be integrated to yield

K, = MQWL

Adp (6-6)
and
.umvfInwL
Koy = —— 6-7
v (6-7)

Here g, and ¢, are the volumetric flow rates of the two fluids, 4 is the cross-
sectional ares of the sample and Ap,, and Ap,.. are the respective pressure
differences across the system. Since p, is uniform, these pressure differences
must be equal.

In actual fact, if the flow rates are sufficiently high the assumption of a
uniform saturation distribution is a reasonably good approximation. When
such is the case measurements of ., ¢.., Ap and the saturation of the
sample for a variety of values of qu/gu.. are sufficient to define the permea-
bilities as functions of saturation. For low flow rates, however, the assump-
tion of uniform saturation is not valid.

It is obgerved that at the outflow face of a system such ag this the wet-
ting fluid will not flow out until the saturation at the outflow face has built
up to some critical value. The reason for this behavior lies in the capillary
capillary pressure-saturation relationship.

Continuity of fluid pressure must exist everywhere within each continu-
ous fluid. Initially, only non-wetting fluid exists exterior to the outfiow face.
Zero capillary pressure exists exterior to the outflow face. Consequently, no
wetting fluid may appesar outside this face until the capillary pressure is
reduced to zero at the outflow face. Since wetting-fluid saturation is in-
creasing here, the imbibition capillary pressure curve applies. On this curve
capillary pressure goes to zero at a critical value of wetting-fluid saturation,
denoted here by 1 — S,,. That is, 8, is the eritical value of non-wetting
fluid saturation. This point can be seen on the curve in Figure 2-4 in Chap-
ter 2.

At the critical saturation of non-wetting fluid, S.., the nan-wetting fluid

Www.petroman.ir



www.petroman.ir
www.petroman.ir

¢ PETROMAN

SIMULTANEOUS FLOW OF IMMISCIBLE FLUIDS 141

forms a discontinuous phase within the porous medium. Non-weiting fluid
then ceases to flow for dny finite pressure gradient. In the case of water-oil
systems in water-wet porous media, this is called the residual oil saturation.
At 8.. = 8,,, the permeability to non-wetting fluid, &X,,, , is therefore zero,

For any saturation of wetting fluid below the critical saturation, at the
outflow face, only non-wetting fluid will flow. However, at the critical
saturation the permeability to the non-wetting phase becomes zero. Thus
an infinite pressure gradient must exist in the non-wetting fluid at the out~
flow face for this eritical gaturation if flow of non-wetting fluid iv to oceur,

From equations (6-3), (6-4) and (6-5) and the definitions of Gw and g,

Kued ope _ Koad dp. 08

= — 6-8
Gre HBow 0T tinw dSe 8z 6-8)
and
Ked 2
qo = —x2 OPu (6-9)
e OX

At the critical saturation, denoted by Spw = SporSy=1—-8,.,K,~K,
Kue = 0 and dp./d8, is either zero or a finite negative value. Then, since
gnw# 0, it follows that for S,.,, — S,, a4 z = I we must have
limit (a—s‘”) = 4w (6-10)
L ax

This phenomenon is called the outlet boundary effect, or the end effect,
Boundary effects also oceur at the inlet face. As soon as the input Auid mix-
ture is exposed to the inflow face the wetting fluid begins to imbibe into the
porous medium due to the action of capillary forces. In the steady state
this tends to disappear. Thus in the steady state 98./8z is zero at the in-
flow face.

For steady flow 38,/8z will be zero everywhere except for a small region
near the outflow face. The extent of this region of non-uniform saturation
decreases as the flow rate increases. Thus if a steady-state technique is em-
ployed for the measurement of relative permeability, high rates must be
used or some means of correcting for the end effect must be used. Various
methods of measuring relative permeabilities are reviewed and compared
by Richardson ef al."!

The distribution of saturation existing during the steady-flow regime con-
sidered here can be computed. 8p,,/0 can be eliminated between equstions
(6-8) and (6-9) and an equation mnvolving only 88,/8z and functions of
Sy obtained, i.e. K, , K,, and p. . For fixed values of g 80d ¢, , this equa-
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Figure 6-1. Saturation distribution in a linear system under steady-state condi-
tions; illustration of cutlet boundary effect. (dfter Richardson et al., 1968.)

tion can be integrated by graphical or numerical means if K, , Kn. and
P. are known as functions of 8,

Such calculations have been compared with experiment by Richardson
et al.! A typical eurve showing the agreement between theory and experi-
mental data is shown in Figure 6-1.

6.20: Immiscible Displacement; The Buckley-Leverett Equation

The displacement of oil from a porous medium by water plays an im-
portant role in the production of petroleum. In both natural-water drive
and secondary-water flooding this displacement process is fundamentsl. For
the case of one-dimensional flow of incompressible immiscible fluids, a sim-
ple mathematical deseription of this process ean be formulated, prov:ded
the interfacial tension between the fluids is small so that capillary-pressure
effects can be neglected, It is also necessary to neglect gravity effests, This
is deseribed as follows.

We consider first the case of linear displacement il} a thin tube of porous
material inclined at an angle « to the horizontal. Distance  measured along
the tube is considered positive going up the tube. The tube has cross-sec-
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tional area A which is small enough to consider the pressure and saturation
uniform in any eross section.

From Darcy’s law we have for the two phases, wetting und non-wetling

K.A [ ap, )
Qo = —¥2 [_P- + pug 8in a] (6-11)
He dx
and
K“ “ﬂ- a . LY
e = —l [ Do + Aueff BN a] (6-12)
My ar
where
Pra = Puo = Pe (8'13)

defines capillary pressure.
The fluids are considered to be incompressible so that the continuity
equation applied to each phase yields the two equations

3G a8y
Mo ad 25 6-14
oz # at ¢ ’
and
aw A8
e s 61
) dx e ot (6-15)
where the saturations are related by
Bo + Sup =1 (B-18)

Adding equations {6-14) and (6-15) yields, in view of equation {6-16)
2 (gu + guad =0 (6-17)
dz

%o that the total flow rate
¢ = gu + Gnw (6-18}

is & constant along the tube.
In view of this result, we can define the fraction, f,, , of the flowing stream
which is wetting fluid by the equation

Guw

f\n" -

(6-19)

and similarly for the non-wetting fluid
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"_,-:??"_—.1._5, (6-20)

Then the continuity equations read

¢ e 8,
edaz &t (6-21)

and

_q_ afm GSW
ed ax at 6-22)

Now if we combine equations (6-11), (6-12) and (6-13) to eliminate p,,
and p.., we obtain

fne = —i:‘"A [—% + ";—Z—‘ — Apg sin a] (6-23)
where
Ap = pu — puw (6-24)
Then the substitutions
gu = fuog (6-25}
and
* gow = (1 ~ fulq (6-265)
yield
1+M[% - Apgsina:l
o = —— Ll 107 - ®-21)
Ry
Kopine
for fi .

Tf the total flow rate, ¢, is very high and /or interfacial tension and density
difference are small, then this ean be approximated by

fu == (1 + El";"..")“ = fu (Sw , ﬁ";_) (6-28)

Kwﬂnw Hnw
which Is a function of saturation only, the viscosity ratio being just a
parameter. When this approximation is valid

74 d8, oz (6-29)
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and the contihuity equation'then reads

¢ dfv |38 3w
|:¢A dS..,] ar (6-30)

Note that the continuity equation for the other phase reduces to this same
equation.

This equation is a non-linear equation in S, sinee the coefficient of
38./9z is a function of 8, ; hence solutions cannot be obtained by classical
analytical means, However, a numerical technique can be employed to
determine the saturation distribution as follows.

The total derivative of 8,(z, {) with respect to time is

dS _ 0S.ds oS,

d - = dt et (6-31)
Thus, if x = 2(t) is chosen to coincide with a surface of fixed S,
dS,
-th- =1 (8-32)

and

dzx aSw aSw —1
(dz )a,,, P (aa:) (6-33)

as the rate of advance of the saturation §,, .
I we use equation (6-30) to eliminate 9.8,/8¢ from this equation, we ob-

tain
dz q dfw(‘sw)
(dt)s,, T ed d8. (&34)

This equation is called the Buckley-Leverett equation.” Integrating with
respect to ¢ there results

Q) — Q) df(S.)

Zy, () — 23,(0) = oA ds.

(5-35)
Here x5,(¢) and xs,(0) are the coordinates of the plane at which the satura-
tion S, exists at time ¢ and time zero, respectively, and Qi) and (0) arc
the cumulative total volumes passed through the system at times ¢ and ZET0,
respectively,

Since the coefficient, df./dS., can be evaluated for every saturation,
Sy, if the permeability ratio, K,,../K . is known as a function of saturation,
it follows that when the saturation distribution is known at ¢ = 0, the
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1

Relotive Permeability

0

¢ 1
5,

Figure 6-2. Relative permeability curves,

saturation distribution at any time ¢t > 0 can be computed from this dis-
tribution and equation (6-35).

However, certain difficulties are encountered in this process. This ig best
iHustrated by exampte. Consider the relative permeability curves shown in
Iigure 6-2.* From these the curve of Juw versus S, for po/ue. = 1 shown in
Tigure 6-3 is constructed. Also, we can evaluate df,/d8, as a function of
Sy a8 shown in this same figure.

Now we consider an initial saturation distribution consisting of all saturs-
tions, S, < 8, < 1 existing at * = 0 at time { = Q. Applying equation
(6-35} to this distribution we obtain the saturation distribution shown in

* Note that since only ratios of permeability are to be used

he K.
kﬂw Kﬂw
where
Kw Kﬂw
k, = ’I'_{' » knw = ”'I‘('“

and K is the single-phase permeability of the medium,
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1, dy
" '&'5";
0 v "]

1] Sc 5. 1~ Sm 1
8§, =

Figure 6-3. Fraction of wetting fluid in fowing fuid as a function of wetting-fluid
saturation; also the first-derivative curve showing the determination of saturation
at the dmplaeement front.

74

S‘M%;f

1
0 i

0 Xe

b o
Figure 64, Saturation distribution during linear immiscible dispiacement as com-
puted from the Buckley-Leverett equation showing the discontinuity in saturation
as required by a material balance.

Figure 6-4 at g later time { > 0. Here the curve of df./d8, in Figure 6-2
has been used. Observe that multiple values of saturation are developed.
This is physically impossible.

To eliminate the multiple values of saturation account is taken of the
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fact that at { = 0, 8, = S, everywhere and wetting fluid is injected at
x = 0,ic fu = 1 at z = 0. Thus a volumetric balance for wetting fluid
vields

Q) = f " $(8 — S04 dz .30
L3

Here z. is a cutoff point beyond which S, = 8. . Thus we are introducing &
discontinuity in saturation at z = x. . This discontinuity can also be studied
from the standpoeint of shock formation. "
Integrating this integral by parts, there results
8y
@ = shadss ~ 51 - [ sz is, (37)
18y
where S,/ is the upper saturation at the discontinuity. In view of Q(0) = 0
and xe,(0) = 0in equation {6-35), this can be written

R
Q= A8 — Sz — @ dfy S (6-38)

1ty G50

and integration then yields with fu, = I at 8. = 1 — S,

@ = $AL8W — Selze — QUu(Ss'} ~ 1) (6-39)
or
1o’}
#hz. = S22 Q (6-40)

But again using equation (6-35) with our conditions on @(0) and z(0) gives

afe ,
¢dz. = Q dg; (8" (6-41)

and hence

dfelSe) _ fulSu]
dSu Sw’ - Sc

(6-42)

This shows that the saturation distribution remains single valued if all
saturations below S,/ are removed. This critical, or cutoff saturation, is
determined ag the value of 8, at which the straight line passing through the
point f, = 0, 8, = 8, is tangent to the curve f,{8,). This line iz shown in
Iigure 6-3. The tangent point determining S, is also shown.

The discontinuity in saturation introduced by this procedure is shown in
Figure 6-4. Further analysis shows that the areas enclosed in the two shaded
loops are equal.
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This procedure for analyzing the displacement process is widely used in
the petroleum industry. Many elaborations and extensions are possible.
For example, the same analysis carried through for a horizontal system of
axial symmetry, radial flow, yields the basic equation corresponding to
equation (6-33) as

dfm(Sw}

$rhlrae(t) — rAu(0)) = [Q() — QO] ™ (6-43)

Here rg,(t) is the radius at which S, exists at time ¢, and h is the thickness
of the stratum. The cutoff saturation 8,/ is still given by equation (6-42).

It should be noted that the saturation, S, = 1 — 8,,, is not propagated
along the system. Consequently, S, < 1 — &, everywhere within the
system. This should be anticipated because K. becomes zero at the eritical
saturation, S.. = 8., (the residual oil saturation). Although the relative
permeability eurves are for all practical purposes independent of the nature
of the fluids this residual saturation is not purely a characteristic of the
porous medium. Some experimental evidence indicates that lowering of
interfacial tension between the fluids may produce a reduction of the re-
sidual saturation of non-wetting fluid.®

6.21: The Welge Integration of the Buckley-Leverett Equation; FThe
Calculation of Relative Permeabilities from Displacement Data

When capillary and gravity effects are negligible the displacement of one
fluid by another in a linear flow system can be described by the Buckley-
Leverett equation provided, of course, that the fluids are immiscible and
incompressible and the porous medium is homogeneous.

Consider a linear displacement with S.(z, 0) = S, but now stipulate
that the system is of length L. Wetting fluid is introduced to displace non-
wetting fluid at rate g(f) at 2 = 0 for { > 0. Thus at 2 = 0, only wetiing
fluid is lowing while at ® = L both fluids are flowing. The cumulative pro-
duction of non-wetting fluid from the outflow end is denoted by ¢, and
the cumulative inflow of wetting fluid by Q. Note that ¢ is equivalent to
the total outflow, Q. -+ Q.. .

We have now at the outflow end,

- gﬂf - dQnu - ( Kw#nm)_l &
Jow p 0 1+ K“——“M (6-44)

from the definition of f,, . Thus

o (| Y 00

Ko = e aq ) 4@ 648
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nw

Qg o —
Figure §-5. Cumulative recovery of non-wetting fluid versus cumulative volume
of injected wetting Auid in a linear immiscible displacement experiment,

Hence if for such a linear displacement experiment @, and Q are measured,

then at any stage of the displacement the ratio of permeabilities can be esti-

mated from an estimate of dQ,./dQ. However, the saturation corresponding

to this ratio is the instantaneous value at the outflow faee and this is nat

. directly measurable. This problem is overcome by the technique of Welge.1
A material balance on the wetting fluid yields

L ’
.y f Siw d = ¢AL(l — Sc)  Qnw (6‘46)
0
Then integrating the left member by parts yields
‘gnw(b)
SALS (L) ~ ¢d 2dSae = ¢AL(l ~ 8) — Quu (6-47)
dro
Ubweerving that d8, = —dS,, and using
dfu (S
sas, = @ L2 (6-45)
there results
BuelL) = AL(1 = 8) — Que + .Q Qs (6-49)
o - ¢AL ¢ <. htw dQ

Here use has been made of equation (6-44).

Al quantities on the right side of this equation can be determined from
the data. To illustrate one method of applying these results, consider the
data shown in Iigure 6-5 from a typical displacement experiment. These
data represent the linear waterflooding (s, = 1) of & sample initially eon-
taining oil of viscosity u.. = 6 at a saturation, S,, = 0.80.*

* It should be noted that the shape of the curve, @, versus Q, is strongly depend-
ent on the viscosity ratio as well as on the relative permeability curve.
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Observe that from @ = 0 up to a value Q = Q, the curve of Qne versus
€ is a straight line with slope one. Thus only oil is produced up to this point.
This point is termed water breakthrough. At water breakihrough, the sutu-
ration discontinuity which is the leading boundary of the watered region
reaches the outflow end of the system.

For @ > Qg the curve @,, versus  can be represented by

Qoo =a+blngQ {6-50)

over any small segment. Here a and b are constants, for any small segment
of the curve, to be determined from the data. That is, we use a number of
data points on a segment and the method of least squares to determine a
value of b for the segment. Then

e _ :
¢ 40 b (6-51)

for this segment. This can then be used in equations (6-45) and {6-49)
along with the value of {,, to cornpute the permeability ratio and S, L).
In this manner the curve shown in Figure 6-6 is obtained. Recently an ex-
tension of the Welge technigue has been devised which permits evaluation
of the individunt fluid permeabilities from displacement dats of this type,
This procedure is due to Johnson ef al.”

100. -

t W,
k

hw

k

W

1.0 -

0.1 !

Figure 6-6. Relative permeability ratio computed from a linear displacement ex-
periment,
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6.30: Linear Immiscible Displacement Including the Effects of
Capillary Pressure

The description of linear immiscible displacement provided by the Buck-
ley-Leverett equation is a good approximation to the real physieal sit-
uation only for very high flow rates. At lower flow rates the effects of
capillary pressure cannot be ignored.

For two- or three-dimensional two-phase flow of immiscible fluids the
mathematical description takes the form of two simultaneous second-order
partial differential equations, but for the one-dimensional case these can be
reduced to a single second-order partial differential equation. Thus for the
linear case we have the continuity equations for the two phases, equations
{6-14) and (6-15), with the supplementary equations (6-16) and (6-18).
The fluids are considered incompressible.

Darey’s law for each phase is as given in equations (6-11) and (6-12)
with the supplementary equation, equation (6-13), defining capillary pres-
sure. These equations combined with equation (6-18),

g = gaw + Qo
yield
dp. Kupw + K rupnw
e q dSne  38nu Hu .
o - —A (K:-%KW)_I%-KWW = If*‘f+£2“' om0
™™ " Knutaa e Paw
Here

ap. _ 9p (95w
or  dS.S oz

(8-33)

has been assumed. This is valid if the fluids and porous medium are each
homogeneous. From this, there results by Darcy’s law

Ky dp.
q p A aSn,.

o 14 M“’ 1 .{(_‘i_“"l" _5; (650
Kouttna K nibhs

if the tube of flow is horizontal.
Then since ¢ is independent of # this expression, when substituted into
the continuity equation for the wetting fluid, yields

4 Ko dp.
'] 38w 38nw 38
o e ) PP (6-55)
oz Kncli Kepine aT a
1 4 onete g ek
Koitnw Kuuite
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which is the partial differential equation in the dependent variable S,., .
This equation is non-linear in S, and, therefore, cannot be solved hy eon-
ventional analytical methods. Before considering numerical methods of
- solution, we will write the equation in a more concise but general form as
follows,

Define the dimensionless variables

gt

A=
e L

z
§o=

7 (6-66)

where L is the length of the system. Also define a dimensionless capillary
pressure as

‘_Pc(S»m)

(_d_ﬂ;_zr (6-57)
dlgnu shar,

Here “‘char.” denotes a characteristic value. Note that S,. itself is aiready
a dimensionless quantity.

In terms of these quantities the differential equation takes the form

ﬁ:"

& a8 a5 a8
é} [Q(S) 6{'] + R(S} 5} ey {6-58)
where
8= 8. {6 59)
} dap.
kwkn- iy
1 a8
gl8) = — (6-60)
kot k22
M
and
M) - L f L (6-61)
a8 Knsothe
14
kwﬂnw

(6-62)
LY Eg char.

is a dimensionless constant parameter; K is the single-phase permeability
of the medium,

Equation (6-58) describes the saturation of the non-wetting fluid as a
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function of the dimensionless variables ¢ and X, and the dimensionless
parameter B. However, for purposes of numerical solution, it is more con-
venient to define another dependent variable as a function of S, Thus, let
8. denote the minimum wetting-fluid saturation (connate water satura-
tion), and let 8,, denote the minimum non-wetking fluid saturation obtain-
able by displacement (residual oil saturation ). Then define

l 5
r(s) = 7 f aln) dy {6-63)
1-.3,
where
sﬂ?
Z - f o) dn (6-64)
18,

In terms of r(s), the differential equation becomes

ar ar ar
hali Y e = S -65
o + alr) at 8(r} Py (6-65)
where
1
alry = 2 & (-——— (6-66)
Z dr Ko
14
kw.ﬂ'ﬂ.w
and
1 d8
= - = -67
B{r) T (6-67)

Before the solution of the problem can be attempted we must supple-
ment the differential equation with appropriate boundary and initial con-
ditions, At ¢ = 0, let,

8(z,0) =1~ 8, (6-68)
or, in terms of (¢, A)
r{f,0) =9 (6-60)

Letting x = 0 be the inflow boundary we have, since only wetting fluid is
being injected

nw (0, ) = 0 (6-70)
This implies that
o (67D
&x
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4= qu (6-72)
at x = (. Thus, from equation (6-5) and Darey’s law,

Z0pe 80 _ dpe 38 Lgu

py or =4S o~ AR at T = 0 -73)
This is equivalent to
ari, 1 Kuptnw |7
“ES‘;—) =z [1 + f;;:l = o[r{0, M] (6-74}

Here v denotes the function of r(0, A) on the left.

At the outflow face the boundary effect must be considered. No wetting
fluid is produced until the saturation of wetting fluid at the outflow face
has built up to its maximum value, 1 —~ S,,. [From then on, the saturation
of wetting fluid remains at this maximum value, Thus if ¢ = {* is the time
at which S, first reaches the maximum value: at @ = £

gull, ) =0, < (6-75)

and
SL, ) = 8., L >t (6-76)

In terms r({, A}, these can be shown to be

or(L,y) 1 Fnatt |2
R [1 + kww:l yir@L WLy < (6-717)

y(r) denoting the function of r on the left, and
r{l,x) =1, x> 2" (8-78)

where \* = ¢*/LA¢.

The formulation of the problem is now complete, This formulation is
essentially that given by Douglas, Blair and Wagner.® The numerical
method of solution to be described now is also due to these investigators.

Tlet Ay = 1/Nand AN > O,andlet §; = (§ — YA, 7= 1,2,----N + 2
and X\, = nA\, n being an integer. Denote by W, , the value of the solution
of the difference equation (the approximation to #) at the point ({;, \.).
Define the first- and second-difference quotients by

Wi+1.n — Wi-rlm

ApWig e —————= -79
¢ a7 (6-79)
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and
Wistn + Wign ~ 2Win
L3 ¢ -
A; W‘o" (A(’)z (6.&))
Then approximate the second derivative, 8°r/a¢?, by
#r 1
3{: = 'é [A;’WLMJ + AW (6-81)
and similarly
o 1
é; = “2‘ [Ar Wimu + A Winl + (6-82)
Also by approximation
ar -~ Wi — Wiy (8-83)
Gx AX

Now with respect to the dimensionless time variable X the above ap-
proximations are centered at the level n 4 14. Thus it is desired to evaluate
the coefficients in the differential equation at a value of W = r at this level.
This value of W is approximated by

AMAW o + el W oA Wi

* .
Woinnn = Win -+ 28(W.)

(6-84)

which is itself obtained by an obvious difference approximation to the dif-
ferential equation.

The initial and boundary conditions must be introduced also in the dif-
ference formulation. Thus the initial condition is

Wip =0 (6-85)

The boundary conditions need to be evaluated at the time level n 4 1
thus let

¥

ANAPW o + oW i) A Wil

Wi = Wia 3+ S(Wim) (6-86)
which is similar to the way in which W',-|,.+1,3 was expressed.
Then the boundary conditions can be expressed as
AWy naa = 0 (W)
AWran. gt = Y(WEEL a), A < A%, (6-87})

WN+1. npy - 1, At
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These, together with the difference analog of the differential equation

1 1
EA;’W(.MI + A;Wi.n] + a(W‘i.H-IIQ) 2 [Arwim-ﬂ + ﬂ;Wﬂ.n]

(6-88)
Wing — Wi

= § (Whaws Y

and the definitions of W5 .12 and WY .1 form a system of aigebraic equa-
tions for the W, , which can be solved by a form of Gaussian elimination.®
Of course, a high-speed electronic digital computer is required for such
caleulations. .

Douglas, Blair and Wagner® have obtained numerical solutions by this
method for a variety of values of the dimensionless flow rate parameter B3,
equation (6-62). All of their calculations were for a viscosity ratio, u., S e =
g, and a particular set of relative permeability and capillary-pressure
curves. These curves are shown in Figure 6-7. The equations for these
curves are

knw = 1.425(z — 0.216)
ke = 1.6328(0.7 — g)*

(6-89)
_ [ 005669
Pi = I:—‘"““**—(O',? g 0.242]
{g 0.8 T ‘ 40
- -
Pt _
n'i 0.6 N 0] L‘iﬁ
2 1N 3
[ ¥ \ :
s — ]| K, :
£ | \ e
I.I.... él -'-"5-.
E b , \ 3
& M
g 0.2 I \ N 10 3
& a
$ : ) :
__‘5 [}
&

0 ] l—{ 0
0 0.2 0.4 0.6 0.8
Woter Saturation, Fraction of Pore Yolume

Figure 6-7. Relative permeability curves and capillary pressure curvos for ealen-
lation of linear immiscible displacement including the effects of eapillary pressure.
(After Douglas ef al., 1658.)
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Figure 6-8. SBaturation versus fraction of length during linear immiseible displace-
ment showing effecta of capillary pressure. {After Douglas et ol., 1958.)

From these and the definition of r(s), the polynomial representations

8 = 0.7 — (0.43372 5 4 3.08195 r¢  — 10.592 ¥ — 14.256 r1* — 669618 r1¢

e } 3y 7 o {6-90)
}Cw + }ﬁ%:ﬂ = ;().6291;'3 — 3.4696,-¢ + 12.220 ._. 16'178.,41 ‘* 7.78957‘1512

are obtained.*

Typical results of these calculations are shown in Figures 6-8 and 6-9.
Figure 6-8 shows the wetting-fluid saturation plotted versus ¢ for sev-
eral values of X. Note that ¢ is distance expressed as a fraction of total
length and A is number of pore volumes injected. Figure 6-9 shows the
wetting-fluid saturation plotted versus ¢ at A = 0.2 pore volumes injected
for several values of the rate parameter, B. Also shown is the distribution
of saturation as computed by the Buckley-Leverett equation. This cor-
responds to an infinite value of B.

These curves show quite clearly that for very high rates the Buckley-
Leverett equation gives a relatively good approximation to the actual
saturation distribution,

* Cerinin limitations are inherant in these representations. The reader in referred
to the pupor vy Douglos of of. for o dseassion of these,
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Figure 6-0. Effect of rate on saturation distribution during linear immigeible dis-
placement at 0.2 pore volume injected. (After Douglas et al., 1958.)
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Figure 6-10. Computed correlation between recovery at breakthrough and dimen-
sionless rate parameter for linear immiscible displacement. (After Douglas et al., 1958

The effect of the dimensionless rate factor on the production of non-wet-
ting fluid from the system is shown very clearly in Figure 6-10. Here the
fraction of total in-place non-wetting fluid produced at the time of first
wetting-fluid production is plotted versus B, This curve was obtained from
their caleulations by Douglus e al,

Sovoral important feutures on thiv curve are to be noted, first, the
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platean for Jarge values of B, This is expected since for very high rates the
Buckley-Leverett equation applies and recovery becomes independent of
rate. At very low rates the entire process becomes one of imbibition rather
than displacement and recovery is high. The striking feature is that a
minimum exists on the curve. This is a real effect which is to be seen in
systems of this type. '

Kyte and Rappoport’ have reported data from experimental studies of
water displacing oil from water-wet porous media which have the same
character as the computed results of Douglas et al. These data were obtained
with a core holder of the type shown in Figure 6-11.

Typical data as obtained by Kyte and Rappoport are shown in Figure
6-12. These data are for a viscosity ratio pw/une = 0.621. Neither the
relative permeability nor capillary-pressure curves were reported. The
permeabilities of the alundum cores used in the experiments were between
508 md. and 574 md. Since (dp./dS..) char. has been omitted from the
rate factor on the horizontal scale exact comparison to the computed re-
sults is not possible. Also note that here y, instead of p.. appears in the
group on the horizontal scale.

In spite of the limitations of these data it is quite evident that the general
character of the computed results is in agreement with similar results from
experiments. Such confirmation substantiates the entire mathematical
theory of immiscible flow based on Darey’s law,

— Bolt {5 Roquired)
{

Bross :‘”r T i FPITIFS = 22
Plunger - / \\‘
ST .
é - 200 psi Slesve Prassers -
”r// Sty b A LT AT
! 0,003 , "y /zoous" — ]l
1/32" Dia> ,/”,’/// 7 d 4 '; = __ Teonsparent'
\od el s ///E/"//////// " Lucite End
'//’/ Varery SUAV SIS NN Plate
‘ ;;//////////// ey e

Infet Port % Rubber Slaeys . o / a9
P Y
N s 2r sy S // //////
L/
?- WY R \\
Bmp“ ? Brass Tube N
End Plate . 4 az >
v
1
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Figure 6-11. Core holder for linear immiscible displacement experiments. (After
Kyte and Rappoport, 1958.)

www.petroman.ir



www.petroman.ir
www.petroman.ir

SIMULTANEOUS FLOW OF IMMISCIBLE FLUIDS 161

® Strongly Woter-Wet Alundum Cores
Water.Oil Viseosity Ratio = 0.621
S e
3 tl_Aa*T®
a
; Water Breakthrough
=
E Water Arrivel Symbol Core Length
g 40 7 ©®  pdlem 0.70cp
« /] A A 927 cm. 3,98 cp.
g e O® 28 em  070cp.. |
0 @& & Warer Arrival Dota -
@ A Water Breakihrough Data
10 L s
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Figure 6-12. Typical experimental data showing effect of rate on recovery for
Hnear immiscible displacement. (After Kyle and Rappoport, 19568.)

6.40: Imbibition

In the study of linear displacement treated in the previous section the
important role of capillarity in determining the character of the displace-
ment was emphasized. It is possible for one fluid to replace another in a
porous medium by capillary forces alone. This process is termed imbibition.

The macroscopic description of the imbibition process can be formulated
most easily for a linear system. This brings out all the basic characteristics
of the phenomenon.

Consider a cylindrical sample of & homogeneous porous material of length
L and cross-sectional area A. Let the sample have impermeable boundaries
on the lateral surface and one end. Consider the medium to have an initial
wetting fluid saturation, 8., , and a non-wetting fAuid saturation, 1 — S,;.

If the unsealed face is now exposed to wetting fluid this fluid will imbibe
into the porous medium spontaneously due to capillary forces, with a re-
sultant countercurrent flow of non-wetting fluid.*

Since for incompressible fluids the total volume of fluid in the sample is
constant, it follows that

. 4= ot e =0 {6-91)
at any cross section.

* Note that this is much the same process as occurs in an ordinary ink blotter.
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From Darcy’s law, we have

Qu = m%':’-l %" {6-92)
and
o = -2 O 6.93)
where
Prs = Pu = P (6-94)

defines the capillary pressure. In these equations z is taken positive into
the imbibition face. These equations then yield in view of equation (6-91)

an

MW g dp. 38,

o " K | KedSe e (€95
[y + —_—
frm M
Then it follows that
_ KmKllW“i dp.: aSnw
e = Kw,umg -+ Kﬂwﬂ-‘w dSnw oz (6-96)
and
Qo = =gy (8-97)

These equations can be combined with the continuity equations for the
two fluids. Either equation can be used since Sw 4+ 8uw = 1 makes these
dependent. Thus we obtain from

9ne 8,

Py = —pd '—gg (6-98)

the equation

] Kuan d:ﬂc S 08
P [K‘“"m T Koot 80 “5:} aar 699
as the differential equation determining the saturation as a function of z
und £, Note that we have neglected gravity effects here, Also note that this
equation is the same us equation (6-55) of the previous section with ¢ =
0. This is as it should be since the same basic mechanisms are involved.
The boundary conditions follow from physical considerations. At the

closed boundary, r = L, no flow of either fluid occurs. This is imposed by
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requiring zero pressure gradient in both fluids at = = L. In view of equa-
tions (6-92), (6-93) and (6-94) this is equivalent to zero gradient of
capillary pressure or hence zero gradient of saturation. Thus at 2 = I,

(fﬁ'}:") = () C(6-100)
0% [zaL

At the inflow face we should require continuity of capillary pressure.
Since p. is zero in the free fiuid and this value oceurs at S,, = 8, in the
porous medium we require

Snul0, ) = 8,0 (6-101)

at the inflow face. These boundary conditions coupled with the initial con-
dition, 8,. = 1 — 8., and the differential equation are sufficient to de-
termine the saturation distribution as a funetion of z and §.

Blair' has formulated the imbibition problem in a different way. From
Darcy’s law for each fluid and the two continuity equations, he writes

i(MEE)+i(N6‘_V)=O

ax ox ax ax

o {,  ap a av ds, av
am(N£)+ax(Max)m‘%d‘E at

with boundary conditions

{6-102)

P{0,) = V{0, 8) =0

oP(L, i) aV(L, t) 0 (6-103)
8z A

where

N oo e — (6-104)

P = H{pwe -+ pu)
V = 35(ps ~ pu) = e

These equations are then solved by methods of finite differences ou o
digital computer. The advantage of this formulation lies in the fact that
not only p,, and hence S,. is determined, but also p.., and p, are deter-
mined as funetions of x and ¢. Blair also treats the problem of imbibition
into & right circular eylinder.
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Figure 6-13. Relative permeability and capillary pressure curves. (After Blair,

1860.)

Typical results as obtained by Blair are shown in Figure 6-14. These
curves correspond to the relative permeability curves and the capillary

Wotar Saturation, %

pressure curve shown in Figure 6-13. Other pertinent data are;

Mo = S ep

by = lcp

Swi = 92%
¢ = 32.1%
L = 30.48 cm
A = 7.92 em®

Elapsed Time = 6.6 hr

In-Place Oil Prod. = 36%

These caleulations deseribe oil production by imbibition of water. Figure
6-15 shows the effect of oil viscosity on the rate of oil production by water

irabibition.

K = 200 md
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5
Oil Pressure
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Figure 6-14. Pressure and saturation distributions in linear countercurrent im-
bibition. (After Blair, 1960.)

100 .
Mox. Dil Racey, comr — ———— — — e e e ]
Swi =9 2% #o=lep
e L =30.48'em
ARE S
¢ =L -
.g v =1cp 2o =0.01 cp ron5 e
a ’ K =200 md
3
-
H]
a.
‘é -
10-? 10°? 10! i 0 1o

Imbibition Time, hes

Figure 6-15. Efiect of oil viscosity on oil recovery by linear countereurrent im-
bibition, (After Blair, 1960.)
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Figuve 6-16. Oil recovery versus time for linear countereurrent imbibition show-
ing the effect of system length. (After Graham and Richardson, 1960.)

The results obtained by Blair are in good agreement with experimental
observations, One paint not brought out in Blair's paper is the effect of )
sample length on the rate of oil production. Figure 6-16 shows typical im- - i
bibition results for a natural sandstone which illustrate the effect of sample
length. These data are due to Graham and Richardson.s

A great deal of insight into the effect of various parameters can be gained
by expressing all equations and results in terms of dimensionless quantities,
This is discussed in the chapter on models,
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6.50; Multi-dimensional Two-phase Flow: Numerical Solutions

In previous sections various problems of linear two-phase flow were
treated by several methods. Of all these only one formulation can be ex-
tended to the multi-dimensional case.

For flow of two incompressible, immiscible fluids in three dimensions
Darey’s law for the two fluids can be writien in the form

i’nw o Vihry
Haw
% (6-105)
ﬁu = =Y V‘!’i‘
b
Here
¢:w = Paw + wif T
Pawd u} (6-108)
Yo' = Pu + pultts
where
Prw — Pu ™ P (6 107)

as usual. p., and p. are the respective fluid densities and =, is taken as
positive vertically,
The continuity equations are in this case.

asl!'
Vil = —gh e o (6-108)
and
88,
Vollg ™ —g — 6-109
-6 ¢ P ( )

As in Blair’s treatment of imbibition Douglas, Peaceman and Rachfords
define the variables

P o= 30 + w)}
, {6-110)
Vo= (b — )
and also
i Koo | Ko
Hnw Maa
(6-111)
N Ko Ko ‘
Haw Mo
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Then the differential equations of the problem can be written as -
V- {MVP) 4 V- (NVV) = 0

d¥, 8V (6-112)

V(NVE) 4 T (MVV) = —gp 7 v

These equations, or other forms, must be solved by numerical methads.
Douglas, Peaceman and Rachford have solved several problems by such
methods.

The importance of such solutions to flow problems of this type is that
details of the saturation distributions can be determined in this way which
could not be determined by experimental studies.

6.60: Turbulent Flow of Immiscible Fluids

Throughout this chapter only the laminar fow regime has been con-
sidered. This is the flow regime obtaining in petroleum reservoirs. However, _
many important problems in the process industries involve the turbulent 1
flow of immiseible fluids through porous media, particularly counter-cur-
rent, flow in vertical packed columns.

The theory of turbulent immiscible flow iz not so well developed as for
the laminar flow regime. Lerner and Grove!® reviewed the theoretical and
experimental results available up to 1951. A more recent study in which
relative permeabilities were measured for turbulent flow conditions has
been: reported by Stewert and QOweng.?

EXERCISES

1. Verify equation (6-43) as the correct form of the Buckley-Leverett equation for
radial flow,

2. Linear displacement of a non-wetting fluid by a wetting fluid yields data of Qn,
versus Q. Here Quy = cumulative non-wetting fluid produced, @ = cumulative wet-
ting fuid injected. Show that the slope « of the curve, Q.. versus Q, is such that
for very large values of puw/se , a = 1 and for very small values of paw/pw , @ = 0,
following breakthrough. .

8. The saturation S.' at the front in a Buckley-Leverett, type displacement is given
by equation (6-42). This is also the saturation at the outflow end of a linear system
st the time of breakthrough of wetting fluid. Bhow that equation (6-42) can be

written as
1 K} ]
S.' — Sa [dﬂn (I + -K-)._ Byeely’

and deduce the dependence of 8.’ on the viscosity ratio.

4. Show that equations (8-102), (6-103) and (6-104) yield the same formulation for
the dependence of S., on x and { az equations (8-98), (6-99), (6-100), and (8-101)
during the imbibition prooess. i.e., these last equations can be dedueed from equa-
tions (8-102), (6-103) and (8-104),
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7. MOVING BOUNDARY PROBLEMS; DISPLACEMENT;
DEPOSITION OF SOLIDS

7.10: Displacement of One Fluid by Another

The displacement of one fluid by another within a porous medium can
frequently be represented as a moving boundary problem. Thus suppose
that a porous medium is saturated with oil of viscosity u, and density p, R
except for a small amount of immobile connate water of viscosity g, and
density p, . Denoting the connate water saturation by 8., the oil satura-
tionis1 — §,,

Now-suppose that water is injected to displace the-oil, and assume that
the region in which appreciable saturation gradients exist is so small that
the porous medium can be divided into two parts: one region containing
only oil and immobile connate water and another region containing only
water and immobile residual oil. The first region is ahead of the “front”
and the other behind the “front.”” The surface separating these two regions
13 & mathematieal surface representing a discontinuity in saturation. Ahead
of this front only oil is mobile and behind only water is mobile, Such a front
corresponds to the saturation discontinuity introduced with the Buckley-
Leverett equation in section 6-20. For certain viscosity ratios, or unusual
relative permeability characteristics the regions formed approximate those
described here. ,

Before considering the complete mathematical deseription of a displace-
ment problem of this type, we examine the boundary eonditions which must
apply on the boundary.

Consider & small cylinder of length 8s and cross-sectional area 54 with
its axis perpendicular to the front as indicated in Figure 7-1. At time ¢
let the front coincide with the end of the cylinder. At a later time ¢ + &t
the front will have moved a distance

83 = vyt 7-1)

normal to the front. Here v, is the rate of advance, or velocity of the front
in the direction of the normal to the front.

During this time a volume of water entered the cylinder. This volume
is given by

Yon SASE
170
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Figure 7-1. Displacement front and tube of fow.

where v, is the rate of flow of water per unit area normal to the front
at this point. This volume of water must be equal to the volume of water
now filling the cylinder in the length s except for the connate water orig-
inally present. Thus

VAt = 348s(1 — Su)¢ — 84880 (7-2)

where S, is the residual oil saturation behingd the front and ¢ iz the porosity
of the medium. Equations (7-1) and (7-2) then yield

Vun

Ve = 8. -8 -
A similar consideration of the quantity of oil leaving the other end of the
cylinder yields
Yon
vy = ¢'_‘_"“"—"-—(1 = Sﬂ, - Sc) (7‘4)

where v,, is the component of oil flow rate per unit area normal to the
boundary. We thus have

Yon = Ugn (7-5)

on the moving boundary.

In the region behind the front, the water region, only water is flowing.
Here Darcy’s law and the equation of continuity yield a partial differential
equation for ¢, , the flow potential for water. Ahead of the front, in the
oil region, these yield a partial differential equation for Yuo , the flow
potential for oil. If capillary pressure is neglected, then on the moving
boundary these potentials must yield the same fluid pressure but not the
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same flow potential. This follows from the fact that the fuid pressure must
be single valued.

If gravity effects can be neglected, then the problem can be formulated
entirely in terms of pressure., In this case the dependent variable in the
differential equation is p in both regions but still two solutions are re-
quired, one behind the front and a different solution ahead of the front.
One exceptional case does exist in which the same function describes the
pressure distribution everywhere. {See section 7-20.)

In displacement processes of this kind in which the front can be repre-
sented by a mathematical surface the following formulation may be used.

A function F(x1, 2y, 23, t) can be employed to represent & two-di-
mensional surface in the z , x2, x; space which moves and changea form in
time by noting that

F{zy, 22, %3,!) = « = constant (7-6)

for fixed {, describes a one-parameter family of surfaces. That i, a unique
surface is specified by assigning to o & definite constant value. In general,
changing the value of { while holding « fixed yields another surface. This
other surface may be viewed as the original surface which has moved and
undergone change in shape during the elapsed time.

Thus, in equation (7-6) z,, 2z, a3 are the coordinates of a particular
point on the front at time ¢ and

F(:h+5$1,$g+5$:,$3+5$:,3+5“=ct (7-7}
specifies that this same point is located at x;, -+ 8z, o + 81y, 23 + 8z at
time ¢ + 8¢,

Applying Taylor's expansion to equation (7-7), and taking note of (7-6)
yields
aF aF oF aF
E6n+‘;;—!5:,+;z—:ér,+-58t=0 (7-8)

to first order in the inerements éz; and 8¢, Here the derivatives are evaluated
at x, %2, 23, ¢ Since the point of the front is a fluid particle which moves
with & velocity given by

D
0p = ¢(l - Sfo - S:) (7-9)
we can write
Vit
$Fi m — s 7-10
¢(1 e an - Sf} ( )
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and then
ar aF aF ar
ol we L 1 - ro ™ Qe T = ~
vlax1+”26$z+maz;+¢( hi S)m 0 (711

Of course v, could replace v, in this equation.

The solution of this equation deseribes the evolution of the boundary
in time. Observe that in order to solve for F it is necessary that the v, be
known functions. Thus the potential distribution must be either g priori
determined or else determined simultaneously with F. In general as the
surface moves the potential distribution changes. The only case in which
this is not so is that in which the “oil”" and “water” are indistinguishable,
That is, the densities, viscosities and permeabilitics are the same for the
two fluids. Thus one may consider “blue” water displacing “red” water.
Then the position of the boundary has no effect on the potential distribu-
tion; the potential problem may be solved first and then the boundary
equation solved.

Problems which can actually be solved in this manner are few. Muskat?
gives a technique suitable for some problems, An alternative with greater
applicability is given in section 7.30 following the simple case below.

7.11: Analytical Solution of the Linear Displacement Problem

Here we consider the linear frontal displacement of oil by water in
homogeneous porous medium. Let the Jength of the medium be L and
assume gravity and capillary effects negligible.

Applying Darcy’s law and the equation of continuity, we have for the
pressure distribution

az
ngmo, <2<z (7-12)
@p,
7 0, Ty < 2 < L {7-13}
Po = Pu {7-14)
a3 = {
K 3P _.{{_E._p.f 2 = &(t) {7-15)
o 0T ue 02 ]
Dw = P, z =4 (7-18)
and
Do = P2, =L (7-17)

Here K, is the permeability to water at residual oil saturation and K. is
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the permeability to oil at connate water saturation. Equation (7-15) fol-
lows from the boundary condition formulated as equation (7-5) in the
previous section,

Integrating equations (7-12) and (7-13) vields
Pu= Az + B {7-18)
and |
po= Az + B (7-19)
Applying the boundary conditions yields
B =p

mL + (1 — may

map {7-20)
T mL (1 — may

Al =

r .~ — m)zAp
= ml 4 (1 — m)zr T m

Here
_ Km’f‘o
m = Ko (7-21)
is cailed the mobiiity ratio and
Ap = P — D (7-22)

is the applied pressure differential.
Trom these eguations and

X P

vy = = -

py BT o

4 (7-23)

there results the representation of equation. (7-3)

_d_;l?_{ Ker;U ' 1
at M¢(1 - S: - Sro) mIf + (1 - m)x,«

{7-24)

for the rate of advance of the interface. Integrating this with =, = 0 at
t = 0 yields

| _ bl = S0 = 8.)

Ronp [mLz; + ba(l — m)zA (7-25)

for the time required for the front to advanice from ¢ = 0 to ¢ = Zy.

WWW.petroman.ir

T



www.petroman.ir
www.petroman.ir

MOVING BOUNDARY PROBLEMS 175
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Figure 7-2. Fraction of length traversed versus time for linear frontal displace-
ment showing the effeet of mobility ratio. (After Muskat, 1987

From this it can be seen that the front either accelerates or decelerates
according as m > 1 or m < 1. In the special case in which m = 1 the front
moves with constant speed and also the pressure distribution is independent
of z, . This is seen in equations {7-20),

These results are presented graphically in Figure 7-2, These serve to
emphasize the important role of mobility ratio in displacement problems.

7.20: Two-dimensional Displacement and Waterflood Sweep
Patterns for Unit Mobility Ratio

Two-dimensional displacement problems are of special interest in the
petroleum industry in eonnection with the waterflood technique of sec-
ondary recovery.

We consider a plane horizontal stratum of uniform thickness, permeability
and porosity. This stratum is an oil reservoir which has been depleted by
primary mechanisms, including natural water drive, 50 that i contains oil,
water and gas at saturation 8,, S, and S, , respectively. In actuality these
saturations would not be uniform throughout the reservoir. Gravity alone
would lead to segregation which would be offset to some extent, by capillary
forces. In order to reduce the problem to be considered to a tractable form
these saturations will be considered uniform throughout the reservoir
initially.

Wells completed in this reservoir are located in some regular pattern in
the plane of the stratum. Water is injected into selected wells at a constant
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rate. This injected water displaces the resident oil which is produced at
the remaining wells. If gravity and capillary effects are ignored, the dis-
placement can be assumed to take place in & piston-like manner. Thus the
water-oil front is a surface of discontinuity in saturation having the form
of & closed curve about each injection well in the plane of the stratum.

Even with these simplifications the problem is extremely complex. It
is necessary to consider three regions in order to be even approximately
realistic: the watered-out region, tbe region of the oil bank build up ahead
of the injected water and the gas region ahead of the oil bank. Of course,
each of these regions is & multifluid region. The water region, for example,
would contain residual oil and gas."”

The simplest approximation to the real situation in waterflooding is
achieved by considering the unflooded portion of the reservoir to contain
mobile oil and immobile connate water, and the flooded region to contain
mobile water and immobile residual oil. Then only two regions exist and
only one front exists. This representation of the problem is amenable to
mathematical solution.

The oil-water interface, or front, can be thought of as composed of fluid
particles which always remain on the front no matter what the motion of
the front may be. Thus, if the components of velocity of a large number of
such particles, distributed more or less uniformly on the front, are known
as functions of position and time, then the position of the front at any time
can be obtained by iniegscaiing the set of equations

dﬂ:,,l

"&T - ”pl(zply Tp2, )]

Ay

'd—t" - vp(Zp, 2, 1)

p=1 2: "y M (7-26)

Here v, and vy are the velocity components of particle number p at the
point zp , Tpe 8t time £
Trom the discussion in section 7.10, we see that the vector velocity can
be represented by
Uy

ﬁ’ . ¢(1 - Se - S"n)

and f, , the volumetric flux density of water, is determined by the potential
distribution according to Darcy’s law.

The most general form of Darcy’s law to be considered here is that
corresponding to plane horizontal flow in a homogeneous anisotropic porous
medium, The fluids are to be considered incompressible and gravity effects
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are assumed negligible, For these conditions
‘Bu o }' (le i&‘ i]_ + K.,z Q_Pg 12) (7-27)
Ho d a1z

where the coordinate axes are along the prineipal axes of permeability. It
is further assumed that relative permeability is independent of direction.
Thus

b o Ka Ko

X, X, (7-28)

Actually, no data on relative permeabilities of anisotropic porous media
have been reported in the literature but this seems like a reasonable as-
sumption and it does facilitate the mathematical trentment of the problem

at hand.

* It is also to be noted that in the watered-out region the relative per-
meability to water which applies is that corresponding to residual oil
saturation. This is denoted by ., . Thus we have

K, ( 9, | . K» 3Pw)
o = —kpy — | I} =55 4§, —= L2 7-29
r,u,, _16:1'1+ 2K13’~"z ( )

Similarly we obtain

K1 ajDo Kl aPo
Bo = —hoe — § 1) =2 f f, o T 7-30
o M(laxl+zmax’) (7-30)

for the volumetric flux of oil in the unflooded region. Here k,, is the relative
permeability to oil at connate water saturation. Note that behind the front
P21, 23, £) applies while ahead of the front Po(T1, o2, t) applies, since
only one fluid is mobile in each region.

Now we must have

Vun = Von {7-31)
on the front. Hence, if capillary pressure is neglected, p, = Py on the front
and if we also assume

Fato (7-32)
kvc.uw
then the components of pressure gradient are continuous across the front,
In thig case cne function, p{z(, 11, f), describes the pressure distribution
everywhere. (See section 7.21.) Combining Darey’s law, equation (7-29) or
(7-30), and the equation of continuity for an incompressible fluid vields
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#p | Kidp

az.’ Kl ﬂIa‘ =0 (7‘33)

for this pressure function.

To complete the mathematical formulation of our simplified displace-
ment problem, we write out our system of equations in terms of the di-
mensionless variables

% T ) i /‘/Eg’ T SL2hA8 E—g, P ahie (7-34)
Here L is a characteristic linear dimension of the system (a well spacing,
say ), ¢ is a characteristic flow rate, k i3 the vertical thickness of our hori-

zontal stratum, and AS = 1 — 8, — 8,,. (Cf, section 7.10.} In terms of
these variables our equations are

¥p . ¥p _
el (7-35)
and from equations (7-9), (7-26) and (7—29)
d5, _ _ 9.
ar = Py (xpvym"’)
p=1,2. M (7-36)
dify

R: = "Z_; (ﬁp)gpﬂf)
Here &, §,, p = 1, 2, --+ m are the coordinates of M distinet points of
the front.

Note that in view of equation (7-35) 7 depends on the time variable =
only through the time dependence of boundary conditions,

When considering a system of wells in a waterflood pattern we approxi-
mate the wells by point sources and sinks (line sources penetrating the
stratum}. Thus from section 4.50, we have in terms of the variables em-
ployed here

1
P = constant — o In{( — 20 + (7 — @)% (7-37)
for a single-well injecting ftuid at constant rate ¢ at the point ,, §;, in &
stratum of infinite areal extent. (This fixes g in equation 7-34.)
For a system of N wellslocated at points &, §:, (1 = 1,2, .-, N} with

rates ¢; we have by superposition

N .
B(Z, ) = constant - Z];-r E g—t In [{F — £ + {(# — 7)1 (7-38)

=]
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for 7 a1 any point Z, §. Note that for production wells the ¢; ure negative.
Algo note that any rates other than the artificially selected reference rate,
¢, may vary with time.

Here then for a system of wells in an infinite stratum we have completed
the mathematical formulation. To determine the shape and position of the
front about each injection well as a function of time we proceed as follows,

In the immediate neighborhood of an injection well the potential is essen-
tially determined by equation (7-37) where Z;, §j; are the eoordinates of
the well. Thus near the well the front is circular.* (In the § coordinates
only, in the x, , 2, system the front will be an ellipse unless K, = K,). Hence
we obtain from equations (7-36) and (7-37)

T n (7-39)
where
Fooee [(Zp — 200 + (Fp — 7)1 {7-40)
ixxtegration then yields
*Fpt = 7, {7-41)

for constant rate. Here the well radius is neglected. For injection rate g,
this would be-

TF = g“.f. (742}

Thus we begin by putting a small circle with radius given by equation
(7-42) about each injection well. This, of course, fixes g ctarting value of
7 also. On each of these circles (in the z, v plane), we place & number of
equally spaced points. Then we approximate the equations of motion,
equation (7-36) by

a5
Iplr + A1) = B,(r) — Ar £ (Zp, fos 7

R (7-43}
ol + Ar) = gplr) — AT£ (%, 9p, 1)

or a higher order correct difference approximation. These equations can
then be applied iteratively, for small Ar, to determine successive positions
of the fronts about each injection well.

* The maximum radius for which this is true depends on the proximity of other
wells,
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For a regular pattern of wells such as the five-spot pattern shown in
Figure 7-b lines of symmetry connecting injection wells are streamlines.
Thus, as in this pattern for example, flow is confined to a block for each
production well. The area of this block is the pattern area, 4. The produc-
tion well produces fiuid only from this block.

At any stage of the waterflood in such a system the watered-out, or
flooded region, occupies an area A, . At the instant that water reaches the
production well, a certain area A,y will have been flooded or swept. The
areal sweep efficiency, &, is defined as

Aoy

S-A

(7-44)
This is usually multiplied by 100 and expressed as a percent of pattern
area. The time at which water enters the production well is ealled the
breakthrough time. ‘

The sweep efficiency of a waterflood depends in the real situation on
many factors: distributions of porosity and permeability, relative perme-
abilities and capillary pressure, geometry of the reservoir and well pattern,
as well as injection and production rates. The formulation given above can
show how sweep efficiency depends on some of these factors, in particular,
geometry and flow rates of wells, Examples illustrating this are given in
the following section. First, however, certain extensions of the mathe-
matical formulation are required.

In section 4.33 it was pointed out that Laplace’s equation, equation
{7-35) in the present case, is invariant under a conformal fransformation
of coordinates. For flow geometries involving plane boundaries or plane
discontinuities in permeability (in the %, 7 system) the method of images
can be used for solution of problems. But for curved boundaries conformal
mapping must be used. A mapping must be used which transforms the
problem to one with plane boundaries,

Thus suppose that

i = w4 fy = w(z) (7-45)
where
P E4ip (7-46)
is the required transformation. We have

:—3 + :—:f; =0 (7-47)

and
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U= u(E 5

(7-48)
v = v(Z, §)

In the w-plane, the solution is then
- 1 ¥ oy
P = cobstant — — % = n [(u — u)? 4 (p — )] (7-49)
- a
plus image terms, if required. Here
Uy = u(jl' y Wi} X
i=1,2..,N (7-50)
e = vi(xi, §)

are the coordinates of the wells in the w-plane.
In the transformation of variables, we obtain as the equations of motion

dz [gg'g du(Zy, §) | 9P ou(,, zr»}

dr u oF av az

(7-51)
15 [t oo,
dr du ax av oF

forp=1,2 ..., M.

These equations are applied in the examples which follow,

The Isolated Two-Well Problem. This problem corresponds to a
pilot or test flood. Tt consists of an injection well at % = 14, 7 = 0 and a
production well at £ = -14, § = 0. The injection and production rates
are equal. Here L is taken as the distance between the two wells and ¢ is
the injection rate.

Superporition of a point source and a point sink yields

—_ ]
P = constant — 1 In Mi—i

4 (E 4 057 + (7-52)

after rearrangement. This function employed in equations (7-43) is then
used to compute the movement of points from the initial eircle

E—-057+jt= @ (7-53)

where ¢ is the radius of the starting circle.

Streamlines are followed by each such point. The streamlines and front
positions as computed in this manner are shown in Figure 7-3. The value
of r at breakthrough is 1.043,

Isolated Two-Well System in a Region Having a Discontinuity in
Permeability. This problem is again s pilot flood problem and is chosen
to illustrate the method of images discussed in section 4.51,
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Figure 7-3. Front positions for varicus values of dimensionless time for an isolated
twa-well system,

We consider the %, 7 plane bisected by a plane discontinuity passing
through the origin at an angle of 45°. The equation of this line is & + 4 = 0.

Tt is assumed that for £ + § > 0 the permesbilities are K, and K, ,
while for # 4+ § < 0 the permeabilities are Ky, and Ky . Also

Ij{'ﬁ - %—:ﬁ = 3 = constant (7-54)
An injeetion well is located at # = 14, § = 0 and a production well
at & = —1¢, 7 = 0, Image wells are required. The image of the injection
well 1s located at & = 0, § = —14 and the image of the production well is
at & = 0, § = !4, The geometry of the system is shown in Figure 7-4.
By the method of images we have (for & + § > )

P = constant — L {In [(# — 0.5 + Bl + B -1 In (8 -+ @ + 0.5
4y g+ 1
9 (7-55)
ryne In [(£ -+ 0.5)* +'§‘]}
and for Z 4+ § < 0
P = constant - ;%; { —In [(# + 0.5)2 + #| — 1—7‘;—2 In [# + (§ — 0.5}
{7-56)
+ 2 oz - 051 + gﬂ!}
1+ 8 '
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— image Welt
I IR
Vs -
Fd AN
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4
’
i .
Image Well ‘ 4
i

Figure 7-4. Two-well system in a plane stratum having a plane discontinuity in i
permeability, showing the image well locations. i

Figure 7-5. ¥ront positions as a function of dimensionless time for the two-well
system of Figure 7-4.

In this problem L is again the distance between wells and ¢ is the constant
injection rate. The injection and production rates are equal.

The smail starting circle about the injection well is again used., For the
case of 8 = 14y the computed results are as shown in Figure 7-5. The break-

WWWw.petroman.ir


www.petroman.ir
www.petroman.ir

¢ PETROMANR

184 FLOW OF FLUIDS THROUGH POROUS MATERIALS

through time is = = 1.235. Note that the injection well is in the region of
lower permeability. Also note that the plane of discontinuity does not have
the same slope in the 4y, 42 plane unless the medium is isotropic.

Pattern Five-Spot. The well geometry for this problem consists of an
infinite square array of wells arranged so that along any line there arc
alternate injection and production wells. The rates of injection and pro-
duction are equal and the wells are equally spaced. This array, and the
portion to be considered in the analysis are shown in Figure 7-6.

By symmetry the dotted-line boundaries of the shaded portion are
streamlines and so represent planes across which no fluid flows, Treating
thie now as the plane of the complex variable z = £ < i the conformal
transformation

w=u - iv = gin xz {7-57)

transforms this strip into the upper half of the w-plane as shown in Figure
71,

Note that in this plane the u-axis i a streamline. In the original z-plane
all wells on the boundary of the strip contributed one-half of their flow to
the strip except the two corner wells. These two wells contributed only
one-fourth of their flow to the strip. Thus, in the transformed plane ali
wells have the same rate except these two whose rates are one-half the rate
of the other wells. Since the u-axis is a streamline the lower half-plane can

° 0
(o] L
s O— x-~axis
O [ ]

Figure 7-6. Infinite array of wells in the five-spot arrangement. The square region
is B typieal pattern element and the vertical strip is the region employed in the mathe-
matical solution.
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u-axis

Figure 7-7. Conformal map of the vertical strip shown in Figure 7-6.

be supplied as the image of the upper half-plane and we have an infinite
line of wells in the infinite plane.

The transformation, equation (7-57), gives

% = gin =% cosh wﬁl

(7-58)
v = o8 r¥ sinh rﬂj
Hence the well coordinates in the w-plane are
v = 0
- cosh n{k — 1) k=12 . (7-59)
" {—cosh 2+ 1) k=1, =2,
By superposition we have then
B = constant — 21; {éz (=¥ In [ = wd® 4 2] + 3In [ — w)® + vz]}
(7-60)

+ i{kgz (=1*11n {(u ~ w)® + o 4 Mln [(u — u)® + v*]}
for the pressure function. This, together with equation (7-58) and (7-59)
above are to be used in equation (7-51) to compute the front position at
various values of 7.

Since a high degree of symmetry exists here only a portion of one front
needs to be computed. Thus an initial quarter circle about the injection
well at & = 14, § = 0is used. It is also noted that wells far removed from
the vicinity of this front have negligible effect on its motion. Thus retain-
ing only the first ten terms in the series in equation (7-60) yields values of
D correct to seven significant figures for the region of the front.

The sweep pattern computed by this procedure is shown in Figure 7-8.
The breakthrough time is » = 1.431. Note that here ¢ is the injection rate
per injection well and L is the distance from injection well to produetion
well. The areal sweep efficiency at breakthrough is 71.55 %.

Discussion of Examples, The examples given above illustrate a very
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A

Figure 7-8. Front positions as a funetion of dimensionless time for the five-spot
pattern.

versatile method for treating a restricted class of waterflood problems. Tt
must be noted that when treating an anisotropic system hy the above
method the coordinate axes must be selected to coincide with the principal
axes of permeability.

This method can be extended to cover a great variety of problems of
practical interest, but the limitations are severe. The restriction to unit
mobility ratio is very erttical and is discussed further in the following sec-
tion.

With proper restrictions the above method can be extended to compres-
sible liquids by employing the point-source solution discussed in section
5.30, in particular, equation (5-49). The method can also be extended to
three-dimensional systems. However, conformal mapping cannot be used
in these extensions.
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One important application of the methods described here is to the evalu-
ation of pilot waterfloods. Thus for a known well geometry and known in-
jection and production rates one can compute flood patterns and correspond-
ing breakthrough times for various assumed orientations of principal axes
of permeability, various values of K,/K, and various values of ¢l hAs.
When a set of parameters is found which produces breakthrough times
matching those actually observed, these ean be used to predict the oil re-
covery for a full-seale flood.,

7.21: The Effect of Mobility-Ratio on Areal Sweep Efficiency

The treatment of frontal displacement in a homogeneous medium is
extremely complex if the mobility ratio, ky.o/ Kot is not unity. In the
water region we have*

Fpe | Ky Ppo

—EE 761
s + K, 8z 0 ( )

as before, and in the unflooded oil region

Tpo | Ky Fpe

a2 T K, bog - (} (7-82}

Now the boundary conditions on the front are taken as

P = 'PW} X
on front (7-63)
Yon = Uun

Here capillary and gravity effects are still ignored. The second boundary
condition above, continuity of volume flux normal to the boundary, is the
condition derived in section 7.10. Note that the fluids are again treated as
incornpressible.

Before proceeding further with methods of treating such problems, we
will express our equations in terms of the same dimensionless variables
used in the previous section. Thus, let

S _Y /K, qt K
=¥ /K . L TA 7-64
Y L1/K2’ i qu‘hAa"/K (764

- k,,.;\/ K;_Kzf!z;ﬂo _ koc LY Klehpw
eI R 769

i =

and define

Then our differential equations are

* Relative permeability is again assumed isotropic, (Cf. equation 7-28.)

WWWw.petroman.ir

ok TR Wb i T

el A Y

i
4



www.petroman.ir
www.petroman.ir

¢ PETROMANR

188 FLOW OF FLUIDS THROUGH POROUS MATERIALS
PP | PPu
R 7-66
o Vo =0 (7-65)

in the water region, and
#ps , Po
P + P 0 (7-67}
in the oil region. The first-boundary condition on the front is .
Do = P (on the front} (7-68)

The form of the second-boundary condition on the front, continuity of
© normal flux, is deduced as follows. .
Let

ds = ledz + 1, daa {7-69)

be a directed line segment along the front, I, and 1, being unit vectors
parallel to the respective axes. Then the volume flux of water across this
line segment is

3P

P
Von d8 = — (K1 Ay ~ Ky 22 d:cl) (7-70)
f 0232

Then substituting our dimensionless variables yields

q borpie { 8P0 P
on g = — L 2orbe [TRe pp  The g :
Vo, (18 W T (B:T: 7 pe ) (7-71)
Similarly
_ g oo _ P
Yo d8 = 3 (a——i di “May' dz) (7-72)

Thus the second-boundary condition on the front is

ki 9B _ 7o

the front .
o o7 g {on the front) (7-73)

where # is distance measured normal to the boundary in the £, § coordinate
gystemn.,

Note that for unit mobility ratio this, in conjunction with #, = 5, ,
shows that one function 7 suffices, This is the case treated in the last sec-
tion. Also note that for K; = K, , that is an isotropic medium, this boundary
condition applies in the x,, 2 coordinate system also, but only for such
media ig this true.

The system of equations: (7-66), (7-67), (7-68) and (7-73), coupled
with boundary conditions at the wells and on all fixed boundaries governs
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the distribution of pressure. Since one boundary, the front, is moving the
problem cannot be solved without simultaneously determining the evolu-
tion of the front with time. This dependence on the shape and position of
the front makes the pressure-distribution time dependent even for constant
boundary conditions and incompressible fluids. This was demonstrated
in the linear case given in section 7.11,

In principle, one could solve the pressure problem simuiltaneously with
equation (7-11) for F defining the position of the front. In the present
case, this could be written as

‘m“ﬁ E?_I_f E}ff ar - ar (7-74)
&% 8% afi ay or
Actually this can Le carried out by methods of finite differences on a large
high-speed computer, but the procedure is very complex,

Since this entire formulation is only an approximation to the real physiea)
situation which must involve relative permeabilities and capillary pres-
sures, and no clear-cut front, the best approach for any elaborate computa-
tion is that of two-dimensional, two-phase flow as carried out by Douglas,
Peaceman and Rachford.® This was briefly described in section 6.50. The
reader should consult the reference for more details,

In spite of its limitations the frontal displacement problem as formu-
lated here is of practical interest. Approximate solutions of the problem
have been obtained with electrical analog models by Aronofsky.' Aronofsky
has also solved some examples by numerical techniques. Other workers® * #
have obtained solutions with models. The goal of all these investigators is
to determine the dependence of areal-sweep efficiency on mobility ratio
for selected well patterns. Some typical results as obtained by Aronofsky
for a line-drive array of wells are shown in Figure 7-9. The well pattern is
indicated in the figure.

Generally speaking the areal-sweep efficlency always decreases as the
mobility ratio increases. That is, if the mobility of the displacing fluid is
made less than the mobility of the resident fluid.

7.30: Filtration and the Deposition of Solids

An important class of moving-boundary problems arises from the flira-
tion of a fluid suspension of solid particles by porous media. For example,
in drilling of oil wells the bore hole is filled with drilling mud. This mud is
essentially & suspension of clay particles in water. At some depth, the hy-
drostatic pressure in the bore hole is greater than the pressure in a fluid
filling a stratum of porous rock penetrated by the hole. Thus, the water
filters into the porous rock depositing a cake of clay particles on the wall
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Figure 7-9. Front positions st water breakthrough for the direct-line drive show-
ing the effeet of mobility ratio. {Afler Aronofsky, 1952.)

of the bore hole. A similar process occurs in squeeze cementing operations?
designed 1o plug undesired completion perforations in the well casing.

Filter cakes formed in this manner on a porous surface are porous and
also permeable. However, their porosity and permeability will, in general,
depend on the pressure gradient to which they are exposed since they are
uwsually very compressible,

If the partiele size of the suspension is less than the average pore size
of the porous surface on which the filter cake is formed, then some solid
particles will penetrate into the porous surface.

A mathematical description of such deposition processes can be formu-
lated as follows.

The total volume of suspension, which is assumed homogeneous, is com-
posed of the volume of solid particles, ¥, and the volume of liquid, V,.
Thus, the fraction by volume of solids is

v,

V.4 V2 (7-75)

During the filtration and deposition process V, is decreased by an amount,
dV,, during a time, di. During the same period ¥, is decreased by 4V .
If we assume that the composition of the suspension remains unchanged,
then df, is zero and we have

fa

dV'=i_:_f;

av, (7-76)

In the filtration process solid particles are being deposited within the
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pores of the filtering medium, or in the form of a filter eake on the cuter
surface of the fillering medium. Let §4 be an element of area on which
particles are deposited, and dz. be the increase in thickness of the deposi-
tion region oecurring during time df. If this region is within the filtering
medium, then only & fraction ¢ of the volume 3Adz, is available to the
particles. Here ¢ is the porosity of the filtering medium, Within the avail-
able volume the solid particles are deposited with a porosity, ¢. . Then the
total volume of solids deposited on 54 during di is

AV, = ¢{1 — ¢:.)8Adx, (7-77)

During the time dt a volume of liguid flows through the area 64. If the
volume fow rate is v, per unit area normal to 84, we have

qVy = —v,84d! 7-78)

The minus sign is required because v, is directed opposite to the outward
drawn normal to 84,
Combining equations (7-77) or (7-78) and (7-76) yields

dr. b :

it T Tl el @19
as the law of deposition. (Note that this is not exactly the same as in ref-
erence 2. The form given in the cited paper is in error.) Here we put ¢ =
1 for filter-cake formation outside the filtering medium.

The factors
jrl
ST — ¢ =~ f) (7-80)
and
L (7-81)

T e~

are the internal and external deposition factors, respectively. Since the
filter cake is always at least slightly compressible ¢, varies with pressure
differential and hence the deposition factor is not exactly constant. How-
ever, treating w, and w, a8 constants does not lead to significant errors for
deposition under constant pressure differential.

The flow of fluid within the deposition region obeys Darcy’s law with a
permeability K. for external filter cake. In the internal deposition region
the permeability is less. Approximately, the permeability is ¢K, for the
internal case. K. also depends on pressure differential because of the com-
presgsibility of the filter cake.
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Figure 7-10. Filtration apparatus,

To show how certain of the factors defined above can be measiured and
to illustrate the macroscopic features of such filtration processes consider
the case of linear filtration. .

We consider a chamber containing a suspension in contact with a porous
permeabile plate. The plate is in a horixontal plane ag indicated in Figure

-10,

Only external deposition is considered. Both the filtrato and filter cake

are considered incompressible. We have by Darcy's law

KA fa
= - (—;rJ - PG) (7-82)

where 4 is the area of the plate, p and u are the density and viscosity of the

filtrate, and g is the volumetric flow rate of filtrate in the plus x direction.

(Rate is downward as indicated in the figure. A similar expression with

K. replaced by K, the permeability of the plate, applies within the plate.)
Bince the fluid is incompressible

%, 0 (7-83)
a

is the equation of continuity, Thus
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#p
il g 7-84
L0 (7-84)

everywhere. The solution of this is

p =azx+b for ~z<z<O
(7-85)
p=a'z+ b for 0 <2 <L
The boundary conditions are
(1} = pa -+ pmgh
p'(0) = p(0)
pi(h) m (7811

. (o
o)),

Here p, is the air pressure above the suspension, A is the depth of the sus-
pension (surface of suspension to surface of filter cake) and p,, is the den-
sity of the suspension. When these conditions are used to evaluate the
constants a, b, a’ and &' there results

KC
Pa '+ pmgh 4 (1 - k‘)MJL
T+ b

p=— NP (7-57)
et
and then by equation (7-82)
_ KA I'pa + pugh + pg (L + 2)
g Xe + I}{{j L (7—88)
Then according to equation (7-79)
dx: Kn Pa ~+ ﬂmgh +PQ(L + xc) fl
a T w s K . (L= ¢l — fi) (7-89)
K
since the positi m of the cake surface was here taken as —z, .
From the definition of A and f, , we can write
- 9
h o= hf —~ 1, 07 (7-90)

where
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Q = f‘ q di (7-91)
L]

is the eumulative filtrate formed and h, is the initial value of k. But, from
equation {7-79) we have by integration

1"‘ . — P
Q:fi&——j‘f.;,(.,l;@xc (7_92)

for € = 2, = Gat { = 0,

FEquation (7-90) with @ given by (7-92) can be substituted for & in
equation (7-89). Then equation (7-80) can be integrated for Pa = COD-
stant. However, in the usual case p, is quite large compared to the gravity
terms. Hence for large p,

Cﬁ ~ - Kl:pawt
dt K. .03
p (x + L) (703
Then integration yields for x, = Oat t = ¢
Koy TN oo
Xem = L+ [(K L) + ; t] (7-94)

Now if ¢ and =z, are measured at some time ¢ then from equation (7-92)
w. ¢an be computed as

w = (7-98)

- ;l.cy
Thus this number along with the values of L, p., K, u, . and £ can be
employed with equation (7-94) to compute the value of K, , Le,

. Bk .
2 {(paKwst — piol) (7-96)

K, =

Note that @ includes not only the filtrate expelled from the filter plate
but also that in the filter plate. This correction is eliminated by starting
with the plate saturated with liquid.*

it is to be noted that for small values of L, 2, and @ both increase as the
square root of the time. This time dependence hag often been noted in the
literature for large values of ¢,

Some typieal data obtained in this manner are shown in Iigures 7-11

* Note that the value of @ measured will still be less than the actual filtrate formed
by the amount in the filter cake itself, i.e. gpdz. = AQ.
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Figure 7-11. Filter-cake permeability versus filtration pressure differential for
two bentonite clay-cement slurries, (4 fler Binkley el al., 1958.)
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Figure 7-12. Deposition factor versus filtration pressure differential for two ben-
tonite elay-cement slurries. (4fler Binkley ob al. 1958.)

and 7-12. These show the dependence of K, and w. on pressure differential®
for two cement suspensions. One suspension 18 of cement and 12 % bento-
nite clay in water, the other contains 25 % clay. It is to be noted that al-
though K. varies greatly with pressure differential, w, is nearly eonstant,

In a general multidimensional deposition problem the boundary condi-
tion 1o be employed at the interface of filter cake and suspension is

ds
= m —f A (7-97)

Here ds/dt is the rate of growth of the interface normal to ijtself, o
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is the volume flux density of filirate nt the interface and # is a unit vector
parallel to the outward normal to the interface. Thus filter-cake growth on
any shape of filter surface can be studied.”

7.40: Frontal Instability and Viscous Fingering

In the previous sections of this chapter various aspects of frontal dis-
placement have been considered. Severa! important effects of mobility
ratio were discussed in connection with waterflooding of petroleum reser-
voirs. However, one very important phenomenon associated with frontal
movement, which is strongly dependent on mobility ratio, has been neg-
lected. This phenomenon is frontal instability and the associated formation
of what are usually called viscous fingers.

Instability of a displacement front can most easily be understood by
considering a somewhat oversimplified model. Consider a linear frontal
displacement in which the digplacing fluid is more mobile than that being
displaced. From our previous analysis the front should remain a plane sur-
face throughout the displacement. But suppose that a tiny region of the
porous medium is not homogeneous. Xf this tiny region is more permeable
than the surrounding region, then as the front approaches this region that
part nearest to the tiny region will move more rapidly. This gives rise to
a small “bump” on the otherwise plane front

To discover the subsequent history of this bump consider s tube parallel
to the direction of flow containing the bump, as indicated in Figure 7-13.
This tube is now treated as an isolated linear system while the other por-
tion of the system constitutes another isolated linear system. Denote the
position of the front relative to the inflow end in this seeond undisturbed
region by x; and that of the front in the disturbed system by z; + ¢ Here
¢ is the length of the bump, which it considered infinitesimal.

From the discussion of the linear displacement in section 7.11 we have

dzz, _ KorAp
dt (1 — 8, — SellmL + (1 — mlzj]

) w—

Xg+e

(7-98)

X

G

Figure 7-13. Simplified model of frontsl instability.
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" and
fatd Lt X
dt wep(l — 8 — Sp)lmlL + (1 — m}x; + e}
where
-Kmr#o
m = Ko, {7-100}

is the mobility ratio. From these, there results

de - —Kutp{l — m)e -
db o weg(l ~ 8, — S)lmds + (L — m)u,t

{7-101)

provided ¢ < a2y .

Here then we see that ¢ grows exponentially with time after inception
of the bump if m > 1, or decays exponentially with time if m < 1. For
m = 1 ¢ does not change with time.

This,simple analysis shows that, if the displacing fluid is more mobile
than the displaced fluid, any small perturbation of the front gives rise to
irregularities which grow very rapidly, Such irregularitios usually take the
form of “fingers” extending from the front and hence the name viseous
fingering. If m < 1 the front is stable while for m > 1 the front is unstable.

This simple treatment neglects the effects of gravity and capiliarity,
both of which usually tend to minimize viscous fingering. In particular,
since in oil-water gystems the oil is less dense than the water, but is usu-
ally less mobile, & waterflood moving up-dip in an oil reservoir will have
gravity effects tending to reduce fingering. In a down structure flood gravity
would accentuate fingering.

A critical point is the fact that some type of inhomogeneity or perturba-
tion is required to initiate the instability and hence fingering. Here the
microseopic nature of porous media must be considered. Natural POTOUS
media have & microscopically random porous structure. The mathematical
description employed above is macroscopic. Thus an infinity of random
perturbations is present in the most uniform porous medium hinaginable,
Consequently, fingering will always occur if m > 1. However, gravity and
capillarity may act to eliminate fingers as they are formed. Furthermore,
in the case of miscible fluids treated in another chapter, diffusion may also
se1ve to reduce fingers.

The process by which gravity serves to eliminate fingering is as follows,
For a waterflood directed up-structure a finger when formed has acting Lo
oppose its growth an additional hydrostatic head, essentially Apge. For a
more precise evaluation of this effect, the treatment of the Jinear displace-
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ment of section 7.11 is repeated for a linear system tilted at an angle 4
above the horizontal. When gravity is included we have the boundary
condition

Pe = Pu

R [ 0p0 K. [op. (7-102)
) S + puff iR E | = =2 L + pog sin & '

Ba | B2 ko | 8a ‘

8t & = ;. Otherwise the problem is as before. Note that  is measured
aloug the tube and variations across the tube are ignored.
. In this case there results

dz;  Kulap -+ mapg(L — x;) sin 6]
@ pep ~ S — SlmL + (1 — m)z,)

(7-103)

for the rate of advance of the front.
Repeating our derivation for the growth of & finger of length ¢ yields

ds Koure (1 — m)Ap + mapgL sin @

dt " pell = 8 ~ 89 L ¥ (1~ mz {7104

For zero growth rate we put de/di = 0, let (1 — 8, — S)de /dt = v,
denote the flow rate per unit area for water and use equation {7-103) to
eliminate Ap in equation (7-104). There results then
mo ggw,.dpg sin ¢

to G
m

(7-105)
-1 s

as the eondition for no fingers to form. A more detailed theory of this erit-
ical velocity is given by Hawthorne.”

Observe that this indicates the flood should be directed down-structure
if the density of the displacing fluid is less than that of the resident fluid
and m > 1. Also observe that for m = 1 this predicts no fingering at any
fluid velocity,

The existence of the eritical maximum veloeity for no finger formation
as predicted above is confirmed by laboratory experiments. Blackwell,
Rayne and Terry® have reported results confirming this result, Figure 7-14
shows a plot of recovery at breakthrough for miseible fuids versus flow
rate. For these data the mobility ratio was m = 5/1, the density difference
dp = —0.104 gm/cm® and the system was vertical. The flood wag directed
downward. ‘

Lor a lincar system the recovery at breakthrough should be 100 % if no
fingering occurs, If fingering occurs the recovery will be less than 100/% at
breakthrough.

To Hllustrate the serious extent to which fingering may occur for high
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Figure 7-14. Recovery versus displacement velocity factor showing the existence
of eritical displacement velocity. (A fler Blackwell et al., 1958.)
!
1

Figure 7-15. ¥Frontal displacement for mobility ratio of 383 showing extreme in-
stability and severe viscous fingering. (After Blackwell et al., 1958 .)

mobifity ratios consider Figure 7-15. This shows the form of the flood front,

. in an unconsolidated sand packed as uniformly as possible. The view iy

" perpendicular to the thickness of the sand pack. In this ease the mobility
ratio was 383 to 1 and the fluids were miseible (zero capillary pressure).

At the present time the problem of Vistous fugiling is one of the most

prominent problems in the petroleum industry. Because of the raadom
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nature of natural porous structures it is certain that any adequate theory
must be of a type which combines a maeroscopic description of the flow
with a statistical description of the porous medium. Scheidegger” has re-
cently published a first attempt at such a theory. In its published form
Scheidegger’s theory is limited by mathematical approximations intreduced

1o

achieve Jinearity in the equations, but the basic approach seems valid.

Chuoke® has treated the same problem in a somewhat different manner.

in

Further considerations of the fingering and instability problem ere given
the next chapters in connection with the simultanecus flow of miscible

fluids and the theory of madels.

1.

2.

EXERCISES

Solve the problem of radial frontal displacement, of oi} by water between the con-
centrie eireular boundaries ryand vy . Use P = Pyon s and P = P, on re .

Show that for a frontal displacement process with either m = 0 or m = w the
displacement front is & surface of constant pressiure. Also either the region ahend
of the front or the region behind the front is 2 region of uniform pressure, de-
pending on whetherm = O orm = «.

. In the formulation of frantal displacement for m = I represented by equation

(7-358) and (7-39) with varables Jefined by equation (7-34) show ihat for the
irolated two well problem the dimensionless breakthrough time, 7, is just the
frnetion of the eircular area L2 flooded at breakthrough when £, = K, . Generalizo
this result for other systems of wells and for K, = K, .
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8.10: Miscible and Immiscible Fluids, Fick’s Law of Diffusion

In all considerations of multifluid systems of the previous ehapiers the
fluids were considered as immiseible. That is the fluids would nol mix in a
physical sense. If the interfacial tension between two fluids is non-zero
the fluids do not mix; a distinet fluid-fluid interface always separates the
fluids. If the interfacial tension between two fluids is zero thon a distinet
fluid-fluid interface does not exist and the fluids are miscible.

If two fluids are miscible then molecules of one fluid can diffuse into the
other fluid. This is a spontaneous proeess. Tt can be thought of as nceurring
by the following mechanism,

Consider two fluids brought into contact at a plane. Within cither fluid
the molecules have a random motion which is dependent. upon the ahsolute
temperature. This motion is isotropie; that is, in any homogeneous region
there are equal numbers of molecules moving in sll directions with the same
distribution of velocity.

At the plane of separation there are molecules of kind 1 on the left, say,

-and molecules of kind 2 on the right. Due to the random motion some
molecules of kind 1 cross the plane to the right and some of kind 2 cross
to the left. This process expands in both directions until a homogeneous
mixture of the two kinds of molecules exists. This process is termed “molee-
ular diffusion.”

If the fluids were immiscible, the molecules of kind 1 attempting to
move to the right across the plane of separation would be acted on by a
force field in the neighborhood of the interface which would restrain them.
Thus no mixing by diffusion would oceur.

The heuristic description of diffusion given leads to the law of diffusion
termed Fick’s law.” It is evident that the rate of movement of molecules
should depend on the relative concentration. Thus the rate of movement,
across a plane should depend on the difference in coneentration across the
plane. More specifically, the rate of movement can be represented by

AR g 81
r

Here dn/dt is the number of molecules crossing the arca A4 per unit time
201
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in the direction of increasing z, € is the concentration in molecules per
volume of molecules of the kind being considered and D is a factor called
the diffusion coefficient, or the diffusion constant. The dimensions of D'
are length squared per unit time (em®/sec in c.g.s. units).

Generally 1) is not exactly a constant. Not only does I depend upon
the absolute temperature bus it also varies somewhat with concentration.
Furthermore the value of I for a particular kind of molecule depends upon
what other kinds of molecules are present. However, in the majority of
applications D’ can be treated as a eonstant for a particular problem.,

Often the diffusion of a material substance is expressed in mass per unit
Wime  equation (8-1) Is multiplied by M/L where M is the moleeulur
weight of the diffusing substance and L is Avagadro’s number, the number
of molecules per mole, there results '

EE B L ax

MDI atl
gm MDD, U (8-2)

Here dm/dt s mass per unit time diffusing across 4. If the eoncentration,
(", is expressed in the more common units of mass of diffusing material
per mass of total substance, we have

€= = (8-3)

where p is the mass density of total substance. If p is treated as being con-
stant, independent of composition of the substance, then Fick’s law can be
written in the form

dm

= -4
dl ax @4

where DD = pDr is the diffusion constant expressed in mass/length-time,
The commen units are gm/em-sec.

Tick’s law can be written for a general geometry in the multidimensional
case, as

o= — D\C ‘ {8-6)

This is the form most often employed in applications to flow problems.
Here # is the mass flux density veetor, mass per unit time per unit area.
8.20: Misecible Displacement in a Capillary Tube

To illustrate some of the microscopic features of miscible displacement
in porous materiuls we consider first the problem of the displacement of a
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ftuid from a straight circular capillary tube by another fuid which is mis-
cible with the resident fluid.

If the two fluids have the same viscosity and density the distribution of
fluid velocity within the tube does not depend on the distribution of the
two fluids within the tube. Tor slow steady flow at the mean velocity, &,
the veloeity at a point a distance r from the axis of the tube is'

vlr) = 20 (1 - r-:) (81
(43

where a is the radius of the tube. The fluid at the wall of the tube doos not
move und the fluld on the axis of the tube has the maximum upeod, Thus,
if a group of marked particles lies on a plane perpendicular 10 the axis ut
time zero they will lie on the surface of a paraboloid of revolution at any
later time; this by convection alone,

If at time ¢ = O the concentration distribution of injected fluid is Oz, »),
where z is measured along the axis, then at time ¢ the concentration is

C=C{z —u,r) 8-7)

where v is given by equation (8-6); again by convection alone. Thus, con-
vection alone produces a dispersion of injected fluid,

Since the fluids are miscible a dispersion of the injected fluid also oceurs
by diffusion. The equation governing this diffusion is deduced by requiring
the conservation of mass of injected Ruid.

Consider the annular tube within the fluid of length Az between  and
z -+ Az, inner radius r and outer radius r 4 Ar. Equating the net mass
flow into the tube, both by diffusion and convection, to the rate of increase
of mass content of injected fluid, there results

#C  1aC | o o0 Yy aC
D =+ 452 = T b1~ )% 8.8
(Gr* + rar + 6932) Y + 2 (1 a’) ax (8-8)

In most cases radial diffusion predominates over axial diffusion, Thus, in
most cases the term 4°C/32" may be neglected.
Now defining the dimensionless variables as

¢
:E=f,§‘=‘*'r¢———and G='— {(8-1)
a o pat Co

where C is a reference concentration, yields

a0 180 aff apd a
st Eogpaiu e —_— - Py SN .1
ar~=+F5~F ar +2D(1 ") ¥ 8-10)
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where axial diffusion ig neglected. The boundary condition at the wall of
the tube

a—_C w (), at 7= 1 (8-11)
a7

assures no diffusion through the wall.

An exact analytical solution of equation (8-8) would be most difficult to
obtain. Faylor'® has obtained approximate solutions which apply in certain
cases, Following Taylor, we deduce the condition fer which radial diffusion
is more significant than axial convection,

A solution of equation (8-8) for which #C/dx is zero is

O = oy (/o) (8-12)

where Jg1s the Bessel function of the first kind of order zero. The boundary
conditions (8-11) give

I(Va) = 0 (8-13)
The root of this equation corresponding to the lowest value of a is va =

3.8. Thus the time required for the radial variation of € to decay to 1/e
of its initial value is

asp
o= (3T or 4 = T (3.8y {814}

On the other hand if the injected fluid is dispersed over a length [ of the
tube the time required for convection to make an appreciable change in €
ig of the order of

2
fr 22 (8-15)
b

Thus, for convection to dominate over radial diffusion

b K &y (8-16)
or
2
Z ¥ gy (8-17)
v D
Conversely, when
21 2
=5 2P 38 (8.18)
B D

radial diffusion will dominate over axial convection.
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Taylor has obtained approximate solutions to equation (8-8) correspond-
ing to these two extreme cases: Case 1 in which axial conveetion dominates
the process, and case 2 in which radial diffusion dominates over axial con-
vection. The solution of case 1 is as given by equation (8-7).

Case 2, in which radial diffusion dominates is of more interest in con-
nection with displacement in porous materials. For digplacing fluid injected
uniformly at 2 = 0 starting at { = 0, Taylor’s solution to equation (8-10)
is

o -
Ood =~ et (T8N | £ Br>0
2 2 /ﬁﬂr ’
24/ 8
1L 5/
€ _ (8-10)
Nl -
G byt fE =2 . E—Br<D
22 2/‘/?“27
- 48/ |

Here 3 = apd/D is a dimensionless veloeity factor and € is the avernge
value of C' over the cross section at z. The error function, erf 2, is defined
by

erf z = —‘\/2;; fﬂ e g {8-20)

and can be found in tables. In equations (8-19) Cy is the concentration of
the material being considered in the injected Auid at = = 0,

This solution shows that the displacement gives rise to a concentration
distribution such as is shown in Tigure 8-1. This result is confirmed by
experiment for a rather wide range of values of f = api/D. Aris' has been
able to show that Taylor’s solution for negligible axial diffusion also applies

""—"""”“—"“——”“———co
73>72>Tt
~
€ F——A-—— -\ N — B,
Lf ] T2 Ty
X —

Figure 8-1. Typical distributions of corcentration of injected materinl during
linear miscible displacement as predicted by Taylor’s solution,
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when axial and radial diffusion are comparable in effect if our @ in the rad-
ieal ubove is replaced by another factor. Thus

%’“ AU T 380 (8-21)

where & == 14g for a circular tube and § may have other values for a differ-
ent geometry of eross section.,

In terns of the original dimensional variables the argument of the error
function is then

T — B¢
2VE pt
where
o
Kp = D'-{-G”‘E;‘ {8-22)

is the effective diffusion coefficient expressed in units of length squared per

, unit, time (em®/sec). This factor is usually referred to as the dispersion
cocfficient, Note that for zero fluid velocity (3 = 0) K 5 is just the molecular
diffusion eoefficient.

Aris was ulso able to show that § is restricted to a rather narrow range
of values, l'or elliptical cross sections, 379 < 485 < 1.

The mathematical solution given can be used to construct an operational
definition of the effective dispersion coefficient. Such a definition allows
direct measurement of K, even when D, a and # are unknown.

From the above solution the distance, L, between the points at which

C = 0.10 Cyand € = 0.90 Co (the 10% and 90 % concentration planes) is
L o= 382 /Kt (8-23)

where ¢ is the time elapsed from the start of injection. I is called the length
of the transition zone. Thus

K n = ""‘“‘Lz (8-24)

(36202
Consequently, ¥ in a displacement experiment the distribution of € is
meagared at somne time ¢ the value of K5 ean be computed.

This diseussion applics only for fluids of equal densities and viscosities.
However, Blackwell” has shown from experiments that for fluids of unequal
densities and viscosities the concentration distribution can be well approxi-
mated by the sumne error function solution. In particular, equation (8-24)
was used to compute values of K, for such systems. Thesge values of K
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indicated apparent values of {7 different from the actual values for simple
diffusion, These apparent or effective values of 1 gould be represented
npproximately as arithmetic averages of the two diffusion constants of the
fluids.

8.30: Miscible Displacement in Porous Media

Miscible displacement of one fluid by another within a porous matertal
is a potentially important process in the recovery of petroleum. Secondary
recovery operations by waterflooding result in residual oil saturations
within the reservoir rock which are relatively high. This is a result of the
interfacial tension between water and oil, Flooding with a solvent bank
should be much more efficient because the displacing fluid is corpletely
miscible with the oil. Here some of the microscopic features of such dis-
placement processes are considered.

The discussion of miseible displacement, within o straight eapiliury tube
given in the previous section is a guide to understanding certain features
of mascible displacement in porous medial. Two factors are seen to he im-
portant on the microscopic scule. First, diffusion tends to ereate a dispes-
sion of the front in the direction of flow. Second, convection creates dis-
persion in the direction of flow but this is accompanied by lateral diffusion
within the pores.

Though on the macreseopic scale a finear displacement process is treated
i terms of one-dimensioual flow, this does not hold on the microscapic
scale. In Chapter 7 the linear displacement problem was treated as one-
dimensional flow. The macroscopic streamlines were then all paraliel
straight lines. These streamlines can only represent the average paths of
fluid particles. On the microscopie scale s fluid element moves along a
randomly tortuous path. The average displacement from the straight path
18, of course, zero.

~ These tortucus paths of How also are not uniform in cross section, and
though two paths cannot cross, if the flow is laminar, they may pass through
a common pore opening. Thus, mixing by diffusion between adjacent tubes
of flow will oceur.

Darey’s law and the continuity equation are combined to give a deserip-
tion of the macroscopic flow geometry. In order to construct a theory de-
seribing the dispersion associated with miscible displacement in porous
media the problem must be studied on a4 microseopie seale as well, The
purpose of such study s, of course, to construct o mmeroscopie deseription
of the dispersion.

Iixperimental studies of the dispersion of an injected fluid when dis-
placing another, miscible, fluid from a porous medium have been curried
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out by several investigators® * * ' Under conditions of linear laminar
flow one would expect the concentration distribution {the average concen-
tration in & plane perpendicular to the direction of flow as a function of
distance and time) to be very similar to that observed in capillary tubes
and this is actually ohserved.

Linear miscible displacement within a homogeneous porous medinm
gives rise to a concentration distribution which can be approximated hy

o {C‘o[}é — 14 erf 4], z—ut >0
Cdg 4 Yerfyl, o —w <o
for fluids of equal density and viscosity. Here € is the average concentra-

tion in the plane a distance x from the injeetion face at time ¢ and (o is

the concentration in the injected fluid. « is the “mean pore velocity” given
by ' )

(8-25)

u o (8-26)

with ¢ being the voluinelrio injeetion rate, ¢ the poresity and A the cross-
seetional area of the sample. The argument, ¥, of the error function js

T — ul

v o= (8-27
2VE e

Data from such displacement experiments can be used to compute offee-
tive dispersion coefficients, &5, , by using equation (8-24) of the previous
section. Since for straight capillary tubes K,/D' is a linear funetion of
(az/D'Y one would expect a similar relation to hold for porous media.
However, it would be necessary to replace # by u, as defined in equation
(8-26} and some estimate of a mean pore radius would have to replace
the capiilary radius, a. ¥or unconsolidated sands ¢ is usually replaced by
the average partiele radius, e, , for correlation purposes.

Figure 8-2 illustrates the observed dependence of K /D on ayu/D in
unconsolidated sands. Here both seales are logarithmie scales. The data
of Rafai," whiek do not fall on the same curve with the other data, are
for a porous material of a different texture than the other data, indicating
an offect of texture,

Two important features of these data are to be noted. Tirst of al] the
stope of the straight-line portion differs from the theoretical value of two.
The slope here is 1.17. This indicates a type of convective dispersion in
porous materials which differs considerably from that in a straight capillary
tube. The second important feature is that in porous materials the lmiting
value of K /1Y for small values of &,/ 1) is not unity as in a straight eapil-
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104 F)
105
* Blockwell et af,
@ von Rossnbarg
* Beron
104 = Carberry ot ok - gases
= Carberry et ol. — liquids
4 Rafai = Monterrey sand
& Rafai ~ Ditawa sand
162 ] {See Bibliography)
als
w |0
102
o} B SO R
-Calculatad fer single copillary
(up - 3a
L1110 P A,
L]
101 .
103 10:2 10:1 109 10! 102 10? tof 108
[N
o

Figure 8-2, Dispersion coefficients for porous media showing the effect of displace-
ment velocity. (Afier Blackwell et al., 1958.}

lary tube. This is readily aceounted for as a result of the increased length
of path for diffusion in porous materials. For pure diffusion (¥ = 0) in
porous materials Kp = D'/r, where r is the tortuosity of the medium. For
unconsolidated sands = =2 1.5 and this agrees with the limiting value,
Kp/D' — 0.66 for u — 0 indicated in Figure 8-2.

8.31 Theory of Dispersion in Porous Media

"The experimental results cited in the Jast scetion indieate the neeassity
of a theory of dispersion in porous media which takes aceount of the ran-
dom microscopic nature of the porous structure. Thus the motion of a
particular fluid element is to be viewed as a random process with little or
no correlation hetween elements or space-time points. Tn the case of fwo
miscible fluids having equal density and viscosity the flow problem is just
that of a single homogeneous fluid. The dispersion problem s then viewed
as that of marked (colored) fluid displacing unmarked (clear) fluid.
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, Several investigators” * ' have undertaken to construet a mathematical
theory describing this random process. Scheidegger” and also Saffman®
have treated the problem in terms of a random walk formulation in analogy
to Kinstein’s theory of Brownian motion. Saffman® has also treated the
problem by the method of Lagrangian correlation funections.

Scheidegger’s early treatment by the random walk formulation can be
deseribed as follows.

"The porous wuedium is considered isotropic and macroscopically homo-
gencous. The external forces on the fluid are homogeneous and time inde-
pendent, that is, a constant macrogcopic pressure gradient in a unique
direction. It is assumed that the average displacement, of any fluid element
corresponds to the macroscopic deseription afforded by Darey’s law.,

The time interval 0 to ¢ is divided into equal intervals 7" such that

NT = ¢ (8-28)

Iu every interval 7' the fluid element under consideration will undergo a
displacement. The displacement from the mean (macroscopic) path during
any T is viewed as a random process. Thus, the fluid element executes a
rundom walk in the space (x -~ &), (y — 7), (# ~ 2), where %, §, Z are the
coordinates of the mean or macroscopic displacement. Sinee the medium
Is homogeneous in the large, and isotropic, the probabilities for steps in
-all directions are equal and eonstant for every time interval. Scheideggor
then shows that after many steps, large N, the probability for the fluid
clement to be at z, y, z after N steps will be

o -2+ gy — 2 4+ (y — 24
ANg?

0P = (ZeNet s exp {_ dedyds (820
no matter what the initial distribution of probability may have been,
The quantitios ¢ and 7' are constants during the motion and one may pub

o = 2K,T (8-30}

where K, s adispersion faclor to be determined in terms of other purwm-
cters, Both Ky and ¢ ure independent of &, ¥, 2 und ¢ but may depend on
T, §and &

Since t = AT, the expression for AP can be written as

e — 80 + (g — g + (2 — 37
AK 5t

dP = (dn K pt)= exp {., } dedydz (331

Deviating now somewhat from Scheidegper’s treatment it can be argued
that the mean displacement £, #, Z must be given by Darcy’s law. Thus
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E= o o =S o=l (8-32)
T

for the mean displacement in the x-direction, and z and 7 are zero.

Also since d P is the probability for a partiele of fluid to be in the volume
element dadydz at z, y, z at time £, it follows from the law of large num-
bers'® that the actual number of marked pariicles in this volume element
will be numerically equal to dP if a great number of particles is considered.
(Note: for marked particles introduced continuously equation (8-31) must
be integrated with respect to {.)

The probahility dP is, due to the isotropic nature of the medium, the
produet of three independent probability distributions. For example

(z ~ :E)*} e

dp, = (4xK pf)1? exp { - (8-333

4Kt
is the probability for a marked particle to be between ¢ and x 4+ dz al
time .

Since pure laminar flow is assumed there can be no interchange of par-
ticles between adjacent streamlines. Thus, for example, df; is o funetion
of 2 and & only; it cannot depend on the velocity components, u, for ex-
ample. Using equation (8-32) to eliminate ¢ from equation (8-33) shows
that dP; iz a function of x and Z only if

Kp = aig (8-3)

where a is a constant characteristic of the porous medium.

This shows that dispersion arising solely from the tortuous pathways
available to a fluid particle in a random poroug structure corresponds to a
dispersion coefficient proportional to the first power of the mean pore ve-
locity w. . This ugrees rather well with the experimental results presentoed
in the last section. The data presented there indicated the exponent 1o be
1.17 which is very close to unity.

Neheidegger's theory does not inelude moleculne dilfusion. Jo esseonee
thiy corresponds Lo nouniform concentration over the eross seelion of each
tortuous capitlary pathway within the porous medinm.

Scheidegger gives another evaluation of K based on the mechanics of
flow within a capillary, However, his argument for this case is not so
straightforward as that given above. This alternate treatment leads to a
dependence of K, on the square of the velocity,

Saffman” " has published two treatments of the dispersion problem.
Higs first treatment, also based on the randem walk analysis, leads to a de-
pendence of K 5, on the first power of the velocity. However, his second treat-

www.petroman.ir



www.petroman.ir
www.petroman.ir

212 FLOW OF FLUIDS THROUGH POROUS MATERIALS

ment,” based on Lagrangian correlation functions, yields a relation between
K5, D" and u which except for the factor § is the same as that of straight
capillary tubes. (Equation 8-22.)

Saffman also introduces the concept of a lateral dispersion coefficient.
Such dispersion would arise between two fuids flowing paraliel to each
other in a porous medium both due to diffusion and the tortuous pathways
of fluid elements.

In summary, a completely successful theory of dispersion in porous media
has not been formulated, although the work of both Scheidegger and Saff-
INAN ApPears promising. '

8.40: Macroscopic Features of Miscible Displacement

When miscible displacement is viewed from the macroscopic point of
view the dispersion phenomena discussed in the two previous sections are
not of such great importance. This is particularly true of miscible displace-
ment on the scale of petroleum reservoirs,

The mean pore velocity in secondary recovery operations in petroleum
reservoirs rarely exceeds a value of about one foot per day, or about 3.5 X
107 em/sec. Then, for a typical diffusion constant of 2 X 107" em?/sec
and a value of a, of the order of 0.02 em the group a,u/0 has a value of
the order of 0.35. Hence from the results of Blackwell e al presented in
Figure 8-2 the dispersion factor, K , » is just D’/r. As a result the disper-
ston factor ean be treated as independent of flow rate, that is, only ordinary
diffusion, modified by the path length factor, =, need be considered. This
conelusion musi be modified in the neighborhood of wells, Here the fluid
veloeity is quite high and consequently the dispersion factor is greater than
D/r.

These conclusions regarding K, in reservoir problems also should hold
for fiuids which differ in viscosity and density. This folfows from results
obtained by Blackwell® for displacements in capillary tubes with such
fluids.

Because K, can be represented by I¥/r at reservoir flow rates mass
transfer in the reservoir can be approximated by two independent proc-
esses, ordinary diffusion as governed by Fick's law with D’ replaced by
D' /7 and mass transport due to flow. Thus the rate of transport per unit
area, expressed as the mass flux density in molectles per unit time per unit
ares, is

r

o= 2o o (8-35)
T

Here 6 is the volume flux density as given by Darcy’s law (see section 8.30)
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K R
b= — - (Vo -+ ogls) (8-36)

The unit vector is directed upward along the positive =3 axis. In this equa-
tion w and p are local values which may depend on the composition of the
fluid. In equation {8-35) the concentration is expressed in melecules per
unit volume and is an average value over several pores.

Requiring conservation of molecules of the substance in (aestion, we
apply the continuity equation. Thus we obtain

ac

Dr
— V] - V. () = —_
T ¢ @ ¢ A

(8-37)
Algo, if the fluids are incompressible and the fluid density is a function of
composition, p = p(C), the continuity equation for conservation of fuid
mass combined with Darcy’s law yields ‘

kp 4 o€ :
v. [M (vp +pgia):| = ¢ oy {8-38)

These two equations, coupled with the equation
u= ui(C) (8-39)

which relates the viscosity as a funetion of composition, describe the mis-
cible displacement process. Of course, some simplifications have been in-
troduced. Recently numerical solutions of these equations have been ob-
tained by Douglas, Peaceman and Rachford.® However, they included n
lateral dispersion factor also. Their results for » two-dimensional systom
with & random spatial distribution of permeability show exactly the same
kind of fingering behavior observed in laboratory models (see Figure 7-13).
Now the relative importance of diffusion and transport on the macro-
scopic seale can be estimated. Mass transport by diffusion is of the order
D JC

N g —— — -.
o r Al @-40)

while convective transport is of the order of

Nr o= Cp (8-41)
The ratio of these two rates is

N'r vril

v wa 842

Np D’ ¢ )

Here Alis the otder of magnitude of the Jength of the transition zone neross
which appreciable concentration gradients exist. Thus Al can be estimated
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by equation (8-23). In this case

al = 3,62 /‘/ o, (8-43)
T

Nr T
— = 362 v I (844
No 1/]J’ !

For flooding times of the order of years this yields, for typical values of
vand [¥, the magnitude 10°. Hence transport by flow dominates over diffu-
sion, and when compared to reservoir dimensions the transition zone will
be quite small, L.e. Al is given by equation (8-43) and the distance, I, trav-
eled by the front. is of the order of ut. For ¢ & 1 vear this gives Al/l ~ 1072

As a consequence of the above result the displacement can be treated
approximately as a frontal process as discussed in Chapter 7. Behind
the front ¢, x and p have one set of uniform values and ahead of the front
a different sel of uniform values.

From this point of view it iv evident that the phenomenon of viseous
fingering (section 7-7) will be of importance if the viscogity of the invading
fluid s less than that of the displaced Auid. Also due to differences in fluid
density gravity segregation will be important. The invading fluid will tend
cither Lo under-run the resident fluid or to over-ride the residont fluid.
These macroscopie phenomena are the principzl factors to be considered
i miscible displacement processes in petroleum reservoirs.

Under certain conditions, extreme fingering or channeling through high
permeability streaks and severe gravity segregation, diffusion may beeome
of huportanee in another way. The displacing fluid is flowing past essenti-
alty stationary resident fluid, The only exchange between the fluids is by
diffusion.

The extreme complexity of the interplay of dispersion, diffusion and
flow in miscible displacement makes the muthematical trewtment of such
prablems all but impossible except in the simplest of cages. Consequently,
moddels are widely used for the study of such problems,

and therefore

8.50: Turbulent Flow of Miscible Fluids

Only tarminny flow of miseible uids has been eonmideesd in this chuptaor,
Very little work haw been done on the furbulent, flow of miscible fluids
through porous media. Taylor™ has developed 2 ruther successful theory
of turbulent flow of miseible fluids in pipes. Very likely this theory can be
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extended by analogy to porous media in much the same way a8 has heen
done for the laminar case.

Au adequate theory of turbulent miscible displacement in porous media

would have important applications in the treatment of gas-liquid chro-
matography.

1.

1.
2.

3.

EXERCISES

Caonsidering no diffusion show that displacement of one fluid by another in a
circular eapillary tube yields the average concentration of digplacing fluid in &
cross section as:

2 —
[,u, 2z < 2t
Ol = 26t

0 z > 20!

Here Cyis voncentration of substance in injected fluid at z = 0.

. Consider a porous medium as a bundle of parallel eircular capiliary tubes having

some distribution of radius. For each tube C'(x, t) as given in Problem 1 describes
the average concentration in the cross section with # = r?Ap/Bul.. Here ap =
pressure drop across tube of length, L. Write the equution for the average von.
cenbrution in u cross section of the porous medium if

dN
’Ji” = 2‘;; ‘f‘e-""rl dr

is the fraetion of tubes with radius between r and » 4 dr.
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9.10: The Concept of Similarity

The theory of models is based on the concept of similarity. In plane
geometry the concept of similarity ig employed in diseussing such things
as “similar triangles.” It is usually stated that for stmilar triangles the
ratio of two sides in one triangle is equal to the corresponding ratio in an-
other triangle. This property of similar triangles is independent of the size
of the triangles. In order to give a clear definition of this concept of simi-
larity, some basic coneepts of projective geometry must he eraployed. Only
the projection of a plane needs to he considered.

Suppose, as is depicted in Figure 9-1, a goometrieal figure is given on a
plane, 8, and a point P, not in the plane S, is arbitrarily scleeied. Then, a
straight line can be constructed from each point of the given figure to the
point, P. If, then, a plane, 8, parallel to 8, is placed between S and /1,
each of these straight lines will intersect S’ at only one point, The locus of
all such points defines a geometrieal figure on . The figure so constructed
is defined as being similar to the given figure.

This concept of geometrical similarity can be stated in the following
way. Two plane figures are defined as being geometrically similar if one is
the point projection of the other on a parallel plane. The most imporéant;
aspect of this definition is that it implies equality of all properbies of the
figures which are independent of absolute size.

The generalization of this definition of similarity to more than iwo di-
mensions ean be accomplished but need not be undertaken here.

Dynamic and kinematic similarity are concepts which imply equality
between eertain variables in “similar” physical systems. Such similarity
can be put on the same basis as geometrical similarity, Suppose the dynamic
and/or kinematic behavior of a physical system can be described by plot-
ting a variable y versus a variable z. Since ¥ and x represent measurable
properties of the system, some unit of measurement rust be used in each
case. Thus, when plotted on the same scale, it may be that the shape of the
curve would be altered by using a different unit of measurement for, say,
the z variable. However, if a different unit for the y vuriable were also em-
ployed, the shape of the curve might not be altered. It is obvious that, for
linear scales, if the y unit and the z unit are both doubled the shape of the
curve would not be altered. The curve with doubled units would be simpiy
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Figure 9-1. The concept of gevmetrical gimilarity; the planes are parallel,

a plane projection of the curve with single units. Consequently, the two
curves would be similar in the same sense that two geometrical figures may
be similar,

While it is possible to proceed along this line of reasoning to construct a
logical basis for models in a geometrical form, the analytical approach is
much more efficient. This is undertaken in the following section.

9.20: Basic Theory of Models

A general theory of models can be constructed without any reference to
a particular physical system. To accomplish this, let it be supposed that all
aypects of a physical system can be described completely by a system of
mathematical equations, E. This means that the physical system is as-
sumed to be a causal system and completely determinant. This requires
that u given initial state of the syster leads to a unique sequence of sub-
sequent states. The requirement that the system of equations E be com-
plete simply means that all variables and parameters must be included to
ensure the correct predication of all states of the physical system. This can
be stated symbolically as follows.
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Let the dependent variables of the system be denoted by ¢, %2 -+« ym ;
the independent variables by &, @z -++ . ; and the parameters by a;,
as, + -+ ¢ . Then the system of equations E can be written symbolically as

Ely;,yz,"'ym;xx.fvz."'xn;ﬂx,ﬂzr"'aki {0-1}

This system may be composed of several types of equations, integral,
differential, or some functional type, pluz boundary conditions or other
equations of constraint. The requirement of completeness simply means
that the system F moust possess unique solutions giving the y; as functions
of the z; and the parameters @, . Furthermore, the requirement that the
system of equations deseribes the physicial system means that these solu-
tions must correspond to actual states of the physieal system. These
solutions can be denoted by

Vi = (@, T, Ta O, 01, 0 G), i1=1,2+m (02)

The number of variables and parameters included in these solutions may,
in general, be less than the number included in the system E. This means
that, in some cases, the y; may be independent of some of the variables,
x; , or parameters, a, . If the number of variables and parameters included
in the solutions is denoted by N, then

N<m+n+k (9-3)
where m is the number of y:, n is the number of 2, , and k is the number
of a, included in the system of equations, E.

Since the system E and its solutions are to describe measurable proper-
ties of a physical system, all the equations involved must be dimension-
ally homogeneous. If there are D, independent dimensions’ included in
equation (9-2), then by the Buckingham =-Theorem* the N dimensional
quantities included in the solutions can be combined into N, dimensionless
groups, where

KN,=N-D, (9-4)
such that the solutions are expressed in dimensionless form in terms of
only these N, dimensionless quantities.

Similarly, the system F can be transformed to a dimensionless systom,
I, expressed in terms of Nz dimensionless quantities where

Ng=(n+m+k) — Dg {9-5)

and Dy is the number of independent. dimensions included in the system £,
From equations (9-3) and (9-4) and (9-5) it follows that

No+ D, £ Nx+ Ds (8-6)

* See appendix at end of chapter.
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Hence, if the solutions of the system E contain the same number of inde-
pendent dimensions as ¥ itself, then N, is either less than or equal to Ny .

Usually a more restricted procedure is employed for constructing a di-
mensionless system, E', from the system, Z, than indicated above. The
method employed most frequently in the design of scaled models is to use
& simple change of variables, or et of transformations, which transforms
the dimensional variables in E to dimensionless variables. In this manner
a completely dimensionless system, E', is obtained, since for dimensional
homogeneity of the equations the parameters occurring in E will auto-
matically be transformed to the dimensicnless parameters of E' by these
transformations. Thus, let

Yi=Yilye,o,00, - a0} i=1,2 - m
Xi=Xiloiym,0, - m) §=1,2 - n

9-7)

be the set of transformations from the z; , y; to the dimensionless X iy Y.
These yield, when applied to £, the dimensionless system '

E’IY;.,Y;», e Vo ;Xx,Xa,"' Xagdi,dg -0 A} (9-8)

In this case the number of ¥, is the same as the number y, and similarly
for the x; and X, , but the number &, of dimensionless parameters 4, , is
not the same as the number, &, of the a,’. Tn fact, it follows from the -
Theorem that % and &’ are related by

E'= % — Dg 9-9)

That is, the number of dimensionless parameters in the dimensionless
system, £', is less than the number of parameters in the dimensional
system, I/, by Dyx , where Dy is the number of independent dimensions in &

The important distinetion between transforming the solutions (equa-
tion 9-2) to dimensionless form, and transforming the system F itself
to dimensionless form lies in the fact that the solutions may contsin fewer
variables and parameters than the system E. The significance of this will
be made more evident in the following paragraphs.

Considered now are the solutions of the dimensionless system, £, which
are written

Vim ¥e(Xa Xo, oo Ko di Ae, o Ak) i= 1,2, om (910)

It is noted that, in general, a family of solutions exists, each of which is
characterized by a particular set of values of A, 44, -+, 4. This means
that two members of this family of solutions, the ¥; as functions of the
X, are identical if, and only if, each A4, has the same numerieal value in
hoth solutions.
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9.30: Scaled Models and Scaling Laws

Let two physical systems be considered, one with a system of defining
equations, F, and another with defining equations, . Furthermore, it is
assumed that for each equation in E there is a correpsonding equation of
exactly the same form in @ (i.e., for each symbol and operation in ¥ there
is a corresponding symbol and the same operation in ), When these con-
ditions are satisfied, one system is said to be the analog of the other. It is
not necessary that the physical dimensions in the two systems be the same.
When the physical dimensions of the two systems are the same, then one is
called simply & model of the other instead of an anslog model.

Now, let it be supposed that by a set of transformations of the form of
equations (9-7), the ¥ system is transformed to a dimensionless system
E', and by a similar set of transformations, G is transformed to a dimen-
sionless system . The two systems, £’ and G/, are identical in form,
which means that the family of solutions of E' corresponding to different
sets of values of its dimensionless parameters is identical to the family
of solutions of G corresponding to different sets of values of its dimen-
sionless parameters. Thus, if the parameters of i’ are denoted by Ag,,
s =12, ---, ¥, and the parameters of G' by As, s = 1,2, - ¥, &
solution of E' will be numerically identical to a solution of ¢ if

Agy = AGI) § = 1) 2, k(9D

These are the scaling requirements for the model.

As mentioned previously, the solution of I or & may contain fewer
parameters than the system itself. Thus, it can happen that among the &'
dimensionless parameters one or more do not occur in the solutions, in
which case these can be deleted in the sealing requirements. In practice,
however, the system of equations £ or @ can rarely be solved analytically
and, hence, knowledge of which parameters are important for scaling pur-
poses can only be established by experiment. Thus, without any knowledge
of the mathematical form of the solutions, all the dimensionless parameters
of E” and G’ must be included in the scaling requirements.

It cannot be emphasized too strongly that only those features of the
physical system correctly described by the system of equations, J, are
correctly represented by a model constructed on the basis outlined. Thus,
this model will yield numerical values of the Y, as functions of the X;
which correspond to those of the prototype system. Also, any quantities
derivable from the Y, and X; by ordinary mathematical operations that
are consistent with the scaling requirements of equation (9-11) will be
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correotly represented. For example, quantities such as

Y;
"3”" f ¥ dX;, ete. 12

X, !
will be correctly represented by the model,

Scaled models based on an analysis such as outlined above always con-
tain implicit assumptions as to the nature of the physical system under
congideration, For example, in the flow of fluids through porous media
Darey’s law is usually included in the system of equations, K, and also
the system, @, if the model is not an analog. Hence, the implicit assumption
is made that in both systems Darcy’s law is obeyed. Such assumptions
should be recognized.

Frequently, the nature of the physical system is not adequately known
0 that it is not possible to write out a complete system of equations, 7,
deseribing the physical system. In this case it is stil possible to arrive at
an adequate cet of scaling requirements for a model (but not an analog
model) if the nature of the system is understood to the extent that a com.
plete list of all variables and parameters pertinent to the problem can he
made. Ifor example, let it be supposed that the list so canstructed containg
7 variables and & parameters. From these, according to the w-Theorem, »’
dimensionless variables and k’ dimensionless parameters can be constructed,
where 7’ + &' = n + k — D. Here, D is the number of independent physi-
cal dimensions oceurring in the list. If a model system is constructed with

similar geometry, etc., and the same numerical values of these %’ param-

eters, then the n’ dimensionless variables will assume the same numerical
values in the model as in the prototype system.

It should be noted that an analog model can be designed only when the
complete system of equations, F, is known. This is true because it is the
form of the equations that is the bagis of an analog.

With this discussion of the basic principles of models and scaling now
egsentially complete, it is in order to consider some particular examples.

9.40: Examples of Scaling Analysis When the Equations for the
System are Known

As an example of scaling analysis, the displacement of oil by water in a
homogeneous, isotropic, porous medium is now considered. The Auids will
be assumed incompressible.

Let 1t be assumed that the system under consideration is a rectangular
parallelopiped defined by

0La; 2Ly, i=123 (913
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Further, let it be assumed that at x = 0, water is injected at a constunt
rate per unit area, », and along the lateral surface of the figure no flow
crosses the boundaries. Let the initial water saturation be 8, . The ays-
tem of equations describing this flow regime is obtained from Darcy’s luw
as

i1 o9 3 8.
— Kw T \Pw 15 =
g e 0 a; (pw + pug1s) P,
5 1 a ] as.
e Kn = a2 4 =
‘-2 o I ax e + pogma) at
Pe = Pu + Po
E=/{8+8=1 (9-14)

v = constant at input face

8, = Sum , initiaily

no flow across lateral surfaces
plus boundary conditions on 8,

0w <ly, im=1,2,3

Here the z,, ¢ = 1, 2, 3 are rectangular cartesian coordinates with oy
being positive vertically upward.

The boundary conditions on p. are adequately included here. Those
for S, ean be expressed in terms of the relative permeubility and eapillary-
pressure functions.

The system of equations given and implied in {9-14) constitutes the
F gystem for thie problem. In this system there are three independent
physical dimensions. The dependent variables can be taken as v, and S,
and the independent variables are 2y, 12, 23, and £ Parameters oceurring
here are v, puw , dito, pug, pofy L, Lo, Ly, S... #rd also 2n unknown num-
ber of parameters required to express K, , K., and p. a8 functions of 8,

The funetions K,, K. and p, for different porous media exhibit great
variations in form, This is shown in Figures 9-2 and 9-3. However, certain
critical points are common 1o all such curves for every porous medium,
These critical points are the connate water saturation, S., at which
Ky —0and p. — =, and the residual oil saturation, S, , at which K, — 0
and p. —» 0 on the imbibition capillary-pressure curve. It is better to con-
sider K, , K, and p. as functions of a modified saturation function. Thus,
instead of 8, we employ the saturation function

8, = ©-15)

1"‘8::“' L
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Figure 9-2. Samples of two-fluid permeability data. {After Collins and Perkins,
1860.)
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Figure 9-3. Samples of drainage capillary pressure data. Upper number on curvas
ie permeability in millidaroies, lower number is poresity fraotion.
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and corresponding to S, , we employ

8, — &,

S A

(0-16)
Algo since at S, = S, we have K, — K,,and at S, = S,, we have K, —
K.r, we define the relative permeabilities as

)

ﬁw—Kw

(9-17)

and

&,

fo

K, = (9-18)
Note that these differ from the relative permeabilities defined elsewhere in
this volume and generally employed in the petroleum industry. These are
to be considered as functions of S, as defined above.

That these definitions of relative parmeabilities introduce a certain degree
of uniformity for the variety of porous media encountered in application
is shown in Figure 9-4. These are the same data shown in igure 9-2.

1.0
@ Unconsolldnted Sond
\ § ,
\ ﬁ Fr‘lu-;-n‘ Z,
Y N Unconsaolidated Sonds /
0.8 N\ == Convelidoted Sunds //
y/
\A // /’
° = AN //
| 3 N s /
0.6 b~ N / y/
* ) ¢ /,
| * \ 4 s
] = \\ //-( /
v /
o \ 4
» z§ 0.4 |- au \\ \<’ ‘™
] 4
|a® \\ , \\
L. L b
A /
02 /%\. 7 "N
r'e b .
I~ /// 27 "‘\‘ \\\
e Ry .
0 b Il | ] ! [ e
0 0,2 0.4 0.6 0.8 1.0

Dimensiontess Water Saturation, §

Figure 9-4. Modified relative permesbility as a function of reduced saturation.
(After Collins and Perkins, 1960.)
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The capillary pressure curves are handled in a similar manner. We follow
Leverett® by observing that the general level of p. is determined by the
interfacial tension, ¥, a mean contact angle 8 and a mean pore radius char-
acterized by (K/$)". Thus define a direensionless capillary pressure as

K _» ]
De % ~cos 8 (9-19)

This funetion is also to be considerod as a function of 8. during imbibition

but should be a function of 8,/ = (8, ~ 8,)/(1 ~ &) for drainage.
The uniformity introduced to the capillary-pressure data of Figure 9-3

by this definition is shown in Figure 9-5. Tt should be noted that there

1.2

o]

"
R
5
A 0.6
2 |2
u
NES
o
[}
T 04 {210)
{300) \\
P (220}
o2 (50} \Q\
0 ! 1 1 1 | i | 1
0 0.5 1
3. 5, -5
¥ 1 ls

.
Figure 9-5. Dimensionless capillary pressure as & function of reduced saturation.
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is always considerable uncertainty regarding the value of cos @ in this

relationship.

The transformation of the system E above to a dimensionless E' system

is accomplished by

Ty

Fi o= }:, 11,23

e R
T gL — &, — 8)

Kwrpw

Pu= tuyl;
Kwrpa

pﬂ . v.umL!
Sy -~ 8,

Gy o= T B
l - S.: - Sra

K P
Pe "/—; ¥ cos @ J

The E’ system thus obtained is

8o+ 8 =1

Kur "
B = Po = P = 1/%(70053)3’);

!)ijLl
No How across lateral boundaries
Unit dimensionless injection velocity

Swm ”" Sr.

=1_—~————SG~S” at 7 =10

Boundary conditions of 8,

0<EH<T, =123
The dimenstonless parameters included here are

I_J_]. _Iil KmrpwyLa
Lz ' L,‘; ! t),qul ! U}J-WL;

and (Sym —

-WWW.petroman.ir

H
( L\ a £ Koupugls _ a8,
z: =~} —1 ke, — » TR =
=1 (L.) 63’:‘»[ 3f( (p prLl Ia)] 31‘

Hu-Ku-: 8 L\ g 3 Ku.rPoG'Ls - 6S..
Mk ue Y Dotk — (g, 4 el =
HﬂKurr l-z_:l (Li) aF; [ aF; (p + W‘w’ll I!)] ar

Kyrpogla sk o Kor
#oKur ' Vel

(9-20)

{9-21)

¢ 4 cos ¢
K

8o/t — 8, — 8,.). Thus according to the bhéory outlined
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shove two flow systems of this type and of similar geometry will exhibit
the same dependence of $, and S, on the # and 7, if these parametera
have the same values for the two systerns and &, , £, and $, are the same
functions of S, in the two systems. Also the dimensioniess fluid velocities
will be the same functions of the #; and r in the two systems. It must be
noted that the boundary conditions in the two systems must be the same
(in dimensionless terms).

Since the entire snalysis could have been carried out in terms of the
flow potentials

o' = pu - pugrs and ¢ = p. 4+ pugz (9-22)
observe that the alternate £’ system bolow can bo obtained by defining
Koo' - Konp
v = d g, = 9-23)
Yo ls M =T (

Thus

3 - .
LY o (, o\ _ o8

?,-_‘:1 (L.‘) aE; (kw Bf;) T ar

I R A N AN
wKor 2 \Le/ 0%\ 05, ar

8+ 8. =1 .
K. Kooy Ly -
2Tl o ¢ — e Ey = g, .
E'= ¢ §, + — V Y 08 ¢ vl Iy v (9-24)

No flow across lateral boundaries
Ukt dlusisionless injection veloeity

Swm"'“sc
S”ﬁ_—%_l—sc-—sn at =10

boundary conditions on 8,

0<&H<1 i=123

Here 4p = p, — p,. In this formulation ¥ and S, will be the same func-
tions of the & and 7 in two such systems having similar geometry and
boundary conditions if the parameters

L| Ll Kwﬁpgf.m #uKoa Ku:r ; : Swm - Sc
v s T, e, e—— =y cosf, ————
La Ly Yupla oo Yuoln 1 -8, — Se

have the same values in the two systems,
Here then we see that one less sealing group is required. Thus, the second

WWW.petroman.ir

e ke

[ S ——

oot

kS
3

[


www.petroman.ir
www.petroman.ir

¢ PETROMANR

THEORY OF MODELS 229

formulation may be thought to be preferred because the seling require
ments are less stringent. However, in the first analysis both dimensionless
flow rates and dimensionless pressures are scaled, while in the second
analysis the dimensionless potentials and flow rates are sealed. Thus, when
considering any set of scaling groups for s particular physieal problem the
question ey to what variables of the system are comparable in model and
prototype must be considered. For some studies the second analysis given
would be satisfactory, but in other cases the first might be necessary.

The procedures deseribed in this example can be applied to any physical
problem for which the physical processes are well enough understood to
permit complete mathematical formulation of the problem. Perhaps the
greatest source of error in this method is an incorrect mathematical formu-
lation of the physical problem.

9.50: Example of Analog Construction

As an example of analog construction, the theoretical basis for the po-
tentiometric model of single-phase, steady-state flow in an isotropic porous

medium will be considered. For simplicity, we treat the two-dimensional
case.

Following the lines of developnient employed for steady plane flow em-
ployed in Chapter 4, we obtain

a { al 3 al or
2GR GORL .

as the differential equation of low, Here

MK,
U= 2T plp - 2b) (9-26)

if the fluid i3 o gas. The permeability of the medium, K, is variable from
point to point so we define

K
= 27
8 [ (9-27)

where K. ig a reference value, the value at ¥ = y = 0 for example. Here
x and y are rectangular Cartesian coordinates in the plane,
If the fluid is an incompressible fluid, we let.
Kr
U= T” (b + ogas) (0:28)

again making reference to Chapter 4, section 4.31.
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We note that

m = ~pvl 9-29)
is the mass flow rate per unit area in either case.

Now consider the flow of electrie current through an isotropic conduct-
ing sheet of uniform thickness. From the conservation of charge and Ohm's

law, we obtain
a v J v
)+ (8- o

where V is the electric potential and o is the conductivity of the medium
which may be variable from point to point. Here

j = —avV (9-31)

is the eurrent density according to Ohm’s law.

Now the equations apply only for uniform thickness of the region of the
flow, both in the porous stratum and the conductor. However small varia-
tion in thickness in either case can be included in a rather simple WRY.

Varintions in thickness introduee vertica! components of Aow. How-
ever, tor small varistions these will be small and the velocity vector will
still lie approximately in a horizontal plane. In this case we have approxi-

mately
] H 8t/ ] H alJ
— _— - — = -32
am(ﬂflraz)+ay(ﬁf{,ay) 0 (8-82}
for the fluid-flow problem, and
8 av a av
P (ah 5; ) + 5; (uh 5;) = { (9-23)

for the electrical problem. Here H(z, y) is the thickness of the porous
stratum, fl, is a reference value, H{0, 0) for example and &( T, 4) is the
thickness of the conductor.

We can now write a dimensionless description of the fluid-flow problem

a8
L.} ez \"H, oz ag\" H,ag
[ Q..
F=locs<y o<sct @34

Boundary conditions of ¥7
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Here

z . ¥
E=— -
¥ Tn

L'

with 7, and Ly being maximum dimensions of the flow region, and

Uv- U,

V=

(9-35)

where U} is the smallest value of U in the field and U, is the [argest value.
Similarly a dimensionless system for the electrical problem is

bY'2 (ah AV 2 (b OVN
& = L} 8% \o.h, 3% ag \ohy 0F (9-36)

0<£<1 053<1
Boundary conditions on ¥

Here the definitions of 2 7, L, &z, V, ¥y and Vy are cxactly of the same
form as in B’ above.

Thus, if the two systems have similar geometry and boundwry conditions,
wo ree that

O, 9 = 7, » 0.37)
if
8H = oh .
" (Z §) = ry (% (9-38)

That is, 8H/H, and gh/s.h. are the same functions of the dimensionless
coordinates. Here o, and b, are reference values, the values at x = 0,
y = 0, for example.

This analysis shows how an electrical system can be used to represent
& fluid-flow system.

Usually the fluid-flow problem is one in which both K and H are vari-
able. However, in the electrical analog only variations in h need be meluded;
thus ¢ = ¢, everywhere. Most often the electrical analog takes the form
of a tank made of insulating material filled with s solution of sodium
chioride in water. Variations in depth then represent variations in KH
for the fluid system,

If large variations in K exist in the flow system (discontinuities in X,
for example) then large variations in A must be introduced. This would
introduce large vertical components of flow in the electrical system. To
eliminate this, one can place many small stiff wires standing vertically in
the tank at the discontinuity. T'wo rows of such wires, one on the low side
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and the other on the high side of the discontinuity forces the lines of flow
to lie in a horizontal plane. Such wires can be distributed uniformly over
the tank to maintain approximately horizontal flow everywhere, at least
to a sufficient degree for most applications.

Though the formulation of the analog given here yields & = V, it still
remains to consider the relation between flow rate per unit ares in the
fluid system and the electrical current density.

From equations (9-29) and (9-31) and the definitions of the dimension-
less variables we have

s (He Ur= U A b _
h (H I )(V, — Vl)(h,a,.)} (9-39)

as the relation between #i and ;.
In such analog models the sources and sinks are metal electrodes eon-
nected to an alterpating current power supply; usually sixty eycle current
ir used.
The particular analog model deseribed here is most useful in the study
of waterflooding problems for unit mobility ratio. Thus since
ol eV Al ¥
raily PRl s (9-40)

measurements of V¥ by potential probes can he used to plot the develop-
ment of a flood front. Several other types of analogs have been developed
for this and similar flow problems.”* '

9.60: Example of Scaling When the Equations for the System are
not Known

To illustrate some aspects of the scaling problem encountered when the
equations describing the physical system are not known, the following
problem is considered.*

A model is to be constructed to study the slow, steady flow of a viscous,
incompresgible fluid through a capillary tube of axial symmetry whose
radius is a sinusoidal function of distance along the axis. The tube is to be
placed horizontally so that gravity effects can be neglected. Since the flow
is to be slow, it is reasonable to assume that inertial effects can also be
neglected.

The parameters characterizing the geomotry are the minimum dinmeter,
dy , the maximum diameter, ds , the distance between successive maxime in
diameter, I, and the length of the tube, H. The variable to be studied
is flow rate through the tube, §, as a function of the pressure difference

* Actually the Navier-Stokes equations could be used for similurity analysis.
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across the tube, Ap. Since the fluid is viscous, the viscosity of the fluid,
&, is an important parameter,

By using knowledge of flow through a straight capillary as an intuitive
guide, it can be seen that the above quantities seem to be the only varia-
bles and parameters pertinent to the problem. Thus, following the outline
given in section 9.20 on general theory, one takes

@ = dependent variable
Ap = independent variable -41)
di, dy, I, H, and 4 gre parametors
Here there are seven quantities and three independent physical dimensions.
The basic dimensions are taken as force, length, and time, and are denoted
by F, L, and T. According to the »-Theorem there must exist four inde-
pendent dimensionless groups for the problem. These groups are denoted

by xi, 4 = 1,2, 3, 4. It is noted that the dimensions of the variables and
parameters are

LS
Q] = T
I
[ap) = I

(9-42)
il = [d] = Il = [H] = L

[ME=I;

Here [ | means “dimensions of,” and ¥, L and T stand for force, length
and time, respectively.

Following the procedure outlined in the Appendix for applying the
m-Theorem would lead to the necessity of solving many simultaneous
equations to construct the w,. The procedure is greatly simplified by
noting that from equations (9-42)

o 049

are obvious as acceptable dimensionless groups. This leaves one group to
be determined.
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Obviously, hoth @ and Ap must be included in this last group. Also,
since L does not have the same power in these two variables, one of the
parameters of dimension L must be included. Further, sinee 7' oceurs in Q
only, and ¥ in Ap only, ¢ must be included. Thus, one takes as ,

M == QYl(Ap)T: dyhum (9-44)

where 1, v2, -+ are numerical exponents. This ean he written in terms

of dimensions as
i F In FT In
[} = 0 = IZE,;:[ [ i';:l" LI [—L—;:] ‘ (9-45)

3’)/1 - 2‘)/3 + Yi — 2‘“ = { (L dimension)

whieh yields

=yt + va = 0 (T dimension) {9-46)
Yz + ye = 0 (F dimension)

Since (as is usually the case} there are four unknowns and only three equa-
tions, one of the ¥'s can be selected at will. Since it is Q that is of most
interest, take v; = 1, and from equations (9-46)

vo=lyr = 1,y = 3 {9-47)
Thus, have
Qu
= 0-48
™ d3ap 9-43)

a8 the fourth dimensioniess group.

Always when dealing with dimensionless groups any one of the groups
can be replaced by an algebraic combination of the others. Thus, in lieu
of w4 above, take as the modified w4

Qu Y\m  QuH
= T — o= e -4
i (d,mp) m  di'ap (9-49)

Thus, it is concluded that the slow, steady flow of a viscous, incompressible
fluid through & tube of axial symmetry and sinusoidally varying diameter
must obey an equation of the form

Q.UH d1 d1 g

diap 7 (da’ i’ 1) ©-50)
where [ is a dimensionless function of the three indicated parameters.

Not only has this analysis yielded scaling groups for the problem, but it
has also indicated the form of the solution of the problem. In fact, this can
be carried even further. If d, = d, then this problem becomes just that
of u straight capillary tube and the mathematical solution of this problem
i3 known.
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ford, = dy

QuH . {9-51)
d;‘ﬁp B —1_23

Thus, equation (9-51) can be written in the form

" dy dv H
----- == = = 3-52
iy ‘23'{ (dz, i’ I) -52)

where now the unknown funetion, f, approaches unity ns dy approaches
dy . It can ke argued further on the basis of anslogy that when H is much
greater than ! the function f’ should be relatively insensitive to the value

of H/1.
) for H » 1
QH _ x . (4 d o5
ditap 1287 \d:' 1

where two primes are used to distinguish this function from f*.

To summarize the analysis: If model and prototype have the same shape,
and d./dz , di/l and H /I have the same values in the model and the proto-
type, then QuH /di*Ap will have the same value in model and prototype.
Irarthermore, the data obtained on the model can he correlated in the form
given by equation (9-562), where the function f* approaches unity as d, — d»
and also f* is relatively independent of H /I when /1 is large.

1t must be noted here that the neglect of inertial forces in both model and
prototype must be justified by experiment or some theoretical means. This
is discussed in the next section.

This example should ilustrate the power and utility of this type of
analysis,

9.70: Partial Similarity in Scaled Models

In the design of laboratory models of size different from the prototype
system, it is ordinarily desirable to maintain exact dynamic similarity, if
possible. This means that all dimensionless parameters are maintained at
values equal to those of the prototype. If this can be done, the madel meas-
urements yield numbers for the dimensionless variables equal to those
which would occur in the prototype. Most frequently this cannot be ac-
complished for at least ane of two reasons: (1) the nature of the prototype
system is not sufficiently well understood to permit confident formulation
and subsequent translation into a model, (2) even when the problem is
clearly defined, it may be impossible to maintain full dynamic similarity
with a change in size.

The first of these difficulties often arises in exploratory research. It
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sometimes requires a keen physical insight and good luek to set up a labora-
tory model which displays dominant behavior like that of a prototype.

The same talents are useful when it is desired to devise a simplified model
of a well-defined but excessively complex physical system. Here the re-
searcher must discover which of the many known interacting effects may
be neglected and which are essential for representing the dominant be-
havior of the system. In deducing this, it may be that the simplifications
achieved are sufficient even to permit a mathematical solution of the prob-
lem,

Most of the points mentioned above can be illustrated with the aid of
the problem discussed in the Jast section, flow through s capillary with
sinusoidal variations in eross section.

First, consider the first type of difficulty discussed above, namely in-
sufficient knowledge of the system. In the scaling analysis for this problem,
inertial effects were completely neglected; consequently, the scaled model
formulated there has only partisl similarity to a prototype, because the
inertial properties of model and prototype may be radically different. Since
the question to be studied was the dependence of @ on Ap, this lack of
similarity is not a handicap provided the dependence of Q on Ap is inde-
pendent of inertial effects in the range of values of Q of interest. Thus, some
sort of criterion is needed to determine the importance of inertia in this
relationship. This is where some basic physics may be applied.

The inertial properties of the flow can obviously be characterized by the
kinetic energy of the fluid; thus, a point of attack on the problem would
be the application of the principle of the conservation of energy. Since no
potential energy is involved, this can be stated as

work done on k;?tl;ea:fl;f energy loss
fluid column | = { HOEUCCNEIRY 1 {1 g 40 Friction (9-54)
of length H of fluid column in length H
of length H
If the density of the fluid is denoted by p, then

f:;ig;) ~ (mass) (velocity)® « (aditH) (&%) |
{work done) ~ (force) (distance} = (Apd,?)(H)

. radial
(energy loss) = (viscosity) (cross-section area) ve]onity) (distance) >  {9-55)
gradient

or,

(energy loss) o« ud? (%) (H)
1
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In all of these relations, « means “proportional” to. Furthermore, if
these proportionalities are to be replaced by equalities, the constants of
proportionality must be, because of the dimensions in these relations,
dimensionless functions of d;/dz , d,/1, and H/i.

Thus B

di & HY [QuH 4 di HY {p@H
2E = et B et L
ApditH fl(dg,1,1)(dl)+ﬁ(d2,1,l)(d‘,) (9-56)

or, with obvious rearrangement and new functions of proportionality

Qe m oo AN p@ N (dod W .

sy~ 1287 (da' I z) l:l (dmp)" (u!z' I 1)] (-57)
Thus, the requirement of conservation of encrgy has led 1o & more complete
formulation of the problem. In particular, inertial effects are now included.
Equation (9-57) shows how the model data should be correlated when

is included in the problem.
The desired criterion as to the importance of inertia can thus be formu-

lated as
kinetic energy loss
(energy) « (due to viseusity) (0-58)
or approximately
Q)
{(nd2H) (3:;) K pd® (Zi%) H (9-69)
which yields
Eg X 1 (9-60)
#dl

where consistent units must be employed. When equation {9-60) is satis-
fied the formulation given previously, neglecting inertia, is satisfactory
and the model with partial similarity adequately represents the prototype.
It should be noted that experimental data. may show that this restriction
can be relaxed to some extent.

The second kind of difficulty might arise if, for example, the flow through
a sinusoidal capillary 1,000 feet long were to be studied with a model,
Obviously, if a model only a few feet long were employed, the diameter of
the model capillary would have {0 be vanishingly small in order to main-
tain (H/1)/(d)/1) at the same value, and this would be impractical, if
not impossible. Here, physical intuition can be applied to reduce the
dilemma. Analogy to a straight capillary suggests that the flow behavior
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should be relatively insensitive to the value of H/i for large values of H/1,
thus a few trial experiments with models having different values of & /1
should show that for some value of H/l, say (H/1), , any further increase
in /1 does not alter the value of Quif /d*Ap. Then, a model similar in all
respects but the value of H/! to the prototype could be used, and this
model with partial similarity would correctly predict the dependence of
} on ap,

These examples illustrate some of the variety of teehniques required in
the design of models having partial similayity.

The example employed here and in the preceding section has applica-
tions to the study of flow through porous materials. A flow channel in a
porous medium has variations in cross section along its length. Thus to
apply the ubove resuits to flow through a porous medium, d; could corre-
spond to the average pore diameter, d; 10 the maximum pore diameter, 7 to
the standard deviation of the pore-size distribution and H to +L, where
7 is tortuosity and L the sample length.

9.80: Special Aspects of Model Scaling for Porous Media

Certain special features of model scaling for studies of fluid flow in
porous media should be noted. The technique for handling relative perme-
abilities und capillary pressures has already been noted in Section 9.30.
However the case of anisotropie media wus not considered.,

It was pointed out in section 3.70 that » particular transformation of
coordinates put the equations of flow for a homogeneous fluid through an
anisotropic medium into the form corresponding to an isotropic medium.
Also it was pointed out in section 3.32 that the assumption that relative
permeability is independent of direction in anistoropie media is reasonable.

Thus for multiphase flow in anisotropic media a choice of dimensionless
coordinates of the form.

BEe=l, i=123 (9-61)
will introduce the groups
Kyl K
..... 1 i X
Rl AT KL (9-62)

into the sealing laws. This will apply if relative permeabilities are assumed

wotropic. Congequently, an sotropic model can represent an anisotropic
prototype. For example

Lam ]\',’,I.‘f,.

" i

I PVITIN (O B

(D-83)
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where m refers to model and p to prototype. That is
Kyn = K!m {U-t3)

and the model is isotropie.

Another special feature of model scaling as applied to flow through porous
media arises as 4 result of the complementary microscopic and macroscopic
descripﬁons of low in such media. For most flow problems only the macro-
scopie deseription need be considered but in some eases the microscopic
features must also be considered.

Thus in the study of miseible displacement the dispersion factor (sec-
tion 8.30) 18 determined by pore size and average pore velocity. But the
macroscopic flow geometry is determined by the macrosocepie distribution
of permeability and the boundary conditions. Generally, dispersion will be
an important factor in small scaled models but will not be signifieant for
systems the size of a petroleum reservoir Thus, one might formulate the
description applicable to a reservoir and deduee scaling laws from this,
which would neglect dispersion. But & laboratory model would exhibit
excessive dispersion and hence not represent the prototype unless disper-
sion were considered. Thus the dispersion coefficient must be made very
small in the mode! in order to represent the reservoir.

FFlow problems involving both Heguids and gases in porous medin present
rather severe limitations on model design. This s g0 because of the particu-
lar pressure-volume relations applicable to gases, Asg a result, such models
must generally be construeted to operate at the same pressure level as the
prototype system.

Due to the requirement of continuity of fluid pressures, and hence capil-
lary pressure, aeross discontinuities in permesability the presence of such
features in flow systemns always introduces additional sculing groups. Also
the requirement of continuity of low normal to such discontinuities in-
troduces additional scaling groups. Congequently, one must be careful to
include all boundary conditions as well as all differential equations in deriv-
ing sealing requirements by similarity technigues,

9.90: Results of Model Studies of Flow Through Porous Media

Numerous model studies of various problems involving the flow of
fluids through porous materials have appeared in the literature, far too
many to summarize in & text of this nature. Therefore, the reader is re-
ferred to the references at the end of this chapler for such defuiled
l‘l:hillitﬂ.u‘ G, 4,00, 7, B, 9, 10

www.petroman.ir



www.petroman.ir
www.petroman.ir

¢ PETROMAN

240 FLOW OF FLUIDS THROUGH POROUS MATERIALS

Arpenpix 10 CuaPTER 9

The Buckingham z-Theorem

This theorem and many of its implications are discussed at great length
i reference.! Here a statement of the theorem is given.
“If the equation

Mo a2, 05, -, 00) = 0

ts a complete equation, and also the only equation relating the % quaniitics
G,y @, -~ -, which have a total of D independent dimensions; then the equation

F(m y T2y 0 wapt = 0

where the =, are n — D dimensionless products of the , 0, ete., IS com-
pletely equivalent to the given equation.”
To apply this theorom, let dy, da, -+, dp be the independent dimen-

sions in the squation f = 0. In terms of ihese, let the dimensions of a; be
Tepresented as

fa;] = dividgridsed - - d;,’""

where the »;; are numerical exponents.
Then, the dimensions of y are

[re] = [ta]os*fas]v - - [g,]omE
Since =, must be dimensionless, it follows that
Tl + ToaYes b 00 A Zialor = 0
Tabie -k Loy + o0+ Tanyr = 0

I + TpeYor + 00 F TpaYar = 0.

There are n — D such sets of equations, each such set to be solved for the
y's for each =, . In general, several of the 's for each 7. must be set equal
to zero in order for the m's to be independent. The reader is referred to the
literature for the details of this type of analysis,

EXERCISES

1. Use the principle of similarity with p, defined by equation (9-19} as a function of
&' and &, defined by equation (9-18) to show that the rate of cil flow from a linear
system of length L by countercurrent imbibition is proportienal to

700301/@/13
K

(See equations 6-96 and 6-97 in Chapter 6.)
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2. Bhow that auitable scaling groups for two-dimensional miscible displacement in an
isotropic porous medium are

1/5 i w Gi—plgKL B D R

; alrDy’ Y st ! K’ D’ L

Here L is length of sample, I is height of sample, ¢ is injection rate and K is per-
meability. g1, p1, pa, 1, Dy, and Dy’ are the density, viscosity snd diffusion
eonstant for the respective fluids and ¢ is the porosity of the sample, Present ar-
guments to show that with these scaling requirements satisfied the concentration
is the same function of z/L, y/L and DNt /L7 in two systems. Would fingering and
segregation effects be scaled a5 well ag diapersion eflecta?
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10. FLOW WITH CHANGE OF PHASE

10.10: Flow with Change of Phase; Solution-Gas Drive

No text on the flow of fluids through porous materials would be eom-
plete without at least some diseussion of the primary mechanism of pe-
troleum production called solution-gas drive,

In previous chapters various flow regimes have been considered, however,
none of these involved a change of phase; gas remained gas and liquid re-
mained liguid. Here phase transitions in the flowing fluids will be con-
sidered with particular consideration of what is usually called solution-gas
drive. IMirat, it is necessary to consider phase equilibrium and phagse transi-
tions in stationary fluid systems.

) 1t is not the intent of this chapter to present an exhaustive treatment of
all aspects of solution-gas drive, For example, phase transitions as oecur in
surface separators are not discussed here. The intent is to make clear the
processes which oceur within the porous medium and to clarify the nature
of various approximations often employed in the study of this process.

10.20: Phase Equilibriam*

Partition Factors and Equilibrium Ratios. By way of introduetion
to more complex systems and to establish some basic coneepts of importance
in all considerations of phase equilibrium the equilibriom of a single com-
penent system will be considered.

A single component system can exist in three possible phases; solid,
liquid or gas. The state of a single component system is described by an
equation of state, pressure p as a function of volume ¥ and temperature 7',
for example. Howoever, the equation of state is different for each phase of
the system. At certain values, or over certain ranges of values, of the thermo-
dynamic variables two, or even all three, phases can exist simultanecusly.
Let

Fep, Vi, T) =10 {10-1)
be the equation of state for the vapor phase and
Frip, Vi, , 1) =10 (10-2)
he the equation of state for the liquid phase.
* For a more defailed exposition, see reference 1.

242
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If both liquid and vapor exist in equilibrium with each other, then I’
and 7 are no longer independent variables, This is the vapor-pressure curve.
Such reduetions of the number of independent variables are foreeast in
general by Gibb's phase rule.2

F=c¢c—-p42

Here F is the number of degrees of freedom (independent variables), ¢ is
the number of romponents in the system and g is the number of phases
existing in equilibrium. Thus, for a single component all three phases can
exist in equilibrium at only one pressure, temperatare and volume. This is
the “triple point.”

A typical pressure-temperature diagram for & single-component system
is shown in Iigure 10-1. The three eurves shown here divide the plane into
three regions, esch region being n single-phase region. liuch curve gives the
values of p and 7" at which the two adjacent phases can exist in equilibriuin,
and the intersection of these curves is the triple point.

In flow problems we are concerned only with liquids and vapors, or gases.
In this case it is frequently convenient to represent the system on a pres-
sure-volume diagram. Such a diagram is shown in Figure 10-2,

Here two isotherms are shown. For temperature T, the eurve iy entirely
in the vapor region. Ior temperature 7' the isotherm is in the vapor region
for large values of V. As V is reduced a point on this curve moves to a
point on the dew-point curve. Here liquid starts to form. After this curve
is crossed liquid and vapor exist in equilibrium. As the bubble-peint curve
is passed all the vapor condenses and the whole system is in the liquid
state. The point ¢ is the critical point. A unique characteristic of a single-

Pres sure, p—»

Temperature, T ——p=

Figure 10-1, Pressure-temperature diagram for a single-component system.
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Yapor

Pressure, p —

VYolume, ¥ =3

Figure 10-2. Pressure-volume diagram for a single-component system.

component system is that at a given temperature the bubhble-point prossure,
dew-point pressure and vapor-pressure are all equal.

Now a given mass of a single-component system may exist partly as
liqquid and partly as vapor. In Figure 10-1, this is shown on the vapor-pres-
sure curve, Thus if another component is added, which is soluble in both
liquid and vapor of the first component, we might ask what is the relative
distribution of the second component between the two phases. For exam-
ple, consider water in equilibrium with its vapor and the addition of car-
bon-dioxide gas to the system. The CO, may partially go into solution in
the liquid and partially remain in the gaseous state with the water vapor.

"T'o answer this question of relative distribution consider the more general
problem: of a substance being dissolved in two other substances. Say, some
of a substance A is dissolved in each of two substances, B and C,

Define the solubility of 4 in B as

74

10-3,
fa -+ np (108

B4R ™
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where n, is number of moles of 4 dissolved in n, moles of B. Similarly

!

— 10-4
na’ -+ ng (10-4)

s

sS4 =

where n4" moles of 4 are dissolved in ne moles of (", These solubilities will
be functions of pressure and temperature, and possibly other factors ulso.
The ratio

Sap
Ef o = -2F (10-8)

is the partition factor for 4 between B and C,

Now if substance A is a fluid (liquid, vapor, or both}, B is a liquid and ¢
is its vapor then all of 4 is either in B or C; i.e. either in liquid or vapor
phase. In this case, we call

CAV

=~_€;z

E, (10-6)
the “equilibrium ratio” (K is usually used for this quantity but to avoid
confusion with permeability we use £). Here ',y is the mole fraction of
the vapor which is A and €., is the male fraction of the liquid which i« 4.

For each additional component an equilibrium ratio ean be defined i
the same way. Thus for the ¢t component of an N -compornent system

E = 2 10-7
C|L (O )
where
iy
Civm = e {10-8)
i my + nay 4+ - + nyy
and
CiL | m—— e ,?1"_{’_ e ([U g)

Lt nep 4 o0 - nyg

These equilibrium ratios are functions of pressure and temperature, and
also of the over-all composition of the system. This over-all composition
is specified by giving the mole fractions of the whole system for each com-
ponent. Thus

’ n“

’ ='n1+m+---+n;v’

i=12 .. N {10-10)
where n; is the number of moles of the 4 component in the whole systen.

ie.
i = iy -+ Ny {10-11)
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If +he vapor obeys the ideal gas law and Dalton’s law of partial pres-
sures, and the liquid (and its components) obey Raoult’s solution law,
then these equilibrium ratios can be theorefically computed. In practice,
however, this is not the case and the equilibrium ratios must be empiri-
eally determined. _

Now defining 'y as the mole fraction of the composite system in the
vapor state and Cp as the mole fraction of the composite system in the
vapor state, we have

Oy + Cp =1 (10-12)
Also
O = ConCu + Canlly (10-13)
Thus using equation {10-7) to eliminate C;v here

Cs (10-14)

(i = ———r——
T4 CvlEi = 1)
Then gince
N
T (= (10-15)
Tl
it follows that
= Oy (10-16)
;‘T—:1 P4 OplBe =1
Similarly
(B
Cip = pommr 10-17
T OE - D (o7)
and
al TR .
Ol ay (10-18)

iy -n "

Dew-Point and Bubble-Point of Multicomponent System. Now
just as for a single-component system the dew-point is defined as that state
in which the system is entirely in the vapor state and any slight increase
in pressure {or reduction in volume} produces a liquid phase at constant
temperature. Similarly, at fixed pressure and volume & slight reduction in
temperature will produce a lignid phase.

Also ag for a single-eomponent system the hubble-point is defined as
that state in which the system is entirely in the liquid state and any slight
veduction in pressure (or increase in volume) at fixed temperature produces
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a vapor phase. Similarly, at fixed pressure and volume a slight increase in
temperature produces a vapor phase.
At the dew-point €, = 1 and equation (10-16) gives
N C"

DAY -1
W (10-19)

ie=1

Similarly at the bubble-point €y = 0 and equation (10-18) gives

N
2 CiE; = 1 {10-20}

(=l

and, in both cases, we also have

N
. S =1 (10-21)
1=l

Phase Distribution of Multicomponent Systems. In the section on
partition factors and equilibrium ratios the question of the distribution of
a component between vapor and liquid phases was considered. Often a
guestion of equal importance is how much of a multicomponent system
exists in each phase at a given pressure and temperature. This question
can be investigated by means of the relations involving equilibriom ratios
! Lul a more direct empirical approach is possible, Before considering this
question, it is important to emphasize that under some circumstances only
one phase exists, just as for a single-cowponsnt svetem, This is indicated
in Figure 10-3,

Referring to this diagram consider the isotherm, T, . As the pressure
is reduced, at (' only liquid exists, at B both liquid and vapor exist and
finally at A only vapor exists. On the isotherm T the system is entirely
in the vapor phase at €7, as the pressure is reduced the two-phase region
is entered and at B’ both phases exist. This formation of liquid on reduction
of pressure is called retrograde condensation. As the pressure is further re-
duced along T the system crosses the dew-point curve and at A" only vapor
exists.

Considering pressure reduction along an isotherm observe that for the
isotherm 7% the pure vapor region is not reached even at p = @, This is
typical of most petroleum crude oils. For gas and gas-condensute reservoirs
on the other hand the dew-point curve is well above p = 0 for all tempera-
tures of interest.

At any stage of pressure reduction the liquid phase could be isolated
from the free vapor phase. If the pressure on this liquid is reduced to atmos-
pheric pressure and the temperature brought to standard atmospheric
temperature some vapor would be evolved. If the vapor is continuously
removed from contact with the remaining liquid, as it is formed, the process

www.petroman.ir



www.petroman.ir
www.petroman.ir

¢ PETROMANR

248 FLOW OF FLUIDS THROUGH POROUS MATERIALS

Liquid

i
|
I
!

Pressure, p —-

Temperoture, T ~—m

Figure 10-3. Pressure-temperature diagram for a multicomponent system show-
ing the phase-boundary curves.

is called differential vaporization. If the evolved vapor is not removed
continuously, it is a flash vaporieation. In either case when standard atmos-
pheric conditions are reached & unique volume of vapor will result, and
also 8 unique volume of residual liquid. We consider this vapor, or gas, as
having been dissolved in this volume of liquid at the original pressure and
temperatire. Colling the residual liquid, oil, with volume V, and the vapor,
gas, with volume V, (hoth measured at atmospheric conditions), define
the solubility as
_ V, (standard conditions)

slp, T) = - 10-22
s(p, T) ¥V, (standard conditions) (10-22)

Also noting that the volume of liquid resulting from this solution of gas
in il is not ¥, , we define the formation volume factor for oil a8

VL(P, ‘]
Vo (standard conditions}

Balp, T) = (10-23)

where V.(p, T') denotes liquid volume at p and 7.
Since for differential and flash vaporizations the liquid is not exposed
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Gas Solubility, & (p,T}——

Py
Prassure, p v——i=

Figure 10-4. Gas solubility versus pressure for & typical petroleum hydrocarhon
aystem. p, is the saturation pressure. The two curves represent differential and flash-
equilibrium conditions.

to the same composition of gas at any stage, s and 3, are not the same fune-
tions of p and T for the two processes. {Also the equilibriuvm ratios, F.,
defined under partition factors, are not the same for both processes.)

Typical plots of s versus p for fixed T are shown in Figure 10~4 for the
two processes. Generally, solubility decreages with increase in the density
of the oil.* For a system of fixed composition a pressure is reached at which
no more gas will go infe solution. This is the saturation or bubble point,
pressure and is indicated as p, in Figure 10-4. For p > p., s is constant.
The o0il is then saturated.

The dependence of 8, on pressure is indicated in Figure 10--5. Here again
& distinction between flash and differential vaporization is necessary. Below
the saturation pressure the ligquid increases in volume as pressure increases
and more gas goes into solution. Above the saturation pressurg no addi-
tional gas goes into solution and simple compression of liguid oceurs to
yield a decrease in 8, .

In addition to these characteristics of the phase distribution in a multi-
component system, it i8 convenient to define another property. Consider
the vapor which exists in equilibriurn with liguid at any temperature and
pressure. If this vapor (or gas)} is isolated from the liquid and brought to
atmospheric conditions its volume will ehange. Thus define the formation
volume factor for gas as
_ Vﬂ‘(pl T)

"V, (standard conditions)

B, (10-24)

* In the petroleum industry, oil density is expressed ag “?API gravity,” defined as:

1416
AP ity = - .
API gravity specific gravity 60° F 1315
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Oil Fermation Yolume Foctor, Bg =

Prossurs, p v

Figure 10~5. Oil formation volume fuctor versus pressure for o Lypicial petroleum
hydrocarbon system, p, is the saturation pressure. The two curves represent differen-
tial und flash-equilibrium eonditions.

Note that 8, depends on p and T not only beesuse of the expansibility of
the gas but also because the physical composition of the gas is different at
different p and T,

10.30: Supersaturation and Undersaturation

The relations between gas and liquid compositions discussed in section
10.20 are only valid for equilibrium conditions. That is

By = Uiy /Ci

was stated to be a constant for given pressure and temperature. This is
true only when the system has been maintained at fixed temperature and
pressure for a sufficient period of time.

I a system of several components is in equilibrium at a pressure p,
and tempersture T and the pressure is suddenly changed to a different
value, p2, the following sequence of events oceurs, provided p, — py is
smmall.

In a small region in the neighborhood of the gas-liquid interface the
equilibrium distribution of components between gas and liquid phases
corresponding to the new pressure, p; , is instantaneously established. Thus
a gradient of composition in each phase is established. This gives rise to
diffusion within the individual phases. This diffusion persists until again a
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gas of uniform composition is in equilibrium with a Hquid of uniform
composition, and again the equations of section 10.20 are valid.

A similar proeess oceurs if 4 gas of non-equilibrium composition is brought
into contact with o liquid at fixed temperature and pressure. Diffusion
begins and persists until equilibrivm compositions of gas and liquid are
attained. ‘

The order of magnitude of time required for equilibrium eomposition to
be attained by diffusion alone can be estimated as follows.

Suppose a very large quantity of a gas with a small excess of one com-
pounent is brought into contact with a uniform layer of liguid having depth
L. Diffusion of the exeess component into the liguid will oceur, Within the
liguid this diffusion will be described by

p Bl _w (10-25)
da2 at
where IJ; Is the diffusion coeflicient, # = 0 is the gas-liquid interfuce and
C is the concentration of excess component 1 tne hqud expressed us
moles per unit volume.

If the equilibrium value of ., is small then the distinction between

mole fraction and moles per unit volume i3 not significant. Le.

Cis

Cip = = —
P8+ Ca

(10-26)

where (;;, is moles per unit volume of other components in the liquid. Thus

- - O\'L
O = Oy it 10-27
: LT (10-27)
Thus, if the mole fraction of this component, Ci., is always much less
than one, we have

C'u. i

L
m e () 10-28
i, G ( ;

since Cyp, & pr/ My, where p,, Is liquid density and M, is mean moleculur
weight of liquid. Since pr/M ., is essentially constant, we cvan write
a*Ciy, 6&,

Dok = SR D< <L (1029

At the gas-liquid interface instantaneous equilibrium is attained
Civ

= E, 10-30,
T ( )
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and if & very large quantity of gas is present and only a small quantity of
oil, then €.y remains essentially constant. Thus

C:
Cip = E‘I = constant, at z =0 (103D
i

The boundary conditions at z = I are

s g, at z=1L {10-32)
ox
and at { = 0, we have
Con=0,0< s < Lt=0 {10-33)
From the solution of this boundary-value problem, it can be shown that® ®
Cip L
[ Cip da = " (1 - %ehp ~D, t{w/ZL)“) (10-34)
approximately, or
‘ erCivAL 8
o= e (1 S exp — Ditle/2L) 10-35
%=, ( 72 X0 = Ditlay )) (10-35)

where §; is the total number of moles of the component ¢ diffused through
area A of gas-liquid interface in time £

We can then define the saturation fraction, u:, as the ratio of the quan-
tity of component ¢ in the liquid to the quantity in the liquid at equilib-
rinm. Thus

8
=1 — - exp — Ditlw/2L} {10-36)
ks

The liquid is said to be undersaturated when u; < .1 and supersaturated
when u; > 1. This formulation could have been carried through considering
a defieit of compeonent £ in the gas, or an excess in the liguid and the hqutd
would be supersaturated,

A typical value for D;is about 2 X 107° sq ft/sec. Considering il globule
or ﬁlm% with L the order of pore dimensions in a porous rock, L =~ 5 X
107" ft we obtain

8
g R ] — g (10-37}

x?

Within about 10 to 20 seconds such an oil globule or film would be essen-
tially completely saturated.
During two-phase flow In a porous medium a given element of gas will
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be in contact with a particular element of oil for a period of time roughly
equal to the average transit time through a distance of one grain diameter,
or one pore diameter. The relative velocity of the fluids i

v | = if«—i(lwfu) < (10-38)

¥
)
Thus, the contact time is

t > $d (10-39)

where v is volume flow rate per unit area, ¢ is porosity, f, is the fraction of
gas in the flowing stream and d is pore diameter. Tor flow rates typical in
petroleum reservoirs, » &= 1 ft/day, and hence

¢ > 10 sec. (10-401)

Hence wo can safely assume that for solution-gas drive in petroleum reser-
voirs local equilibrium between the gas and oil phases exists.

"This is not true in laboratory flow experiments. Laboratory solution-gas
drive experiments often give rise to flow rates of 50 to 100 ft/day and then
the contact time in the pores is only of the order of Mg see which is not
sufficient for equilibrium to be attained.

10.40: Formulation of the Sclution-Gas Drive Process

The material presented in previous sectioms of this chapter ean be used
in conjunction with Darcy’s law and general eonservation principles to
congtruct a general mathematical formulation of the solution-gas drive
process.

During solution-gas drive there are two flowing fluids, a liguid and a gas.
By Darey’s law the volume flux densities for these two fluids are

K
By = =% g, + L) {10-41)
Hy
and
K .
B = —#—5 ®pr, + Luong) (10-42)
N .

where L and g refer to liquid and gas réspcctively, and 1, is & unit vector
directed vertically upward. .
Here the pressures, p, and p,, are related by the capillary pressure

Pg —~ Pr = Pe {10-43)
Alse it is assumed that the fluid densities, p, and ps » and the fluid viscosi-
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ties, y, and p., are known functions of composition, pressure and tem-
perature. Thus

pr = pp(Co o, T
(10-44)
oo = pe(Cog, 0y, T
and
pr = pr(Cin, p1 ,T)l
(10-45)

we = 1y(Cig , 0y T)I
where (., 1s mole fraction of lquid which is component 4, and similarly
for oy . (£ =1,2,.-- N.)

Now the total number of moles of a compeonent, say the ¢ component,

is the guantity which is conserved. The number of moles of ¢ per unit bulk
volume of porous medium is

((Ytl_ SL + ('lu M 8 ) ¢' (10‘46)
g

where ¢ is porosity, 8y and S, are liguid and gas saturation, and M, and
M, are mean molecular weights of liquid and gas, respectively. Thus

N
=3 CuM,
f==m]

N (10-47)
= 3 CuM;

i==1

where M; denotes molecular weight of the 2** component.
The molar flux density of the /% component is obtained by observing
that any component may be transported in both liquid and gas phases. Thus

6= 'y 5;—- B 4y M’ , {10-48)

is the flux of ¢ in moles per unit aren per unit time. Thus the continuity
equation yields for every component (¢ = 1, 2, --- , N}

, AL Py 8 pL g
[( “C i, ty + ("g M, fig ] = g at|: ) S;, -+ (1, i, 6,] (10-49)
where
St 4+ 8, =1 (10-50)

if no connate water is included.
Now from the discussion of section 10.30 it is evident that in petroleum
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reservoirs we can safely assume the liquid and gas in any tiny region of the
regervoir to be in phase equilibrium. Thus

Oy = Billa (10-51)

where the equilibrium ratios are functions of the composition in this liny
region of the reservoir, e, at o given point.

Here also it must be decided whether the cquilibrium ratios correspoid-
ing to differential or flash vaporization are to be used. The proper values
are probably well approximated by the differentinl process values. Also
we must recognize the equilibrium ratios, as ordinarily obtained, correspond
to vapor and liquid having the same pressures. Here, due to interfacial
tension, pz and p, are not equal. This could probably he corrected for in a
manner similar to that discussed in the treatment of vapor pressure in
section 2.40, Om the other hand we can with some unknown error ignore
capillary effects and assurne p and p, equal.

Now equations (10-14) and (10-17) can be used to express Cy and Uy
in terms of total composition, thus

o
R
and

CiE;
Chp = et
1 + Cv(E:‘ - 1)

in our present notation. Here C, is mole fraction of total system in the
gas phase and C, is mole fraction of total system which is component €,
{ both for a tiny loeal region (a point} in the reservoir.

We have the subsidiary conditions

N
R

{wal

N
2 Cig

fuml

I
—

(10-52)

1
.

N
T Oy =1

1 =

i and

CopCo=1 (10-53)

1t is important to recognize that the over-all composition within a tiny
region (& pore), is not the same throughout the reservoir.
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If capillary pressure is neglected then the following system of equations
is obtained

pLE L [ ) 218y Eq%
i ur Mg uM, v C"Vp = ¢ a‘, My M, [ (i =12 N) (10-54)
14 OBy ~ 1) 1+ CGlE: ~1)
with
o
> Ci=1
teml
Sv -+ SL =}

and also, quite nbviously,

fe

-8,
Cp = My
Pz P
Mg' Scr + ML SL

The i, p,, M, , pr, My, 1, and uy are to be treated as funections of the
Cy, p and T. For isothermal conditions the & -+ 3 quantities, ', ¢ =
L2, -+ N, p, 8, and 8, are to be determined as functions of the space
coordinates and time, To this end we have N equations of the form (10-54)
plus the two equations following (10-54). This totals only N 4 2 equations
which ig one too fow. The udditional equation is provided by

N
3 Cu=1
i=1
or in terms of the (;
N C(
,, —— e 1
El 14 C(E; — 1)

With this last equation a mathematically determinant system of equations,
N 4+ 3 equations and N 4 3 unknowns, is obtained.

With appropriate boundary conditions this system of equations can be
solved by numerical methods on a large high-speed digital computer. Until
the present time no such solutions have been published in the literature.
For a large number of components, ¥, this is a formidable problem. It is a
certainty that these equations will be solved at some time in the near future
because of the understanding of recovery processes which could result,

10.50: Second Formulation of the Solution-Gas Drive Process

The formulation of the solution-gas drive process considers the spatial
distribution of each component as a function of time. An alternate treat-
ment is possible in which this is not the case. This is constructed as follows.
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In section 10.20 the distribution of a ruulticomponent system hetween
the vapor and lquid phases was considered from the standpoint of gas
solubility in oil. Tf we call all residual liquid at atmospheric conditions, as
obtained by differential vaporization, oil, then we may call gas just gas
without regard to composition. Then we investigate the spatial variation
of gas and liquid saturation with time.

At any instant an clement of the reservoir will contain a cerfain volume
of liquid and a certain volume of gas. This liquid, if reduced to atmospheric
conditions, would yield a volume of oil and a volume of gas. The ratio of
this gas volume to oil volume is just the gas solubility, s.

If gas saturation is S, and the liquid saturation is S, then in a unit
volume of reservoir there is & mass of oil given by, ¢p..5:/8. where p., is
the oil density (at atmospheric condition, of course}. In this same unit
volume of reservoir there is a mass ¢p,8, of free gas, where p, is the mass

density of free gas at p, 7. Also there is a mass of gas dissolved in the vil;
this mass is

3paS 1,
ﬂ L)

Here p,, is the mass density of the gas which would be evolved hy reducing
the liquid to standard atmospheric conditions. This density is measured
at atmospheric conditions. Thus, the mass of gas per unit volume of reser-
voir is given by:
oS
¢PaSa + ¢'Sp_g___.[.

NOW pos, o5 Por, 8 and B, are all funetions of over-all composition and,
a8 was pointed out in section 10.40, this over-all composition is not uniform
throughout the reservoir. Also in any element of the reservoir the com-
position will be changing with time. If we ignore this variation in over-all
composition with position and time, we can obtain a much simpler formula-
tion of the solution-gas drive process than that given in the previous section.

Thus by considering the two “components,” oil and gas, we have

03
¢PpSa + $put

o

for the mass of “gas” per unit volume of reservoir, and

¢PaIS L

[

for the mass of “0il"” per unit volume of reservoir.
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In the reservoir there are two fowing phases. Oil i transported only in
the liquid phase while gas is transported in both liquid and gas phases,
Thus the mass flux density of oil is by Darey’s law

P Ky

~ (Vpr + Lory)
B M.

Here p. is the mass density of the Hquid which is a function of pressure
and temperature since a unique over-all composition is assumed fixed.
Similarly, the mass flux density of gas is

K . o Ko, N
—ps LTy 4 Lpgy) ~ 5 P2 (Vpr + L)
My Be ML

Both here and above g, and u; are functions of pressure and temperature
because a fixed uniform over-all composition is assumed.

Here as in the previous formulation of this process 8 problem arises
with the assumption of different pressures in liguid and gas phases, Thus
solubility, formation volume factor; ete,, are determined experimentally
with hoth phases wnder (he swme pressure. Lither cupillary pressure must
be ignored or clse o correetion must. be worked out for capillary effects on

3 . solubility, ete. Here we will ignore capillavy pressure and put g, = p, = p.

We will also ignore gravity effects and hence put the aceeleration of
gravity, ¢, equal to zero in the flux terms above.

Now the conservation of mass of oil yields in the continuity equation

.“a.;KL 3 Pos \ =
7. iy - —|— 8 , {10'50)
(Ba.uL p) ¢ at (30 i')
and for conservation of mass of gas
K Soonds. ), 8
v. (Ei’_,!’ + éfﬂ{_’) Vp | = ¢ 9 (ppSg + i’ﬂi.l‘) (10-56)
o Bomy, at Bo

These two equations in conjunction with S, + 8, = 1 constitute three
equations for determining the three quantities, p, S, and S, as functions
of the space coordinates and time.

It is important to remember that these equations are approximate since
we are congidering the over-all composition to be fixed and uniform. That
is, gas is “gas” and oil is “eil” without regard to composition. Thus the
samne functions of p and T s, §,, etc., apply at all points and all times
and this is not strietly correct. 7

Before these equations can be solved it is necessary to specify initial
and boundary conditions. These we deduce from physical considerations.
Since first-time derivatives of both p and § oceur, it is necessary to give

p{Ey,20) = poiz,y.2) (10-57)
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and
Se(e,y,20) = Sra(x,y.2) (10-58)
where p, and 8,. are the initial distributions of p and S. .
Also, since these differential equations represent the conservation of
“oil” and “gas” respectively, it is necessary to specify

3 (-Eéfulg& Vp)-ﬁ = (mass Aux of oil normal to boundary) {10-59)
b ok L

and
K, 8pual
I:__(PE_J ”LLJ‘) Vp:l.ﬁ = (mass flux of gas nermal to boundary)  (10-60)

on the boundaries.

Numerical solutions of this problem have been computed by Sheldon,
Garvin and West,” and also by Stone and Garder”, The nuture of their
results i discussed in the next seetion. in this connection it should be
noted that the specification of p on a boundary Is ulso a possible boundary
condition,

10.60; Third Formulation of the Solution-Gas Drive Process; The
Material Balance Equations

It has been shown that if we call gas, “gas’ and eil, “0il”, both without
regard to composition, and also assume unique functiouns, s(p, T, B.(p, 7'},
pr{p, T, ete., then two partial differential equations are obtained which
describe the pressure and fluid saturations as functions of position and
time, i.e. equations (10-55) and (10-56).

If each of these is integrated over thé volume of the reservoir a very
useful result is obtained. The volume of the reservoir is bounded by two
types of boundaries, those across which flow occurs (well bore surface, for
example) and those across which no flow occurs (impermeable boundaries).

Consider the volume integral of equation (10-55)

i
i
o
;
i
;
2
;
bt
4
i

f v-("—"‘—fﬁ' Vp) dVe = ¢ f g (fﬂéﬁ) dVe {10-61}
ve  \Bu AN
: where V) denotes reservoir volume. The volume integral on the left can
3 be transformed by the divergence theorem into a surface integral over the
surfaces bounding Vg . There results

OBK oaS
f PP pa, =0 [ 2 (Li) Vg (10-62)

AR Bonr, O VR at Bs
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where dp/an is the directional derivative of p normal to the surface A 2
which bounds V¢ , i.e. the component of Vp normal to the bounding surface.
This normal direction is outward from the volume V5.

If none of the bounding surface Ay is in motion (A water-oil interface
would be in motion during natural-water drive, for example) then the
time derivative on the right can be brought outside the integral,* Then if
the boundary has only two parts, one of area 4 across which flow oecurs
and another across which no flow oceurs, we bave :

58 ol
'?_K_" ap - 4 ® el 4 dV e (10-63)
« Bz on att,, " &

"Ihe quantity on the left is the total flow rate of oil mass into the reservoir
and the quantity on the right is the rate of change of total oil mass in the
reservoir.

If we replace all quantities by averages, averages over the area 4 on
the left, and averages over the volume V on the right, we obtain

i & oSV
_PuitL B_E A = -l g PoadLV R {10-64)
Bopr, O 14 il B v

Here the subscripts indicate the regions over which the averages are taken,
In a similar manner we obtain from equation {10-56)

_(‘3&5!’. + M") ap al = _8 (p,S, + ﬂ':_s_{‘) Vi {10-65)
Hg Borir, an A ot Bo va

The left members of these two equations represent the mass rates of
flow from the reservoir of oil and gas, respectively. The right members
are the rates of decrease of mass in the reservoir of oil and gas, Tespectively,
These equations are one form of the material balance equations. Other
forms are readily obtained simply by including oil-water boundaries (an
aquifer) for water drive and gas-oil boundaries (for gas-cap drive). These
equations are discussed in considerable detail in many texts on petroleum
reservoir engincering.

Now we will consider the solution of these material balance equations
and their relation to the more exact treatment of the previous section.
First of all it is obvious that if saturation and pressure are essentially
uniform throughout the reservoir then the approximation on the right in
these equations is essentially exact.

The actual manner of solution of these equations is most easily scen by

* Btrietly apesaking, equation (10-62) can be derived directly in which case it is
seen that 8/t should be outside the integral in all cases and can be taken inside only
for fixed boundaries.
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writing them in the form I
' ¢V r\ dSs VaSip d (poy ] dp '
Qo= ( ) ) @ [ oo dp (ﬁn)] a (10-69
and
Ve SPos s,  ¢Vy dPa d { sp,, ) d.'O .
Roolp, 82} Qo = ———= (= — g, ) r 2N 200 D% Vs | %2 (1067
4 (P L) Q Poe (.Gn P) di Pea i:dp + dp( 8, i “ dt ( )
where
s | Ky
afd ol T,
Roo(p, 81} = LE—— (10-68)
Bopir,

is the gas-oil ratio at pressure, p (volume ratio), and @, is volume flow
rate of oil at p.

Thus, for example, if €, is specified as a function of ¢, and p and S, are
given at £ = 0 these equations can be solved numerically.

Typical solutions of this type are shown in Figures 10.6 and 10.7. Shown
for comparison are the numerical solutions of the partial differentinl cqua-

1.0
N
®
E o8 \\1 \{Approximute Theor
= N i
§ 5 \\::xli‘:ldiu!
‘E Linear \\\
K 0.4
\
%o AN
N
. N

0 3 4 [ 8
Curulative Racovery, per cent
Figure 10-6. Average reservoir pressure (rabio of average pressure Lo initind pres-
sure) versus cumulative recovary for solution-gas drive reservoir. Comparison of

linear and radial reservoirs to the material balance culeulation, (After West et al.,
1954.)
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100,000 7 1.1
Appreximate Thegey 7

0,000

A
Radial I
1

60,000 N,
A l Lineor

40,000 /J
' /]
/

20,000 //r

-

Instantanecus Gas-0il Ratie, st. cu ft/stock tank bbl

-

Y 2 4 L3 ]
Cumulative Recovery, per cent

Figure 10-7. Gizs-oil ratio versus cumulative recovery for solution-gas drive reser-
voir. Comparison of linear and radial reservoirs to the materiai balanes calculation.

tiong deseribed in Hection 10,50, These results were published by Sheldon,
(Gtarvin and West® as a comparison between the approximate method de-
seribed here and the more exact theory as described in Section 10.50.

The two cases of numerical solution of the partial differential equation
illustrated here are a linear reservoir and a radial reservoir with the same
fluids and initiat and boundary conditions as employed for the approximate,
or material balance, caleulation. The general character of the results for all
three systems is quite similar. Stone and Garder® have made a detailed
study of the numerical solution of the partial differential equations of solu-
tion-gas drive. In particular they included gravity in their caloulations
where West, Garvin and Sheldon did not. Alse Stone and Garder compared
enleulated results to results obtained with a laboratory model and found
that, in certain cases, supersaturation is not as severe as expected.

Tor a more detaiied diseussion of the solution of the partial differential
equations the reader should consult the cited papers. For a complete dis-
cussion of material balance methods Muskat’s textt should be consulted.

10.70: Flow with Change of Phase; General Procedures

The treatments of the solution-gas drive process presented in previous
sections of this chapter serve to illustrate the basie physieal considerations
involved in the formulation of flow processes including phase transitions.
In a very similar fashion problems involving non-equilibrium phase relations
or chemical reactions can be treated. Basically all that is required is a knowl-
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edge of the physical reactions or trensitions a8 oceur in stationary systems.
Then these reaction laws are combined with Darcy’s law of flow nnd ap-
propriate conservation equations, i.e. continuity equations,

EXERCISES

_ Show that since the equilibrium ratios of a hydrocarbon system are patticular

functions of p and T ascaled model study of solution-gas drive should be condueted
with actual reservoir fluids and at reservoir temperature and pressure.

_ Show that & scaled model study of solution-gas drive should be conducted at flow

rates comparable to reservoir rates.
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Absorption, of x-rays, 23
Adsorption, of fluids on porous media,
10, 33
Analog model
example of, 229
for sweep efficiency, 180
Analytic function, 84, 88, 89
Anisotrepic medinm
and models, 238
and permeability, 11
and point source, 102, 115
and relative permeshility, 177
and transient flow, 108
Darcy’s law for, 62
API gravity, 249
Aquifer
and natural water drive, 123
infinite linear, 125
infinite radial, 128
pressures, 44
tilted, 122
Archie’s law, 39
Areal sweep efficiency
definition of, 180
effect of mobidity ratio on, 187
for five-spot, 185

Boundary conditions, 74
and Duhamel’s theorem, 110
and filtration, 193, 195
and fluid entry, 74
oand images, 104
and plane flow, 80
and sealing analysis, 223, 239
and symmetry, 95
at closed houndary, 74
at discontinuity, 43, 75
at infinity, 100
at moving front, 170
at wall of capillary tube, 204
in gas flow, 134
in immiscible displacement, 640, 154,
162
in liquid flow, 128
in numerical integration, 135
in radial plane flow, 87
in solution-gas drive, 256, 250
on free surface, 106

264

WWW.petr

Boundary effect, 139
Bridging, 5
Brittle failure of rocks, 20
Bubble point, 243, 246
Buckingham »-theorem, 219, 222, 233, 240
Buckley-Leverett equation, 142
and capillary effects, 152
and Welge integration, 149

Capillary pressure, 23

and end effect, 140

and flow of immiscible fluids, 61

and immiscible displacement, 152

and model scaling, 223

and solution gas drive, 255, 258

and thermo-osmosis, 53

and vapor-pressure, 35

curves, 20, 32, 43, 45, 157, 164, 224

hysterisia, 20

in three-fluid systems, 62

measurement of, 26

saturation relationg, 25, 55
Capillary tube

flow through non-uniform, 232

miseible displacement in, 202

model of porous medium, 11, 55, 238
Cast of pore space, 5
Cauchy-Riemann equations, 83
Causal system, 218
Change of phase, flow with, 242
Clay .

and permeability of rocks, 13

porosity of, 6

swelling of, 13
Compaction, §

and permeability, 13

and porosity, §
Complementary error function, 114, 127
Complex potential, 82
Compressibility

bulk, 21

of fluids, 65

of porous rocks, 19, 76

pore, 19, 21

solid, 21

Compressible fluid ow, 60, 108

single-phase, 71
Concentration distribution
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in eapillary tube, 205 =
unequal viscosities, 206
Condensation in thermo-osmosis, 58
Conformal mapping
and Images, 180
and Schwarz-Christoffel transforma-
tion, 91
basis theory, 107
for five-spot flood, 184
of circle, 90, 106 (problem 1)
of rectangle, 91
Connate water, 30, 130
Consolidatien, §
Contact angle
and capillary hysterisis, 20
definition, Young’s equation, 24
uncertainty in, 227
Continuity
of capillary pressure, 163
of fluid pressures, 43, 75
Continuity equation
derivation, general, 66
in solution-gas drive, 254
steady-state, 77
Contracted coordinates, 70
in plane flow, 81
Convection in eapillary tube, 203
Convective dispersion, 208
Core holder, 160
Countercurrent flow, 161, 168
Critical ssturation, 148
Critical velocity and fingering, 108
Cubie packing, 4, 25
Cut off saturation, 148

Dalton’s law of partial pressure, 246
Daroy, definition of, 11
Darey’s 1aw
and definition of permeability, 10
and Klinkenberg effect, 51
and laminar viscous flow, 47
and Reynolds number, 52
differential form, 58
for anistropic media, 62
for gases, 50
for immiscible fluids, 53
Deposition of solids, 189
Dew point, 243, 246
Differential vaporization, 248, 255, 257
Diffusion, 201
Diffusion eosffirient, 201, 206
and supersaturation, Z5¢ -
Dimensionless variables
in flow problems, 31, 153, 178, 187, 203
in model theory, 219

Digcontinuity
and images, 180, 181
in flow potential, 76
in perous medium, 75, 42, 102, 231
in saturation, 42, 147
Dispersion
coefficient, 206
and models, 239
in & capillary tube, 203
in porous media, 207
theary of, in porous media, 209
Displacement
frontal, 170
immigeible, 142
method of measuring capillary pres-
sure
in capillary tube, 202
in porous media, 207
pressure, 27
Distribution
of fluid saturation, 142, 147, 42, 158,
165
of fluid velocity in pores, 49
of grain gize, 2, 5, 12
of permenbility, 18
of pore size, 2, 12
of porosity, 14
of pressure sbout cireular well, 117
Drainage
capillary pressure, 29
radius, 86
Drilling mud
and filtration, 189
Duhamel’s theorem, 109

Effective permeability, 60
Elsctrical analog, in water flooding, 18%,

229
EKlectrical propertics, of porous mate-
rials, 38

Lilectrieal resistivity and porosity, 38
and saturation, 39
meagurement, 39, 40

Electrochemical potentials, 41

Electro-kinetic effects, 56

Electro-osmosis, 56

Edliptic integrals, 93, 97

End effoct, 141

Entry pressure, 33

Fquations of state
for homogeneous fluids, 65
single-component, 242

Equilibrium ratios, 242

Error funetion, 114, 205
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Fxponential integral, 114

Fiek’s taw, 201
Filter cake, 190
Filtrate, 192
Filtration and despoition of solids, 189
Formation factor
definition of, 38
porosity correlation, 98
Formation volume factor
for gas, 249
for oil, 248
Free-energy
and heat of wetting, 37
and vapor pressure, 34
Free surface, 105
Fristion factor, 52
Frontal displacement, 170
and mobility ratio, 175, 188
and in two dimensions, 175
Frontal stability, 106

Cras
equation of state, 65
expansion methed for porosity, 7
flow and Darey’s taw, 50
flow and Klinkenberg effect, 51
lincar flow of, 78
plane flow of, 80
real, 66
sotubility, 248
transient, flow of, 133
Giag-cap, 123
Gas-oil ratio, 261
Gibl's phase rule, 243
Cirain size, 2
and permeability, 12
and porosity, 5
distribution, 2
Gravity
druinage, 105
eflect on aquifer, 129
effect on fingering, 197
in Darey’s law, 49, 50, 50
in plane flow, 80
in solution gas drive, 232
method for capillary pressure, 26
segregation, 175, 214

Harmonic funetion, 89
Heat

of swelling, 36, 37

of wetting, 36, 37
Horizontal plane flow, 80

Hydrodynamies, classical, 58
Hydrostatic equilibrium, 44, 131, 132
Hystersis in capillary pressure, 20

Idesl gas flow, 73, 132
Imbibition, 161
and end effect, 140
and immisoible displacement, 160
and porosity measurement, 8
-capillary pressure curve, 29, 61, 223
Tmmigcible fluida
and capillary pressure, 25
and relative permesbility, 53
flow of, 60, 73, 75, 139
Immiscible displacement
and Buckley-Leverett equation, 142
and ecapillary pressure, 152
and Welge integration, 110
scaling of, 222
Incompressible fluid, 85
and point source, 99
How, 60, 69
Independent dimensions, 219, 222
Inertial, effects in flow, 50, 52, 235, 232
236
Influence function, 125, 128, 129
Ink-bottle effect, 30
Interfacial
energy, 24
tenston, 24, 144, 149, 201
and equilibirum ratios, 255
Images, method of, 102, 116, 180
Irreducible saturation, 30
and immiscible flow, 130
permeability correlation, 31

H]

Klinkenberg effect, 51
and measurement of permesbility, 78
and plane flow, §0
in multiphage flow, 55
in transient flow, 133
Kozeny equation, 11
and pore radiug, 21
and specific surface, 10
Kozeny-Carman equation, 12

Laminar flow :
and particle interchange, 211
definition of, 47
of homogeneous fluids, 77, 108
of immiscible fluids, 139
of miseible fluids, 201
Langrangian, correlation function, 212
Laplace’s equation ‘
and capillary pressure, 23
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ing, 89
snd flow potentia}, 68
and steady plane flow, 82
for complex flow potential, 84
for spherical symmetry, 09
for stream function, 84
in plane polar coordinates, 86
Laplace transform, 109
Leaching, 14
Leverett j-function, 31
extension of, 226
Linear
displacement and Buckley-Leverett
equation, 142
displacement and capillary pressure,
152
displacement, moving boundary, 173
flow and measurement of permeability,
i
flow and reiative permesbility, 139
flow in aquifer, 125
misecible displacement, 208

Mezlleable failure, 20
Material balance equation, 260
Mieroscopic
fiow geometry, 2, 48, 54
porous structure and frontal insta-
bility, 197
properties of porous materials, 2, 48
structure and dispersion, 209
structure and miscible displacement,
207
Miscible
displacement and fingering, 198
displacement and models, 239
displacement in capillary tube, 202
displacement in porous media, 207, 212
fluids and diffusion, 201
Mixing
and dispensing plate, 53
of fluidse, 201
Mobility ratio
and frontal stability, 106
and sweep efficiency, 187
and viscous fingering, 196
definition of, 174
Models
basic theory of, 218
materials of, 238
special aspects of, for porous mate-
rials, 238
results from, 239
Modified relative permeability, 225
Modified saturations, 223

Molecular diffusion, 201

Molecular atreaming, 51

Moving boundary, 170
Multi-dimensional two-phase flow, 167

Natural water drive, 113, 123, 142, 260
Numerical integration

in flow of ideal gas, 133

in immiscible displacement, 152

in multi-dimensional flow, 167

Ohm’s law, 230

Osmosis, 41
and aquifer pressures, 44
electro-, 66
thermo-, 58

Osmotic pressure, 41, 44

Packing
of natural materials, 5
of spheres, 3
Partial similarity in sealed models, 235
Partition factors, 242
Pattern five-spot flood, 184
Permeability
snd clay swelling, 13
and grain size, 12
and Klinkenberg effect, 51
and leaching, 14
and pore size, 13
and porous atructure, i1
anisotropic, 11, 62
correlation with porosity, 18
definition of, 10
effect of compaction on, 13
effective, 60
harmonie mean, 19, 78
measurement of, 81, 77
of filter eakes, 191
principal axis, 63
transverse, 93
typical valves of, 14
units of, 11
Phase equilibrium
multi-component, 245, 247
single-component, 242
Pilot flood, two-well, 181
Plane barrier, 118
Pore
and permeability, 12
classification of, 1
compressibility, 12
diameter and permeability, 52
entry radius, 33
fluid composition in a, 253, 255
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size distribution, 2
and capillary pressure, 31
and flow, 238
Porosity
abaolute or total, 3
arithmetic average, 19
compaction and, 5
correlation with formation factor, 38
correlation with permeahility, 16
definition of, 3
distribution of, 14
effective, 3
effects of consolidation and, 5
meagurement of, 7
of clays, 6
of filter cakes, 191
of packings of spheres, 4
plane, 9
porosity and strueture, 3
typical values of, 14
Porous materials, 1
compressibility of, 19
compressive atrength of, 20
definition of, 1
mechanical properties of, 19
structure and classification of, 1
structure and properties of, 2
Potential
complex flow, 82
discontinuity in flow, 76
discontinuity in plane flow, 80
electro-chemical, 41
flow, 60
streaming, 56
zeta, 56
Pressure build-up tests, 116
Principal axis of permeability, 63, 70, 80

Radial aquifer, 129
Radial flow of ideal gas, 86, 89, 128, 136
Raoult’s law, 246
Random
distribution of permeability, 213
structure and porosity distribution, 14
structure of porous materials, 1, 9
walk theory of dispersion, 210
Recovery
and fingering, 198
by imbibition, 185, 166
in immiscible displacement, 150, 169
Relative permeability, 53
and Darcy’s law, 80
and Klinkenberg effect, 55
and model scaling, 223

INDEX

and turbulent flow, 168

curves, 54, 146, 157, 164, 224

from displacement data, 149

in anigotropic media, 64, 177

measurement of, 55, 139

modified, 225
Residual oil, 55

and end effect, 141

and immiscible displacement, 149

and water flooding, 176
Resistance

electrical, 38 ;

viseous, 49 {
Reasistivity, 38

measurements, 39
Retrograde condensation, 247
Reynolds number, 52
Rhombohedral packing, 4

Salinity, 38, 44 3
Saturation i
and electrical resistivity, 39
discontinuity, 42
distribution and end effect, 141
distribution in imbibition, 165
distribution in immiscible displace-
ment, 147, 168
fluid, definition, 22
measurement of, 22, 23
modified, 223 .
Scaled models, theory, 221
Scaliog analysis
for anslog model, 229
when equations are known, 222
when equations are unknown, 232
Schwarz-Christoffel transformation, 91
See page surface, 106
Semi-permeablé, membrane, 41
plate, 27
Shale barriers, 44
Shock formation, 148
Similarity, concept of, 217
Single-phase, comprassible flow, 108
incompressible flow, 69
Singla well
in bounded aystem, 120
in gas reservoir, 136
in infinite system, 102, 117
near plane barrier, 118
Slip fow
multi-phase, 55
single-phase, 51
Solubility, 249, 257
Solution-gas
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and material balance equations, 259
and supersaturation, 253
drive, 242
formulation of process, 253
second formulation, 256
Bources
and images, 102, 113
snd sinks, 69, 88, 113
in anisotropie medium, 102, 115
in water flooding, 178
line, 101
point, 98
superposition of, 100
Specific surface
and heat of wetting, 37
and Kozeny equation, 10
and permeability, 49
definition of, ¢
measurement of, 9
typical values of, 14
Bpherical source, 100
Stability
of frontal displacement, 196
of numerical integration, 136
Statigtical
method for porosity, 8
method for specific surface, 9
properties of medium and fingering,

properties of porous materials, 2, 14
theory of flow, 3, 48, 58
Steady-state
flow of immiscible fluids, 139
flow regime, 77
Stream funetion, 82
Streaming potential, 56
Streamlines
and free surface, 106
and laminar flow, 47
and miscible diaplacement, 207
and symmetry, 95
Superposition, of point sourges, 100, 115
Supersaturation, 250
Surface tension, 24
and thermo-osmosis, 58
Suspension, filtration of, 189
Sweep efficiency, 180

Taylor’s solution, miscible displage-
ment, 205
Thermo-osmosis, 58
Tilted aquifer, 129
Tortuosity
and dispersion, 200
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and electrieal resistivity, 38

definition of, 12
Transformation

conformal, 88

Laplace, 100

of boundary contours, 85

of coordinates, 70, 81, 85

Schwarz-Christeffel, 91

to dimensionless system, 220
Transient flow

of compressibie liquid, 108

of ideal gas, 133
Transition zone, 206, 213
Transverge permeability, 93
Triple point, 243
Truncation errors, 136
Turbulent flow

of homogeneous Auids, 51

of immiscible fluids, 54, 168

of miscible fluids, 214

Undersaturation y 260

Vapor pressure

and phase behavior, 242

and thermo-osmosis, 58

of fluids in porous media, 33

saturation relationship, 34
Vaporization

differential, 248

flash, 248

in thermo-osmosis, 58
Yariable production rates, 122
Viscosity

and composition, 254

definition, 47
Viscous fingering, 196, 214
Viscous flow, 47
Vigual studies of twe-phase flow, b4
Volumetric balance equation, 124, 148
Volumetric balance for saturation, 23
Vugular

limestone and permeability measure-

ment, %4
pore apace, 1

Water breskthrough, 151, 159, 161, 180
Water drive, 113, 123, 142, 260
Water-flux, 123
Waterflooding

and measurement of relative permeg-

bility, 160
in five-gpot, 184
in two-spot, 181
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sweep patterns, 175 and imbibition, 161
two-spot with permeability discon- and immiseible flow, 130
tinuity, 181 and relative permeability, 53
Wattability, 29, 30 Welge integration, 149
Wetting fluid )
and capillary hysteresis, 20 Young's equation, 24
and capillary pressure, 26

and contact angle, 24 ' Zota-potential, 56
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