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Preface

Seldom turns out the way it does in the song.
Robert Hunter

This book provides a semester-length course in the mathematics of fluid flows
in porous media. Over a 20-year span, I taught such a course every few years to
doctoral students in engineering, mathematics, and geophysics. Most of these stu-
dents’ research involved flow and transport in groundwater aquifers, soils, and
petroleum reservoirs. The students’ mathematical backgrounds ranged from stan-
dard undergraduate engineering requirements to more advanced, graduate-level
training.

The book emphasizes analytic aspects of flows in porous media. This focus may
seem odd: Most mathematically oriented scholarship in the area is computational
in nature, owing both to the heterogeneity of natural porous media and to the
inherent nonlinearity of many underground flow models. Nevertheless, while
many superb books cover computational methods for flows in porous media,
intelligent design of numerical approximations also requires a grasp of certain
analytic questions:
● Where do the governing equations come from?
● What physics do they model, and what physics do they neglect?
● What qualitative properties do their solutions exhibit?

Where appropriate, the book discusses numerical implications of these ques-
tions.

The exposition should be accessible to anyone who has completed a baccalaure-
ate program in engineering, mathematics, or physics at a US university. The book
makes extensive use of multivariable calculus, including the integral theorems of
vector field theory, and ordinary differential equations. Several sections exploit
concepts from first-semester linear algebra. No prior study of partial differential
equations is necessary, but some exposure to them is helpful.
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xii Preface

After a brief introduction in Chapter 1, Chapter 2 introduces the mass and
momentum balance laws from which the governing partial differential equations
arise. This chapter sets the stage for a pattern that appears throughout the book:
We derive governing equations, then analyze representative or generic solutions
to infer important attributes of the flows.

Chapters 3 through 5 examine models of single-fluid flows, followed by mod-
els of the transport of chemical species in the subsurface. After a discussion in
Chapter 6 of multiphase flows, traditionally the province of oil reservoir engineers
but now also important in groundwater contaminant hydrology and carbon diox-
ide sequestration, Chapter 7 provides an overview multifluid, multispecies flows,
also called compositional flows. This level of complexity admits few analytic solu-
tions. Therefore, Chapter 7 focuses on model formulation.

Two features of the book deserve comment.

● Over 100 exercises, most of them straightforward, appear throughout the text.
Their main purpose is to engage the reader in some of the steps required to
develop the theory.

● There are four appendices. The first simply lists symbols that have dedicated
physical meanings. The remaining appendices cover three common curvilinear
coordinate systems, the Buckingham Pi theorem of dimensional analysis, and
some aspects of surface integrals. While needed at certain junctures in the text,
these topics seem ancillary to the book’s main focus.

I owe thanks to dozens of students at the University of Wyoming who endured
early versions of the notes for this book. These men and women convinced me of
its utility and offered many corrections and suggestions for improvement. Profes-
sor Frederico Furtado kindly offered additional corrections, generous encourage-
ment, and insights deeper than he will admit. I also owe sincerest thanks to my
colleagues in the University of Wyoming’s Department of Mathematics and Statis-
tics, from whom I have learned a lot. I cannot have asked for a better academic
home. Finally, my wife, Adele Aldrich, deserves more gratitude than I know how
to express, for her support through the entire process.

Myron B. AllenLaramie, Wyoming
December, 2020



�

� �

�

1

1

Introduction

1.1 Historical Setting

The mathematical theory of fluid flows in porous media has a distinguished
history. Most of this theory ultimately rests on Henry Darcy’s 1856 engineering
study [43], summarized in Section 3.1, of the water supplies in Dijon, France.
A year after the publication of this meticulous and seminal work, Jules Dupuit
[49], a giant among early groundwater scientists, recognized that Darcy’s findings
implied a differential equation. This observation proved to be crucial. For the
next 75 years or so, the subject grew to encompass problems in multiple space
dimensions—hence partial differential equations (PDEs)—with major contri-
butions emerging mainly from the groundwater hydrology community. Pioneers
included Joseph Boussinesq [25, 26], Philipp Forchheimer [53, 54], Charles S.
Slichter [136], Edgar Buckingham [30], and Lorenzo A. Richards [129].

Interest in the mathematics of porous-medium flows blossomed as oil pro-
duction increased in economic importance during the early twentieth century.
Prominent in the early petroleum engineering literature in this area are works
by P.G. Nutting [110], Morris Muskat and his collaborators [104–107, 159, 160],
and Miles C. Leverett and his collaborators [29, 95–97]. Between 1930 and
1960, mathematicians, groundwater hydrologists, petroleum engineers, and
geoscientists made tremendous progress in understanding the PDEs that govern
underground fluid flows.

Today, mathematical models of porous-medium flow encompass linear and non-
linear PDEs of all major types, as well as systems involving PDEs having differ-
ent types. The analysis of these equations and their numerical approximations
requires an increasing level of mathematical and computational sophistication,
and the models themselves have become essential design tools in the management
of underground fluid resources.

The Mathematics of Fluid Flow Through Porous Media, First Edition. Myron B. Allen.
© 2021 John Wiley & Sons, Inc. Published 2021 by John Wiley & Sons, Inc.
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From a philosophical perspective, credit for these advances belongs to scientists
and engineers who clung tenaciously—often in the face of skepticism on the part
of more “practically” oriented colleagues—to two premises. The first is that the
key to effective modeling resides in careful mathematical reasoning. While this
premise seems platitudinous, at any moment in history some practitioners believe
that their science is too inherently messy to justify fastidious mathematics. On the
contrary, the need for painstaking logical inferences from premises and hypotheses
is arguably never greater than when the data are complicated, confusing, or hard
to obtain.

The second premise is more subtle: In the absence of good data, sound mathe-
matical models are essential. Far from outstripping the data, mathematical models
tell us what data we really need. Moreover, they tell us what qualitative proper-
ties we can expect in predictions arising from a given input data set. They also
reveal how properties of the data, such as its spatial variability and uncertainty,
affect the models’ predictive capabilities. If the required data cannot in principle
be acquired, if the qualitative properties of the model conflict with the empirical
evidence, or if the model cannot, in principle, provide stable predictions in the face
of heterogeneity and uncertainty, then we must admit that our understanding is
incomplete.

1.2 Partial Differential Equations (PDEs)

Most realistic models of fluid flows in porous media use PDEs, “the natural dialect
of continuum science” [62], written at scales appropriate for bench- or field-scale
observations. In practical applications, these equations are complicated. They
are posed on geometrically irregular, multidimensional domains; they often have
highly variable coefficients; they can involve coupled systems of equations; in
many applications they are nonlinear. For these reasons, we must often replace
the exact PDEs by arithmetic approximations that one can solve using electronic
machines.

The practical need for computational methods notwithstanding, a grasp of the
analytic aspects of the PDEs remains an important asset for any porous-medium
modeler. What types of initial and boundary conditions yield well-posed prob-
lems? Do the solutions obey a priori bounds based on the initial or boundary data?
Do the numerical approximations respect these bounds? Does the PDE tend to
smooth or preserve numerically problematic sharp fronts as time advances? Do
shocks form from continuous initial data?

In the first half of the twentieth century, pioneering numerical analysts Richard
Courant, Kurt Friedrichs, Hans Lewy, and John von Neumann—all immigrants
to the United States—recognized that one cannot successfully “arithmetize
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analysis” [23] without understanding the differential equations. Designing stable,
convergent, accurate, and efficient approximations to PDEs requires mathemati-
cal insight into the equations being approximated. A visionary 1947 consulting
report [152] by von Neumann, developing the first petroleum reservoir simulator
designed for a computer, illustrates this principle.

This book aims to promote this type of insight. We examine PDE-based models
of porous-medium flows in geometries and settings simple enough to admit anal-
ysis without numerical approximations but realistic enough to reveal important
structures.

From a mathematical perspective, the study of fluid flows in porous media
offers fertile ground for inquiry into PDEs more generally. In particular, this book
employs many broadly applicable concepts in the theory of PDEs, including:

1. Mass and momentum balance laws
2. Variational principles
3. Fundamental solutions
4. The principle of superposition
5. Similarity methods
6. Stability analysis
7. The method of characteristics and jump conditions.

Where possible, the narrative introduces these topics in the simplest possible
settings before applying them to more complicated problems.

Topic 1, covered in Chapter 2, deserves comment. Few PDE texts at this level
discuss balance laws in the detail pursued here. However, it is hard to build intu-
ition about porous-medium flows without knowing the principles from which they
arise. The balance laws furnish those principles. On the other hand, a completely
rigorous study of balance laws for fluids flowing in porous media would require
a monograph-length treatment in its own right. Chapter 2 reflects an attempt to
weigh the importance of fundamental principles against the need for a concise
explanation of how the governing PDEs emerge from basic laws of physics. The
references offer suggestions for deeper inquiry.

We frequently refer to PDEs according to a classification system inherited from
the algebra of quadratic equations. The utility of this system becomes more appar-
ent as one becomes more familiar with examples. For now, it suffices to review the
system for second-order PDEs in two independent variables having the form

a𝜕
2u
𝜕x2 + b 𝜕

2u
𝜕x 𝜕y

+ c𝜕
2u
𝜕y2 = F

(
x, y,u, 𝜕u

𝜕x
,
𝜕u
𝜕y

)
. (1.1)

Here, a, b, and c are functions of the independent variables x and y, which we can
replace with x and t in time-dependent problems; u(x, y) is the unknown solution;
and F denotes a function of five variables that describes the lower-order terms in
the PDE.
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The highest-order terms determine the classification. The discriminant of Eq.
(1.1) is Δ = b2 − 4ac, which is a function of (x, y). Equation (1.1) is

● hyperbolic at any point of the (x, y)-plane where Δ(x, y) > 0;
● parabolic at any point of the (x, y)-plane where Δ(x, y) = 0;
● elliptic at any point of the (x, y)-plane where Δ(x, y) < 0.

Extending this terminology, we say that a first-order PDE of the form

𝜕u
𝜕x

+ a𝜕u
𝜕y

= F(x, y,u)

is hyperbolic at any point (x, y) where a(x, y) ≠ 0.

Exercise 1.1 Verify the following classifications, where c and D are real-valued
with D > 0:

𝜕
2u
𝜕t2 − c2 𝜕

2u
𝜕x2 = 0 (one-dimensional wave equation) hyperbolic,

𝜕u
𝜕t

− D𝜕
2u
𝜕x2 = 0 (one-dimensional heat equation) parabolic,

𝜕
2u
𝜕x2 + 𝜕

2u
𝜕y2 = 0 (two-dimensional Laplace equation) elliptic.

Mathematicians associate the wave equation with time-dependent processes
that exhibit wave-like behavior, the heat equation with time-dependent processes
that exhibit diffusive behavior, and the Laplace equation with steady-state
processes. These associations arise from applications, some of which this book
explores, reinforced by theoretical analyses of the three exemplars in Exercise 1.1.
For more information about the classification of PDEs, see [65, Section 2-6].

1.3 Dimensions and Units

In contrast to most texts on pure mathematics, in this book physical dimen-
sions play an important role. We adopt the basic physical quantities length, mass,
and time, having physical dimensions L, M, and T, respectively. All other physical
quantities encountered in this book—except for one case involving temperature in
Chapter 7—are derived quantities, having physical dimensions that are products
of powers of L, M, and T.

For example, the physical dimension of force F arises from Newton’s second law
F = ma, where m denotes mass and a denotes acceleration:

dim(F) = dim(ma) = dim(m) ⋅ dim(a) = M ⋅ LT−2
.
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Analyzing the physical dimensions of quantities that arise in physical laws can
yield surprisingly powerful mathematical results. Subsequent chapters exploit this
concept many times.

Physical laws such as F = ma require a way to assign numerical values to the
physical quantities involved. We do this by comparison with standards, a process
called measurement. For example, to assign a numerical value to the length of
an object, we compare it to a length to which we have assigned a numerical value
by fiat. A choice of standards for measuring L, M, and T, applied consistently for
all occurrences of length, mass, and time, defines a system of units. Changing
the system of units typically changes the numerical values that we measure, the
exception being dimensionless quantities, which have dimension 1.

Where practical, this book uses the Système Internationale (SI) as the preferred
system of units. The current standards for time, length, and mass in the SI are as
follows:

● Time: One second (s) is the duration of 9 192 631 770 periods of the radiation
emitted by the transition between the two hyperfine levels of the ground state
of cesium-133. This period of time is approximately 1/86 400 of one Earth day.

● Length: One meter (m) is the distance traveled in a vacuum by light in 1/299 792
458 s. This distance is approximately 10−7 times the distance from the Earth’s
geographic north pole to the equator along a great circle.

● Mass: One kilogram (kg) is the mass required to fix the value of the Planck con-
stant as 6.62607015 × 10−34 kg m2 s−1, given the definition of one second and
1 m. This mass is approximately that of 10−3 m3 (1 liter) of water at room tem-
perature and pressure.

In some cases, non-SI units are more convenient for measuring physical quanti-
ties that arise in the bench- or field-scale study of fluid flows in porous media.
When these cases arise, we give the factor that enables conversion to SI units.
The fact that scientists and engineers prefer non-SI units in some instances high-
lights the inherently subjective nature of units: Humans tend to prefer standards
that yield numerical values not far from 1 in our everyday experience. One advan-
tage of using dimensionless quantities—a technique employed frequently in this
book—is that we avoid this subjectivity.

1.4 Limitations in Scope

Three limitations in scope are worth noting. First, we treat only isothermal flows
in porous media, that is, flows at constant temperature. This restriction conve-
niently allows us to ignore the energy balance equation in deriving governing
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PDEs. On the other hand, it also eliminates several types of flows that have impor-
tant applications, including flows in geothermal reservoirs and thermal methods
of enhanced oil recovery, such as steam flooding.

Also glaringly absent from the table of contents is the topic of flows in fractured
porous media. Geoscientists correctly point out that most geologic porous media
possess fractures, which exert significant influences on fluid flows. Yet the math-
ematics of flow in fractured porous media remains poorly delineated, owing not
so much to the absence of mathematical models (see [21] for a recent overview
and [8, 15, 86, 153] for prominent examples) but, more importantly, to the obser-
vation that fractures exist at many scales of observation. In some underground
formations, one must know something about the geometry of individual fractures
to model fluid flows accurately. In these settings, the modeler’s challenge is to rep-
resent the discrete fracture system (or statistical realizations) on tractably coarse
computational grids. In other geologic settings, it suffices to treat the pore net-
work and the fracture network as overlapping porosity systems, and the challenge
is to model how fluids move within and between them. This spectrum of modeling
approaches deserves a monograph of its own.

Also missing from the topics covered here is a discussion of fluid flows in
extremely flow-resistant media, often but debatably referred to as nanodarcy
flows but more properly characterized as non-Darcy flows. Flows of this type
have increased in practical importance during the past two decades, owing
especially to vastly improved technologies for producing natural gas from
shale formations when hydrocarbon commodity prices justify the costs. The
physics here are complex, involving gas–rock interactions in interstices whose
typical diameters approach the mean free path of the gas molecules. None of
the classical macroscopic transport models—such as Darcy’s law or Fick’s law
of diffusion—suffices by itself to capture these phenomena [37, 81]. One can
hope that further advances in our understanding of these flows, analogous to
the advances described above for classical Darcy flows, will yield more settled
mathematical models in years to come.
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2

Mechanics

2.1 Kinematics of Simple Continua

At the macroscopic scale of observation, greater than about 10−3 m, a natural
porous medium such as sandstone is a complex mixture of solids and fluids, sep-
arated by interfaces whose geometries are often too small for humans to discern
without aid. This book focuses mainly on the macroscopic scale. However, viewed
at the microscopic scale, say 10−6–10−3 m, the solids and fluids in a porous medium
appear as distinct continua, separated by observable interfaces. We begin with the
mechanics of these simple continua. Section 2.5 extends the discussion to the
mechanics of multiconstituent continua, applicable at the macroscopic scale of
observation.

The first step is to establish the kinematics. This branch of mechanics provides
a framework for describing the motions of continua geometrically, without refer-
ence to the forces that cause motion. The treatment here is an abbreviated version
of material that appears in standard courses on continuum mechanics; for more
details consult [4].

2.1.1 Referential and Spatial Coordinates

In continuum mechanics, the term body refers to a collection  of particles,
sometimes called material points. A subset of the body that is a body in its own
right is a part of the body. We assign to each body a reference configuration,
which associates with the body a region  in three-dimensional Euclidean space.
In the reference configuration, each particle in the body has a position X, unique
to that particle, as shown in Figure 2.1. The vector X serves as a label, called the
referential or Lagrangian coordinates of the particle. As with a person’s home
address, from a strictly logical point of view the particle need not ever occupy

The Mathematics of Fluid Flow Through Porous Media, First Edition. Myron B. Allen.
© 2021 John Wiley & Sons, Inc. Published 2021 by John Wiley & Sons, Inc.
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X

Figure 2.1 A reference configuration of a body,
showing the referential coordinates X used to
label a particle according to its position in the
reference configuration.

the point X. That said, in some applications it is useful to choose the reference
configuration in a way that associates each particle with a position that it occupies
at some prescribed time, for example t = 0.

The central aim of kinematics is to describe the trajectories of particles, that is,
to determine the position x in three-dimensional Euclidean space that each par-
ticle X occupies at every time t. For this purpose we assume that there exists a
one-parameter family 𝝌(X, t) of vector-valued functions, time t being the parame-
ter, that has the following properties.

1. The vector 𝝌(X, t), having dimension L, gives the spatial position x of the par-
ticle X at time t.

2. At each time t, the function𝝌(⋅, t) of the referential coordinates X is one-to-one,
onto, and continuously differentiable with respect to X.

3. Also at each fixed time t, 𝝌(⋅, t) has a continuously differentiable inverse 𝝌−1

such that X = 𝝌−1(x, t). That is, 𝝌−1 tells us which particle X occupies the spa-
tial position x at time t.

4. For each value of the coordinate X, the function 𝝌(X, ⋅) is twice continuously
differentiable with respect to t.

The function 𝝌 is the deformation of the body, illustrated in Figure 2.2. We
call the vector x = 𝝌(X, t) the spatial or Eulerian coordinates of the particle X at
time t.

χ

x

X χ(  , t)

Figure 2.2 The deformation
mapping the reference
configuration  onto the body’s
configuration at time t.
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2.1 Kinematics of Simple Continua 9

Figure 2.3 Regions  and  occupied by a body in
two reference configurations, along with the
corresponding deformations 𝝌 and 𝝍 that map a given
particle onto a position vector x at time t.

X

Y

x

χ

ψ

Exercise 2.1 Let  and  be the regions occupied by a body in two different ref-
erence configurations, giving the referential coordinates of a certain particle as X
and Y, respectively, as illustrated in Figure 2.3. Let 𝝌 and 𝝍 , respectively, denote
the deformations associated with these two reference configurations. Thus the spa-
tial position of the particle at time t is 𝝌(X, t) = x = 𝝍(Y, t). Justify the relationship
Y = 𝝍−1(𝝌(X, t), t). This relationship makes it possible to reconcile the analyses of
motion by observers who choose different reference configurations.

2.1.2 Velocity and the Material Derivative

In classical mechanics, it is straightforward to calculate a particle’s velocity: Differ-
entiate the particle’s spatial position with respect to time. Continuum mechanics
employs the same concept. The velocity of particle X is the time derivative of its
position:

𝜕𝝌

𝜕t
(X, t). (2.1)

This function has dimension LT−1. In taking this partial derivative, we hold the
particle X fixed and differentiate with respect to t, just as in classical mechanics.
We call the velocity (2.1) the referential velocity or Lagrangian velocity.

We distinguish this velocity from another notion of velocity that arises by mea-
suring what happens at a fixed position in space, as with an anemometer or wind
vane attached to a stationary building. This concept of velocity commonly arises in
fluid mechanics. In this case, we differentiate with respect to t, holding the spatial
coordinate x fixed. To calculate this spatial or Eulerian velocity from the defor-
mation, we first determine which particle X = 𝝌−1(x, t) passes through x at time
t, then compute the velocity of that particle:

v(x, t) =
𝜕𝝌

𝜕t
(𝝌−1(x, t)
⏟⏞⏟⏞⏟

X

, t).
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e1 e2

e3
Figure 2.4 Orthonormal basis vectors
defining a Cartesian coordinate system.

Since the idea of differentiating with respect to time holding the particle X fixed
applies to other functions, we adopt a special notation for this operation, called the
material derivative. If f is a differentiable function of (X, t)—that is, a function
of referential coordinates—its material derivative is straightforward:

Df
Dt

(X, t) =
𝜕f
𝜕t

(X, t).

However, if f is a function of spatial coordinates (x, t), where x = 𝝌(X, t), calculat-
ing its material derivative requires the chain rule. In this context, several common
notations for partial differentiation can be ambiguous. If we denote by 𝜕1 and 𝜕2
the operations of partial differentiation of f with respect to its first and second
arguments x and t, respectively, then

Df
Dt

(x, t) = 𝜕

𝜕t
f (𝝌(X, t), t)

= 𝜕1(𝝌(X, t), t)
𝜕𝝌

𝜕t
(X, t) + 𝜕2(𝝌(X, t), t)

𝜕t
𝜕t

= ∇f (x, t) ⋅ v(x, t) + 𝜕

𝜕t
f (x, t).

In the third line of this derivation, ∇f denotes the gradient of the function f , that
is, its derivative with respect to the vector-valued spatial position x. With respect
to any orthonormal basis {e1, e2, e3}, as drawn in Figure 2.4,

∇f =
3∑

i=1

𝜕f
𝜕xi

ei.

In short, for a function f of spatial position and time, the material derivative is

Df
Dt

=
𝜕f
𝜕t

+ v ⋅ ∇f .

2.2 Balance Laws for Simple Continua

The partial differential equations (PDEs) governing flows through porous media
arise from balance laws. All of the flows treated in this book are isothermal,
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Figure 2.5 A time-independent region 

having oriented boundary 𝜕 and unit
outward normal vector field n. The small
arrows represent the spatial velocity.

n

that is, the temperature is constant in time and uniform in space. With this
assumption in place, we need only work with the balance laws governing mass
and momentum—with one exception noted below.

2.2.1 Mass Balance

Consider first the mass balance. We associate with each body a nonnegative,
integrable function 𝜌(x, t), called the mass density. This function gives the mass
contained in any region  of three-dimensional Euclidean space as the volume
integral

∫


𝜌(x, t) d𝑣, (2.2)

having physical dimension M. Here, d𝑣 denotes the element of volume integra-
tion. Since 𝜌 is nonnegative, so is the mass. The expression (2.2) requires that
dim(𝜌) = ML−3.

The mass balance arises from a simple observation: The rate of change in the
mass inside any region  of three-dimensional space exactly balances the rate of
movement of mass across the region’s boundary. In symbols,

d
dt ∫

𝜌 d𝑣 = −
∫
𝜕

𝜌v ⋅ n da. (2.3)

This equation is the integral mass balance. Here, 𝜕 denotes the boundary of  ;
n(x, t) denotes the unit-length vector field orthogonal to 𝜕 and pointing outward,
as Figure 2.5 depicts; and da denotes the element of surface integration. We call
the function 𝜌v in the integral on the right side of Eq. (2.3) the mass flux per
unit area; the integrand 𝜌v ⋅ n is the component of mass flux per unit area in the
direction of the unit vector n, that is, outward from  . The surface integral itself,
together with the negative sign, is the net flux of mass inward across 𝜕 .

Often of greater utility than the integral equation (2.3) is a pointwise form of
the mass balance, valid when the density and velocity are sufficiently smooth. To
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derive this form, consider a region  that does not change in time. In this case,

d
dt ∫

𝜌 d𝑣 =
∫


𝜕𝜌

𝜕t
d𝑣. (2.4)

Also, by the divergence theorem,

−
∫
𝜕

𝜌v ⋅ n da = −
∫


∇ ⋅ (𝜌v) d𝑣, (2.5)

where ∇⋅ denotes the divergence operator. With respect to an orthonormal basis
{e1, e2, e3},

∇ ⋅ (𝜌v) =
3∑

j=1

𝜕

𝜕xj
(𝜌 𝑣j).

Applying the identities (2.4) and (2.5) to the integral mass balance (2.3) yields the
equivalent equation

∫


[
𝜕𝜌

𝜕t
+ ∇ ⋅ (𝜌v)

]
d𝑣 = 0, (2.6)

valid for any time-independent region  .
If the integrand in Eq. (2.6) is continuous, then the integrand must vanish:

𝜕𝜌

𝜕t
+ ∇ ⋅ (𝜌v) = 0. (2.7)

Equation (2.7) is the differential mass balance.

Exercise 2.2 Verify the principle used to derive Eq. (2.7) from the integral
equation (2.6). An argument by contradiction may be the easiest approach: Assume
that the integrand on the left side of Eq. (2.6) is positive at some point x at some time
t. Since this function is continuous, it must be positive in a neighborhood of x at
time t. Consider a fixed region contained in this neighborhood. A similar argument
dispatches the possibility that the integrand is negative at some point.

Exercise 2.3 Justify the following equivalent of the mass balance (2.7):
D𝜌
Dt

+ 𝜌∇ ⋅ v = 0. (2.8)

The differential mass balance in the form (2.8) facilitates another observation.
In certain motions, the density following any particle is constant. In this case,
D𝜌∕Dt = 0, so the mass balance implies that

∇ ⋅ v = 0.
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In this case, we say that the motion is incompressible. This concept does not
imply anything about the material being modeled; it merely describes the motion
based on properties of the velocity field. A compressible material can undergo
incompressible motion.

The mass balance is the simplest of the balance laws of continuum mechanics.
Other balance laws include the momentum balance, the angular momentum bal-
ance, and the energy balance. A related thermodynamic law known, as the entropy
inequality, also plays an important role in many settings. In each of these laws, an
integral version is fundamental, and it is possible to derive differential versions
under certain continuity conditions. For a detailed review of the integral balance
laws and the derivation of their differential versions, see [4]. With the exception of
several applications of the mass balance discussed in Chapters 5 and 6, the remain-
der of this book focuses on differential balance laws.

2.2.2 Momentum Balance

The differential momentum balance equation is

𝜌
Dv
Dt

− ∇ ⋅ T − 𝜌b = 𝟎, (2.9)

often called Cauchy’s first law. (For its derivation from an integral form, see
[4, Chapter 4]. Strictly speaking, the momentum balance states that there exists
a frame of reference in which Cauchy’s first law holds.) Each term in Eq. (2.9)
is a vector-valued function having dimension ML−2T−2. Thus, Cauchy’s first law
comprises three scalar PDEs.

The terms in Eq. (2.9) require explanation. First, with respect to any orthonor-
mal basis {e1, e2, e3},

v ⋅ ∇ =
3∑

j=1
𝑣j
𝜕

𝜕xj
,

so applying this operator to v yields

Dv
Dt

=
(
𝜕

𝜕t
+ v ⋅ ∇

)
v =

(
𝜕

𝜕t
+

3∑
j=1
𝑣j
𝜕

𝜕xj

) 3∑
i=1
𝑣iei

=
3∑

i=1

(
𝜕𝑣i

𝜕t
+

3∑
j=1
𝑣j
𝜕𝑣i

𝜕xj

)
ei,

which is clearly a vector-valued function.
Second, the function b(x, t) represents the body force per unit mass, having

dimension LT−2. In this book, the only body force of interest is gravity, and b
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reduces to the gravitational acceleration near Earth’s surface. The total body force
acting on a part of the body is

∫


𝜌b d𝑣,

where  is the region occupied by the part.
Third, the function T(x, t) is the stress tensor. This entity deserves more

extended discussion, starting with the term tensor. A second-order tensor is a
linear transformation that maps vectors into vectors. Its geometric action remains
fixed under changes in coordinate systems, a requirement discussed in more
detail in Section 3.7. The stress tensor is a linear transformation that describes a
type of force different from the body force.

More specifically, any part of a body occupying a region  in three-dimensional
space can experience forces acting on the region’s bounding surface 𝜕 . We
account for these forces by introducing tractions, having dimension force per
unit area:

dim
(Force

Area

)
= MLT−2

L2 = ML−1T−2
.

Consider such a region, as drawn in Figure 2.6. At any point where the bounding
surface 𝜕 is smooth and orientable, there exists an outward pointing unit normal
vector n that is orthogonal to the plane tangent to 𝜕 at that point. The stress
tensor is a linear transformation T such that the vector field Tn gives the traction
at any point on 𝜕 . The vector field Tn need not be collinear with n: The force per
unit area acting at a point on 𝜕 can have a component tangent to the surface. The
total force acting on 𝜕 is

∫
𝜕

Tn da,

having dimension MLT−2.
Four additional remarks help clarify the nature of the stress tensor.

1. With respect to any orthonormal basis {e1, e2, e3}, any linear transformation A
has a matrix representation with entries Aij = ei ⋅ Aej. For T, this representation

n
Tn

Tangent plane

Figure 2.6 A region  in three-dimensional space
with unit outward normal vector field n and the
traction Tn acting on the boundary 𝜕 .
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has the form

⎡⎢⎢⎣
T11 T12 T13
T21 T22 T23
T31 T32 T33

⎤⎥⎥⎦
.

2. In accordance with Exercise 2.4, with respect to any orthonormal basis, the
diagonal entries T11,T22,T33 represent forces per unit area acting in directions
perpendicular to faces that are orthogonal to e1, e2, and e3, respectively.
We refer to these entries as tensile stresses when they pull in the same
direction as n and as compressive stresses when they push in the opposite
direction—namely inward—from n. The off-diagonal entries Tij, where i ≠ j,
are shear stresses.

3. A classic theorem in continuum mechanics reduces the angular momentum
balance, which we do not discuss here, to the identity Tij = Tji with respect
to any orthonormal basis. In other words, the stress tensor is symmetric. See
[4, Chapter 4] for details.

4. With respect to an orthonormal basis {e1, e2, e3}, the divergence ∇ ⋅ T of the
tensor-valued function T has the following representation as a vector-valued
function:

3∑
j=1

⎡⎢⎢⎣
𝜕Tj1∕𝜕xj
𝜕Tj2∕𝜕xj
𝜕Tj3∕𝜕xj

⎤⎥⎥⎦
.

Exercise 2.4 Consider the action of T on each unit basis vector ei, i = 1, 2, 3, to
examine the forces acting on faces of a cube of material whose edges lie parallel to
the Cartesian coordinate axes defined by {e1, e2, e3}, as drawn in Figure 2.7. Justify
the assertion that Tij represents the ith component of the force per unit area acting on
surfaces that lie perpendicular to ej.

Figure 2.7 A cube of material illustrating the
interpretations of entries of the stress tensor
matrix with respect to an orthonormal basis,
from [[4], page 109].

T11 T12

T13 T23

T22

x1
x2

x3
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The differential momentum balance (2.9) generalizes Newton’s second law of
motion. The left side of Eq. (2.9) is proportional to mass × acceleration, while the
right side is proportional to a sum of forces. Thus, Eq. (2.9) has the form

1
Volume

(
Mass × Acceleration =

∑
Forces

)
.

Based on this parallel, fluid mechanicians call

𝜌
Dv
Dt

= 𝜌
𝜕v
𝜕t

+ 𝜌(v ⋅ ∇)v

the inertial terms.
If we view the momentum balance as an equation for the velocity v, the iner-

tial terms make the momentum balance a nonlinear PDE. In many applications to
fluid mechanics, this nonlinearity wreaks mathematical havoc. Mercifully, for rea-
sons examined in Chapter 3, the inertial nonlinearity plays a negligible role in the
most commonly used models of porous-media flow. However, this observation fur-
nishes scant grounds for complacency. As subsequent chapters demonstrate, other
types of nonlinearity play prominent roles in the fluid mechanics of porous media.

2.3 Constitutive Relationships

The mass and momentum balance laws
D𝜌
Dt

+ 𝜌∇ ⋅ v = 0,

𝜌
Dv
Dt

− ∇ ⋅ T − 𝜌b = 𝟎 (2.10)

furnish four scalar PDEs involving the 16 scalar functions required to specify 𝜌, v,
T, and b. The symmetry of the stress tensor, T = T⊤, reduces the number of inde-
pendent scalar functions to 13. From the mathematical point of view, a well posed
problem involving Eqs. (2.10) requires 13 − 4 = 9 additional equations to close the
system. We call these equations constitutive relationships.

From the engineer’s point of view, constitutive relationships define the physical
system being modeled. Since the mass and momentum balance laws apply to all
materials, by themselves they provide no way to distinguish among different types
of fluids and solids. If we regard the differential equations (2.10) as governing the
mass density 𝜌 and velocity v, then we need to specify constitutive relationships
for the three scalar functions defining the body force b and the six independent
scalar functions T11,T22,T33,T12,T13,T23 that define the matrix representation of
the stress tensor. This book examines only a small number of constitutive rela-
tionships, chosen from the myriad that scientists and engineers have developed to
model the remarkable variety of materials found in nature.
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Figure 2.8 Coordinate system used to define
the depth function Z(x).

Datum
Earth’s
center

e1

e2

e3

x

2.3.1 Body Force

For the body force, which is gravity in all of the problems examined here, we adopt
the constitutive relationship b = −g e3. Here g ≃ 9.8 m s−2 denotes the gravita-
tional acceleration, which varies across Earth’s surface, and we adopt a Carte-
sian coordinate system in which e3 points away from Earth’s center, as shown in
Figure 2.8.

An alternative way of writing this expression proves useful in subsequent
sections. Define the depth function Z as the mapping that assigns to each spatial
point x its depth Z(x) below some datum, at which Z = 0, as drawn in Figure 2.8.
We often take the datum to be Earth’s surface, but other choices are possible.
Observe that

∇Z =
3∑

i=1

𝜕Z
𝜕xi

ei = −e3,

which has dimension LL−1 = 1. Therefore, we write the constitutive equation for
the body force as b = g∇Z.

2.3.2 Stress in Fluids

The stress tensor T enjoys a richer set of possibilities. The simplest is the constitu-
tive relationship for an ideal fluid, in which T = −p I. Here, p(x, t) is a scalar func-
tion called the mechanical pressure, having dimension ML−1T−2 (force/area).
The SI unit for pressure is 1 pascal, abbreviated as 1 Pa and defined as 1 kg m−1

s−2. The symbol I denotes the identity tensor. With respect to any orthonormal
basis, the stress of an ideal fluid has matrix representation

⎡⎢⎢⎣
−p 0 0

0 −p 0
0 0 −p

⎤⎥⎥⎦
. (2.11)

Thus, in an ideal fluid, there are no shear stresses, and the fluid experiences
only compressive and tensile stresses. Also, there are no preferred directions:
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T11 = T22 = T33. We describe this fact by saying that the stress tensor is isotropic.
Section 3.7 discusses isotropic tensors in more detail.

For an ideal fluid in the presence of gravity, the momentum balance reduces to
the following equation:

𝜌
𝜕v
𝜕t

+ 𝜌(v ⋅ ∇)v = −∇p + 𝜌g∇Z.

In problems for which inertial terms are negligible, for example when the fluid is
at rest, this equation reduces to

∇p = 𝜌g∇Z. (2.12)

Exercise 2.5 Integrate the third component of Eq. (2.12) to obtain the hydrostatic
equation,

p(x1, x2,−z) = p(x1, x2, 0) + 𝜌gZ. (2.13)

Thus pressure increases linearly with depth in an ideal fluid at rest.

Equation (2.13) closely models the pressure of Earth’s atmosphere. At sea level,
the pressure of the atmosphere fluctuates around 1.01325 × 105 Pa, which is the
definition of a common unit of measurement, 1 atmosphere, abbreviated as 1 atm.

An extension of the ideal fluid stress provides a more realistic constitutive rela-
tionship for many fluids. An incompressible Newtonian fluid is a material for
which

T = −p I + 2𝜇D. (2.14)

Here, D stands for the stretching tensor, defined as

D = 1
2
[∇v + (∇v)⊤].

With respect to an orthonormal basis, the (i, j)th entry of the matrix representation
of ∇v is 𝜕𝑣i∕𝜕xj, and (∇v)⊤ denotes the transpose of ∇v, whose (i, j)th entry is
𝜕𝑣j∕𝜕xi.

The coefficient 𝜇 appearing in Eq. (2.14) is the dynamic viscosity, a nonneg-
ative function of space and time having dimension ML−1T−1. A common unit
for measuring dynamic viscosity is the centipoise, abbreviated cP and named
after the French physicist Jean Léonard Marie Poiseuille. In SI units, 1 cP = 10−3

kg m−1 s−1, which is approximately the viscosity of water at a temperature of 20 ∘C
and a pressure of 1 atm. For comparison, the viscosity of air at these conditions is
1.516 × 10−2 cP.

Exercise 2.6 Find the correct pronunciation of “Poiseuille.”
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2.3.3 The Navier–Stokes Equation

Exercise 2.7 Substitute the constitutive relationship (2.14) into the momentum
balance and assume that gravity is negligible (for example, in a shallow horizontal
flow) to derive the Navier–Stokes equation:

𝜕v
𝜕t

+ (v ⋅ ∇)v = −1
𝜌
∇p + 𝜈∇2v. (2.15)

Here, 𝜈 = 𝜇∕𝜌 is the kinematic viscosity, having dimension L2T−1, and ∇2v has
the following representation with respect to an orthonormal basis:

3∑
i=1

⎡⎢⎢⎢⎣

𝜕
2
𝑣1∕𝜕x2

i
𝜕

2
𝑣2∕𝜕x2

i
𝜕

2
𝑣3∕𝜕x2

i

⎤⎥⎥⎥⎦
.

Sir George Gabriel Stokes was an Irish-born Cambridge professor who made
extraordinary contributions to mathematical physics. Claude-Louis Navier was a
French mechanical engineer and professor of mathematics in the early nineteenth
century.

Exercise 2.8 Find the correct pronunciation of “Navier.”

Owing largely to mathematical difficulties associated with the inertial terms,
the Navier–Stokes equation remains a source of some of the most refractory
unsolved problems in mathematics. Proving the existence and smoothness
of solutions under general conditions remains one of six unsolved Millennial
Prize Problems identified in 2000 by the Clay Institute for Mathematics [79].

To gauge the importance of inertial effects in specific problems, it is useful to cast
Eq. (2.15) in terms of dimensionless variables—that is, variables having physical
dimension 1. This technique filters out subjective effects associated with the ana-
lyst’s choice of measurement units, mentioned in Section 1.3.

For concreteness, consider the flow of an incompressible Newtonian fluid
in an infinite spatial domain surrounding a solid sphere having radius R,
as drawn in Figure 2.9. We examine a simplified version of this flow, called
the Stokes problem, in Section 2.4. Assume that, as distance from the sphere
increases, v → 𝑣∞e1. Using the radius R and the far-field fluid speed 𝑣∞ as scaling
parameters, define the following dimensionless variables:

𝝃 = x
R
, 𝜏 =

𝑣∞t
R
, v∗ = v

𝑣∞
, p∗ =

p
𝜌𝑣

2
∞
.

By the chain rule, for any sufficiently differentiable function 𝜑,

∇𝜑 =
3∑

i=1

𝜕𝜑

𝜕xi
ei =

3∑
i=1

d𝜉i

dxi

𝜕𝜑

𝜕𝜉i
ei =

1
R
∇
𝜉
𝜑,
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R

Figure 2.9 Geometry
of the Stokes problem
for slow fluid flow around
a solid sphere.

∇2
𝜑 =

3∑
i=1

𝜕
2
𝜑

𝜕x2
i

= 1
R2

3∑
i=1

𝜕
2
𝜑

𝜕𝜉
2
i

= 1
R2 ∇

2
𝜉
𝜑,

𝜕𝜑

𝜕t
= d𝜏

dt
𝜕𝜑

𝜕t
=
𝑣∞

R
𝜕𝜑

𝜕𝜏
.

Here,

∇
𝜉
=

3∑
i=1

ei
𝜕

𝜕𝜉i

denotes the gradient operator with respect to the dimensionless spatial variable 𝝃.

Exercise 2.9 Substitute these operators into the Navier–Stokes equation (2.15) and
simplify to get the dimensionless Navier–Stokes equation:

𝜕v∗

𝜕𝜏
+ (v∗ ⋅ ∇)v∗ = −∇

𝜉
p∗ + 1

Re
∇2
𝜉
v∗
, (2.16)

where Re = R𝑣∞∕𝜈.

The dimensionless parameter Re in Eq. (2.16) is the Reynolds number, named
after Irish-born fluid mechanician Osborne Reynolds [128]. This number serves
as a unit-free gauge of the ratio of inertial effects to viscous effects and, heuristi-
cally, as an index of mathematical intractability. We associate the regime Re < 1
with slow flows in which viscous effects dominate those associated with inertia.
When Re is much smaller than 1, it is common to neglect the inertial terms.

2.4 Two Classic Problems in Fluid Mechanics

As mentioned in Section 2.3, the Navier–Stokes equation (2.15) poses formidable
mathematical challenges. Exact solutions are known only in special geometries
and only under highly restrictive assumptions, many of which allow us to neglect
the nonlinear inertial term (v ⋅ ∇)v. We now examine two such problems in fluid
mechanics that bear on the analysis of flows in porous media. Each serves as
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a highly simplified model of fluid flow in the interstices of a porous medium,
and each involves significant reductions in complexity compared with the full
Navier–Stokes equation. The Hagen–Poiseuille problem is a simple model of
fluid flows in a straight, cylindrical tube, which one can envision as an idealized
pore channel. The Stokes problem models slow, viscous flows around a solid
sphere, which one can imagine as an idealized solid grain.

2.4.1 Hagen–Poiseuille Flow

One of the earliest known exact solutions to the Navier–Stokes equation arose
from a simple but important model examined by Gotthilf Hagen, a German fluid
mechanician, and French physicist J.L.M. Poiseuille, mentioned in Section 2.3.
Citing Hagen’s 1839 work [67], in 1840, Poiseuille [122] developed a classic solu-
tion for flow through a pipe. The derivation presented here follows that given by
British mathematician G.K. Batchelor [[16], Section 4.2].

Consider steady flow in a thin, horizontal, cylindrical tube having circular
cross-section and radius R. Let the fluid’s density and viscosity be constant. Orient
the Cartesian coordinate system so that the x1-axis coincides with the axis of the
tube.

The problem simplifies if we temporarily convert to cylindrical coordinates,
defined by the coordinate transformation

𝚿
⎛⎜⎜⎝
⎡⎢⎢⎣

z
r
𝜃

⎤⎥⎥⎦
⎞⎟⎟⎠
=
⎡⎢⎢⎣

z
r cos 𝜃
r sin 𝜃

⎤⎥⎥⎦
=
⎡⎢⎢⎣

x1
x2
x3

⎤⎥⎥⎦
, (B.5)

reviewed in Appendix B. Here z represents position along the axis of the tube, r
represents distance from the axis, and the angle 𝜃 represents the azimuth about
the axis. In this coordinate system, the Laplace operator has the form

∇2 = ∇ ⋅ ∇ = 𝜕
2

𝜕z2 + 1
r
𝜕

𝜕r

(
r 𝜕
𝜕r

)
+ 1

r2
𝜕

2

𝜕𝜃2 . (B.7)

Appendix B reviews the derivation of this expression.
In view of the symmetry of the problem about the axis of the tube, we seek solu-

tions of the form

v(z, r, 𝜃) = (𝑣(r), 0, 0), (2.17)

that is, the axial component depends only on distance from the axis of the tube,
and the radial and azimuthal coordinates of the velocity vanish, as drawn in
Figure 2.10. We allow the pressure to vary with z.

Exercise 2.10 Show that, under these conditions, the nonlinear term (v ⋅ ∇)v van-
ishes. Work in Cartesian coordinates.
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r

R

Figure 2.10 Profile of flow through
a thin circular cylinder having radius
R.

Since the flow is steady, the Navier–Stokes equation therefore reduces to

𝟎 = −∇p + 1
Re

∇2v.

(Here we use the dimensionless form.)
For a fluid velocity of the form (2.17), we need to only solve the first coordinate

equation,

0 = −p′(z) + 1
Re

1
r

d
dr

(
r d𝑣

dr

)
. (2.18)

Since the second term on the right side of Eq. (2.18) is independent of z by
Eq. (2.17), so is the pressure gradient p′. It follows that p′ is constant, and hence p
varies linearly along the tube. Equation (2.18) therefore reduces to the following
ordinary differential equation:

1
r

d
dr

(
r d𝑣

dr

)
= p′ Re.

Exercise 2.11 Verify that the general solution to this equation has the form

𝑣 =
p′ Re

4
(

r2 + C1 log r + C2
)
,

where log stands for the natural logarithm and C1 and C2 denote arbitrary
constants.

For boundary conditions, we assume no slip at the wall of the tube and insist
that the velocity along the axis of the tube remain finite:

𝑣(R) = 0, (2.19)

lim
r→0

|𝑣(r)| < ∞. (2.20)

The condition (2.20) requires that C1 = 0.

Exercise 2.12 Impose the no-slip boundary condition (2.19) to show that

𝑣(r) =
p′ Re

4
(

R2 − r2)
. (2.21)
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Equation (2.21) indicates that the fluid velocity has a parabolic profile, with
the velocity reaching its maximum magnitude along the axis of the tube and
vanishing at the walls. We encounter this profile again in Section 5.1.2, in
discussing why solutes spread as they move through the microscopic channels of
a porous medium.

2.4.2 The Stokes Problem

Another classic problem derived from the Navier–Stokes equation examines the
slow, incompressible, viscous flow of a fluid around a solid sphere of radius R, as
drawn in Figure 2.9. In the case of steady flow when the Reynolds number is much
smaller than 1, we neglect the inertial terms, arriving at the following mass and
momentum balance equations:

∇ ⋅ v = 0,

𝜇∇2v = ∇p.

On the surface of the solid sphere, the velocity vanishes, while as one moves far
away from the sphere the velocity approaches a uniform far-field value:

v(x) = 𝟎, ||x|| = R;

v(x) → 𝑣∞e1, ||x|| → ∞.

In 1851, in a tour de force of vector calculus, Stokes [139] published the solution
to this boundary-value problem, along with an expression for the total viscous
force exerted on the sphere: F = Fe1 = 6𝜋𝜇R𝑣∞e1. This force is called the Stokes
drag.

For our purposes, we need not examine the calculation of F in detail. Instead, we
use a simpler dimensional analysis, exploiting concepts from elementary linear
algebra, to deduce the functional form of the drag force. Since the only parameters
in the boundary-value problem are 𝜇, 𝑣∞, and R, any solution to the problem of
calculating F defines a relationship of the form

𝜑(F, 𝜇, 𝑣∞,R) = 0, (2.22)

for some function 𝜑. By a theorem widely attributed to American physicist Edgar
Buckingham [31], this relationship, involving variables that have physical dimen-
sions, implies the existence of an equivalent relationship

Φ(Π1,Π2,…) = 0

involving only dimensionless variables Π1,Π2,… Appendix C reviews this
theorem.

Thus, we seek relationship equivalent to Eq. (2.22), involving only dimension-
less variables formed using powers of the dimensional variables F, 𝜇, 𝑣∞, and R.
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For any such variable, denoted generically by Π,

1 = dim(Π) = dim(Fn1𝜇
n2𝑣

n3
∞Rn4 )

= (MLT−2)n1 (ML−1T−1)n2 (LT−1)n3 Ln4

= Mn1+n2 Ln1−n2+n3+n4 T−2n1−n2−n3 , (2.23)

for exponents n1,n2,n3,n4 to be determined. Equation (2.23) implies that the expo-
nents of M, L, and T must vanish, yielding the following homogeneous linear
system for n1, n2, n3, and n4:

⎡⎢⎢⎣
1 1 0 0
1 −1 1 1

−2 −1 −1 0

⎤⎥⎥⎦

⎡⎢⎢⎢⎢⎣

n1
n2
n3
n4

⎤⎥⎥⎥⎥⎦
=
[

0
0

]
. (2.24)

Exercise 2.13 Row-reduce Eq. (2.24) to deduce that n4 is a free variable, for which
one may choose any value, and n3 = n2 = −n1 = n4.

Arbitrarily picking n4 = −1 yields the single dimensionless variable Π = F𝜇−1

𝑣
−1
∞ R−1; all other dimensionless variables for this problem must be multiples of

this product.
The calculation in Exercise 2.13 shows that any relationship equivalent to

Eq. (2.22) but involving only dimensionless variables has the form Φ(Π) = 0.
Solutions to such an equation are constant values of Π. Setting Π = C for a generic
constant C, we conclude that Stokes drag has the form

F = C𝜇R𝑣∞. (2.25)

This result is consistent with that of Stokes’s original calculation, except that we
have an undetermined constant C instead of 6𝜋.

To anticipate the constitutive theory of flows in porous media, discussed in
Chapter 3, observe that the drag on the solid particle in Eq. (2.25) is proportional
to the fluid velocity and the fluid viscosity, and it involves a geometric factor R.
This result suffices for the derivation pursued in Section 3.1.

2.5 Multiconstituent Continua

The mechanics discussed so far cannot distinguish among the various solid and
fluid bodies that make up a porous medium. To accommodate mixtures of different
types of materials, such as the solid and fluid in a porous medium, we must adopt
additional physics.
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2.5.1 Constituents

The first step in extending the mechanics of single continua is to consider a
set of bodies 

𝛼
, 𝛼 = 1, 2,… ,N, called constituents. For example, in a porous

medium, rock and water can be constituents. We postulate that each spatial point
x can be occupied by particles from every constituent. In this sense, the bodies
1,2,… ,N constitute overlapping continua. This postulate clearly fails at
scales of observation at which the constituents appear to occupy distinct regions
of space. But for many natural porous media found in Earth’s subsurface, the pos-
tulate yields reasonable models at scales of observation greater than about 10−3 m.

Paralleling the development for single continua, for each constituent 
𝛼
, we

fix a reference configuration that assigns, to each particle in 
𝛼
, a point X

𝛼
in

three-dimensional space. The vector X
𝛼

serves as a label for the particle. We denote
by 

𝛼
the region in three-dimensional Euclidean space occupied by all of these

vectors for the constituent 
𝛼
.

We also associate with each constituent 
𝛼

a one-parameter family 𝝌
𝛼
(⋅, t) of

mappings from 
𝛼

to three-dimensional Euclidean space such that:

1. The vector x = 𝝌
𝛼
(X

𝛼
, t), having dimension L, gives the spatial position of the

particle X
𝛼

at time t, as illustrated in Figure 2.11.
2. At each time t, the function𝝌

𝛼
(⋅, t) of the coordinate X

𝛼
is one-to-one, onto, and

continuously differentiable with respect to X
𝛼
.

3. Also at each time t,𝝌
𝛼
(⋅, t)has continuously differentiable inverse𝝌−1

𝛼
such that

X
𝛼
= 𝝌−1

𝛼
(x, t). That is,𝝌−1

𝛼
tells us which particle from constituent 

𝛼
occupies

the spatial position x at time t.
4. For each value of the coordinate X

𝛼
, the function𝝌

𝛼
(X

𝛼
, ⋅) is twice continuously

differentiable with respect to t.

We call 𝝌
𝛼

the deformation of constituent 
𝛼
.

Figure 2.11 A reference
configuration and the
deformation at times t1
and t2 for constituent 𝛼 in
a multiconstituent
continuum. Xα

α

χα(Xα, t2)

χα(Xα, t1)
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As in the single-continuum case, the referential or Lagrangian velocity of 
𝛼

is
𝜕𝝌

𝛼

𝜕t
(X

𝛼
, t).

To find the velocity of constituent 𝛼 at a fixed spatial point x at time t, we first find
the particle X

𝛼
= 𝝌−1

𝛼
(x, t) that occupies x at time t, then compute the spatial or

Eulerian velocity:

v
𝛼
(x, t) =

𝜕𝝌
𝛼

𝜕t
(𝝌−1

𝛼
(x, t)

⏟⏞⏟⏞⏟

X
𝛼

, t).

We associate with each constituent 
𝛼

a material derivative, which gives the
time rate of change following a fixed particle X

𝛼
. For functions of (X

𝛼
, t), the mate-

rial derivative is simply the partial derivative with respect to t:
D𝛼f
Dt

(X
𝛼
, t) =

𝜕f
𝜕t

(X
𝛼
, t).

For functions of (x, t), an application of the chain rule similar to that employed in
Section 2.1 for simple continua yields

D𝛼f
Dt

(x, t) =
𝜕f
𝜕t

(x, t) + v
𝛼
(x, t) ⋅ ∇f (x, t).

2.5.2 Densities and Volume Fractions

As with single continua, we assign to each constituent 
𝛼

a mass density
𝜌
𝛼
(x, t) such that the mass of the constituent in any measurable region  of

three-dimensional space at time t is

∫


𝜌
𝛼
(x, t) d𝑣.

Engineers call 𝜌
𝛼

the bulk density of constituent 
𝛼
; it gives the mass of the con-

stituent per unit of total volume in the continuum.
In the context of porous media, this last observation prompts a discussion

of two different categories of multiconstituent continua. The first, which we
call multiphase continua or immiscible continua, includes materials for
which microscopic observation reveals continuum-scale interfaces that affect
the mechanics. Figure 2.12 illustrates the idea schematically. An example of this
type of continuum is water-saturated sandstone. In this porous medium, there
exists a continuum-scale interface between the rock and the fluid, but in most
sandstones, the geometry of the interface is observable only at scales smaller than
about 10−3 m.

One way to think of this type of continuum is to regard macroscopic observa-
tion as a spatial averaging process. In this view, at each point in space we replace
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Figure 2.12 Sketch of a fluid-saturated porous medium
showing three possible representative elementary
volumes.

detailed properties of the material with properties averaged over a representa-
tive elementary volume (REV) having a characteristic radius, as Figure 2.12
illustrates [121]. In the case of water-saturated sandstone, if the radius of the REV
ranges over values comparable to typical rock-grain diameters, then the fraction of
the REV occupied by fluid oscillates as the radius increases. The oscillation arises
because, over this range of radii, the inclusion or exclusion of individual grains
results in significant changes in the value of the average.

For the concept of a multiconstituent continuum to furnish a useful model of the
porous medium, there must exist a range of REV radii—typically exceeding several
rock-grain diameters—in which the fraction of the REV occupied by fluid exhibits
a stable value, as drawn in Figure 2.13. Henceforth, we assume that the porous
medium possesses a range of REV radii satisfying this condition. We also assume
that this range includes radii that are small compared with the macroscopic scale
of observation, so that it is reasonable to model the porous medium as a set of
overlapping continua.

Under this assumption, we assign to each constituent 
𝛼

a volume fraction
𝜙
𝛼
(x, t). This function gives the fraction of any region of three-dimensional space

occupied by material from the constituent as

∫


𝜙
𝛼
(x, t) d𝑣.

Figure 2.13 Conceptual plot of
REV-averaged volume fraction versus
radius of averaging window, showing
how averaged values can stabilize for
a range of averaging radii.
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If we account for all of the volume in the continuum, then the volume fractions
obey the constraint

N∑
𝛼=1
𝜙
𝛼
= 1.

In this case, we define the true density of constituent 
𝛼

as

𝛾
𝛼
=
𝜌
𝛼

𝜙
𝛼

.

The bulk density 𝜌
𝛼

has dimension (mass of 𝛼)∕(volume of continuum), while the
true density 𝛾

𝛼
has dimension (mass of 𝛼)∕(volume of 𝛼).

In the second category of multiconstituent continua, segregation of con-
stituents is observable only at molecular length scales, so continuum-scale
interfaces between the constituents do not exist. Saltwater is an example: The
particles of Na+, Cl−, and H2O are segregated at length scales of roughly 10−10

m, far smaller than the continuum scale. For such multispecies or miscible
multiconstituent continua, the concept of a continuum-scale volume fraction
does not apply.

With this framework in place, we define several functions associated with the
continuum. The mixture density is

𝜌 =
N∑
𝛼=1
𝜌
𝛼
,

which we can write for multiphase continua as follows:

𝜌 =
N∑
𝛼=1
𝜙
𝛼
𝛾
𝛼
.

The mass-weighted or barycentric velocity is

v = 1
𝜌

N∑
𝛼=1
𝜌
𝛼
v
𝛼
.

Sometimes it is useful to refer to the barycentric derivative, which for a differ-
entiable function f (x, t) has the form

Df
Dt

(x, t) =
𝜕f
𝜕t

(x, t) + v(x, t) ⋅ ∇f (x, t). (2.26)

Finally, the diffusion velocity of constituent 𝛼 is

𝝂
𝛼
= v

𝛼
− v. (2.27)

Exercise 2.14 Show that
N∑
𝛼=1
𝜌
𝛼
𝝂
𝛼
= 𝟎.
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2.5.3 Multiconstituent Mass Balance

The balance laws for single continua extend to multiconstituent continua in a
manner that allows for exchanges of mass, momentum, and other conserved quan-
tities among the constituents.

For the differential mass balance, the extension has the following form:
N∑
𝛼=1

(D𝛼
𝜌
𝛼

Dt
+ 𝜌

𝛼
∇ ⋅ v

𝛼

)
= 0. (2.28)

To see how this equation allows for exchanges of mass among constituents, rewrite
it as follows:

D𝛼
𝜌
𝛼

Dt
+ 𝜌

𝛼
∇ ⋅ v

𝛼
= r

𝛼
, 𝛼 = 1, 2,… ,N, (2.29)

where
N∑
𝛼=1

r
𝛼
= 0. (2.30)

Mathematically, this new form amounts to a trivial reformulation. Physically, it
captures the exchange of mass into each constituent 

𝛼
from other constituents,

at a rate given by the mass exchange rate r
𝛼
, having dimension ML−3T−1. Mass

exchange can occur via several mechanisms:

● Phase changes, such as melting, freezing, evaporation, and condensation;
● Interphase mass transfer, such as dissolution or adsorption;
● Chemical reactions, which transform molecular species into different molecular

species.

For multiphase continua, Eq. (2.29) has an equivalent form:
D𝛼

Dt
(𝜙

𝛼
𝛾
𝛼
) + 𝜙

𝛼
𝛾
𝛼
∇ ⋅ v

𝛼
= r

𝛼
, 𝛼 = 1, 2,… ,N

again subject to the constraint (2.30).
It is common to write the multiconstituent mass balance in terms of constituent

mass fractions, defined as 𝜔
𝛼
= 𝜌

𝛼
∕𝜌 and having dimension (mass of 𝛼)∕(total

mass). Doing so yields the following equivalent forms for the mass balance
equation for each constituent 𝛼, all subject to the constraint (2.30):

D𝛼

Dt
(𝜌𝜔

𝛼
) + 𝜌𝜔

𝛼
∇ ⋅ v

𝛼
= r

𝛼
, 𝛼 = 1, 2,… ,N;

𝜕

𝜕t
(𝜌𝜔

𝛼
) + ∇ ⋅ (𝜌𝜔

𝛼
v
𝛼
) = r

𝛼
, 𝛼 = 1, 2,… ,N;

𝜕

𝜕t
(𝜌𝜔

𝛼
)

⏟⏞⏟⏞⏟

(I)

+ ∇ ⋅ (𝜌𝜔
𝛼
v)

⏟⏞⏞⏞⏟⏞⏞⏞⏟

(II)

+ ∇ ⋅ j
𝛼

⏟⏟⏟

(III)

= r
𝛼

⏟⏟⏟

(IV)

, 𝛼 = 1, 2,… ,N;
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where j
𝛼
= 𝜌𝜔

𝛼
𝝂
𝛼

is the diffusive flux of constituent 𝛼. In the last form, we refer
to the terms labeled (I), (II), (III), and (IV) as the accumulation, advection, dif-
fusion, and reaction terms, respectively.

The following exercise reassuringly shows that the multiconstituent mass bal-
ance reduces to the single-constituent mass balance if we use the definitions of the
mixture density 𝜌 and the barycentric velocity v and ignore the distinctions among
constituents.

Exercise 2.15 Use the definitions of the multiconstituent density 𝜌 and the
barycentric velocity v to show that Eq. (2.28) is equivalent to

D𝜌
Dt

+ 𝜌∇ ⋅ v = 0.

2.5.4 Multiconstituent Momentum Balance

The differential momentum balance for multicomponent continua, in a form par-
alleling Eqs. (2.29) and (2.30), is

𝜌
𝛼

D𝛼v
𝛼

Dt
− ∇ ⋅ T

𝛼
− 𝜌

𝛼
b
𝛼
= m

𝛼
− v

𝛼
r
𝛼
, 𝛼 = 1, 2,… ,N; (2.31)

N∑
𝛼=1

m
𝛼
= 𝟎. (2.32)

Here, m
𝛼

represents the rate of momentum exchange into 𝛼 from other con-
stituents, excluding momentum exchanges associated purely with the transfer of
mass into 𝛼 from other constituents. The term −v

𝛼
r
𝛼

gives the rate of momen-
tum exchange into 𝛼 attributable to mass exchange from other constituents.
Equation (2.31) plays a central role in modeling fluid velocities in porous media,
as discussed in Sections 3.1 and 3.2.

As with the multiconstituent mass balance equation, one can retrieve the
momentum balance for a simple continuum by summing over all constituents
and ignoring the distinction among them. This derivation requires a bit of tensor
notation encountered again in Section 5.1.

Exercise 2.16 For any two vectors a,b, the dyadic product a⊗ b is a tensor hav-
ing the following action on any vector u:

(a⊗ b) u = a(b ⋅ u). (2.33)

Verify that the mapping u → a(b ⋅ u) is linear.

Exercise 2.17 Recall from Section 2.2 that the matrix representation of any tensor
A with respect to an orthonormal basis {e1, e2, e3} has entries ei ⋅ Aej. Compute the
matrix representation of a⊗ b.
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Exercise 2.18 Sum Eq. (2.31) and use Eq. (2.32), together with the definitions of
multiconstituent density 𝜌 and barycentric velocity v, to get

𝜌
Dv
Dt

− ∇ ⋅ T − 𝜌b = 0,

where

b = 1
𝜌

N∑
𝛼=1
𝜌
𝛼
b
𝛼

gives the total body force per unit mass and

T =
N∑
𝛼=1

(T
𝛼
− 𝜌𝝂

𝛼
⊗ 𝝂

𝛼
). (2.34)

The tensor T defined in Eq. (2.34) contains an anticipated part,

TI =
N∑
𝛼=1

T
𝛼
,

called the inner stress, and a contribution arising from diffusion velocities,

TR = −𝜌
N∑
𝛼=1
𝝂
𝛼
⊗ 𝝂

𝛼
,

sometimes called the Reynolds stress, a term borrowed from the theory of tur-
bulence.
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3

Single-fluid Flow Equations

We owe the earliest mathematical model of fluid flow in porous media to French
engineer Henry Darcy, who in 1856 published a lengthy report [43] of his investiga-
tions into a filtration-based water supply system for Dijon, France. From Darcy’s
empirical observations arose the flow law that bears his name. Darcy’s findings
have given rise to a rich technical literature since publication of his work. This
chapter explores a systematic derivation of Darcy’s law from principles developed
in Chapter 2, then examines several mathematical aspects of the resulting flow
equations.

3.1 Darcy’s Law

Figure 3.1 illustrates Darcy’s filtration apparatus. By comparing the volumetric
flow rate Q of water at the outlet of a sand column with the heights h1 and h2 of
fluid in manometers located at the top and bottom, respectively, of the column, he
found that

Q = KA
h1 − h2

𝓁
. (3.1)

Here, 𝓁 and A denote the length and cross-sectional area of the column, having
dimensions L and L2, respectively. Q has dimension L3T−1; and K, having dimen-
sion LT−1, stands for a positive constant that depends on the sand used in the
column.

Soon after Darcy published his study, French engineer Jules Dupuit [49] used
Eq. (3.1) in a differential form, letting 𝓁 → 0 and combining the result with a
mass balance equation to model water flow near wells in confined and unconfined
aquifers. Later, Austrian engineer Philipp Forchheimer [53] and American math-
ematician Charles S. Slichter [136, p. 330 ff.] were among the early investigators to

The Mathematics of Fluid Flow Through Porous Media, First Edition. Myron B. Allen.
© 2021 John Wiley & Sons, Inc. Published 2021 by John Wiley & Sons, Inc.
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Discharge rate
Q (m3 s–1)

� = 3.5 m h1 (m)

h2 (m)

Area A = 0.385 m2

Manometer

Sand

Figure 3.1 Schematic diagram
of Darcy’s apparatus for
measuring water flow through
sand columns.

recognize that Eq. (3.1) leads to a multidimensional differential equation. Slichter
stated that, in the absence of external forces such as gravity, the fluid velocity in a
porous medium is proportional to the pressure gradient. He asserted that the con-
stant of proportionality “depends upon the size of the soil grains, the porosity of
the soil, and the viscosity of the liquid.” He also added a term to accommodate the
effects of gravity, combined the differential form of Darcy’s law with the mass bal-
ance equation to obtain the single-phase flow equation, and developed solutions
to the flow equation valid near wells.

Although some authors treat Darcy’s law as a purely phenomenological obser-
vation, one can derive Darcy’s law for a single fluid from the multiconstituent
momentum balance reviewed in Section 2.5. The derivation given here comes
with three caveats. First, it is one of many—following a wide variety of intellec-
tual traditions—that have appeared in the scientific literature during the past half
century. For a concise summary of these traditions, see [18]. Second, the presen-
tation below glosses over several technical points for which details can be found
in references cited throughout this section. Third, for simplicity’s sake, we adopt
assumptions that are not strictly necessary to derive Darcy’s law.

3.1.1 Fluid Momentum Balance

The derivation begins with momentum balance equations for the fluid F and rock
R, regarded as constituents in a multiphase mixture:

𝜙F𝛾F
DFvF

Dt
− ∇ ⋅ TF − 𝜙F𝛾FbF = mF − vF rF ,

𝜙R𝛾R
DRvR

Dt
− ∇ ⋅ TR − 𝜙R𝛾RbR = mR − vR rR.

Three assumptions simplify the system:
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Figure 3.2 A piece of mathematical surface
in a porous medium, in which shaded areas
represent the solid phase. Only a fraction of
the surface area—the unshaded area—is
available for fluid–fluid traction.

1. The rock is chemically inert, so rR = 0. It follows from the total mass balance
(2.30) that rF = 0 as well.

2. The rock forms a rigid matrix. In this case, there exists a coordinate system in
which vR = 𝟎, and there is no need to solve the momentum balance equation
for the rock.

3. The fluid flow is slow, in the sense that fluid acceleration is negligible compared
with other terms in the fluid momentum balance. This assumption allows us
to neglect the inertial term DFvF∕Dt for the fluid phase.

One can derive Darcy’s law without imposing the first two assumptions. Later in
this chapter, we briefly discuss a model that relaxes the third assumption.

These three modeling assumptions leave us with a fluid momentum balance
having the following form:

−∇ ⋅ TF − 𝜙F𝛾FbF = mF . (3.2)

The rest of this chapter uses streamlined notation, dropping the subscript F and
calling 𝜙 the porosity of the rock.

3.1.2 Constitutive Laws for the Fluid

Further headway requires constitutive relationships for the fluid stress tensor T,
the momentum exchange rate m, and the body force b.

For the fluid stress tensor, we assume that the fluid is Newtonian:

T = −𝜙 p I + 𝜙𝜇[∇v + (∇v)⊤]. (3.3)

Equation (3.3) differs from Eq. (2.14) by the factor𝜙. To justify this factor, consider
a piece of smooth mathematical surface in the multiconstituent continuum, as
drawn in Figure 3.2. On such a surface, fluid–fluid traction occurs only on that
portion of the surface occupied by fluid, which we assume to be 𝜙 [48, p. 7].

The viscous stress term in Eq. (3.3) also deserves attention. Viscosity enables
momentum transfer from regions where the velocity is large in magnitude to
regions where it is smaller. In other words, momentum transfer moves down
the velocity gradient. Figure 3.3 depicts this idea for a solid moving through a
viscous fluid, in which the solid’s motion imparts momentum to fluid at spatial
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Figure 3.3 The transfer of momentum away from
a solid object moving through a viscous fluid.

points distant from the solid boundary. We assume that the rate at which this
type of momentum transfer occurs within the fluid is negligible compared with
momentum losses to friction between the fluid and the rock. This assumption
leaves us with the constitutive relationship

T = −𝜙 p I.

With this model for the fluid stress tensor T, the fluid momentum equation (3.2)
becomes

−∇ ⋅ T = ∇ ⋅ (𝜙pI) = 𝜙∇p
⏟⏟⏟

(I)

+ p∇𝜙
⏟⏟⏟

(II)

= 𝜙𝛾b + m. (3.4)

The term labeled (I) in Eq. (3.4) implies fluid flow in response to nonzero pres-
sure gradients, a phenomenon that we expect to see in nature. However, the term
labeled (II) appears to imply flow in response solely to nonzero porosity gradients,
a phenomenon that we neither expect nor observe in flows through porous media.
We discuss the resolution of this apparent paradox shortly.

For the momentum exchange, we adopt the constitutive relationship

m = −Λ−1v
⏟⏟⏟

(III)

+ p∇𝜙
⏟⏟⏟

(IV)

. (3.5)

The term labeled (III) resembles the Stokes drag on a solid sphere, discussed in
Section 2.3. The nonnegative factor Λ, called the resistivity, quantifies the loss
of momentum from the fluid attributable to friction exerted by solid grains in the
porous medium. By analogy with the expression (2.25) for Stokes drag, we expectΛ
to be proportional to the reciprocal 1∕𝜇 of the fluid viscosity and to depend on the
geometry of the rock at the microscopic scale of observation. Section 3.1.3 explores
this intuition.

Justifying the term labeled (IV) in the constitutive relationship (3.5) requires
more subtle reasoning. Fortuitously, this term exactly cancels the term (II) that
arises from the Newtonian model (3.3) for the fluid stress tensor, thereby elimi-
nating the apparent paradox of flow driven by porosity gradients. This welcome
observation notwithstanding, a rigorous explanation of the origin of term (IV)
requires a deeper thermodynamic analysis of the constitutive relationships than
we undertake here. Iranian-born engineer Majid Hassanizadeh and American
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engineer William Gray were among the first to publish such an analysis [69],
showing that a continuum version of the second law of thermodynamics prohibits
flow driven by porosity gradients alone. For details, see [27, 69], [4, Chapter 7].

For the body force, we adopt a porosity-modified version of the expression given
in Section 2.3:

𝜙𝛾b = 𝜙𝛾g∇Z,

where Z(x) stands for depth below some datum and g is the gravitational accel-
eration. The factor 𝜙 in this relationship ensures that the body force on the fluid
tends to zero as 𝜙 → 0 and to 𝛾g∇Z as 𝜙 → 1.

Substituting all of these constitutive relationships into Eq. (3.2) yields

𝜙∇p − 𝜙𝛾g∇Z = −Λ−1v,

or

v = −Λ𝜙(∇p − 𝛾g∇Z). (3.6)

This is Darcy’s law.
It is useful to reflect on the significant simplifying assumptions required to

derive Darcy’s law from the momentum balance. Prominent among them are the
following:

● The solid matrix is rigid.
● The inertial terms are negligible.
● Momentum transfer via shear stress in the fluid is negligible.
● The fluid loses momentum to the rock via Stokes drag, a phenomenon modeled

in Section 2.4 as a time-independent effect.

These assumptions limit the applicability of Darcy’s law to nearly steady, non-
turbulent flows through porous media. Although this regime prevails in many
underground flow applications, it does not adequately describe all flows through
porous media. Section 3.2 reviews common extensions of Darcy’s law that relax
some of these assumptions.

3.1.3 Filtration Velocity

Groundwater hydrologists and petroleum engineers commonly use the quantity
𝜙v, sometimes called the filtration velocity, Darcy velocity or specific dis-
charge, instead of v, which Todd [148, p. 67] calls the average interstitial veloc-
ity. The filtration velocity is the velocity-like quantity obtained by dividing the
volumetric rate of fluid discharge, having dimension L3T−1, across a surface by
the area of the surface, having dimension L2. This quantity, easy to measure on



�

� �

�

38 3 Single-fluid Flow Equations

the laboratory bench at macroscopic scales, is slower than the average insterstitial
velocity v. The difference arises because only a fraction 𝜙 of the volume is accessi-
ble to the fluid, so the volumetric discharge rate is smaller than it would be were
the entire cross section available for fluid flow. In terms of the filtration velocity,
Darcy’s law (3.6) becomes

𝜙v = −Λ𝜙2(∇p − 𝛾g∇Z). (3.7)

3.1.4 Permeability

As mentioned, the reasoning about Stokes drag presented in Section 2.3 suggests
that the coefficient Λ in Darcy’ s law (3.7) incorporates effects associated not only
with the microscopic rock geometry but also effects associated with the fluid’s vis-
cosity. Consistent with this observation, in papers discussing the measurement of
flow properties in porous media, American engineers P.G. Nutting [110] and R.D.
Wyckoff et al. [160] proposed the following reformulation of Darcy’s law:

𝜙v = − k
𝜇
(∇p − 𝛾g∇Z). (3.8)

The factor k, which can vary with spatial position, is the permeability.

Exercise 3.1 Using Eq. (3.8), show that k has dimension L2.

Wyckoff and his coauthors proposed a unit of measurement for k that, in their
view, would be practical for laboratory- and field-scale problems. Considering a
one-dimensional, horizontal flow experiment with∇Z = 𝟎, as drawn in Figure 3.4,
they defined 1 darcy as the permeability required to allow fluid having viscosity
𝜇 = 1 cP (water, for example) to discharge with filtration speed ||𝜙v|| = 1 cm s−1

in response to an applied pressure gradient |dp∕dx| = 1 atm cm−1, where 1 atm
= 101.325 Pa is the average air pressure at sea level on Earth. For many natural
sandstones, 10−3 darcies ⩽ k ⩽ 1 darcy. In SI units, 1 darcy is quite small, as the
following exercise shows.

Exercise 3.2 Show that

1 darcy = 0.987 × 10−12 m2 ≃ 10−12 m2
.

Area A

Discharge rate
Q = ‖φv‖A

dp/dx< 0

φv

Figure 3.4 Experimental
configuration used to define 1 darcy.
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Figure 3.5 Schematic diagram of an array of
fixed solid in which viscous effects play a
significant role in momentum transfer within the
fluid, motivating the Brinkman law.

3.2 Non-Darcy Flows

As the derivation in Section 3.1 makes clear, Darcy’s law rests on several assump-
tions about the nature of the fluid flow in the microscopic interstices of the rock
matrix. We suspect that Darcy’s law may fail, for example, when any of the follow-
ing conditions holds.

1. The pores are so large that momentum transfer within the fluid phase is signif-
icant, as illustrated in Figure 3.5.

2. Inertial effects within the fluid are significant.
3. Fluid flows within the microscopic pore channels fail to obey the no-slip bound-

ary condition (2.19).

In all of these cases, non-Darcy flow may prevail.
This section briefly reviews three mathematical models of non-Darcy flow

in porous media: the Brinkman law, which includes the effects of viscosity on
momentum transfer; the Forchheimer law, which incorporates inertial effects;
and the Klinkenberg effect, which allows fluid to slip on the walls of the pores.
Non-Darcy flows also occur in multiconstituent continua, such as fluid-saturated
shales having pore diameters in the nanometer range, in which electrochemical
effects influence fluid movements. Mathematical models of fluid movements in
these media remain an active field of inquiry; see, for example, [37, 81].

3.2.1 The Brinkman Law

In 1947, Dutch physicist Hendrik C. Brinkman [28] modified Darcy’s law to accom-
modate condition 1 in a porous medium consisting of an array of fixed solid parti-
cles. If we keep the viscous terms in the constitutive relationship (3.3) for the fluid,
the fluid stress tensor is

T = −𝜙 p I + 𝜙𝜇[∇v + (∇v)⊤]. (3.9)
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Exercise 3.3 Assume that the fluid motion is incompressible, so∇ ⋅ v = 0, and that
the viscosity and porosity are uniform. Show that the constitutive relationship (3.9)
yields

∇ ⋅ T = −∇(𝜙p) + 𝜙𝜇∇2v.

We retain the other constitutive assumptions used to derive Darcy’s law, namely
the Stokes drag model (3.5),

m = −Λ−1v + p∇𝜙 = −𝜙
2
𝜇

k
v + p∇𝜙,

and the gravitational body force,

b = g∇Z. (3.10)

Substitution into the momentum balance (3.2) for the fluid phase yields the
Brinkman law,

−∇p + 𝜇∇2v + 𝛾g∇Z = 𝜇

k
𝜙v.

Theoretical evidence [9] suggests that the Brinkman law has limited validity in
geologic porous media per se but may be applicable in swarms of unconnected
particles, such as proppants used in hydraulic fracturing [80], and in some fibrous
porous media.

3.2.2 The Forchheimer Equation

To accommodate condition 2, Philipp Forchheimer [54] proposed an approach that
does not explicitly include the inertial terms in the momentum balance. Instead, it
allows for higher order contributions of the fluid velocity to the Stokes drag model.
Specifically, Forchheimer modeled the one-dimensional fluid response to a pres-
sure drop along a horizontal porous medium, as drawn in Figure 3.6, using an
equation of the form

p2 − p1

x2 − x1
= 𝜇

k
𝜙𝑣 + 𝛽𝛾(𝜙𝑣)2

,

where 𝛽 > 0. To extend this model to three dimensions, adopt a momentum
exchange term of the following form:

m = F(||𝜙v||)𝜙v + p∇𝜙,

φv

x
1

x
2

p
1

p
2

Figure 3.6 One-dimensional flow geometry used
to motivate the Forchheimer equation.



�

� �

�

3.2 Non-Darcy Flows 41

representing the function F in a power-series expansion about ||𝜙v|| = 0:

F(||𝜙v||) = 𝜇

k
+ 𝛽𝛾||𝜙v|| + (||𝜙v||2).

The notation f (y) = (y) means that there exists a positive constant M such that
|f (y)| ⩽ M|y| whenever |y| is sufficiently small.

Neglecting the inertial terms in the momentum balance (3.2), retaining only the
terms through the first power in ||𝜙v|| in F, and adopting Eq. (3.10) for the body
force yields the Forchheimer equation,(

𝜇

k
+ 𝛽𝛾||𝜙v||)𝜙v = −(∇p − 𝛾g∇Z). (3.11)

The parameter 1∕𝛽 is sometimes called the inertial permeability. Equation (3.11)
is inherently nonlinear in the fluid velocity v.

A common engineering criterion for determining whether condition 2 applies is
that the pore Reynolds number Re = 𝛾||v||d∕𝜇 > 40, where d denotes the mean
grain diameter of the rock [163].

3.2.3 The Klinkenberg Effect

The flow of a low-viscosity gas such as air or nitrogen in geologic porous media
exhibits an effect that one must take into account when modeling low-pressure,
low-viscosity flows in porous media. In 1941, Dutch chemist L.J. Klinkenberg [90]
noted that permeabilities measured using low-pressure gases are larger in magni-
tude than those measured using more viscous fluids, such as brine. He attributed
this effect to a failure of the no-slip boundary condition (2.19) when gases flow
through the channels of a geologic porous medium. He proposed modeling the
effect of gas slipping along the solid walls of the pores using the following rela-
tionship between the measured gas permeability kG and the permeability k used
in Eq. (3.8):

kG = k
(

1 + b
p

)
. (3.12)

Here, p stands for the pressure, and b denotes a nonnegative constant determined
empirically for the gas in question.

This Klinkenberg effect plays a significant role in flows in which the mean free
path of the fluid molecules is comparable in length to the average pore diameter,
as one expects in low-density flows through fine-grained porous media. The effect
may be important in the interpretation of core analyses in unconventional oil and
gas reservoirs involving low-permeability rocks. For a compendium of solutions to
flow equations involving Eq. (3.12), see [158].

Although these non-Darcy effects, modeled by the Brinkman law, the Forch-
heimer equation, and the Klinkenberg effect, play significant roles in some
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settings, the remainder of this book focuses on porous media in which Darcy’s
law and its multifluid extensions furnish accurate models.

3.3 The Single-fluid Flow Equation

With Darcy’s field equation (3.8) for single-fluid flow in hand, we now develop a
flow equation. The derivation follows a pattern seen frequently in fluid mechanics:
Substitute Darcy’s law into the mass balance

𝜕

𝜕t
(𝜙𝛾) + ∇ ⋅ (𝜙𝛾v) = 0 (3.13)

to obtain a second-order partial differential equation (PDE). This straightforward
tactic yields

𝜕

𝜕t
(𝜙𝛾) − ∇ ⋅

[
𝛾k
𝜇
(∇p − 𝛾g∇Z)

]
= 0.

However, in keeping with traditional groundwater hydrology, the development
presented in this section involves more than a straightforward substitution, allow-
ing for small deformations of the rock matrix as well as effects arising from fluid
compressibility. This approach relaxes the assumption in Section 3.1 that the rock
matrix is rigid.

Exercise 3.4 Show that the mass balance equation (3.13) for the fluid has the
equivalent form

𝜙
DF
𝛾

Dt
+ 𝛾 𝜕𝜙

𝜕t
+ 𝛾∇ ⋅ (𝜙v) = 0. (3.14)

Similarly, we write the mass balance for the rock in the form

𝜙
DR
𝛾R

Dt
+ 𝛾R

𝜕

𝜕t
(1 − 𝜙) + 𝛾R∇ ⋅ [(1 − 𝜙)vR] = 0.

If the solid grains are incompressible—which is different from assuming that the
solid matrix composed of the grains is incompressible—then DR

𝛾R∕Dt = 0. This
assumption, the identity

𝜕(1 − 𝜙)
𝜕t

= −𝜕𝜙
𝜕t
,

and the fact that 𝛾R ≠ 0 yield

∇ ⋅ [(1 − 𝜙)vR] =
𝜕𝜙

𝜕t
. (3.15)
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We now add the two mass balance equations (3.14) and (3.15). Decomposing
v = vR + vΔ allows us to rewrite Eq. (3.14) as follows:

𝜙
DF
𝛾

Dt
+ 𝛾

𝜕𝜙

𝜕t
⏟⏟⏟

(I)

+ 𝛾∇ ⋅ [𝜙(vR + vΔ)]
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

(II)

= 0.

By Eq. (3.15), the term labeled (I) is 𝛾∇ ⋅ vR − 𝛾∇ ⋅ (𝜙vR). The term labeled (II) is
𝛾∇ ⋅ (𝜙vR) + 𝛾∇ ⋅ (𝜙vΔ). Adding and taking advantage of cancellation yields the
combined mass balance equation,

𝜙
DF
𝛾

Dt
+ 𝛾∇ ⋅ vR + 𝛾∇ ⋅ (𝜙vΔ) = 0. (3.16)

Exercise 3.5 Show that (1 − 𝜙)𝛾∇ ⋅ vR = 𝛾DR
𝜙∕Dt. Use this identity and Eq.

(3.16) to obtain the equation

𝜙
DF
𝛾

Dt
+ 𝛾

1 − 𝜙
DR
𝜙

Dt
+ 𝛾∇ ⋅ (𝜙vΔ) = 0. (3.17)

3.3.1 Fluid Compressibility and Storage

Further headway requires additional constitutive assumptions about the fluid and
rock. For the fluid, we assume a differentiable equation of state 𝛾 = 𝛾(p), where
𝛾
′(p) > 0, so density increases with pressure. By the chain rule,

DF
𝛾

Dt
= 𝛾

′(p)
DFp
Dt

= 𝛽𝛾
DFp
Dt

, (3.18)

∇𝛾 = 𝛽𝛾∇p. (3.19)

Here, the coefficient 𝛽 = 𝛾
′∕𝛾 , a positive function of pressure, denotes the fluid

compressibility, having dimension M−1LT2. For the rock, we allow for compress-
ibility of the matrix (not the grains) by assuming that 𝜙 = 𝜙(p), with 𝜙

′(p) ⩾ 0.
Another application of the chain rule yields

DR
𝜙

Dt
= 𝜙

′(p)
DRp
Dt

= (1 − 𝜙)𝛼
DRp
Dt

, (3.20)

where the coefficient 𝛼 = 𝜙
′∕[1 − 𝜙] also has dimension M−1LT2.

Substituting the expressions (3.18)–(3.20) into the combined mass balance (3.17)
and dividing through by 𝛾 , we get

𝜙𝛽
DFp
Dt

+ 𝛼
DRp
Dt

+ ∇ ⋅ (𝜙vΔ) = 0. (3.21)

In many groundwater flows, the rock and fluid velocities are small, as are pres-
sure gradients. In these flows, the velocity-driven components of the two material
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derivatives appearing in Eq. (3.21) are products of small quantities and hence neg-
ligible: vR ⋅ ∇p ≃ 0 ≃ v ⋅ ∇p. Neglecting these terms yields the final form for the
combined fluid-rock mass balance equation,

Sp
𝜕p
𝜕t

+ ∇ ⋅ (𝜙vΔ) = 0. (3.22)

Here, the factor Sp = 𝜙𝛽 + 𝛼, a positive function of pressure, captures the com-
bined effect of fluid and rock-matrix compressibility, an effect that hydrologists
call storage.

3.3.2 Combining Darcy’s Law and the Mass Balance

At last, we substitute Darcy’s law, in the form

𝜙vΔ = − k
𝜇
(∇p − 𝛾g∇Z)

into the mass balance (3.22), obtaining

Sp
𝜕p
𝜕t

− ∇ ⋅
[

k
𝜇
(∇p − 𝛾g∇Z)

]
= 0. (3.23)

The second-order PDE (3.23) is the single-fluid flow equation, written in terms
of fluid pressure p.

3.4 Potential Form of the Flow Equation

In two classic papers, American geophysicist M. King Hubbert [75, 76] exam-
ined conditions under which one can express the filtration velocity 𝜙v as the gra-
dient of a scalar-valued function of position. Hubbert began by writing Darcy’s
law as

𝜙v = − k
𝜇
(∇p − 𝛾g∇Z) = 𝛾k

𝜇
E, (3.24)

where

E = g∇Z − 1
𝛾
∇p

signifies the force per unit mass (LT−2) acting on the fluid. Using this notation, we
seek conditions under which

E = −∇Φ, (3.25)

for some scalar potential Φ, which must have dimension L2T−2. For notational
convenience, in this section, we temporarily suppress the dependence on time.
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3.4.1 Conditions for the Existence of a Potential

A necessary condition for a relationship of the form (3.25) to hold for a differen-
tiable vector field E is that the curl of the vector field E vanish (see [99, Section
8.3]). In Cartesian coordinates, this condition requires that

∇ × E =
(
𝜕E3

𝜕x2
−
𝜕E2

𝜕x3
,
𝜕E1

𝜕x3
−
𝜕E3

𝜕x1
,
𝜕E2

𝜕x1
−
𝜕E1

𝜕x2

)
= 𝟎.

Exercise 3.6 Review conditions under which∇ × E = 𝟎 is a sufficient condition for
E to be a gradient.

If the gravitational acceleration g is constant, then, by the product rule,

∇ × E = g∇ × ∇Z − ∇ ×
(

1
𝛾
∇p

)

= −∇
(

1
𝛾

)
× ∇p − 1

𝛾
∇ × ∇p

= −∇
(

1
𝛾

)
× ∇p,

since the curl of a differentiable gradient vanishes. This identity reveals three con-
ditions under which ∇ × E = 𝟎:

1. ∇p = 𝟎, a case of little interest.
2. The fluid density 𝛾 is constant.
3. The vector field ∇(1∕𝛾) is parallel to the vector field ∇p.

In the last two cases, the fact that the gradient of a function is orthogonal to its
level sets, as illustrated in Figure 3.7, implies that level sets of p are also level sets
of 𝛾 . In other words, E = −∇Φ only if 𝛾 = 𝛾(p), including the case in which 𝛾 is
constant. We call a fluid whose density depends only on pressure a barotropic
fluid. The hypothesis that the fluid is barotropic excludes nonisothermal flows,
in which 𝛾 is a function of pressure and temperature, and compositional flows,
for which the fluid density may also depend on chemical composition. Chapter 7
introduces models of compositional flows.

Figure 3.7 Level sets of p(x), shown as
dashed curves, along with the gradient ∇p(x)
at a point, showing that the gradient is
orthogonal to level sets.

∇p

p = constant
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xref

x

Φ = Constant

ζ(s)

E

Figure 3.8 Construction of a scalar potential
Φ(x) such that E = −∇Φ, by computing a path
integral along 𝜻 from a reference point xref to x.

3.4.2 Calculating the Scalar Potential

Next we examine how to calculate the scalar potential Φ in cases where it exists.
Because only its gradient is of interest, we expect to define Φ up to an additive
constant.

Pick a reference spatial position xref, at which we can assign the depth Z(xref) =
−xref ⋅ e3 = 0. To define Φ(x) at an arbitrary spatial position x, let 𝜻 be any contin-
uously differentiable path in the porous medium such that 𝜻(0) = xref, 𝜻(1) = x,
and 𝜻 ′(s) ≠ 𝟎 for all s ∈ [0, 1], as drawn in Figure 3.8.

By the fundamental theorem of calculus and the definition of E,

Φ(x) = Φ(xref) + ∫𝜻
∇Φ ⋅ dx

= Φ(xref) − ∫

1

0
E(𝜻(s)) ⋅ 𝜻 ′(s) ds

= Φ(xref)−g
∫

1

0
∇Z(𝜻(s)) ⋅ 𝜻 ′(s) ds

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

(I)

+
∫

1

0

∇p(𝜻(s))
𝛾(p(𝜻(s)))

⋅ 𝜻 ′(s) ds

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

(II)

. (3.26)

The terms labeled (I) and (II) in this equation simplify as follows: By the chain
rule,

(I) = −g
∫

1

0

d
ds

Z(𝜻(s))ds = −g[Z(x) − Z(xref)] = −gZ(x),

and by the change of variables u = p(𝜻(s)),

(II) =
∫

1

0

1
𝛾(p(𝜻(s)))

dp
ds

(𝜻(s)) ds =
∫

p(x)

p(xref)

du
𝛾(u)

. (3.27)

The value of the last integral in Eq. (3.27) depends only on the endpoint values
p(xref) and p(x) and is therefore independent of the path taken from xref to x. Also,
we can select any value we wish for Φ(xref), say Φ(xref) = 0, without affecting ∇Φ.



�

� �

�

3.4 Potential Form of the Flow Equation 47

Substituting these values into Eq. (3.26) yields the Hubbert potential,

Φ(x) = −gZ(x) +
∫

p(x)

p(xref)

du
𝛾(u)

, (3.28)

having dimension energy∕mass, or L2T−2.
The Hubbert potential Φ(x) gives the mechanical energy per unit mass required

to move the fluid from the reference position xref to position x. In the special case
where the fluid density 𝛾 is constant, which is approximately true in many ground-
water aquifers, Eq. (3.28) simplifies to

Φ = −gZ +
p − pref

𝛾
,

where pref = p(xref) is the pressure at the reference position.
In summary, for barotropic fluids,

E = 𝜇

𝛾k
𝜙v = −∇Φ.

Solving for the filtration velocity yields the following form of Darcy’s law:

𝜙v = −𝛾k
𝜇
∇Φ.

3.4.3 Piezometric Head

Groundwater hydrologists seldom use the Hubbert potential, preferring a closely
related scalar potential having the form

H(x) = Φ(x)
g

= −Z(x) + 1
g ∫

p(x)

p(xref)

du
𝛾(u)

. (3.29)

The function H(x), having dimension L, is the piezometric head. It enjoys a
useful practical interpretation: H(x) gives the height above some datum Z = 0 to
which fluid rises in a piezometer tapped into the fluid-saturated porous medium
at the point x, as depicted in Figure 3.9. When the fluid density 𝛾 is constant,

H = −Z +
p − pref

𝛾g
,

where pref is the pressure at the datum.

Exercise 3.7 Suppose that a water well is cased (that is, lined with an imperme-
able pipe) from Earth’s surface down to 100 m above sea level, where a screen in the
casing allows water to flow into the well from an aquifer. Water rises 10 m above the
screen. If the datum elevation is sea level, what is the piezometric head at the well?
What is Z?
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x

Z(x)

Fluid level
H(x)

e1

e2

e3 Figure 3.9 A piezometer
showing the piezometric head
H(x) as the height to which fluid
rises in a tube tapped into the
porous medium at x.

In terms of H, Darcy’s law takes the simple form

𝜙v = −K∇H, (3.30)

where K = 𝛾kg∕𝜇 is the hydraulic conductivity, having dimension LT−1.

3.4.4 Head-Based Flow Equation

We now recast the single-fluid flow equation (3.23) in terms of the piezometric
head H. With the reformulation (3.30) of Darcy’s law in hand, the main task is to
reformulate the mass balance equation (3.22), written as

Sp
𝜕p
𝜕t

+ ∇ ⋅ (𝜙v) = 0. (3.31)

We begin by deriving an expression for 𝜕H∕𝜕t, a step that requires differentiating
the integral in Eq. (3.29). For simplicity’s sake, assume that the fluid density 𝛾
is constant, which is approximately true for most groundwater aquifers, and that
p(xref) is constant, which is approximately true if we chose xref to be a point where
the pressure is atmospheric.

Exercise 3.8 Use the chain rule and the fundamental theorem of calculus to prove
the Leibniz rule: For a function f of two variables,

d
d𝜉 ∫

b(𝜉)

a(𝜉)
f (𝜉, 𝜂) d𝜂 =

∫

b(𝜉)

a(𝜉)

𝜕f
𝜕𝜉

(𝜉, 𝜂) d𝜂

+ f (𝜉, b(𝜉))db
d𝜉

(𝜉) − f (𝜉, a(𝜉))da
d𝜉

(𝜉) (3.32)

provided a, b, and f are differentiable.

Now use Eq. (3.32) to compute the required derivative:

𝜕H
𝜕t

= − 𝜕Z
𝜕t

(x)
⏟⏟⏟

0

+
∫

p(x,t)

p(xref)

𝜕

𝜕t

(
1
𝛾g

)

⏟⏞⏞⏟⏞⏞⏟

0

du + 1
𝛾g
𝜕p
𝜕t

(x, t) − 1
𝛾g

𝜕

𝜕t
(p(xref))

⏟⏞⏞⏞⏟⏞⏞⏞⏟

0

. (3.33)
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The terms underscored with 0 vanish, being time derivatives of quantities that do
not vary with time.

From Eq. (3.33), it follows that
𝜕p
𝜕t

= 𝛾g𝜕H
𝜕t
.

This identity allows us to rewrite the mass balance equation (3.31) as follows:

Ss
𝜕H
𝜕t

+ ∇ ⋅ (𝜙v) = 0. (3.34)

Here, the specific storage Ss = 𝛾gSp, having dimension L−1, is a positive function
giving the volume of water released per unit volume of aquifer in response to a
decrease in H by one unit. Substituting for the filtration velocity 𝜙v in Eq. (3.34)
using Darcy’s law in the form (3.30) yields the head-based flow equation,

Ss
𝜕H
𝜕t

− ∇ ⋅ (K∇H) = 0. (3.35)

In steady flows, 𝜕H∕𝜕t = 0, and Eq. (3.35) reduces to the elliptic PDE

∇ ⋅ (K∇H) = 0. (3.36)

Exercise 3.9 Show that the PDE (3.35) is parabolic at every point x where K(x) is
positive.

3.4.5 Auxiliary Conditions for the Flow Equation

A problem involving a PDE is well-posed if it satisfies three conditions:

1. A solution to the problem exists.
2. The solution is unique.
3. The solution depends continuously on the data that define the problem.

The hypotheses needed to guarantee these three conditions vary with the type
of PDE involved. Some PDEs admit no well-posed problems; see [65] for a thor-
ough introduction. For those that do, it is generally necessary to prescribe aux-
iliary conditions, in the form of initial and boundary conditions, to guarantee
uniqueness.

The time-dependent flow equation (3.35) generalizes the heat equation, one of
the classic PDEs of mathematical physics. When the coefficients Ss and K are pos-
itive functions of position and bounded away from zero, the equation is parabolic,
as shown in Exercise 3.9. For equations of this type on a bounded spatial domain
Ω, well-posed problems require the following auxiliary conditions:

● An initial condition, that is, a prescribed function H(x, t0) defined on Ω at
some fixed initial time t0.
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● Boundary conditions, that is, known conditions satisfied by the solution on
the boundary 𝜕Ω.

Three types of boundary conditions commonly arise in connection with the flow
equation. The most straightforward are Dirichlet conditions, which prescribe
the values of H(x, t) on some subset ΓD ⊂ 𝜕Ω for all times t > t0:

H(x, t) = H
𝜕
(x, t), for x ∈ ΓD ⊂ 𝜕Ω, t > t0. (3.37)

Here, H
𝜕

is a known function.
Also useful in many problems are Neumann conditions, which prescribe the

outward flux of fluid across some subset ΓN ⊂ 𝜕Ω. If q(x) denotes the known com-
ponent of the outward fluid flux orthogonal to the boundary at the point x ∈ 𝜕Ω,
by Darcy’s law in the form (3.30) Neumann conditions have the form

−K(x)∇H(x, t) ⋅ n(x) = q(x), for x ∈ ΓN ⊂ 𝜕Ω, t > t0. (3.38)

Here, n(x) denotes the unit-length vector pointing outward from the spatial
domain Ω and orthogonal to its bounding surface 𝜕Ω at x. In the special case
when no fluid flows across the boundary—for example, when 𝜕Ω is impermeable
or when certain symmetry conditions hold—Eq. (3.38) reduces to the no-flux
boundary condition,

−K(x)∇H(x, t) ⋅ n(x) = 0, for x ∈ ΓN ⊂ 𝜕Ω, t > t0.

A third type of boundary condition, the Robin condition, occasionally appears.
Robin conditions model boundaries across which fluid can leak in response to
differences in piezometric head between the interior and exterior ofΩ, for example
when the confining rock is semipermeable:

−K(x)∇H(x, t) ⋅ n(x) = 𝜅(x)
[
H(x, t) − Hext(x, t)

]
,

for x ∈ ΓR ⊂ 𝜕Ω, t > t0.

Here, 𝜅 denotes a known, nonnegative function characterizing the leakage, and
Hext is the exterior piezometric head, also assumed to be known. Rearranging gives

𝜅(x)H(x, t) + K(x)∇H(x, t) ⋅ n(x) = 𝜅(x)Hext(x, t),

for x ∈ ΓR ⊂ 𝜕Ω, t > t0. (3.39)

The boundary segments in Eqs. (3.37)–(3.39) must completely account for the
boundary: ΓD ∪ ΓN ∪ ΓR = 𝜕Ω.

In the special case of steady flows, the elliptic PDE (3.36) holds. No initial con-
dition is required, but we must impose Dirichlet, Neumann, or Robin boundary
conditions—or some combination of them—to ensure uniqueness of the solution.
In this case, pure Neumann conditions, in which ΓN = 𝜕Ω, require care, for two
reasons.
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Exercise 3.10 Suppose that H(x) is a solution to a boundary-value problem of the
form

∇ ⋅ (K∇H) = 0, for x ∈ Ω;

−K∇H ⋅ n = q, for x ∈ 𝜕Ω. (3.40)

Show that H(x) + C is also a solution for any constant C.

Exercise 3.10 shows that the steady problem with pure Neumann boundary con-
ditions does not have a unique solution. To ensure a well-posed problem, it is
necessary to prescribe the value of H at at least one point on 𝜕Ω.

Even if one can tolerate uniqueness only up to an additive constant, pure Neu-
mann conditions must satisfy a constraint for the steady problem in Exercise 3.10
to possess any solutions.

Exercise 3.11 Use the divergence theorem to derive the following condition on the
prescribed net flux q for the boundary-value problem (3.40):

∫
𝜕Ω

q ds = 0.

The result of Exercise 3.11 shows that no steady solution can exist unless the net
influx of fluid across 𝜕Ω balances the net outflux.

Wells constitute a special category of boundaries in many applications involving
geologic porous media. Section 4.1 introduces this topic.

3.5 Areal Flow Equation

In some applications, the fluid flow is nearly two-dimensional. This approxi-
mation yields considerable computational benefits when the areal extent of the
flow domain, for example a groundwater aquifer, greatly exceeds its thickness.
Figure 3.10 depicts a confined aquifer for which low-permeability lower and
upper confining layers bound the permeable rock formation between possi-
bly time-dependent vertical coordinates x3 = a(x1, x2, t) and x3 = b(x1, x2, t),
respectively, where a(x1, x2, t) ≠ b(x1, x2, t).

This section derives a two-dimensional flow equation that accommodates
spatial and temporal variations in these two bounding surfaces. The derivation
assumes that the material properties Ss, 𝜙, and K do not vary as functions of x3
and that the fluid velocity has no vertical component:

𝜕Ss

𝜕x3
= 𝜕𝜙

𝜕x3
= 𝜕K
𝜕x3

= v ⋅ e3 = 0.
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H(x, t)

b(x1, x2, t)

a(x1, x2, t)

e3

e1

e2

Figure 3.10 Geometry of
areal flow in a confined
aquifer. The elevations
a(x1, x2, t) and b(x1, x2, t) of
the lower and upper
confining layers,
respectively, may vary with
areal position (x1, x2) and
time t.

Define the vertical average of any integrable function 𝜑(x, t) as follows:

𝜑(x1, x2, t) =
1

l(x1, x2, t) ∫

b

a
𝜑(x1, x2, x3, t) dx3,

where l(x1, x2, t) = b(x1, x2, t) − a(x1, x2, t) denotes the nonzero thickness of
the formation. We apply the vertical averaging operator to the terms in the
three-dimensional mass balance,

Ss
𝜕H
𝜕t

+ ∇ ⋅ (𝜙v) = 0,

and Darcy’s law,

𝜙v + K∇H = 0, (3.41)

then combine the results to derive an areal flow equation.

3.5.1 Vertically Averaged Mass Balance

Averaging the mass balance and multiplying by l yields

∫

b

a

[
Ss
𝜕H
𝜕t

+ ∇ ⋅ (𝜙v)
]

dx3 = 0.

Since 𝜕Ss∕𝜕x3 = 0, applying the Leibniz rule (3.32) to the integral yields

∫

b

a
Ss
𝜕H
𝜕t

dx3 = Ss ∫

b

a

𝜕H
𝜕t

dx3

= Ss

[
𝜕

𝜕t ∫

b

a
H dx3 − H|||x3=b

𝜕b
𝜕t

+ H|||x3=a

𝜕a
𝜕t

]

= Ss

[
𝜕

𝜕t
(lH) − H|||x3=b

𝜕b
𝜕t

+ H|||x3=a

𝜕a
𝜕t

]
. (3.42)

In the following exercise and for most of this section, we temporarily use the
symbol ∇2, having vector representation(

𝜕

𝜕x1
,
𝜕

𝜕x2

)
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to distinguish the two-dimensional gradient operator from the three-dimensional
gradient operator. Afterward, we revert to the symbol ∇ and rely on context to
distinguish the two- and three-dimensional cases.

Exercise 3.12 Show that

∫

b

a
∇ ⋅ (𝜙v) dx3 = ∇2 ⋅ ∫

b

a
𝜙v dx3

+ 𝜙v|||x3=b
⋅ ∇(x3 − b) − 𝜙v|||x3=a

⋅ ∇(x3 − a)

= ∇2 ⋅ (l𝜙v) + 𝜙v|||x3=b
⋅ ∇(x3 − b) − 𝜙v|||x3=a

⋅ ∇(x3 − a).

Equation (3.42) and the result of Exercise 3.12 yield the following form for the
vertically averaged mass balance:

Ss

[
𝜕

𝜕t
(lH) − H|||x3=b

𝜕b
𝜕t

+ H|||x3=a

𝜕a
𝜕t

]
+ ∇2 ⋅ (l𝜙v) + qt − qb, (3.43)

where

qt = 𝜙v ⋅ ∇(x3 − b),

qb = 𝜙v ⋅ ∇(x3 − a). (3.44)

As Figure 3.11 illustrates, the vector fields ∇(x3 − a) and ∇(x3 − b) are orthogo-
nal to the level sets x3 − a = 0 and x3 − b = 0, respectively. By this reasoning the
expressions in Eqs. (3.44) represent the net fluid flux perpendicular to the low-
permeability surfaces bounding the top and bottom, respectively, of the aquifer.
Hydrologists refer to qt and qb as leakage terms.

It is common to adopt the additional modeling assumption that vertical varia-
tions in piezometric head are negligible:

H|||x3=b
≃ H|||x3=a

≃ H. (3.45)

This assumption restricts the validity of the analysis to thin aquifers in which ver-
tical variations in piezometric head across the thickness of the aquifer are much
less significant than variations attributable to changes in the depth of the aquifer

Figure 3.11 Fluid flux across the upper confining
layer.

x3 = b(x1, x2, t)

∇(x3 − b)

φv
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and to variations imposed by pumping at wells. In this case, since l = b − a, the
vertically averaged mass balance (3.43) reduces to

Ss

[
𝜕

𝜕t
(lH) − H 𝜕l

𝜕t

]
+ ∇2 ⋅ (l𝜙v) + qt − qb = 0,

or, by the product rule,

S𝜕H
𝜕t

+ ∇2 ⋅ (l𝜙v) + qt − qb = 0. (3.46)

Here, S = lSs is a dimensionless function called the storativity, representing the
volume of fluid released per unit area of the aquifer as a result of a unit decrease
in piezometric head.

3.5.2 Vertically Averaged Darcy’s Law

Vertically integrating Darcy’s law (3.41) yields

∫

b

a
(𝜙v + K∇H) dx3 = 0. (3.47)

The first term on the left side of Eq. (3.47) reduces as follows:

∫

b

a
𝜙v dx3 = l𝜙v. (3.48)

To calculate the integral of the second term on the left side of Eq. (3.47), use the
assumption that 𝜕K∕𝜕x3 = 0, combined with the assumption (3.45) about vertical
variations in piezometric head:

∫

b

a
K∇H dx3 = K

(
∇2 ∫

b

a
H dx3 − H∇2b + H∇2a

)

= K
[
∇2(lH) − H∇2l

]
= lK∇2H,

since l = b − a. Combining this equation with the result (3.48) gives the following
form for the vertically averaged version of Darcy’s law:

l𝜙v + T∇2H = 0, (3.49)

where the coefficient T = lK, having dimension L2T−1, is the transmissivity.
Finally, we substitute Darcy’s law in the form (3.49) into the vertically averaged

mass balance (3.46) to arrive at the areal flow equation:

S𝜕H
𝜕t

− ∇ ⋅ (T∇H) = qb − qt. (3.50)

(Now that there is no risk of ambiguity, we drop the subscript from the
two-dimensional gradient operator and the overbar notation for vertical average.)



�

� �

�

3.6 Variational Forms for Steady Flow 55

This parabolic PDE has a form similar to the single-fluid flow equation (3.35)
in three space dimensions, the most apparent difference being the presence of
leakage terms qb and qt. These terms account for any flux of fluid across the lower
and upper confining surfaces, respectively, of the rock formation.

In steady flows, 𝜕H∕𝜕t = 0, and Eq. (3.50) reduces to the elliptic PDE

−∇ ⋅ (T∇H) = q, (3.51)

where q(x) = qb(x) − qt(x) denotes the net flux of water into the aquifer
attributable to leakage.

3.6 Variational Forms for Steady Flow

Variational principles characterize certain solutions to PDEs as minimizing
or maximizing some quantity. These principles arise frequently in functional
analysis—the study of vector spaces of functions—and mathematical physics.
Variational principles also play a prominent role in the theory of finite-element
methods, which are among the most powerful numerical techniques used
to solve the equations of fluid flow in porous media. This section introduces
two variational formulations of single-fluid flows, using the steady areal flow
equation (3.51) as an example. Both formulations figure in the convergence
analysis of commonly used finite-element methods.

Consider a boundary-value problem of the form

−∇ ⋅ [T(x)∇H(x)] = q(x), for x ∈ Ω;

H(x) = 0, for x ∈ 𝜕Ω. (3.52)

Assume that Ω is a two-dimensional spatial region amenable to the standard inte-
gral theorems of vector calculus, in particular having an orientable boundary 𝜕Ω
on which there is a well-defined, outward-pointing, unit-length normal vector
field n(x). Also, assume that the transmissivity T is a differentiable function of
x that obeys bounds of the form Tm ⩽ T(x) ⩽ TM , for some positive constants Tm
and TM . Given a solution H(x) to this problem, we seek real-valued expressions
that the solution H minimizes.

3.6.1 Standard Variational Form

Recasting the problem (3.52) in a variational form requires three vector spaces of
functions. Define

2(Ω) =
{
𝜑∶ Ω → ℝ ||| ∫Ω𝜑

2 d𝑣 exists
}
,
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1(Ω) =
{
𝜑 ∈ 2(Ω) ||| ∫Ω∇𝜑 ⋅ ∇𝜑 d𝑣 exists

}
,

1
0 (Ω) =

{
𝜑 ∈ 1(Ω) ||| 𝜑(x) = 0, for all x ∈ 𝜕Ω

}
.

Exercise 3.13 Assume that H is a solution to the boundary-value problem (3.52),
so in particular H is twice differentiable. Use the product rule, in the form ∇ ⋅ (𝜑𝝍) =
𝜑∇ ⋅ 𝝍 + ∇𝜑 ⋅ 𝝍 , together with the divergence theorem, to show that

∫Ω
T∇H ⋅ ∇𝜑 d𝑣 =

∫Ω
q𝜑 d𝑣, for all 𝜑 ∈ 1

0 (Ω). (3.53)

The standard variational form of the boundary-value problem (3.52) is to find
a function H ∈ 1

0 (Ω) such that Eq. (3.53) holds.
The variational form (3.53) is not equivalent to the original boundary-value

problem (3.52). To be a solution of the PDE in Eq. (3.52), H must be twice
differentiable, while Eq. (3.53) requires only that H have a square-integrable
first derivative. Similar relaxations of smoothness requirements appear again in
Chapters 4–6, in discussing weak solutions to PDEs.

Based on the results of Exercise 3.13, define an energy functional F ∶ 1
0 (Ω) →

ℝ as follows:

F(𝜑) = 1
2∫Ω

T∇𝜑 ⋅ ∇𝜑 d𝑣 −
∫Ω

q𝜑 d𝑣.

To establish the desired minimization principle, we show that H is a solution to
the variational problem if and only if H minimizes the energy functional.

First assume that H solves the variational problem (3.53). It suffices to show that
F(𝜑) ⩾ F(H) for any𝜑 ∈ 1

0 (Ω). Writing𝜑(x) = H(x) + 𝜀(x) for some perturbation
function 𝜀 ∈ 1

0 (Ω), we find that

F(𝜑) = F(H + 𝜀) = 1
2∫Ω

T∇(H + 𝜀) ⋅ ∇(H + 𝜀) d𝑣 −
∫Ω

q(H + 𝜀) d𝑣

= F(H) +
∫Ω

T∇𝜀 ⋅ ∇𝜀 d𝑣

⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟

(I)

+
∫Ω

T∇H ⋅ ∇𝜀 d𝑣 −
∫Ω

q𝜀 d𝑣

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

(II)

.

The term labeled (I) is nonnegative, since T ⩾ Tm > 0 and ∇𝜀 ⋅ ∇𝜀 ⩾ 0, and
the terms labeled (II) cancel each other by Eq. (3.53). It follows that H
minimizes F.

Next assume that F(H) ⩽ F(𝜑) for all functions 𝜑 ∈ 1
0 (Ω). For any fixed choice

of 𝜑, define a function G ∶ ℝ → ℝ by G(s) = F(H + s𝜑). Since G is differentiable
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with a minimum value at s = 0, G′(0) = 0. But

G(s) = F(H) + s
(
∫Ω

T∇H ⋅ ∇𝜑 d𝑣 −
∫Ω

q𝜑 d𝑣
)

+ 1
2

s2
∫Ω

T∇𝜑 ⋅ ∇𝜑 d𝑣,

so differentiation with respect to s yields

0 = G′(0) =
∫Ω

T∇H ⋅ ∇𝜑 d𝑣 −
∫Ω

q𝜑 d𝑣.

This result shows that the variational equation (3.53) holds for any 𝜑 ∈ 1
0 (Ω).

3.6.2 Mixed Variational Form

The next two exercises introduce an alternative variational form that proves useful
in many numerical approximations. Instead of starting with the second-order flow
equation (3.51), let us retain Darcy’s law and the steady mass balance as a pair of
coupled first-order PDEs. Temporarily writing 𝜙v = u for the filtration velocity,
we have

K−1u + ∇H = 0,

∇ ⋅ u = q, (3.54)

on the spatial domain Ω, with H = 0 on the boundary 𝜕Ω.

Exercise 3.14 Define the following vector spaces of functions:

2
0(Ω) =

{
𝜓 ∈ 2(Ω) ||| 𝜓(0) = 0 on 𝜕Ω

}
,

(div,Ω) =
{
𝝋 ∶ Ω → ℝ2 ||| ∫Ω𝝋 ⋅ 𝝋 d𝑣 exists and ∇ ⋅ 𝝋 ∈ 2(Ω)

}
.

Let the pair (u,H) be a solution to the system (3.54). Show that

∫Ω
K−1u ⋅ 𝝋 d𝑣 −

∫Ω
H∇ ⋅ 𝝋 d𝑣 = 0, for all 𝝋 ∈ (div,Ω),

∫Ω
𝜓∇ ⋅ u d𝑣 =

∫Ω
𝜓q d𝑣, for all 𝜓 ∈ 2

0(Ω). (3.55)

The mixed variational form of the first-order system (3.54) is to find
u ∈ (div,Ω) and H ∈ 2

0(Ω) such that Eqs. (3.55) hold. As in the variational
form (3.53), the mixed variational form relaxes the smoothness requirements on
the solution pair (u,H) that are implicit in the system (3.54).

The variational property associated with the system (3.55) has an interesting
twist.
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Exercise 3.15 Using the vector spaces defined in Exercise 3.14, define the
functional

F(𝝋, 𝜓) = 1
2∫Ω

K−1𝝋 ⋅ 𝝋 d𝑣 −
∫Ω
𝜓∇ ⋅ 𝝋 d𝑣 +

∫Ω
𝜓q d𝑣.

Show that, if (u,H) is a solution to the mixed variational form (3.55), then

F(u, 𝜓) ⩽ F(u,H) ⩽ F(𝝋,H), for all 𝝋 ∈ (div,Ω), 𝜓 ∈ 2
0(Ω). (3.56)

The inequalities (3.56) reveal that the solution (u,H) minimizes the functional
F(𝝋, 𝜓) with respect to 𝝋 and maximizes F with respect to 𝜓 . For this reason, we
refer to the mixed variational form as a saddle-point problem.

The mixed variational form of the flow equation gives rise to mixed
finite-element methods. These methods have significant virtues in the
numerical solution of underground flow problems. In particular, careful choices
of finite-element spaces yield approximate fluid velocities that are compara-
ble in accuracy to the approximate solutions for H. For details, see [46] and
[33, Chapter 3].

3.7 Flow in Anisotropic Porous Media

3.7.1 The Permeability Tensor

The assumption in Section 3.1 that permeability is a scalar function of position
restricts the applicability of Eq. (3.8) to a narrow class of porous media. To see
why, recall the formulation (3.24) of Darcy’s law in terms of piezometric head:

𝜙v = −K∇H, where K(x) =
𝛾gk(x)
𝜇

.

This formulation shows that the filtration velocity field 𝜙(x)v(x, t) must be every-
where parallel to the vector field ∇H(x, t), which we abbreviate as G(x, t) in this
section.

In many geologic porous media, the texture of the rock alters this relationship.
For example, in the shale-streaked rock sample shown in Figure 3.12a, a piezo-
metric head gradient G applied in a direction transverse to the geologic bedding
planes may yield a macroscopic filtration velocity whose direction lies closer to the
bedding planes. Figure 3.12b shows no such directional bias.

We accommodate this possibility by allowing the permeability to be a
tensor-valued function k(x). At each point x in the porous medium, this function
defines a linear transformation such that

𝜙(x) v(x, t) = −
𝛾g
𝜇

k(x) G(x, t). (3.57)
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Figure 3.12 Sandstone core
samples. Sample (a) has dark
shale streaks parallel to the
geologic bedding planes. A
pressure gradient transverse
to the bedding planes in this
rock may yield a filtration
velocity that is not parallel to
the pressure gradient. Sample
(b) exhibits no obvious
anisotropy.

(a) (b)

The universe of linear transformations admits infinitely many cases in which
k(x) G(x, t) is not parallel to G(x, t). In fact, this universe is too large, in a physi-
cally meaningful sense. Section 3.7.4 examines restrictions commonly imposed
on the tensor field k. First, however, we review basic facts about tensors more
generally.

3.7.2 Matrix Representations of the Permeability Tensor

Any choice of Cartesian coordinate system, defined by an orthonormal basis
{e1, e2, e3}, yields a representation for the piezometric head gradient G(x, t) as an
ℝ3-valued function:

⎡⎢⎢⎣
G1(x, t)
G2(x, t)
G3(x, t)

⎤⎥⎥⎦
=
⎡⎢⎢⎣
𝜕H∕𝜕x1
𝜕H∕𝜕x2
𝜕H∕𝜕x3

⎤⎥⎥⎦
(x, t).

The functions Gi = ei ⋅ G = 𝜕H∕𝜕xi, i = 1, 2, 3, are the coordinate functions of G
with respect to the basis {e1, e2, e3}, giving

G =
3∑

i=1
Giei.

The geometric properties of G—its magnitude and direction at any point in space
and time—remain unchanged under changes in coordinate systems. But the rep-
resentation as an ordered triple in ℝ3 changes, as discussed shortly.

The choice of orthonormal basis defines an analogous representation in ℝ3 for
the velocity field v(x, t):

⎡⎢⎢⎣
𝑣1(x, t)
𝑣2(x, t)
𝑣3(x, t)

⎤⎥⎥⎦
, (3.58)
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with

v =
3∑

i=1
𝑣iei.

Similarly, as discussed in Section 2.2, any tensor-valued function has a matrix
representation with respect to the basis {e1, e2, e3}. Thus, the permeability tensor
field k(x) has matrix representation

⎡⎢⎢⎣
k11(x) k12(x) k13(x)
k21(x) k22(x) k23(x)
k31(x) k32(x) k33(x)

⎤⎥⎥⎦
,

where kij(x) = ei ⋅ [k(x)ej]. The geometric action of k(x) as a linear transformation
remains independent of the choice of coordinate system. Using these representa-
tions for k, G = ∇H, and v, we write the relationship (3.57) as a matrix equation:

𝜙

⎡⎢⎢⎣
𝑣1
𝑣2
𝑣3

⎤⎥⎥⎦
= −

𝛾g
𝜇

⎡⎢⎢⎣
k11 k12 k13
k21 k22 k23
k31 k32 k33

⎤⎥⎥⎦
⎡⎢⎢⎣
𝜕H∕𝜕x1
𝜕H∕𝜕x2
𝜕H∕𝜕x3

⎤⎥⎥⎦
.

This matrix form of Darcy’s law is useful in computations.
To see how a change in Cartesian coordinate system affects the representations

of vectors and tensors, consider a change from one orthonormal basis {e1, e2, e3} to
another {ê1, ê2, ê3}. With respect to these two bases, the vector field G has expan-
sions

G =
3∑

i=1
Giei =

3∑
i=1

Ĝiêi,

where the coefficients Ĝ1, Ĝ2, Ĝ3 are the coordinate functions of G with respect to
the basis {ê1, ê2, ê3}. These coordinate functions may differ from G1,G2,G3, even
though the vector G(x) remains unchanged as a geometric entity at each point x
in space. The following exercise shows how the coordinate functions change.

Exercise 3.16 Prove the vector transformation rule

Ĝi =
3∑

j=1
QijGj,

where the coefficients Qij = êi ⋅ ej are the direction cosines between the basis ele-
ments {e1, e2, e3} and {ê1, ê2, ê3}, illustrated in Figure 3.13. Show that

Gi =
3∑

l=1
Q⊤

il Ĝl,

where Q⊤

il = Qli.
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Figure 3.13 Direction cosine Qij between a
vector ej in one orthonormal basis and a
vector êi in another.

ej

êi

cos−1 Qij

An extension of the reasoning used in Exercise 3.16 shows how the entries of the
matrix representation for the tensor-valued permeability function k change under
this same change of coordinates.

Exercise 3.17 If kij = ei ⋅ kej and k̂ij = êi ⋅ kêj, verify the tensor transformation
rule

kij =
3∑

l=1

3∑
m=1

Q⊤

il k̂lmQmj, k̂lm =
3∑

i=1

3∑
j=1

Q⊤

li kijQ⊤

jm.

(Hint: Look at the relationship

p = kq =
3∑

i=1
piei =

3∑
i=1

p̂iêj

for an arbitrary vector q.)

Occasionally one finds definitions of the term tensor based on these transforma-
tion rules. The perspective adopted here defines tensors as linear transformations
whose geometric actions are invariant with respect to changes in the coordinate
system. The transformation rules then follow from this invariance.

3.7.3 Isotropy and Homogeneity

When the permeability has a tensor character, Darcy’s law becomes

𝜙v = − k
𝜇
(∇p − 𝛾g∇Z).

One can accommodate the previous version, involving a scalar-valued permeabil-
ity k, by writing k = kI. Here I denotes the identity tensor, having the following
matrix representation with respect to any orthonormal basis:

⎡⎢⎢⎣
1 0 0
0 1 0
0 0 1

⎤⎥⎥⎦
.

Whenever a tensor-valued material property, such as k, can be written as a
(possibly spatially varying) scalar multiple of the identity tensor, the material is
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Table 3.1 Isotropic, anisotropic, homogeneous, and
inhomogeneous permeability tensors.

Homogeneous Inhomogeneous

Isotropic k I k(x) I

Anisotropic k k(x)

isotropic with respect to that property. Otherwise, the material is anisotropic.
In an isotropic material, the property may vary with spatial position, but it has no
directional dependence.

A material property is homogeneous if its value is independent of spatial
position x. Otherwise, the material property is inhomogeneous. A tensor-valued
property can be homogeneous and isotropic, homogeneous but anisotropic,
isotropic but inhomogeneous, or anisotropic and inhomogeneous, as Table 3.1
illustrates.

3.7.4 Properties of the Permeability Tensor

Most engineers assume that the permeability tensor k has additional properties.
To explore these properties in the simplest mathematical context, we examine a
tensor version of Darcy’s law written in terms of piezometric head:

𝜙v = −K∇H.

Here, paralleling Eq. (3.30), K(x) = (𝛾g∕𝜇)k(x) denotes the tensor-valued hydraulic
conductivity. Substituting this version of Darcy’s law into the mass balance (3.34)
yields the anisotropic single-fluid flow equation,

Ss
𝜕H
𝜕t

− ∇ ⋅ (K∇H) = 0.

The two most common additional properties attributed to the permeability ten-
sor, cast in terms of the hydraulic conductivity, are as follows:

1. K is positive semidefinite, that is,

q ⋅ Kq ⩾ 0, for all vectors q. (3.59)

2. K is symmetric, that is,

p ⋅ (Kq) = (Kp) ⋅ q, for all vectors p,q. (3.60)

(We temporarily suppress the dependence of K on spatial position x, to keep the
notation simple.) We now explore these two properties, beginning with a review
of the relevant linear algebra.
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Exercise 3.18 The transpose of K is the tensor K⊤ defined by the condition that
p ⋅ (Kq) = (K⊤p) ⋅ q, for all vectors p,q. Show that the (i, j)th entry of the matrix rep-
resentation of K⊤ with respect to any orthonormal basis {e1, e2, e3} is K⊤

ij = Kji.

Exercise 3.19 Without assuming that K is symmetric, consider the decomposition
K = Ksymm + Kskew, where

Ksymm = 1
2
(K + K⊤), Kskew = 1

2
(K − K⊤).

Show that Ksymm is a symmetric tensor.

The tensor Ksymm is the symmetric part of K.

Exercise 3.20 Show that the tensor Kskew obeys the identity

p ⋅ Kskewq = −(Kskewp) ⋅ q, for all vectors p,q. (3.61)

In short, K⊤skew = −Kskew. Any tensor that obeys the condition (3.61) is a skew ten-
sor. We call Kskew the skew part of K.

The assertion (3.59) that K is positive semidefinite reflects the constraint that a
single fluid flowing in a porous medium never flows in a direction of increasing
piezometric head. This prohibition ultimately arises from thermodynamic princi-
ples; see [4]. In symbols, we require∇H ⋅ v ⩽ 0, which, by Darcy’s law, implies that
∇H ⋅ K∇H ⩾ 0. Since we have no a priori control over the direction or magnitude
of the vector field ∇H, K must therefore satisfy the condition (3.59).

In many single-fluid flows, the hydraulic conductivity—and hence the
permeability—is positive definite, meaning that

q ⋅ Kq ⩾ 0, for all vectors q, and

q ⋅ Kq = 0, only if q = 𝟎. (3.62)

Physically, this assumption implies that the medium is permeable in all directions.

Exercise 3.21 Show that q ⋅ Kq = q ⋅ Ksymmq for any vector q. Therefore the skew
part Kskew has no effect on whether K is positive definite.

Justifying the assertion (3.60) that K is symmetric is a more problematic task.
We defer discussion of this question to the Section 3.7.5. For now, we observe that
properties (3.60) and (3.62), taken together, have two important consequences.
First, owing to symmetry, at any point x the tensor K(x) has real eigenvalues
K1(x),K2(x), and K3(x). The fact that K is positive definite ensures, in addition,
that K1(x),K2(x), and K3(x) are all positive at every point x.



�

� �

�

64 3 Single-fluid Flow Equations

Second, symmetry also guarantees that there exists, for each position x, an
orthonormal basis{

p1(x),p2(x),p3(x)
}

for three-dimensional Euclidean space consisting of eigenvectors of K(x), that is,
vectors for which

K(x)pi(x) = Ki(x)pi(x) and pi(x) ⋅ pj(x) =
{

1, if i = j,
0, if i ≠ j.

We call these mutually orthogonal eigenvectors the principal directions of K
at x. The corresponding eigenvalues K1(x), K2(x), and K3(x) are the principal
hydraulic conductivities at x, which are the hydraulic conductivities at x of the
porous medium in the directions of their respective eigenvectors. In the isotropic
case, K1(x) = K2(x) = K3(x).

When the principal directions p1(x),p2(x),p3(x) do not vary with spatial posi-
tion x, numerical modelers find it useful to adopt a Cartesian coordinate system
aligned with these vectors [11]. Since the orthonormality of the basis implies

pi ⋅ Kpj = pi ⋅ Kjpj =
{

Kj, if i = j,
0, if i ≠ j,

(3.63)

Darcy’s law in such a coordinate system—if it exists—has the matrix representa-
tion

𝜙

⎡⎢⎢⎣
𝑣1
𝑣2
𝑣3

⎤⎥⎥⎦
= −

⎡⎢⎢⎣
K1 0 0
0 K2 0
0 0 K3

⎤⎥⎥⎦
⎡⎢⎢⎣
𝜕H∕𝜕x1
𝜕H∕𝜕x2
𝜕H∕𝜕x3

⎤⎥⎥⎦
=
⎡⎢⎢⎣
−K1 𝜕H∕𝜕x1
−K2 𝜕H∕𝜕x2
−K3 𝜕H∕𝜕x3

⎤⎥⎥⎦
. (3.64)

Equation (3.64) decouples the principal directions, in the sense that each
scalar coordinate equation involves just one hydraulic conductivity and one
partial derivative of piezometric head. In geologically simple settings, such as
aquifers where the bedding planes are flat and the main effect of anisotropy is
a difference between the vertical and horizontal conductivity, this decoupling
greatly simplifies the computer coding required in a numerical simulator.

3.7.5 Is Permeability Symmetric?

We now examine more closely the question whether the hydraulic conductivity
K (or, equivalently, the permeability k) is a symmetric tensor-valued function.
The literature here can be frustrating, with published narratives ranging widely
in explanatory power. In some expositions, the arguments for symmetry lack
mathematical persuasiveness. In particular, as Exercise 3.21 shows, arguments
based on properties of the quadratic form p ⋅ Kp (see [13, p. 13]) say nothing about
Kskew and hence about whether K = Ksymm.
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In other, more defensible cases, symmetry emerges from spatial averaging pro-
cedures [94, 156]. Still other reasonable arguments appeal to thermodynamic prin-
ciples beyond those derivable from the standard laws of mass balance, momentum
balance, angular momentum balance, energy balance, and entropy inequality. For
example, King et al. [88, 89] prove that the symmetry of k follows from minimiz-
ing the work required to move fluid through the porous medium or, equivalently,
from more abstract principles advanced in 1931 by Norwegian-American chemist
Lars Onsager [112].

However one views the matter, three observations have practical implications.

Observation 3.1 In some problems, only the symmetric part of the hydraulic
conductivity tensor matters, as the following exercise shows.

Exercise 3.22 Show that, if K is homogeneous but not necessarily symmetric, then

∇ ⋅ (K∇H) = ∇ ⋅ (Ksymm∇H),

for any twice-differentiable function H.

In particular, the skew part of a spatially homogeneous hydraulic conductivity has
no effect on the solution H to the flow equation in any boundary-value problem
with pure Dirichlet boundary conditions (see Section 3.4). In such settings, when
solving only for the piezometric head, we may as well use Ksymm for computational
convenience. This observation is irrelevant in transport problems (see Chapter 5),
where we seek H for the purpose of calculating the filtration velocity. In particular,
if K is not symmetric, then in general

𝜙v = −K∇H ≠ −Ksymm∇H.

Observation 3.2 Whatever standing one may confer on theoretical arguments,
some mathematical modeling applications employ nonsymmetric permeability or
hydraulic conductivity tensors. Among the most prominent of these applications
are those that require upscaling K from the fine scale, where Darcy’s law applies, to
the coarser scales appropriate for spatial grid cells in field-scale numerical simula-
tors. Upscaling methods typically yield nonsymmetric coarse-scale tensors, even if
one starts with symmetric fine-scale tensors [88, 89, 157]. In such applications, one
must either adopt numerical approximations that accommodate a nonsymmetric
tensor or use an approximate tensor that is symmetric. The latter approach suffers
from the disadvantage that it yields calculated flux directions different from the
mathematically correct flux directions; see [165].

Observation 3.3 As convenient as the decoupling of gradients in Eq. (3.64) may
be, it is not always available, even under the hypothesis that K(x) is a symmetric
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tensor at each point x. If the principal directions p1,p2,p3 vary in space—as may
happen, for example, when geologic forces have deformed the bedding planes
of the rock formation—then a simplifying choice of Cartesian coordinate system
that is globally aligned with the principal directions may not exist. Anisotropic
problems of this nature typically allow no coordinate-wise decoupling of the type
shown in Eq. (3.63), a fact that nullifies one of the most alluring consequences of
symmetry in K.
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4

Single-fluid Flow Problems

This chapter examines solutions to several classical problems involving
single-fluid flows in porous media. These solutions reveal qualitative properties
of solutions to more general problems. We begin by reviewing two linear,
steady-state problems involving wells. We then examine an important transient
problem from several perspectives, introducing mathematical concepts used in
subsequent chapters. We close with a discussion of two mathematically related
nonlinear problems involving single-fluid flows.

4.1 Steady Areal Flows with Wells

We examine two models of steady areal flows near wells. The first approach simpli-
fies the physics in ways that, strictly speaking, are unrealistic in many applications.
Nevertheless, the simplified model has an exact solution that relates pumping
measurements to material properties of the rock formation. Solutions of this type
provide entree into the topic of well-test analysis, a field that has evolved into a
highly sophisticated set of methods for groundwater hydrologists [120, Chapter 6]
and petroleum engineers [155, Chapter 3]. The second, more broadly applicable
approach involves representing a well as an idealized point source or sink of fluid.

4.1.1 The Dupuit–Thiem Model

The first mathematical well model appeared in an 1863 treatise by French engineer
Jules Dupuit [50, page 255], although German hydrologist Günter Thiem [146]
and his father commonly get credit. Dupuit solved the areal flow equation near a
well in a spatially uniform, confined groundwater aquifer. As shown below, one
can compare the steady-state solution of this problem with field observations to
calculate an aquifer’s transmissivity.

The Mathematics of Fluid Flow Through Porous Media, First Edition. Myron B. Allen.
© 2021 John Wiley & Sons, Inc. Published 2021 by John Wiley & Sons, Inc.
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The Dupuit–Thiem model rests on five simplifying assumptions. First, the fluid
flow is areal and steady, with impermeable confining layers so that the leakage
terms vanish. These assumptions reduce the areal flow equation (3.50) for the ver-
tically averaged piezometric head to

∇ ⋅ (T∇H) = 0.

Second, the transmissivity T is spatially uniform and positive, so that the flow
equation reduces further to the two-dimensional Laplace equation,

∇ ⋅ (∇H) = ∇2H = 0. (4.1)

Equation (4.1) is an elliptic PDE, typical of time-independent problems in mathe-
matical physics and engineering.

Third, the flow is axisymmetric about the wellbore, so H = H(r), where r denotes
distance from the axis of the wellbore. The symmetry of the problem about the well
suggests two changes of coordinates:

● Locate the origin 𝟎 at the center of the wellbore’s cross section.
● Convert to polar coordinates via the transformation

𝚽
([

r
𝜃

])
=
[

r cos 𝜃
r sin 𝜃

]
=
[

x1
x2

]
,

as defined in Appendix B.

In these coordinates, Eq. (4.1) becomes

−1
r
𝜕

𝜕r

(
r 𝜕H
𝜕r

)
− 1

r2
𝜕

2H
𝜕2𝜃

= 0;

see Eq. (B.3). Since H = H(r), this PDE simplifies to the ordinary differential
equation

1
r

d
dr

(
r dH

dr

)
= 0.

Fourth, far from the well, at a distance re from its center, H(re) = H∞, a known
value.

Fifth, the discharge rate at the well has a prescribed value Q, having dimension
L3T−1. Darcy’s law relates this rate to the derivative of the average piezometric head
at the wellbore: If the wellbore is cylindrical with radius r

𝑤
and length l, then

2𝜋r
𝑤

T dH
dr

(r
𝑤
) = 2𝜋r

𝑤
lK dH

dr
(r
𝑤
) = Q.

Figure 4.1 shows the geometry.
These assumptions yield the following one-dimensional boundary-value prob-

lem for H:
d
dr

(
r dH

dr

)
= 0, r

𝑤
< r < re; (4.2)
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re
rw

H∞
H(r)

Well
Piezometric
surface

(a) Plan view

(b) Side view

Figure 4.1 Geometry of the Dupuit–Thiem model.

H(re) = H∞,
dH
dr

(r
𝑤
) = Q

2𝜋r
𝑤

T
.

Exercise 4.1 Show that the differential equation (4.2) has general solution
H(r) = C1 log r + C2, where log denotes the natural logarithm. Apply the boundary
conditions to get

H(r) = H∞ + Q
2𝜋T

log
(

r
re

)
.

Thus, the piezometric head has a logarithmic singularity at the well. Show that, for
any two radii r1, r2 ∈ (r

𝑤
, re), the Thiem equation holds:

H(r1) − H(r2) =
Q

2𝜋T
log

(
r1

r2

)
. (4.3)

Equation (4.3) furnishes a method for calculating the transmissivity T using
measured values of H. Define the drawdown as the difference s(r) = H∞ − H(r)
between the far-field vertically averaged piezometric head H∞ and the vertically
averaged piezometric head at distance r from the center of the wellbore, as shown
in Figure 4.2. By Eq. (4.3),

Δs = s(r1) − s(r2) =
Q

2𝜋T
log

(
r1

r2

)
.

To use this relationship in a field study, one pumps water from an active well until
the discharge rate reaches steady state, then measures the drawdown at a set of
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r1

Piezometric
surface

Pumping
well

Observation
wells

H∞

H(r1)

s(r1)

Figure 4.2 Definition of
the drawdown s(r) at an
observation well.

s

log(r)log(r1) log(r2)

Δs

Figure 4.3 Calculation of transmissivity using
drawdown data.

passive observation wells. By plotting s(r) versus log r and computing Δs on the
best-fit line, as shown in Figure 4.3, we arrive at the value

T = Q
2𝜋Δs

(log r1 − log r2).

This well test requires data from observation wells, which are typically expensive
to drill if they do not already exist. Section 4.2 examines a well-testing method that
requires data only from the well being tested.

4.1.2 Dirac 𝜹 Models

An alternative way to model a vertical well in more general areal flows is to treat
the well as a point source or sink, represented as a Dirac 𝛿 distribution. In a heuris-
tic sense, this approach represents a limiting case of the Dupuit–Thiem model as
the wellbore radius r

𝑤
→ 0. It provides a convenient way to incorporate several

wells in a single model. To develop the method, consider an areal flow with a sin-
gle well, as discussed in Section 3.5, in a two-dimensional region Ω with boundary
𝜕Ω. As in the Dupuit–Thiem model, we start by treating the wellbore as an internal
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Figure 4.4 A two-dimensional region Ω with an
external boundary 𝜕Ωe and a wellbore modeled as
an interior boundary 𝜕Ω

𝑤
.

Ω
∂Ωe

∂Ωwn

boundary 𝜕Ω
𝑤

, denoting by 𝜕Ωe the portion of the boundary that faces the exterior,
as shown in Figure 4.4.

In the absence of leakage, the two-dimensional mass balance (3.46) for this
region is

S𝜕H
𝜕t

+ ∇ ⋅ (l𝜙v) = 0, (4.4)

where l is the thickness of the formation, ∇⋅ is the two-dimensional divergence
operator, and H and v are the vertically averaged piezometric head and
two-dimensional velocity, respectively. Integrating this equation over Ω and
applying the two-dimensional divergence theorem yields the integral mass
balance:

∫Ω
S𝜕H
𝜕t

da = −
∫Ω

∇ ⋅ (l𝜙v) da = −
∫
𝜕Ω

l𝜙v ⋅ n ds

= −
∫
𝜕Ωe

l𝜙v ⋅ n ds −
∫
𝜕Ω

𝑤

l𝜙v ⋅ n ds. (4.5)

In this equation, the area integral on the left represents the net rate of change
of fluid mass inside the region Ω, and both line integrals on the right trace the
boundary 𝜕Ω in the positive sense, that is, keeping the interior of Ω on the left. The
vector field n is the unit-length vector field pointing outward from the boundary.

Rewrite Eq. (4.5) as

∫Ω
S𝜕H
𝜕t

da +
∫
𝜕Ωe

l𝜙v ⋅ n ds = Q. (4.6)

In this version, the term

Q = −
∫
𝜕Ω

𝑤

l𝜙v ⋅ n ds

represents the injection rate of the well, having dimension L3T−1 and taking neg-
ative values when the well withdraws fluid from the formation.

In principle, the integral mass balance equation (4.6) allows for a detailed (but
vertically averaged) description of the wellbore. In many field-scale settings, we
forego detailed well models, reasoning that the cross-sectional area of the wellbore
occupies a negligible fraction of the total area of the region Ω. Instead, we simplify
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Ωe

∂Ωe

Well center xwn
Figure 4.5 Two-dimensional region Ωe
used to model the region Ω in Figure 4.4
without the internal boundary 𝜕Ω

𝑤
,

shown here as a dotted-line circle.

the model, replacing Ω by a new region Ωe, which is the union of Ω with the well,
as depicted in Figure 4.5. To capture the effects of the well in this simplified region,
we replace the mass balance (4.4) by a new equation,

S𝜕H
𝜕t

+ ∇ ⋅ (l𝜙v) = Q𝛿(x − x
𝑤
), (4.7)

explained shortly. Here, x
𝑤

denotes the two-vector that coincides with the center
of the wellbore.

The symbol 𝛿 stands for the two-dimensional Dirac 𝛿 distribution. This
function-like entity has the following defining property: For any integrable
function 𝜑(x) and any two-dimensional region ,

∫


𝜑(x)𝛿(x − x
𝑤
) da =

{
𝜑(x

𝑤
), if x

𝑤
∈ ;

0, otherwise.
(4.8)

It is common to regard 𝛿(x) as representing a point source having unit strength,
since (i) it has nonzero effect only when integrated over regions  containing the
point x

𝑤
, and (ii) for such regions

∫


𝛿(x − x
𝑤
) da = 1.

Strictly speaking, the right side of Eq. (4.7) does not arise from the mass bal-
ance law discussed in Chapter 2. Hence, the equation requires justification. By the
defining property (4.8) and the divergence theorem, integration yields

∫Ωe

S𝜕H
𝜕t

da +
∫
𝜕Ωe

l𝜙v ⋅ n ds =
∫Ωe

Q𝛿(x − x
𝑤
) da

=
{

Q, if x
𝑤
∈ Ωe,

0, otherwise.
(4.9)

Hence, we recover the integral mass balance (4.6). In short, by redefining the
region of integration and including a compensating term involving the Dirac 𝛿
distribution, we account for the well’s effects by treating it as a point source or
sink, instead of explicitly treating the wellbore as part of the region’s boundary.
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4.1.3 Areal Flow in an Infinite Aquifer with One Well

As an example of a Dirac 𝛿 model, consider the steady, areal flow of a single
fluid in a confined, horizontal aquifer having infinite extent and a single well
centered at x

𝑤
. The modified mass balance equation (4.7) reduces to the following

time-independent form:

∇ ⋅ (l𝜙v) = Q𝛿(x − x
𝑤
).

Substituting for l𝜙v using the vertically averaged Darcy law

l𝜙v = −T∇H

(see Eq. (3.49)) yields

−∇ ⋅ (T∇H) = Q𝛿(x − x
𝑤
).

In the simple case when T is constant, this equation reduces to a version of the
Poisson equation,

−∇2H = Q
T
𝛿(x − x

𝑤
). (4.10)

As with the Dupuit–Thiem model, the symmetry of this problem about the well
location x

𝑤
suggests choosing the origin so that x

𝑤
= 𝟎 and converting to polar

coordinates, defined in Appendix B. In these coordinates, Eq. (4.10) becomes

−1
r
𝜕

𝜕r

(
r 𝜕H
𝜕r

)
− 1

r2
𝜕

2H
𝜕2𝜃

= Q
T
𝛿(r); (4.11)

see Eq. (B.3). Since symmetry about the well implies that H = H(r), the second
term on the left side of Eq. (4.11) vanishes, and the governing equation further
reduces to an ordinary differential equation on the interval 0 < r:

1
r

d
dr

(
r dH

dr

)
= 0. (4.12)

To accommodate the Dirac 𝛿 distribution centered at r = 0, impose the following
integral condition:

lim
r→0∫D(r)

∇2H d𝑣 = −Q
T

lim
r→0∫D(r)

𝛿(x) d𝑣 = −Q
T
, (4.13)

where D(r) denotes the disk of radius r centered at the wellbore.
The differential equation (4.12) has general solution

H(r) = C1 log r + C2,

where C1 and C2 are any constants. The integral condition (4.13) suffices to deter-
mine C1 as follows. By the two-dimensional divergence theorem, the area integral
of ∇2H over the disk D(r) reduces to a path integral around the bounding circle
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𝜕D(r). Parametrizing this circle as 𝜻(𝜃) = (r cos 𝜃, r sin 𝜃) for 0 ≤ 𝜃 ≤ 2𝜋 and using
the expression (B.2) for the two-dimensional gradient operator gives

−Q
T

= lim
r→0∫D(r)

∇2H da = lim
r→0∫D(r)

∇ ⋅ ∇H da

= lim
r→0∫

𝜕D(r)
∇H ⋅ n ds

= lim
r→0 ∫

2𝜋

0

(
cos 𝜃 dH

dr
, sin 𝜃 dH

dr

)
⋅ (cos 𝜃, sin 𝜃) ∥𝜻(𝜃)∥ d𝜃

= −2𝜋lim
r→0

r dH
dr
, (4.14)

the last identity following from the facts that ∥𝜻(𝜃)∥= r and dH∕dr is constant on
the circle of radius r.

Exercise 4.2 Deduce the following equations from the condition (4.14):

C1 = lim
r→0

r dH
dr

= − Q
2𝜋T

, C2 = H(1).

Since H represents the vertically averaged piezometric head, which is a height
above some arbitrarily chosen datum, we may choose the datum to guarantee that
C2 = 0 without affecting the fluid velocity field. Doing so yields the following solu-
tion to the Dirac 𝛿 well model:

H(r) = − Q
2𝜋T

log r. (4.15)

This solution shows that the vertically averaged piezometric head H varies
smoothly except for a logarithmic singularity at the well. When Q < 0, corre-
sponding to fluid withdrawal from the aquifer, H(r) → −∞ as r → 0.

Although Eq. (4.15) is the solution to a highly idealized problem, it has a sig-
nificant practical use. Knowing the structure of the singularity near a well helps
improve the quality of numerical solutions to more realistic problems for which
no closed-form solutions are available. Consider, for example, a steady areal flow
problem having the form

−∇ ⋅ [T(x)∇H] = Q𝛿(x), (4.16)

in which the transmissivity varies in space. Numerical methods, such as
finite-difference or finite-element methods, typically produce highly accurate
approximate solutions in problems for which the exact solution is regular, that is,
possesses no singularities. However, the accuracy deteriorates near singularities.
A technique called singularity removal [98] incorporates the structure of the
singularity into the approximate solution a priori, allowing the numerical method
to solve for the regular part of the solution.
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To illustrate the method, first decompose H = Hr + Hs, where Hs denotes the
singular part of the unknown solution and the remainder, Hr, is regular. Specifi-
cally, let Hs be the exact solution to a problem of the form

−∇2Hs =
Q

Tavg
𝛿(x), (4.17)

calculating the constant Tavg as the average transmissivity in some region contain-
ing the well. For example, one can take

Tavg = 1
𝜋R2 ∫

R

0 ∫

2𝜋

0
T(r, 𝜃) d𝜃 dr,

where R > 0 is the radius of a disk inside which the values of T are representative
of values affecting the well’s behavior. By Eq. (4.15),

Hs(r) = − Q
2𝜋Tavg

log r. (4.18)

Subtracting Eq. (4.17) from Eq. (4.16) and moving all known, computable terms
to the right side yields

−∇ ⋅ (T∇Hr) = ∇ ⋅ [(T − Tavg)∇Hs]
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

known

. (4.19)

By calculating the right side using Eq. (4.18), we can solve Eq. (4.19) for the regu-
lar part Hr of the solution—a task at which classical numerical methods, such as
finite-difference or finite-element methods, typically excel.

4.2 The Theis Model for Transient Flows

4.2.1 Model Formulation

In 1935, American engineer Charles V. Theis [145] presented an alternative
method for determining aquifer parameters, based on the time-dependent
hydraulics of a single well. Theis examined areal flow near a well in a horizontal,
confined aquifer that has no leakage and constant storativity S and transmissivity
T, both of which are positive. If the flow is axisymmetric, then by the areal flow
equation (3.50) the vertically averaged piezometric head H obeys a version of the
two-dimensional heat equation,

∇2H = S
T
𝜕H
𝜕t
,

or, in polar coordinates (see Section B.1),
1
r
𝜕

𝜕r

(
r 𝜕H
𝜕r

)
= S

T
𝜕H
𝜕t
. (4.20)



�

� �

�

76 4 Single-fluid Flow Problems

Equation (4.20) is a linear, parabolic PDE. Equations of this type often govern
time-dependent processes and tend to smooth the initial conditions. Section 4.2.4
justifies this intuition for Eq. (4.20). However, as a nonlinear problem examined
in Section 4.3 illustrates, the heuristic requires caution.

Consider an aquifer in which the vertically averaged piezometric head H has
a spatially uniform initial value H0, and assume that H → H0 in the far field, as
r → ∞. If we start pumping the well at time t = 0 with constant discharge rate Q,
then H obeys Eq. (4.20) with the following initial and boundary conditions:

H(r, 0) = H0,

lim
r→∞

H(r, t) = H0, (4.21)

lim
r→0

2𝜋rT 𝜕H
𝜕r

(r, t) = Q.

As with the Dupuit–Thiem model, the boundary condition as r → 0 arises from
Darcy’s law.

4.2.2 Dimensional Analysis of the Theis Model

Dimensional analysis—the technique used to infer the form of the solution to
the Stokes problem in Section 2.4—also reveals information about the functional
dependencies in solutions to the Theis model. We begin by converting Eq. (4.20)
to a form in which the unknown solution is dimensionless.

Exercise 4.3 Define a dimensionless piezometric head

u(r, t) =
H − H0

Q∕(2𝜋T)
,

and show that Eq. (4.20), together with the initial and boundary conditions (4.21),
reduce to the following problem:

𝜕
2u
𝜕r2 + 1

r
𝜕u
𝜕r

− S
T
𝜕u
𝜕t

= 0, r, t > 0; (4.22)

u(r, 0) = 0, r > 0; (4.23)

lim
r→0

r 𝜕u
𝜕r

(r, t) = 1, t > 0; (4.24)

lim
r→∞

u(r, t) = 0, t > 0. (4.25)

The initial-boundary-value problem derived in Exercise 4.3 involves only the
variables r, t, T, S, and u. Any solution u to the problem therefore defines a rela-
tionship among these variables, which we write conceptually as follows:

𝜑(r, t,T, S,u) = 0. (4.26)
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The variables in this relationship have physical dimensions L, T, L2T−1, 1, and 1,
respectively.

Appealing to the Buckingham Pi theorem, reviewed in Appendix C, we seek an
equivalent relationship in terms of a possibly smaller set of dimensionless vari-
ables. Any dimensionless variable Π for this problem has the form of a product of
powers,

Π = rn1 tn2 Tn3 Sn4 un5 ,

with the exponents n1,… ,n5 to be determined. Substituting the dimensions of the
variables r, t,T, S,u and insisting that Π have dimension 1 yields

Ln1 Tn2 (L2T−1)n3 1n4 1n5 = Ln1+2n3 Tn2−n3 = 1.

The last identity holds only if the exponents of L and T vanish, a condition that
implies the following homogeneous linear system for n1,… ,n5:

[
1 0 2 0 0
0 1 −1 0 0

] ⎡⎢⎢⎢⎢⎢⎣

n1
n2
n3
n4
n5

⎤⎥⎥⎥⎥⎥⎦
=
[

0
0

]
.

This homogeneous, linear system is in row-reduced form. It shows that n3,
n4, and n5 are free variables, n2 = n3, and n1 = −2n3. We calculate three inde-
pendent dimensionless variables by choosing three linearly independent vectors
(n3,n4,n5):

When (n3,n4,n5) = (1, 0, 0), n1 = −2, n2 = 1; Π1 = tT
r2 .

When (n3,n4,n5) = (0, 1, 0), n1 = 0, n2 = 0; Π2 = S.

When (n3,n4,n5) = (0, 0, 1), n1 = 0, n2 = 0; Π3 = u.

Therefore, the dimensional relationship (4.26) reduces to a relationship of the fol-
lowing form, involving only dimensionless variables:

Φ
( tT

r2 , S,u
)
= 0. (4.27)

If a solution u exists, Eq. (4.27) shows that u = U(S, r2∕(Tt)), for some implicitly
defined function U. Treating S and T as given positive constants and r, t as the
independent variables in this problem, we write

u(r, t) = U
(

r2

t

)
. (4.28)

The conclusion (4.28) reveals an important property of the solution u(r, t) to the
Theis problem: Except for a scaling factor, it retains its shape, defined by the graph
of the function U, as t increases.
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This observation merits a closer look. We call a function u(r, t) self-similar if
there exist exponents a, b such that

u(𝜀r, 𝜀at) = 𝜀
bu(r, t), (4.29)

for all positive values of 𝜀. We call the arbitrary positive constant 𝜀 a scaling
parameter.

Exercise 4.4 As a simple example, show that the function exp(−Cr2∕t) is
self-similar for any positive constant C, with exponents a = 2 and b = 0. To see how
the function retains its shape as t increases, plot the function for several fixed values
of t.

Equation (4.28) shows that the solution to the Theis problem given by Eqs. (4.22)
through (4.25) is self-similar, with a = 2 and b = 0, since

u(𝜀r, 𝜀2t) = U
(
𝜀

2r2

𝜀2t

)
= U

(
r2

t

)
= 𝜀

0u(r, t).

So far, dimensional analysis has yielded only qualitative properties of the
solution. An additional remark sets the stage for Section 4.2.4, which exploits
self-similarity to develop an explicit formula for u(r, t). For any fixed values of a
and b, the mapping

g
𝜀
(r, t,u) = (𝜀r, 𝜀at, 𝜀bu), 𝜀 > 0, (4.30)

arising from the self-similarity equation (4.29), defines a one-parameter family of
stretching transformations.

Exercise 4.5 Fix the values of a and b, and denote by  the set of all stretching
transformations having the form (4.30). Consider the binary operation defined by
composing elements of :

(g
𝛿
⚬ g

𝜀
)(r, t,u) = g

𝛿
(g
𝜀
(r, t,u)), 𝛿, 𝜀 > 0.

Show that  has the following properties:

1.  is closed under ⚬, that is, for any stretching transformations g
𝛿
, g
𝜀
∈ , the com-

position g
𝛿
⚬ g

𝜀
belongs to .

2. Composition is associative, that is, g
𝛼
⚬ (g

𝛿
⚬ g

𝜀
) = (g

𝛼
⚬ g

𝛿
) ⚬ g

𝜀
for all positive

stretching parameters 𝛼, 𝛿, 𝜀.
3.  has an identity element g1, for which g1(r, t,u) = (r, t,u).
4. Every stretching transformation g

𝜀
in  has an inverse: There exists a stretching

transformation g−1
𝜀

in  such that g−1
𝜀

⚬ g
𝜀
= g1 = g

𝜀
⚬ g−1

𝜀
.

Properties 1 through 4 show that  is a group under the operation of composition.
We exploit this observation shortly.
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4.2.3 The Theis Drawdown Solution

The linear initial-boundary-value problem given by Eqs. (4.20) and (4.21) admits
several solution methods. An interesting approach, which extends to nonlinear
PDEs analyzed in later sections, is the method of self-similar solutions, foreshad-
owed in Section 4.2.2 and pursued in detail in Section 4.2.4.

For now we simply state the result:

H(r, t) = H0 +
Q

4𝜋T
Ei

(
− S

4T
r2

t

)
, (4.31)

where

Ei (𝜉) = −
∫

∞

−𝜉

e−y

y
dy (4.32)

denotes the exponential integral function. The functional dependencies in this
solution are consistent with the self-similar form (4.28), derived using dimensional
analysis. Writing the solution (4.31) in terms of drawdown yields

s(r, t) = H0 − H(r, t) = − Q
4𝜋T

Ei
(
− S

4T
r2

t

)
, for t > 0.

Figure 4.6 shows graphs of H and the drawdown at various times. Two observa-
tions are worth noting:

1. The drawdown s(r, t) is continuously differentiable to all orders.
2. For any t > 0, s(r, t) has nonzero values for all r ≥ 0.

These two properties typify solutions to the heat equation: They are smooth after
the initial time, and nonzero initial data instantaneously yield nonzero (but rapidly
decaying) solution values throughout the spatial domain. In this sense, solutions
to the linear heat equation propagate with infinite speed, a property that contrasts
with solutions to some closely related nonlinear problems, as Section 4.3 explores.

In 1946, American hydrologists Hilton H. Cooper and Charles E. Jacob [39] pro-
posed using an approximation for Ei (−𝜉) to turn the solution (4.31) into a practical

Figure 4.6 Graphs of the Theis
solution for vertically averaged
piezometric head at several time
levels, showing the drawdown at
time t1 > 0.

s(r, t)

t = 0

t = t2 > t1
t = t1 > 0

H

H0

r
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Intercept b
Slope m

s

log(t)

Figure 4.7 Hypothetical plot of drawdown
versus log(t) for the Theis method.

well test to determine T and S. Citing the series expansion (see [7, Section 3.3])

Ei (𝜉) = 𝛾 + log |𝜉| +
∞∑

j=1

𝜉
j

jj!
, 𝜉 ≠ 0,

where 𝛾 ≃ 0.577216 denotes Euler’s constant and log stands for the natural loga-
rithm, they adopted the approximation

Ei (−𝜉) ≃ 0.577216 + log |𝜉|, for 𝜉 = r2S
4Tt

< 0.01.

The Cooper–Jacob approximate solution is therefore

s(r, t) ≃ − Q
4𝜋T

(
0.577216 + log r2S

4Tt

)
≃ Q

4𝜋T
log

(2.25Tt
r2S

)
,

valid for small values of r and large values of t.

Exercise 4.6 Develop a method for computing T and S using this equation and
drawdown data from a single well, as plotted in Figure 4.7.

4.2.4 Solving the Theis Model via Similarity Methods

We now analyze the Theis model more closely, solving the linear initial-boundary-
value problem given by Eqs. (4.22) through (4.25). We use the method of
self-similar solutions, mentioned briefly in Section 4.2.2. While the problem
admits several other solution techniques, the approach pursued here furnishes a
productive line of attack for certain nonlinear problems, as subsequent sections
illustrate.

The method exploits a symmetry of the PDE (4.20). By a symmetry we mean
a group of transformations of the independent variables x, t, and the unknown
solution u that leave the equation invariant, in a sense to be made precise shortly.
The particular type of symmetry that we seek for Eq. (4.22) is a group of stretch-
ing transformations, as introduced in Exercise 4.5. For fixed real exponents a and
b, any transformation of this type has the form g

𝜀
(r, t,u) = (𝜀r, 𝜀at, 𝜀bu) given in

Eq. (4.30), for some positive scaling parameter 𝜀.
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To describe the invariance condition, call

𝜉 = 𝜀r, 𝜏 = 𝜀
at, 𝜂(𝜉, 𝜏) = 𝜀

bu(r, t). (4.33)

For Eq. (4.22), invariance requires that
𝜕

2
𝜂

𝜕𝜉2 + 1
𝜉

𝜕𝜂

𝜕𝜉
− S

T
𝜕𝜂

𝜕𝜏
= C ×

(
𝜕

2u
𝜕r2 + 1

r
𝜕u
𝜕r

− S
T
𝜕u
𝜕t

)
, (4.34)

for some nonzero constant C. In other words, u(r, t) solves the PDE in the original
independent variables (r, t) if and only if 𝜂(𝜉, 𝜏) solves the PDE in the stretched
independent variables (𝜉, 𝜏) = (𝜀r, 𝜀at).

If such a symmetry exists, then—as we show below—two useful conclusions
follow. First, the solution has the form

u(r, t) = tb∕aU(𝜁), (4.35)

for some function U of a single variable 𝜁(r, t). As time progresses, a solution hav-
ing the form (4.35) retains the shape U(𝜁), stretched by a purely time-dependent
factor t−b∕a. The graphs of piezometric head in Figure 4.6 exhibit this impor-
tant geometric property. We show below that a function of the form (4.35) is
self-similar, as formally defined by the condition (4.29). Second, we can determine
the function U by solving an ordinary differential equation.

The derivation proceeds in four steps:

1. Show that if a symmetry for the PDE consisting of scaling transformations
(4.30) exists, then the PDE has a solution form (4.35).

2. Verify that there exists such a symmetry for the governing PDE (4.20).
3. Derive the ordinary differential equation for the function U(𝜁).
4. Solve for U(𝜁) and hence for u(r, t).

The first step is the longest. It rests on the observation that any smooth solution
u(r, t) of the PDE defines a surface in (r, t,u)-space having the form 𝜑(r, t,u) = 0.
The invariance condition (4.34) implies that

𝜑(g
𝜀
(r, t,u)) = 𝜑(𝜀r, 𝜀at, 𝜀bu) = 𝜑(r, t,u)

for all 𝜀 > 0. Therefore, 𝜑(𝜀r, 𝜀at, 𝜀bu) = 0, and

0 = d
d𝜀
𝜑(𝜀r, 𝜀at, 𝜀bu)

= d(𝜀r)
d𝜀

𝜕1𝜑 + d(𝜀at)
d𝜀

𝜕2𝜑 + d(𝜀bu)
d𝜀

𝜕3𝜑

= r 𝜕𝜑
𝜕r

+ a𝜀a−1t 𝜕𝜑
𝜕t

+ b𝜀b−1u𝜕𝜑
𝜕u
,

by the chain rule. In particular, this equation holds when 𝜀 = 1, and hence𝜑 obeys
the following first-order PDE:

0 = r 𝜕𝜑
𝜕r

+ at 𝜕𝜑
𝜕t

+ bu𝜕𝜑
𝜕u
. (4.36)
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Now consider any continuously differentiable path (r(s), t(s),u(s)) in
(r, t,u)-space. The chain rule requires that 𝜑 change along this path according to
the equation

d𝜑
ds

= dr
ds
𝜕𝜑

𝜕r
+ dt

ds
𝜕𝜑

𝜕t
+ du

ds
𝜕𝜑

𝜕u
. (4.37)

If we restrict attention to paths for which
dr
ds

= r, dt
ds

= at, du
ds

= bu, (4.38)

then consistency between Eqs. (4.36) and (4.37) requires that
d𝜑
ds

= 0.

Thus, 𝜑 is constant along all paths in (r, t,u)-space that satisfy Eqs. (4.38). We call
these paths characteristic curves. Rearranging the differential equations (4.38)
shows that 𝜑 is constant along paths for which

dr
dt

= r
at

and du
dt

= bu
at
. (4.39)

Exercise 4.7 Integrate the differential equations in (4.39) with respect to t to obtain
solutions of the form

r = C1t1∕a
, u = C2tb∕a

,

where C1,C2 are arbitrary constants.

The results of Exercise 4.7 show that 𝜑 is constant along paths for which r∕t1∕a

and u∕tb∕a are constant, that is 𝜑(r, t,u) = Φ(r∕t1∕a
,u∕tb∕a), for some function Φ.

On the solution surface, 𝜑(r, t,u) = 0, so

Φ
( r

t1∕a ,
u

tb∕a

)
= 0. (4.40)

Equation (4.40) implicitly defines a relationship u∕tb∕a = U(r∕t1∕a), which we rear-
range to conclude that

u = tb∕aU(𝜁), where 𝜁 = r
t1∕a ,

as claimed.
The second step shows that there exists a symmetry for the PDE consisting of

stretching transformations (4.30).

Exercise 4.8 Using the definition (4.33) of the stretching transformation, show
that

𝜕𝜂

𝜕𝜏
= 𝜀

b−a 𝜕u
𝜕t

; 1
𝜉

𝜕𝜂

𝜕𝜉
= 𝜀

b−2 1
r
𝜕u
𝜕r

; 𝜕
2
𝜂

𝜕𝜉2 = 𝜀
b−2 𝜕

2u
𝜕r2 .
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Exercise 4.8 reveals that the invariance condition (4.34) holds if a = 2. Also, the
scaling condition 𝜂(𝜀r, 𝜀2t) = 𝜀

bu(r, t) holds for all 𝜀 > 0, with the exponent b still
undetermined. Thus, 𝜁 = rt−1∕2, but it is equivalent (and simpler) to take

u = tb∕2U(𝜁), where 𝜁 = r2

t
. (4.41)

For the third step, we show that the representation (4.41) for u(r, t) reduces the
PDE (4.22) to an ordinary differential equation for U(𝜁).

Exercise 4.9 Calculate 𝜕u∕𝜕t, 𝜕u∕𝜕r, and 𝜕2u∕𝜕r2 in terms of U(𝜁) and show that
the PDE (4.22) implies the following ordinary differential equation for U:

𝜁U ′′ + (1 + 𝜅𝜁)U ′ − 𝜅b
2

U = 0, where 𝜅 = S
4T
. (4.42)

The fourth step—solving Eq. (4.42)—requires translating the initial and bound-
ary conditions for u(r, t), given in Eqs. (4.23), (4.24), and (4.25), to conditions on
U(𝜁).

Exercise 4.10 From the outer boundary condition (4.25), derive the condition

lim
𝜁→∞

U(𝜁) = 0.

Show that the inner boundary condition (4.24) yields the following condition:

lim
r→0

r 𝜕u
𝜕r

= lim
𝜁→0

2tb∕2
𝜁U ′(𝜁) = 1. (4.43)

For the limit (4.43) to be constant for all values of t > 0, b must vanish. Thus

u(𝜀r, 𝜀2t) = U(𝜁) = 𝜀
0u(r, t),

showing that u(r, t) is self-similar by the definition (4.29). In addition, the ordi-
nary differential equation (4.42) simplifies, and the function U(𝜁) must solve the
following boundary-value problem:

U ′′ +
(

1
𝜁
+ 𝜅

)
U ′
, (4.44)

lim
𝜁→0

𝜁U ′ = 1
2
, (4.45)

lim
𝜁→∞

U = 0. (4.46)

Integrating Eq. (4.44) once using the integrating factor

exp
∫

(
1
𝜁
+ 𝜅

)
d𝜁 = 𝜁 exp(𝜅𝜁)
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and the boundary condition (4.45) yields

U ′ = 1
2𝜁

exp(−𝜅𝜁).

Integrating again and using the boundary condition (4.46) give

U(𝜁) = −1
2 ∫

∞

𝜁

e−𝜅y

y
dy = −1

2 ∫

∞

𝜅𝜁

e−y

y
dy = 1

2
Ei(−𝜅𝜁),

where Ei denotes the exponential integral defined in Eq. (4.32). Remembering that
𝜁 = r2∕t and 𝜅 = S∕(4T), we have

H − H0

Q∕(2𝜋T)
= u(r, t) = U

(
r2

t

)
= 1

2
Ei

(
− S

4T
r2

t

)
,

which is equivalent to the Theis solution (4.31).
The method of self-similar solutions has limitations, even in cases when the PDE

is invariant under a group of stretching transformations. For example, it may not
be possible to solve the ordinary differential equation for U(𝜁) by analytic methods.
More significantly, not all initial-boundary-value problems have self-similar solu-
tions. Finite spatial domains, for example, tend to thwart the search for self-similar
solutions that satisfy given boundary conditions.

This limitation notwithstanding, Russian mathematician Grigory I. Barenblatt
and Russian physicist Yakov B. Zel’dovich [14] argued that self-similar solutions
reveal important structural aspects of PDEs. In this view, far from being special
cases, self-similar solutions describe the intermediate asymptotic behavior of
more general solutions, that is, the behavior of these solutions far from spatial and
temporal boundaries.

We encounter the method of self-similar solutions again in Section 4.3, which
investigates a nonlinear single-fluid flow problem; in Section 5.2, in connection
with the linear transport equation; and in Section 6.7, in the analysis of nonlinear
three-fluid flows in porous media.

4.3 Boussinesq and Porous Medium Equations

So far, all of the problems that we have considered involve a single fluid
flowing in a confined porous medium. In these settings, the fluid—typically
water—completely fills the pore space, and hence, the geometry of the medium
defines the geometry of the problem. Mathematical complications arise when
a single fluid does not fill the pore space, as in an unconfined or phreatic
aquifer, where air is also present. (The word phreatic comes from the ancient
Greek word 𝜑𝜌𝜀́𝛼𝜌 for water well.) In unconfined aquifers, the top of the porous
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Z = −x3 = 0

Z = −x3 = h
x = 0 x = l

H(x, t)

Water table Z = h − H(x, t)

Impermeable layer

Earth’s surface

Figure 4.8 Schematic diagram of a vertical slice through an unconfined aquifer, showing
the water table Z = h − H(x, t).

medium is open to the atmosphere, and water occupies a subregion of the aquifer
whose vertical extent can change as fluid flows through the medium.

Figure 4.8 shows a vertical slice through such an aquifer. For simplicity, assume
that the aquifer occupies a spatial region defined by the inequalities

0 ≤ x1 ≤ l,

0 ≤ x2 ≤ 𝑤,

−h ≤ x3 ≤ 0,

and that water occupies the pore space in the subregion defined by the inequalities

−h ≤ x3 ≤ −h + H(x1, t).

Here, H denotes the height of the water-saturated region, with 0 ≤ H(x1, t) ≤ h. In
the region −h + H(x, t) < x3 ≤ 0, both air and water occupy the pore space.

To develop a simple, one-dimensional model, assume that the aquifer properties,
including H(x1, t), do not depend on x2 and that the porosity 𝜙 and true density 𝛾
of the water are constant. With these assumptions, we recast the problem in terms
of the spatial variables x = x1, y = x2, and depth Z = −x3.

We call the locus Z = h − H(x, t) the water table. It is a free surface, moving
vertically in response to water movements. Physically, H plays a role similar to
the piezometric head in a confined aquifer. However, as shown in this section,
mathematically the water table introduces new difficulties, most notably the fact
that it leads to a nonlinear relative of the heat equation. The nonlinearity leads to
solutions that differ qualitatively from the Theis solution examined in Section 4.2.

Strictly speaking, the conceptual model underlying Figure 4.8 is too simple. An
unconfined aquifer is a mixture consisting of three phases, namely soil, water, and
air. In an upper zone, called the vadose zone, mobile air, at atmospheric pressure,
occupies at least some of the pore space. The water table is the surface that divides
the vadose zone from the saturated zone, in which only water is mobile. Imme-
diately above the water table is a capillary fringe, in which water occupies the
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pore space at pressures less than atmospheric. Section 6.2 discusses these physics
in more detail.

The mechanics of the vadose zone involve nonlinear, multifluid flows. By track-
ing only the free surface Z = h − H(x, t), we simplify the physics in a way that
allows us to solve a single-fluid—but still nonlinear—model. Even with this sim-
plification, the free-surface model is too complex to admit a simple solution. To
make the model tractable, in 1857, Jules Dupuit [49] adopted the further approxi-
mation that the water velocity in the zone h − H(x, t) ≤ Z ≤ h is purely horizontal:

v = (𝑣(x,Z, t), 0, 0).

This Dupuit assumption eliminates the need to analyze the complicated effects
of free-surface geometry on the water velocity near the water table.

4.3.1 Derivation of the Boussinesq Equation

Consider the mass balance for water in a time-independent (x, y,Z)-region

 = [x, x + Δ] × [0, 𝑤] × [0, h]

of the aquifer, assuming that the function H(x, t) defining the water table is contin-
uously differentiable. The accumulation of water in  equals the net flux of water
across the boundary, in accordance with the multiphase extension of Eq. (2.4):

d
dt ∫

𝜙𝛾 d𝑣 = −
∫
𝜕

𝜙𝛾v ⋅ n da. (4.47)

The left side of Eq. (4.47) is the time derivative of a volume integral giving the total
mass of water in . On the right side, n denotes the unit-length vector orthogonal
to the bounding surface 𝜕 and pointing outward, and da stands for the element
of surface integration.

The left side of Eq. (4.47) reduces as follows:

𝜙𝛾
d
dt ∫

x+Δ

x ∫

𝑤

0 ∫

h

0
dZ dy dx = 𝜙𝛾𝑤

∫

x+Δ

x

d
dt ∫

h

h−H(x,t)
dZ dx. (4.48)

Exercise 4.11 Show that

d
dt ∫

h

h−H(x,t)
dZ = 𝜕H

𝜕t
(x, t).

By the result of Exercise 4.11, the volume integral in Eq. (4.48) reduces even
further:

𝜙𝛾
d
dt ∫

x+Δ

x ∫

𝑤

0 ∫

h

0
dZ dy dx = 𝜙𝛾𝑤

∫

x+Δ

x

𝜕H
𝜕t

(x, t) dx = 𝜙𝛾𝑤Δ𝜕H
𝜕t

(𝜉, t),
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for some point 𝜉 ∈ [x, x + Δ], by the mean value theorem for integrals.
For the surface integral on the right side of Eq. (4.47), we have

∫
𝜕Ω
𝜙𝛾v ⋅ n da = 𝜙𝛾𝑤

[
∫

h

h−H(x+Δ,t)
𝑣(x + Δ, t)dZ −

∫

h

h−H(x,t)
𝑣(x, t)dZ

]
.

Combining these results and dividing by 𝜙𝛾𝑤Δ yields

𝜕H
𝜕t

(𝜉, t) = − 1
Δ

[
∫

h

h−H(x+Δ,t)
𝑣(x + Δ, t) dZ −

∫

h

h−H(x,t)
𝑣(x, t) dZ

]
.

In the limit as Δ → 0, 𝜉 → x, and we obtain

𝜕H
𝜕t

(x, t) = − 𝜕

𝜕x ∫

h

h−H(x,t)
𝑣(x, t) dZ. (4.49)

Exercise 4.12 Analyze the right side of Eq. (4.49) to derive the following differen-
tial mass balance:

𝜕H
𝜕t

(x, t) = − 𝜕

𝜕x
[H(x, t)𝑣(x, t)] . (4.50)

The next step is to rewrite the velocity using Darcy’s law, assuming that 𝜙, 𝛾 ,
and the permeability k are constant. Set the pressure at the water table equal to
the gauge pressure of the atmosphere, and assume that the water pressure below
the water table is hydrostatic:

p(x,Z, t) = 𝛾g[Z − h + H(x, t)] for Z ≥ h − H(x, t).

By Darcy’s law,

𝜙𝑣(x, t) = − k
𝜇

𝜕

𝜕x
[p(x,Z, t) − 𝛾gZ] = −K 𝜕H

𝜕x
(x, t),

where K = k𝛾g∕𝜇. Substituting this expression for the filtration velocity 𝜙𝑣 into
the mass balance equation (4.50) yields the flow equation

𝜕H
𝜕t

− K
𝜙

𝜕

𝜕x

(
H 𝜕H
𝜕x

)
= 0. (4.51)

Equation (4.51) is the Boussinesq equation, developed by French mathemati-
cian Joseph Valentin Boussinesq [25, 26]. Unlike equations derived in Sections
4.1 and 4.2 of this chapter, the Boussinesq equation is nonlinear. Recognizing this
fact, American hydrologist George M. Hornberger et al. [74] were among the first
to develop numerical solution methods for the equation. Later in this section, we
show that the Boussinesq equation possesses a symmetry that admits self-similar
solutions for certain initial conditions, as introduced in Section 4.2.



�

� �

�

88 4 Single-fluid Flow Problems

Exercise 4.13 Use the dimensionless variables

𝜉 = x
h
, 𝜏 = Kt

2𝜙h
, u = H

h
to reduce Eq. (4.51) to the nondimensional form

𝜕u
𝜕𝜏

− 𝜕

𝜕𝜉

(
2u𝜕u
𝜕𝜉

)
= 0. (4.52)

4.3.2 The Porous Medium Equation

A close mathematical relative of the Boussinesq equation, the porous medium
equation, arises from different physics, also involving single-fluid flows in
porous media. As a simple class of degenerate nonlinear diffusion equations, the
porous medium equation has received close scrutiny from mathematicians. In
2007, Spanish mathematician J.L. Vásquez [151] published an encyclopedic study
of this equation.

The porous medium equation is

𝜕u
𝜕t

− ∇2un+1 = 0, (4.53)

where n ≥ 1, u(x, t) is the unknown function, and∇2 signifies the three-dimensional
Laplace operator. The relationship between Eq. (4.53) and the Boussinesq equation
becomes clear if we use the chain rule to rewrite Eq. (4.53) as follows:

𝜕u
𝜕t

− ∇ ⋅ [(n + 1)un∇u] = 0.

Here, the factor (n + 1)un plays the role of a nonlinear diffusion coefficient. The
parabolic nature of the PDE degenerates at any point where this coefficient van-
ishes, that is, where u(x, t) = 0. The nondimensional version (4.52) of the Boussi-
nesq equation, derived in Exercise 4.13, arises when we restrict attention to one
space dimension and focus on the special case n = 1. However, as the following
exercise shows, more general values of n arise in related applications.

Exercise 4.14 The porous-medium equation, with values of n ≥ 1, models the
density of certain gases flowing through porous media. Derive Eq. (4.53) for the fluid
density 𝛾 in a single-fluid flow through a porous medium when gravitational effects
are negligible, using the following three principles:

𝜙
𝜕𝛾

𝜕t
+ ∇ ⋅ (𝛾𝜙v) = 0, Mass balance, (4.54)

𝜙v = − k
𝜇
∇p, Darcy′s law, (4.55)

p = p0𝛾
n Equation of state. (4.56)
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Equation (4.56) is the equation of state for a gas with reference pressure p0 and
polytropic index n ≥ 1. Hint: Obtaining the porous medium equation from
Eqs. (4.54)–(4.56) requires rescaling time using the change of variables 𝜏 = 𝜅t, where

𝜅 =
kp0n

𝜇𝜙(n + 1)
.

4.3.3 A Model Problem with a Self-similar Solution

We now examine a classic initial-value problem involving the nonlinear porous
medium equation with n = 1:

𝜕u
𝜕t

− ∇ ⋅ (2u∇u) = 0.

The problem illustrates a striking departure from the smoothing effects associated
with the linear heat equation.

Assume that there is an initial mound of fluid concentrated at the origin,
(x1, x2) = (0, 0), and that the problem is symmetric about the x3-axis. Thus
u = u(r, t), where r denotes the radial coordinate in cylindrical coordinates, as
defined in Appendix B. The PDE thus reduces to

𝜕u
𝜕t

− 2
r
𝜕

𝜕r

(
ru𝜕u
𝜕r

)
= 0, (4.57)

or, equivalently,

𝜕u
𝜕t

− 1
r
𝜕

𝜕r

(
r 𝜕u2

𝜕r

)
= 0. (4.58)

Russian mathematician Pelageya Polubarinova-Kochina examined similar prob-
lems in a 1952 treatise, later translated into English by Belgian-American engineer
Roger De Wiest [123, Chapter VIII]. Polubarinova-Kochina died in 1999 at age 100,
shortly after publishing her last scientific paper.

We adopt the following initial and boundary conditions:

u(r, 0) = 0, r > 0,

lim
r→∞

u(r, t) = 0, t ≥ 0.

In addition, to model the initial mound, we impose the following integral condi-
tion:

∫

∞

0
u(r, t) r dr = 1, t ≥ 0. (4.59)

(See Eq. (B.4) for integration in polar coordinates.) At t = 0, this condition is equiv-
alent to an instantaneous, unit-strength point source—that is, a Dirac 𝛿 distribu-
tion—concentrated at (x1, x2) = (0, 0). Conservation of mass implies that Eq. (4.59)
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remains true for t > 0. Since mass is nonnegative, we seek a solution for which
u(r, t) ≥ 0.

The method of self-similar solutions, introduced in Section 4.2, reveals a
symmetry of the PDE (4.57) and leads to a solution to the problem. As shown
below, the solution itself possesses a nondifferentiable front that propagates with
finite speed—a phenomenon not seen in solutions to the linear heat equation. We
encounter sharp, finite-speed fronts again in Chapter 6, in analyzing multiphase
flows in porous media.

As in Section 4.2, the symmetry of interest is a group of stretching transforma-
tions:

𝜉 = 𝜀r, 𝜏 = 𝜀
at, 𝜂(𝜉, 𝜏) = 𝜀

bu(r, t), (4.60)

where 𝜀 is an arbitrary positive scaling parameter. Such a symmetry exists if there
are real exponents a and b for which the following invariance condition holds:

𝜕𝜂

𝜕𝜏
− 2
𝜉

𝜕

𝜕𝜉

(
𝜉𝜂
𝜕𝜂

𝜕𝜉

)
= C ×

[
𝜕u
𝜕t

− 2
r
𝜕

𝜕r

(
ru𝜕u
𝜕r

)]
, (4.61)

for some nonzero constant C. In this case, as seen in Section 4.2.4, solutions have
the self-similar form

u(r, t) = tb∕aU(𝜁),

for the similarity variable 𝜁 = rt−1∕a, and we can find the function U by solving an
ordinary differential equation.

We first determine the conditions under which a symmetry of the form (4.60)
exists.

Exercise 4.15 Use the chain rule to show that, under the stretching transformation
(4.60),

𝜕𝜂

𝜕𝜏
= 𝜀

b−a 𝜕u
𝜕t
,

𝜕𝜂

𝜕𝜉
= 𝜀

b−1 𝜕u
𝜕x
,

and hence
𝜕u
𝜕t

− 2
r
𝜕

𝜕r

(
ru𝜕u
𝜕r

)
= 𝜀

a−b 𝜕𝜂

𝜕𝜏
− 𝜀2−2b 2

𝜉

𝜕

𝜕𝜉

(
𝜉𝜂
𝜕𝜂

𝜕𝜉

)
.

The invariance condition (4.61) therefore requires that 𝜀a−b = 𝜀
2−2b for all 𝜀 > 0.

It follows that a = 2 − b. In this case, we seek a self-similar solution of the form

u(r, t) = tb∕(2−b)U(𝜁), 𝜁 = rt−1∕(2−b)
.

To determine what values b, and hence a, can take, impose the mass conserva-
tion condition (4.59):

1 =
∫

∞

0
u(r, t) r dr = tb∕(2−b)

∫

∞

0
U
(

rt−1∕(2−b)) r dr
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= tb∕(2−b)t2∕(2−b)
∫

∞

0
U(y) y dy,

the last identity following from the change of variables y = rt−1∕(2−b). This
equation requires the right side to be independent of t, which implies that b = −2.
It follows that a = 4, and the similarity variable for the axisymmetric porous
medium equation (4.58) with n = 1 is 𝜁 = rt−1∕4.

Next we determine the ordinary differential equation that governs U(𝜁).

Exercise 4.16 Substitute the newly found form u(r, t) = t−1∕2U(rt−1∕4) into Eq.
(4.58) and simplify to obtain

(U2)′′ + 1
𝜁
(U2)′ + 1

4
U ′ + 1

2
U = 0. (4.62)

Then multiply Eq. (4.62) by 𝜁 to get the simpler equation
[
𝜁(U2)′

]′ + 1
4
(𝜁2U)′ = 0.

Integrating this differential equation yields

𝜁(U2)′ + 1
4
𝜁

2U = C1. (4.63)

To determine the constant C1 of integration, observe that the left side of Eq. (4.63)
tends to 0 as 𝜁 → 0, so C1 = 0.

Exercise 4.17 Differentiate (U2)′ in Eq. (4.63), then conclude that the equation
holds if U = 0 or U ′ = −𝜁∕8, that is, U = − 1

16
𝜁

2 + C2.

To construct a solution that satisfies the condition u(x, t) ≥ 0, we follow Baren-
blatt [12] and define U(𝜁) piecewise:

U(𝜁) =

{ 1
16

(
𝜁

2
0 − 𝜁2)

, if − 𝜁0 ≤ 𝜁 ≤ 𝜁0;
0, otherwise.

Mathematically, 𝜁2
0∕16 is the constant C2 of integration. Physically, 𝜁0 represents a

point on the 𝜁 -axis beyond which the solution vanishes, that is, a front. To deter-
mine 𝜁0, we appeal once again to Eq. (4.59).

Exercise 4.18 Impose the mass conservation condition

∫

𝜁0

0

1
16

(
𝜁

2
0 − 𝜁2)

𝜁 d𝜁 = 1
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to show that 𝜁0 = 23∕2. Hence,

U(𝜁) =

{ 1
16

(
8 − 𝜁2)

, if 0 ≤ 𝜁 ≤ 23∕2
,

0, otherwise.

This expression yields the following solution: for t > 0,

u(r, t) =

{ 1
16

t−1∕2 (8 − r2t−1∕2)
, if 0 ≤ r ≤ 23∕2t1∕4;

0, otherwise.
(4.64)

t1 > 0

t2 > t1

t3 > t2

r
r0(t3)

u(r,t)

Figure 4.9 Weak solution
to the porous medium
equation showing a
nondifferentiable front
±r0(t) propagating outward
from the origin.

Figure 4.9 shows graphs of this solution at sev-
eral times. Because the solution’s derivative 𝜕u∕𝜕r
is discontinuous at the locus r0(t) = 23∕2t1∕4 of the
advancing front, u(r, t) differs qualitatively from the
infinitely differentiable classical solutions that we
expect for the linear heat equation. In fact, strictly
speaking, the discontinuity in 𝜕u∕𝜕r implies that Eq.
(4.64) cannot be a solution to the PDE (4.57), which
requires u(r, t) to be twice differentiable with respect
to r.

To resolve this difficulty, we must admit weak
solutions. These do not necessarily satisfy the PDE
in the literal or classical sense; instead, they allow
for discontinuities in the function or its derivatives.
Section 5.2 defines weak solutions more precisely.

Also contrasting with solutions to the heat equation
is the finite propagation speed r′0(t) = t−3∕4∕

√
2 of the

advancing front. Figure 4.10 shows r0 as a function of
t. At any instant in time, the initial condition has had
no influence beyond this front.

As this example illustrates, nonlinear diffusion equations with degenerate
diffusion coefficients can possess solutions that differ significantly and qualita-
tively from solutions to the linear heat equation, for which solutions are infinitely
smooth and propagate with infinite speed. Solutions with moving fronts and finite
propagation speed arise much more generally in solutions to the porous medium
equation and to other nonlinear extensions of the heat equation. Barenblatt
et al. [13, Section 3.4.3] develop exact solutions of this type for cases in which
the exponent n > 1 and in rectilinear, axisymmetric, and spherically symmetric
geometries. Section 6.2 revisits these phenomena, in connection with variably
saturated flows in porous media.
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Figure 4.10 Location of the advancing front
r0(t) = 23∕2t1∕4 as a function of time.

t

r0(t)

1

2.83

Exercise 4.19 Consider the porous medium equation (4.53) in three dimensions.
In a problem having radial symmetry—for example a problem with a point source
at the origin—the solution has the form u(r, t), where r =∥x∥ denotes distance from
the origin. In this case, a transformation to spherical coordinates (see Exercise 111)
converts the PDE to

𝜕u
𝜕t

− 1
r2
𝜕

𝜕r

[
r2 𝜕

𝜕r
(

un+1)] = 0,

where n ≥ 1.

(A) Reduce this PDE to the equivalent form

𝜕u
𝜕t

− 2
r
𝜕

𝜕r
(

un+1) − 𝜕
2

𝜕r2

(
un+1) = 0.

(B) Find a group of stretching transformations (4.60) that leaves this equation
invariant.

(C) Conclude that u(r, t) = t1∕(n−3)U(𝜁), where 𝜁 = rt1∕(n−3).
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5

Solute Transport

5.1 The Transport Equation

Many underground flow applications require tracking the movements of
particular constituents in one or more fluid phases. A water-soluble contaminant
undergoing transport in a groundwater aquifer furnishes a prototypical example.
In many enhanced oil recovery processes, injected fluids transport constituents
that alter the chemistry of the fluid–rock system, promoting more efficient oil
recovery.

To model these effects, we must take into account a set of miscible species,
indexed as i = 1, 2,… ,N, distributed among two or more immiscible phases. For
example, consider the case of a soluble groundwater contaminant that adsorbs
onto the aquifer rock. We treat the fluid phase 𝛼 = F and the solid phase 𝛼 = R as
distinct phases and identify three species:

● Rock (i = 1)
● Water (i = 2)
● Contaminant (i = 3).

In this framework, each ordered pair (i, 𝛼) of indices is a constituent. We must
therefore track the motions of six constituents:

(1,F), (2,F), (3,F) and (1,R), (2,R), (3,R).

Throughout this chapter, we assume that constituents (1,F) and (2,R) are
absent—that is, that the rock does not dissolve into the fluid phase and that
there is no water in the solid phase. The general framework allows one to relax
these assumptions, for example to accommodate the transport, sublimation, and
freezing of water vapor in snow.

The Mathematics of Fluid Flow Through Porous Media, First Edition. Myron B. Allen.
© 2021 John Wiley & Sons, Inc. Published 2021 by John Wiley & Sons, Inc.
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5.1.1 Mass Balance of Miscible Species

For the mass balance, Eqs. (2.29) and (2.30) yield
𝜕

𝜕t
(𝜙

𝛼
𝛾(i,𝛼)) + ∇ ⋅ (𝜙

𝛼
𝛾(i,𝛼)v(i,𝛼)) = r(i,𝛼), (5.1)

for each constituent (i, 𝛼), subject to the restriction
N∑

i=1

∑
𝛼

r(i,𝛼) = 0.

In Eq. (5.1), 𝛾(i,𝛼) denotes the true density of constituent (i, 𝛼), and each term has
dimension ML−3T−1. It is common to rewrite this mass balance equation in terms
of dimensionless mass fractions, defined as

𝜔(i,𝛼) = 𝛾(i,𝛼)∕𝛾𝛼,

where 𝛾
𝛼

denotes the true density of phase 𝛼.

Exercise 5.1 Justify the following identities:
N∑

i=1
𝜔(i,𝛼) = 1,

N∑
i−1
𝜔(i,𝛼)v(i,𝛼) = v

𝛼
,

where v
𝛼

is the spatial velocity of phase 𝛼.

In terms of mass fractions, the mass balance (5.1) becomes
𝜕

𝜕t
(𝜙

𝛼
𝛾
𝛼
𝜔(i,𝛼)) + ∇ ⋅ (𝜙

𝛼
𝛾
𝛼
𝜔(i,𝛼)v(i,𝛼)) = r(i,𝛼). (5.2)

Summing this equation over the species index i yields the overall mass balance for
phase 𝛼:

𝜕

𝜕t
(𝜙

𝛼
𝛾
𝛼
) + ∇ ⋅ (𝜙

𝛼
𝛾
𝛼
v
𝛼
) = r

𝛼
=

N∑
i=1

r(i,𝛼),

where the sum on the right represents the net exchange of mass from all species
into phase 𝛼 from other phases.

Two additional definitions convert Eq. (5.2) to a form that commonly appears in
applications. Define the concentration of constituent (i, 𝛼) as

ci,𝛼 = 𝛾
𝛼
𝜔(i,𝛼), (5.3)

having dimension (mass of (i, 𝛼))/(volume of 𝛼) or ML−3, and the diffusion
velocity of species i in phase 𝛼 as

𝝂(i,𝛼) = v(i,𝛼) − v
𝛼
, (5.4)
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by analogy with the diffusion velocity defined in Eq. (2.27). In terms of these quan-
tities, the constituent mass balance has the following form:

𝜕

𝜕t
(𝜙

𝛼
c(i,𝛼))

⏟⏞⏞⏞⏟⏞⏞⏞⏟

(I)

+ ∇ ⋅ (𝜙
𝛼
v
𝛼
c(i,𝛼))

⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟

(II)

+ ∇ ⋅ j(i,𝛼)
⏟⏟⏟

(III)

= r(i,𝛼)
⏟⏟⏟

(IV)

. (5.5)

Here,

j(i,𝛼) = 𝜙
𝛼
c(i,𝛼)𝝂(i,𝛼) (5.6)

is the diffusive flux of species i in phase 𝛼, having dimension ML−2T−1. As in
Section 2.5, we refer to the terms labeled (I), (II), (III), and (IV) as the accumula-
tion, advection, diffusion, and reaction terms, respectively.

The remainder of this chapter focuses on the special case involving the transport
of a single species i in a single fluid F flowing through a porous medium composed
of a rock phase R. This restriction allows us to simplify the notation by stripping
away subscripts, writing Eq. (5.5) as follows:

𝜕

𝜕t
(𝜙c) + ∇ ⋅ (𝜙vc) + ∇ ⋅ j = r. (5.7)

Here, 𝜙 = 𝜙F is the porosity, c = c(i,F) is the concentration of species i in the fluid,
v = vF denotes the fluid velocity, j = j(i,F), and r = r(i,F). Chapter 7 examines more
complicated flows, in which several species undergo mass transfer among several
fluid phases.

5.1.2 Hydrodynamic Dispersion

Mysteries lurk in the diffusion term for porous-medium flows. In 1961, Swiss
geophysicist Adrian Scheidegger [ 133] and Israeli hydrologist Jacob Bear [17]
proposed a tensor model to account for the effects of microscopic pore geometry
in the spreading of solutes. French hydrologists Jean J. Fried and M.A. Com-
barnous [55] provide a detailed review of this classical theory, referred to as
hydrodynamic dispersion.

The theory, which remains in common use, begins with the decomposition

j = jmol + jmech,

where jmol accounts for the molecular diffusion of the solute and jmech accounts
for the mechanical mixing effects associated with the microscopic geometry of the
porous medium. Molecular diffusion is the most straightforward of these effects
to model: We adopt an equation developed by German physician Adolf Fick [52].
Fick’s law has the form

jmol = −𝜙DM∇c,
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v

t = 0
t > 0

(a)

(b)

(c)

Figure 5.1 Qualitative illustration of
Taylor diffusion. (a) Parabolic velocity
profile given by the Hagen–Poiseuille
solution for flow in a thin cylindrical
tube. (b) Transport of an initial solute
slug under the influence of pure
advection, with arrows showing the
directions of diffusive transport by
molecular diffusion when t > 0. (c) Slug
at t > 0 resulting from radially varying
longitudinal advection coupled with
transverse diffusion.

where DM denotes the molecular diffusion coefficient, a positive parameter
having dimension L2T−1. The factor 𝜙 models the interference of the rock matrix,
which retards the spread of solute in the fluid.

The mechanical mixing effects modeled by the term jmech are more complicated
[64]. Perhaps the most rigorously analyzed of these effects is Taylor diffusion.
This phenomenon, explained by British fluid mechanician Sir G.I. Taylor [144],
results in longitudinal spreading of solute in a thin tube, as a result of radial solute
diffusion driven by the parabolic Hagen–Poiseuille velocity profiles analyzed in
Section 2.4.

Figure 5.1 illustrates the effect qualitatively. In the absence of molecular diffu-
sion, an initial slug having uniform concentration would advect longitudinally,
yielding the parabolic concentration profile shown in Figure 5.1b. But diffusion
causes mass from the solute to spread in directions transverse to the tube’s axis,
yielding a slug of nonzero solute concentration that is longer in the axial direc-
tion than the original slug. In short, longitudinal advection, varying according to
the Hagen–Poiseuille solution (2.21), couples with transverse molecular diffusion
governed by Fick’s law to yield a longitudinal spreading effect.

Other effects that contribute to mechanical mixing include variable path
lengths, which result in different longitudinal transit times for fluid particles
that start at nearby positions, and stream splitting, in which initially nearby fluid
particles follow different pore channels through the rock. Figure 5.2 shows these
effects schematically.

The Bear–Scheidegger model of these effects rests on four premises, based on
the conceptual decomposition

jmech = jlong + jtran.
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Figure 5.2 Mechanical dispersion
effects. (a) Solute spreading as a result of
variable path lengths. (b) Solute
spreading as a result of stream splitting.

(a) (b)

Here, jlong captures the solute spreading longitudinally (parallel to the filtration
velocity 𝜙v), and jtran models transverse spreading.

1. The magnitude of the longitudinal flux increases linearly with the filtration
velocity:

∥jlong∥= 𝛼L ∥𝜙v∥∥∇c∥ . (5.8)

Here, the longitudinal dispersivity 𝛼L is a positive parameter having dimen-
sion L.

2. Similarly,

∥jtran∥= 𝛼T ∥𝜙v∥∥∇c∥, (5.9)

where the transverse dispersivity 𝛼T is a positive parameter also having
dimension L.

3. The molecular diffusion coefficient DM is much smaller in magnitude than
𝛼T ∥𝜙v∥, and 𝛼T < 𝛼L.

4. The dispersivities 𝛼L, 𝛼T are properties of the rock matrix that are independent
of the mechanical properties of the fluid phase.

The fourth premise is problematic. Empirical studies indicate that the values
of 𝛼L and 𝛼T depend not only on the rock but also on the spatial scale of obser-
vation, increasing in magnitude as the scale increases. At the laboratory bench
scale—roughly 1 m—dispersivities in the range 10−2–10 m are typical; at the field
scale—say 102 m—dispersivities may range from 10 to 102 m [59,108]. This scale
dependence arises from spatial heterogeneity in such properties as permeability
or hydraulic conductivity [58, Chapter 5]. Owing to uncertainty about subsur-
face media, we can quantify these heterogeneities and the resulting fluid-velocity
fluctuations only through statistics such as means, covariances, and correlation
lengths. The parameters 𝛼L and 𝛼T , when modeled by Eqs. (5.8) and (5.9) and mea-
sured at the bench scale, cannot account for the velocity fluctuations that occur
because of heterogeneities at larger scales.

This conundrum notwithstanding, the following standard model for hydrody-
namic dispersion incorporates the observations listed above in a tensor form:

j = −𝜙D∇c,
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D = DMI + 𝛼L||v||W + 𝛼T||v||(I − W). (5.10)

Here, I denotes the identity tensor, and

W = 1
||v||2 v⊗ v.

Exercise 5.2 Use the definition (2.33) of dyadic products and the result of
Exercise 2.17 to show that, with respect to any orthonormal basis, the tensor W has
matrix representation

1
||v||2

⎡⎢⎢⎣
𝑣1𝑣1 𝑣1𝑣2 𝑣1𝑣3
𝑣2𝑣1 𝑣2𝑣2 𝑣2𝑣3
𝑣3𝑣1 𝑣3𝑣2 𝑣3𝑣3

⎤⎥⎥⎦
.

With this model of hydrodynamic dispersion, Eq. (5.7) becomes the
advection–diffusion-reaction equation:

𝜕

𝜕t
(𝜙c) + ∇ ⋅ (𝜙vc) − ∇ ⋅ (𝜙D∇c) = r. (5.11)

In many applications, there is a fixed value c that characterizes the transport, such
as the concentration at a source or the maximum observed concentration. In these
cases, it is common to replace the concentration c(x, t) by a dimensionless normal-
ized concentration c(x, t)∕c. This numerically convenient substitution leaves
Eq. (5.11) unchanged.

As remarks above suggest, the scale dependence of the dispersivities 𝛼L and 𝛼T
has led to skepticism about whether a model as simple as Eq. (5.10) can adequately
model the spreading of solutes in underground fluid flows. American engineer
Lynn Gelhar et al. [59] and Israeli hydrologist Gedeon Dagan [41,42] have pio-
neered ongoing, rigorous efforts to understand how diffusive fluxes depend on the
spatial length scales of heterogeneity in porous media. Consequently, even though
Eq. (5.11) remains in wide use, many open questions persist about the best way to
characterize hydrodynamic dispersion mathematically.

5.2 One-Dimensional Advection

To understand the properties of solutions to Eq. (5.11), it helps to examine sim-
ple cases in which r = 0, 𝜙 is constant, and ∇ ⋅ v = 0. These hypotheses reduce
Eq. (5.11) to the advection–diffusion equation:

𝜕c
𝜕t

+ v ⋅ ∇c − ∇ ⋅ (D∇c) = 0. (5.12)
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Further restricting attention to one space dimension in which 𝑣 and D are positive
constants reduces Eq. (5.12) to

𝜕c
𝜕t

+ 𝑣 𝜕c
𝜕x

− D 𝜕
2c
𝜕x2 = 0. (5.13)

The inequality 𝑣 > 0 implies that fluid flows from left to right.
This linear partial differential equation (PDE) is parabolic in the concentration

(or normalized concentration) c, so the appropriate auxiliary conditions are the
same types as those reviewed in Section 3.4 for the time-dependent groundwater
flow equation. For the same reason, we expect diffusion to exert a smoothing effect
on the concentration profile c(x, t) as t increases, by analogy with the parabolic heat
equation discussed in Section 4.2.

However, in practice, owing to competition between the advection and diffu-
sion terms, Eq. (5.13) exhibits a split personality. To weigh the two effects in a
fashion that is independent of the subjective choice of physical units, we follow
an approach introduced in Section 2.3, converting the equation to dimensionless
form. Consider an application in which there exists a characteristic length L, such
as the length of a flow channel or the diameter of an inlet.

Exercise 5.3 Define dimensionless space and time variables

𝜉 = x
L
, 𝜏 = 𝑣t

L
.

Show that Eq. (5.13) is equivalent to the following PDE:

𝜕c
𝜕𝜏

+ 𝜕c
𝜕𝜉

− 1
Pe
𝜕

2c
𝜕𝜉2 = 0. (5.14)

Here, Pe = 𝑣L∕D is the dimensionless Péclet number, named for nineteenth-century
French physicist Jean Claude Eugène Péclet.

5.2.1 Pure Advection and the Method of Characteristics

When Pe is much larger than 1, advection dominates the smoothing effects of
diffusion. In cases where diffusion is negligible compared with advection, for
example in flows where the filtration velocity is large in response to large applied
pressure gradients, the dimensionless transport equation (5.13) reduces to the
advection equation

𝜕c
𝜕𝜏

+ 𝜕c
𝜕𝜉

= 0,

or, in dimensional form,

𝜕c
𝜕t

+ 𝑣 𝜕c
𝜕x

= 0. (5.15)
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c

x1

1
v

Figure 5.3 Initial concentration profile c(x, 0) for a
sample initial-value problem involving pure
advection.

This limiting case is a first-order hyperbolic PDE, whose solutions differ qualita-
tively from those arising when the diffusion term is present.

To see the difference, consider an initial-value problem for Eq. (5.15), posed for
−∞ < x < ∞ and t > 0 and having initial condition

c(x, 0) = c0(x) =
{

1, if 0 ≤ x ≤ 1,
0, otherwise.

(5.16)

This problem models diffusion-free solute transport along an infinite aquifer, with
the solute initially confined to a spatially uniform slug between x = 0 and x = 1,
as shown in Figure 5.3. We have posed the condition (5.16) along an initial curve
in the (t, x)-plane, namely the curve t = 0. Section 5.2.2 discusses appropriate aux-
iliary conditions for Eq. (5.15) more generally.

Wherever the concentration c(x, t) is sufficiently smooth, it defines a surface
(x, t, c(x, t)) over the (x, t)-plane, as sketched in Figure 5.4. Consider any contin-
uously differentiable path (x(s), t(s)) in the (x, t)-plane for which the derivative
(x′(s), t′(s)) never vanishes. Wherever c(x, t) is differentiable, the chain rule gives
its rate of change along such a path as

t′(s)𝜕c
𝜕t

+ x′(s) 𝜕c
𝜕x

= dc
ds
. (5.17)

The left side of Eq. (5.17) is the directional derivative of c(x, t) with respect to
the vector (x′(s), t′(s)) tangent to the path.

Of special interest are paths (x(s), t(s)) along which the left side of the PDE
(5.15) coincides with the directional derivative (5.17). Comparing the left sides of
Eqs. (5.15) and (5.17) shows that one can construct such paths by imposing the
conditions

t′(s) = 1, x′(s) = 𝑣,

or, more simply,
x′(s)
t′(s)

= dx
dt

= 𝑣. (5.18)

This ordinary differential equation has general solution x = 𝑣t + C, where C is a
constant of integration. According to Eq. (5.17),

dc
ds

= 0 (5.19)

along such paths.
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Figure 5.4 Geometry of the method of
characteristics, showing a hypothetical
solution surface (x, t, c(x, t)) and a
differentiable path (x(s), t(s)) in the
(x, t)-plane.

x t

(x(s), t(s))

c(x, t)

The ordinary differential equation (5.19) is the characteristic equation for
Eq. (5.15); Eq. (5.18) defines a family of paths called characteristic curves. Thus,
we have reduced the PDE (5.15) to an ordinary differential equation describing
how the concentration changes as we move along a characteristic curve. In par-
ticular, c remains constant along paths in the (x, t)-plane for which x = 𝑣t + C.
To determine the concentration value c(x, t), follow the characteristic curve that
passes through (x, t) to the point where the curve intersects the initial curve, where
a concentration value is prescribed.

Exercise 5.4 Use this reasoning, called the method of characteristics, to show
that the function c(x, t) = c0(x − 𝑣t) solves the PDE (5.15), subject to the initial con-
dition (5.16). Sketch the solution at several values of t > 0.

In the solution found in Exercise 5.4, the contaminant slug moves downstream
with speed 𝑣, its shape remaining unchanged. There is no smoothing; sharp con-
centration fronts remain intact as t increases.

Exercise 5.5 Solve the advection-reaction equation
𝜕c
𝜕t

+ 𝑣 𝜕c
𝜕x

= −𝜅c,

subject to the initial condition (5.16). Here 𝜅 signifies a constant, positive decay coef-
ficient. In what physical settings might such an equation arise?

5.2.2 Auxiliary Conditions for First-Order PDEs

As with the time-dependent and steady flow equations derived in Chapter 3, cer-
tain types of auxiliary conditions yield well posed problems for first-order PDEs, of
which the advection equation (5.15) is the simplest example. The method of char-
acteristics holds the key: We can prescribe values of the solution along any curve
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x

t

Characteristic
curves

Admissible
initial curve

x

t

Characteristic
curves

Inadmissible
initial curve

(a) (b)

Figure 5.5 (a) An admissible initial curve for a first-order PDE. This curve is nowhere
tangent to the characteristic curves, and no characteristic curve intersects it more than
once. (b) An initial curve that is inadmissible, because characteristic curves intersect it
more than once.

in the (x, t)-plane that is nowhere tangent to a characteristic curve and that no
characteristic curve intersects more than once. These conditions ensure that solu-
tion values propagating along characteristic curves, according to the characteristic
equation, do not conflict with other prescribed initial or boundary values.

From a physical perspective, when 𝑣 > 0, this restriction admits conditions of
the following types:

● Initial conditions, such as prescribed values of c(x, t) on some interval of the line
t = 0;

● Boundary conditions, such as prescribed values of c(x, t) on some interval of the
line x = 0;

● Some combination of initial and boundary conditions, such as prescribed values
of c(x, t) along the union of the nonnegative x- and t-axes.

Mathematicians refer to all such curves as initial curves and to the problem
consisting of the first-order PDE together with prescribed data along an initial
curve as a Cauchy problem. From this more mathematical perspective, the range
of possible initial curves is quite broad. Figure 5.5a shows an admissible initial
curve in the (x, t)-plane—a curve that would be hard to characterize using strictly
physical interpretations of the terms boundary condition and initial condition.
Figure 5.5b shows a boundary-like initial curve that is inadmissible, because char-
acteristic curves intersect it more than once.

5.2.3 Weak Solutions

The initial condition (5.16) is not differentiable, and as a consequence the method
of characteristics yields a solution to the PDE (5.15) that is not differentiable. Such
a function cannot be a solution in the classical sense, since it lacks the smoothness
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required to allow for partial differentiation throughout the (x, t)-domain. Instead,
it is a weak solution—a term encountered in Section 4.3. To make this term pre-
cise, consider the following exercise.

Exercise 5.6 Let c(x, t) be a solution to the initial-value problem given by
Eqs. (5.15) and (5.16). Let 𝜑(x, t) be any infinitely differentiable test function such
that 𝜑→ 0 as |x| → ∞ and also as t → ∞. Use integration by parts to show that

∫

∞

0 ∫

∞

−∞
c
(
𝜕𝜑

𝜕t
+ 𝑣𝜕𝜑

𝜕x

)
dx dt +

∫

∞

−∞
c0(x)𝜑(x, 0) dx = 0. (5.20)

Thus, multiplication by the smooth test function 𝜑 and integration by parts shift
differential operators from the solution c to the smooth function 𝜑. Observe that
Eq. (5.20) not only holds for classical solutions but can also make sense in cases
when c is not differentiable.

A function c(x, t) is a weak solution of the initial-value problem if Eq. (5.20)
holds for every infinitely differentiable function 𝜑(x, t) that vanishes outside some
bounded region in the (x, t)-plane. According to this definition, every classical
solution is a weak solution. But the weak formulation admits solutions that fail
to satisfy some smoothness conditions that, in a strict sense, the PDE requires.

The following exercise shows how to extend the notion of weak solution to
second-order PDEs, such as those encountered in Section 4.3.

Exercise 5.7 Consider the porous medium equation,
𝜕u
𝜕t

− ∇2(un) = 0,

posed for t > 0 on a simply connected region  in three-dimensional space having a
smooth boundary 𝜕. Impose an initial condition u(x, 0) = u0(x). Let 𝜑(x, t) be any
infinitely differentiable test function that vanishes on 𝜕 and for which 𝜑→ 0 as
t → ∞. Suppose u(x, t) is a solution.

(A) Use integration by parts to show that

∫

∞

0

𝜕u
𝜕t
𝜑 dt = −

∫

∞

0
u𝜕𝜑
𝜕t

dt − u0(x)𝜑(x, 0).

(B) Recall that ∇2 = ∇ ⋅ ∇. By the product rule, ∇ ⋅ (f∇g) = ∇f ⋅ ∇g + f∇2g for suf-
ficiently differentiable functions f and g. Prove that

∫


𝜑∇2un d𝑣 =
∫
𝜕

𝜑∇un ⋅ n d𝜎 −
∫


∇un ⋅ ∇𝜑 d𝑣. (5.21)

Here n denotes the unit-length vector field on 𝜕 pointing outward from .
Because the test function 𝜑 vanishes on 𝜕, the identity (5.21) reduces to

∫


𝜑∇2un d𝑣 = −
∫


∇un ⋅ ∇𝜑 d𝑣.
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The results of Exercise 5.7 suggest the following definition: A function u(x, t) is a
weak solution to the porous medium equation onwith initial condition u(x, 0) =
u0(x) if

∫

∫

∞

0

(
u𝜕𝜑
𝜕t

− ∇un ⋅ ∇𝜑
)

dt d𝑣 +
∫


u0(x)𝜑(x, 0) d𝑣, (5.22)

for all infinitely differentiable test functions 𝜑(x, t) that vanish on 𝜕 and as
t → ∞. Equation (5.22) clearly allows solutions that are not twice differentiable.
It also allows solutions in which ∇un exhibits discontinuities, since it requires
only that the function ∇un ⋅ ∇𝜑 be integrable.

We encounter weak solutions again later in this chapter and in Chapter 6.

5.3 The Advection–Diffusion Equation

Next, we examine the effect that a positive diffusion coefficient D has on solutions
of the one-dimensional, constant-coefficient advection–diffusion equation (5.13).
This equation possesses classical solutions. To begin the derivation, we adopt a
moving coordinate system:

𝜉(x, t) = x − 𝑣t, 𝜏(x, t) = t. (5.23)

Exercise 5.8 In terms of the variables 𝜉, 𝜏 introduced in Eq. (5.23), define
ĉ(𝜉(x, t), 𝜏(x, t)) = c(x, t). Use the chain rule to show that Eq. (5.14) implies the
following one-dimensional heat equation for ĉ:

𝜕ĉ
𝜕𝜏

− D 𝜕
2ĉ
𝜕𝜉2 = 0. (5.24)

We examine two solutions to this equation, each associated with a different initial
condition imposed on the infinite spatial domain −∞ < 𝜉 <∞.

5.3.1 The Moving Plume Problem

In the moving plume problem, the initial condition is

ĉ(𝜉, 0) = 𝛿(𝜉). (5.25)

Here, 𝛿 denotes the one-dimensional Dirac 𝛿 distribution, whose defining property
parallels that of its two-dimensional analog, given in Eq. (4.8): If  is any interval
on the real line and 𝜑 is any smooth function, then

∫


𝜑(𝜉)𝛿(𝜉 − y) d𝜉 =
{
𝜑(y), if y ∈ ,

0, otherwise.
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Physically, the initial condition (5.25) represents an idealized, point-source limit
of the initial condition in Eq. (5.16), with all the contaminant mass concentrated
at the point 𝜉 = 0 at time 𝜏 = 0.

The initial condition (5.25) together with the origins of the PDE as a mass bal-
ance imply the following mass conservation constraint: For any 𝜏 > 0,

∫

∞

−∞
ĉ(𝜉, 𝜏) d𝜉 =

∫

∞

−∞
ĉ(𝜉, 0) d𝜉 =

∫

∞

−∞
𝛿(𝜉) d𝜉 = 1. (5.26)

Also, for any finite value of 𝜏 we expect the solution to decay far from the source:

lim|𝜉|→∞
ĉ(𝜉, 𝜏) = 0 = lim|𝜉|→∞

𝜕ĉ
𝜕𝜉

(𝜉, 𝜏). (5.27)

We solve the initial-value problem defined by Eqs. (5.24) and (5.25) using results
from the method of self-similar solutions, described in Section 4.2.

Exercise 5.9 Show that the heat equation (5.24) possesses a symmetry in the form
of a stretching transformation and that self-similar solutions to this equation have
the form

ĉ(𝜉, 𝜏) = 𝜏
b∕2U(𝜁), (5.28)

for some constant b, where 𝜁 = 𝜉𝜏
−1∕2 is a similarity variable.

Exercise 5.10 Substitute the expression (5.28) for ĉ into the PDE (5.24) to conclude
that U(𝜁) must satisfy the ordinary differential equation

U ′′(𝜁) + 𝜁

2D
U ′(𝜁) + b

2D
U(𝜁) = 0. (5.29)

To solve this equation, it helps to determine a value for the exponent b.

Exercise 5.11 Using the representation (5.28), show that

∫

∞

−∞
ĉ(𝜉, 𝜏) d𝜉 = 𝜏

b∕2+1∕2
∫

∞

−∞
U(y) dy. (5.30)

Equation (5.30) shows that, for nonzero U, the integral has a constant value, as
the condition (5.26) requires, only if b = −1.

The ordinary differential equation (5.29) therefore reduces to

U ′′ + 𝜁

2D
U ′ + 1

2D
U = U ′′ + 1

2D
(𝜁U)′ = 0.

It follows that U′ + 𝜁U∕(2D) is constant. The decay conditions (5.27) imply that
U(𝜁) → 0 and U ′(𝜁) → 0 as |𝜁 | → ∞, which is possible only if this constant is 0.
Therefore,

U ′ + 1
2D

𝜁U = 0. (5.31)
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vt1 vt2

c

x

v

Area = 1

Figure 5.6 The solution c(x, t) to the moving plume problem at two different times.

Exercise 5.12 Verify that Eq. (5.31) has general solution

U(𝜁) = C exp
(
− 𝜁

2

4D

)
, (5.32)

where C is an arbitrary constant.

From Eq. (5.32) it follows that

ĉ(𝜉, 𝜏) = C exp
(
− 𝜉

2

4D𝜏

)
.

We determine the constant C by imposing the condition (5.26), getting

ĉ(𝜉, 𝜏) = 1√
4𝜋D𝜏

exp
(
− 𝜉

2

4D𝜏

)
= ĉ

𝛿
(𝜉, 𝜏). (5.33)

Therefore, the solution to the moving plume problem is

c(x, t) = 1√
4𝜋Dt

exp
[
−(x − 𝑣t)2

4Dt

]
.

Figure 5.6 shows graphs of c(x, t), at two different values of time t.
The solution c

𝛿
(𝜉, 𝜏) given by (5.33) is the fundamental solution to the

heat equation. There are other ways to derive this solution; see, for example,
[65, Section 5-4]. From a heuristic viewpoint, the fundamental solution gives the
response to an initial, unit-strength point source centered at spatial position 0.
Because the heat equation (5.24) is linear, this heuristic suggests a superposition
principle for obtaining responses to more complicated initial conditions: Super-
pose weighted responses to unit-strength point sources centered at points where
the initial condition is nonzero. Section 5.3.2 exploits this principle.

5.3.2 The Moving Front Problem

We now examine a second initial-value problem for Eq. (5.24), the moving front
problem. Here the initial condition is

ĉ(𝜉, 0) = cI(𝜉) =
{

1, if 𝜉 ≤ 0,
0, if 𝜉 > 0.

(5.34)
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Figure 5.7 Graph of the
fundamental solution to the
heat equation showing the area
represented by the integral in
Eq. (5.35).

η

Area = 1/2

0 ξ

This condition models a constant source of solute at 𝜉 = 0, which we regard heuris-
tically as a continuum of unit-strength point sources in the interval 𝜉 ≤ 0.

Superposition of the responses to these point sources yields

ĉ(𝜉, 𝜏) =
∫

∞

−∞
cI(y)
⏟⏟⏟

(I)

ĉ
𝛿
(𝜉 − y, 𝜏)

⏟⏞⏞⏞⏟⏞⏞⏞⏟

(II)

dy. (5.35)

In this integral, the factor (I), obtained from the initial condition (5.34), represents
the weighting factor as a function of position y in the domain of integration. The
fundamental solution (II), defined in Eq. (5.33), gives the response at time 𝜏 to a
unit-strength point source 𝛿(𝜉 − y) centered at spatial position y = 𝜉.

Using Figure 5.7 to calculate the integral in Eq. (5.35) yields

ĉ(𝜉, 𝜏) =
∫

0

−∞
ĉ
𝛿
(𝜉 − y

𝜂

, 𝜏) dy =
∫

∞

𝜉

ĉ
𝛿
(𝜂, 𝜏) d𝜂 = 1

2
−
∫

𝜉

0
ĉ
𝛿
(𝜂, 𝜏) d𝜂

= 1
2
−
∫

𝜉

0

1√
4𝜋D𝜏

exp
(
− 𝜂

2

4D𝜏

)
d𝜂

= 1
2
−
∫

𝜉∕
√

4D𝜏

0

1√
𝜋

e−y2 dy = 1
2
− 1

2
erf

(
𝜉√
4D𝜏

)
.

Here,

erf (u) = 2√
𝜋 ∫

u

0
e−y2 dy

is the error function. Substituting for 𝜉 and 𝜏 gives

c(x, t) = 1
2
− 1

2
erf

(
x − 𝑣t√

4Dt

)
. (5.36)

Figure 5.8 shows graphs of this solution, at a fixed time t > 0, for several values
of the diffusion coefficient D. Two facts are apparent:

1. For positive values of D, the sharp front at x = 0 in the initial condition spreads
out to a smooth solution as t increases, with positive values of c(x, t) instanta-
neously appearing at all values of x. (As x → ∞, these values decay to 0 rapidly.)
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c(x, t)

x

D = 0

D small
D large

vt

Figure 5.8 Graph of moving front solutions
(5.36) to the advection–diffusion equation
for different values of the diffusion
coefficient D.

Exact solution

Numerical solution
1

x

c Figure 5.9 Snapshot of a
numerical solution to the
moving-front problem using a
centered-in-space
finite-difference approximation to
the advection–diffusion equation.

This observation confirms the infinite propagation speed that we associate with
the heat equation in Section 4.1.

2. As D decreases, the moving front, centered at x = 𝑣t, remains steep for longer
times. The case D → 0 corresponds to the pure advection equation (5.15).

Fluid-flow problems whose solutions have steep fronts confront numerical mod-
elers with vexing challenges. At the root of the problem is the use of discrete grids
to approximate spatial derivatives: It is impossible to resolve a front whose width
is much smaller than the width h of a cell in the computational grid.

This fundamental difficulty manifests itself in several ways, depending on
the type of numerical approximations employed. For example, finite-difference
or finite-element discretizations that possess high-order spatial accuracy, as
measured by the truncation errors of the derivative approximations, tend to
produce solutions that exhibit spurious oscillations near steep fronts. Figure 5.9
shows a snapshot in time of a typical numerical solution of the one-dimensional
advection–diffusion equation using a method in which the spatial truncation
error is (h2), where h is the grid spacing. This approximate solution captures the
sharp front, but it oscillates near the front, in contrast to the true solution. Amer-
ican engineer William G. Gray and Canadian-American geohydrologist George
F. Pinder [63] have shown that the spurious numerical oscillations arise from
numerically induced errors in the propagation speeds of the short-wavelength
Fourier modes needed to resolve the sharp front.

On the other hand, finite-difference or finite-element discretizations that
possess low-order spatial accuracy, such as upstream weighted approximations,
introduce truncation errors that add artificial numerical diffusion. This effect
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Figure 5.10 Snapshot of a numerical
solution to the moving-front problem
using an upstream-weighted
finite-difference approximation to the
advection–diffusion equation.

Exact solution

Numerical solution

1

c

x

eliminates spurious oscillations at the expense of excessive smearing of the sharp
front. Figure 5.10 shows a snapshot in time of a typical approximate solution of
the one-dimensional advection–diffusion equation, using a backward-in-space
finite-difference method in which the spatial truncation error is (h). For this
numerical approximation, the lowest-order term in the truncation error has a
diffusion-like form; see [5, Section 9.4.2] for an explanation.

Numerical modelers of advection-dominated transport in porous media must
navigate between the Scylla of spurious oscillations and the Charybdis of numeri-
cal diffusion. In some applications, the need to capture sharp fronts outweighs the
problems associated with oscillations, and high-order spatial approximations are
appropriate. However, if the numerically induced oscillations trigger additional
effects, such as threshold-limited chemical reactions, then low-order spatial
approximations may yield more realistic model results, despite the artificial
smearing. In some nonlinear problems, such as those explored in Section 6.4,
some form of numerical diffusion is necessary to obtain physically realistic results.
One way to manage either type of error is to use adaptive local grid refinement
algorithms, which can control the numerical errors near sharp moving fronts by
reducing the sizes of the spatial grid cells in a small region around the fronts. For
details, see [5, Chapter 9].

5.4 Transport with Adsorption

Many flows in porous media involve exchanges of mass between phases. Consider
transport of a solute, having species index i, in a fluid phase F flowing through a
porous medium. If the solute adsorbs onto the rock phase R, then we must account
for the mass of species i—which we call the adsorbate, regardless of the phase in
which it resides—using mass balance equations for constituents (i,F) and (i,R). To
simplify notation, throughout this section we denote the concentrations of these
constituents as follows:

c(i,F)(x, t) = c(x, t) Concentration in fluid,

c(i,R)(x, t) = a(x, t) Concentration in rock.
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5.4.1 Mass Balance for Adsorbate

If the rock is stationary and the adsorbate does not diffuse in the rock, then the
mass balance equations for species i in the phases F and R are as follows:

𝜕

𝜕t
(𝜙c) = −∇ ⋅ (𝜙vc) + ∇ ⋅ (𝜙D∇c) + r(i,F),

𝜕

𝜕t
[(1 − 𝜙)a] = r(i,R), (5.37)

respectively. If no chemical reactions produce or consume the adsorbate, then
r(i,F) + r(i,R) = 0, so adding Eqs. (5.37) gives the total adsorbate mass balance,

𝜕

𝜕t
[𝜙c + (1 − 𝜙)a] = −∇ ⋅ (𝜙vc) + ∇ ⋅ (𝜙D∇c). (5.38)

In many applications, adsorption is a fast reaction. In these cases, we typically
neglect the reaction kinetics and assume that the constituents (i,F) and (i,R) reach
a concentration-dependent equilibrium instantaneously, so that a = a(c). This
equilibrium relationship is called an adsorption isotherm, since it is typically
valid for a fixed temperature. Incorporating this model into the adsorbate mass
balance (5.38) yields

𝜕

𝜕t
[𝜙c + (1 − 𝜙)a(c)] = −∇ ⋅ (𝜙vc) + ∇ ⋅ (𝜙D∇c). (5.39)

Among the commonly used models of adsorption isotherms are the following:

● The linear isotherm, which has the form a(c) = 𝜅c for a positive, empirically
determined constant 𝜅.

● The Freundlich isotherm, named for German chemist Herbert Freundlich
and having the form a(c) = 𝜅cn, where 𝜅 and n are positive, empirically deter-
mined constants. The utility of this model arises not from any theoretical foun-
dation but from its amenability to experimental curve fitting.

● The Langmuir isotherm, named for American chemist Irving Langmuir and
having the form

a(c) =
𝜅1c

1 + 𝜅2c
, (5.40)

for positive constants 𝜅1, 𝜅2. This form enjoys some theoretical foundation; see
[92]. Nevertheless, in practice one must determine the parameters 𝜅1, 𝜅2 empiri-
cally. In contrast to the linear and Freundlich isotherms, the Langmuir isotherm
has a horizontal asymptote that represents the saturated state of the rock:

lim
c→∞

a(c) =
𝜅1

𝜅2
.
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Figure 5.11 (a) Linear isotherm. (b)
Freundlich isotherms for different values of
the positive exponent n. (c) Langmuir
isotherm showing the asymptotic value
𝜅1∕𝜅2.

a

c

a

c

a

c

κ1/κ2

n > 1

n < 1

(c)

(b)

(a)

As Figure 5.11 shows, the graph of the Langmuir isotherm is concave down, that
is, a′′(c) < 0, while the concavity of the Freundlich isotherm depends on the choice
of exponent n. One can regard the linear isotherm as a reasonable approximation
to the Langmuir isotherm when the adsorbate concentration c in the fluid is small.

5.4.2 Linear Isotherms and Retardation

Simple analyses lend insight into the effects that the linear and Langmuir
isotherms exert on adsorbate transport. Consider first the linear isotherm. If the
porosity is constant and the fluid flow is incompressible, then ∇ ⋅ (𝜙v) = 0, and
the total adsorbate mass balance (5.38) becomes

𝜕

𝜕t
[𝜙 + 𝜅(1 − 𝜙)]c = −𝜙v ⋅ ∇c + ∇ ⋅ (𝜙D∇c). (5.41)

When𝜙 and𝜅 are constants, we can simplify this equation even further by defining
a retardation factor

R = 1 + 𝜅(1 − 𝜙)
𝜙

.

Since 𝜅 > 0, R > 1. Substituting this factor into Eq. (5.41) and dividing by𝜙R yields

𝜕c
𝜕t

+ v
R
⋅ ∇c − ∇ ⋅

(
D
R
∇c

)
= 0. (5.42)

Equation (5.42) has the same form as the advection–diffusion equation (5.12) in
the absence of adsorption, with the advection and diffusion coefficients replaced
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by retarded transport coefficients v∕R and D∕R. Thus, the effect of adsorption in
the case of a linear adsorption isotherm is to cause adsorbate plumes and fronts to
advect and diffuse more slowly than they would in the absence of adsorption.

5.4.3 Concave-down Isotherms and Front Sharpening

The Langmuir isotherm has more exotic effects. These are easiest to analyze in the
one-dimensional version of the total adsorbate mass balance (5.39) in which the
fluid velocity is constant and hydrodynamic dispersion is negligible:

𝜕

𝜕t
[𝜙c + (1 − 𝜙)a(c)] + 𝑣 𝜕c

𝜕x
= 0. (5.43)

If the porosity 𝜙 is constant, then the chain rule yields

[𝜙 + (1 − 𝜙)a′(c)]𝜕c
𝜕t

+ 𝑣 𝜕c
𝜕x

= 0. (5.44)

We now apply the method of characteristics discussed in Section 5.2. If the con-
centration c(x, t) is sufficiently smooth, then along any continuously differentiable
path (x(s), t(s)) in the (x, t)-plane with nonzero derivative (x′(s), t′(s)), the chain rule
requires

t′(s)𝜕c
𝜕t

+ x′(s) 𝜕c
𝜕x

= dc
ds
. (5.45)

We seek paths along which this directional derivative is identical to the left side of
Eq. (5.44), that is, paths for which

t′(s) = 𝜙 + (1 − 𝜙)a′(c), x′(s) = 𝑣.

Equivalently,
x′(s)
t′(s)

= dx
dt

= U(c), (5.46)

where

U(c) = 𝑣

𝜙 + (1 − 𝜙)a′(c)
. (5.47)

Along these characteristic curves, the right sides of Eqs. (5.43) and (5.45) must
agree. Thus, the concentration c obeys the characteristic equation

dc
ds

= 0 (5.48)

along characteristic curves.
This result has two consequences. The first arises from the observation that loci

of constant concentration travel with speed U(c) given by Eqs. (5.46) and (5.47).
Since 0 < 𝜙 < 1, U(c) < 𝑣 whenever a′(c) > 1. Under this condition, Langmuir
adsorption retards the advective transport of the adsorbate.
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Figure 5.12 Graph of the ramp-like
initial concentration profile for the
initial-value problem (5.49).

c(x,0)

cmax

x0 x

The second, more interesting consequence arises from the fact that a′′(c) < 0.
This inequality implies that solute concentration fronts tend to sharpen in time.
To understand this effect, assume that we have a concentration profile prescribed
along an initial curve in the (x, t)-plane. Each of the characteristic curves defined
by Eq. (5.46) is a straight line, whose slope U(c) depends on the value of c where
the line intersects the initial curve.

Exercise 5.13 Use the fact that a′′(c) < 0 to show that U(c) in Eq. (5.47) is an
increasing function of c.

Consider, for example, the ramp-like initial-boundary condition

c(0, t) = cmax , t ≥ 0;

c(x, 0) =
{

cmax − (cmax ∕x0)x, if 0 < x ≤ x0,

0, if x > x0,
(5.49)

drawn in Figure 5.12. For this Cauchy problem, the initial curve is the union of the
positive x-axis with the nonnegative t-axis.

Since the speed U(c) increases with c by Exercise 5.13, the characteristic curves
for the initial-boundary conditions (5.49), having slopes dx∕dt = U(c), must inter-
sect at some finite time ts, as shown in Figure 5.13. But Eq. (5.48) requires the value
of the concentration c to remain constant along characteristic curves, so allowing
the characteristic curves to cross would produce a multivalued—and hence phys-
ically unrealistic—solution, starting at time ts.

The resolution, suggested in Figure 5.14, is to allow the solution c(x, t) to develop
a jump discontinuity, or shock. Such a solution is necessarily a weak solution, as
discussed in Section 5.2, since the PDE (5.43) cannot hold in the strict sense at a
discontinuity. One can guarantee a well-defined solution by choosing one of the
characteristic curves emanating from the interval [0, x0] on the x-axis in Figure 5.13
to serve as the boundary, for t ≥ ts, between the region where dx∕dt = U(cmax ) and
the region where dx∕dt = U(0). But there are infinitely many such characteristic
curves. Simply requiring the solution to be single-valued does not suffice to define
c(x, t) uniquely.
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x

t

x0

dx/dt = U(0)

dx/dt = U (cmax)

ts

Figure 5.13 Characteristic curves
associated with the initial-value
problem (5.49) showing that a
concave-down adsorption isotherm
causes characteristic curves to
intersect.

x

t

x0

dx/dt = U (0)

dx/dt = U(cmax)

ts

Shock speed U (cs)
Figure 5.14 Resolution to the
problem of intersecting
characteristics in Figure 5.13 by
allowing a shock moving with
speed U(cs) determined using
an integral form of the total
adsorbate mass balance.

5.4.4 The Rankine–Hugoniot Condition

To choose the correct locus of the shock in the (x, t)-plane, we must find a shock
speed dx∕dt that respects the physics of the problem. For this purpose, assume
that the solution c(x, t) is continuously differentiable everywhere except at a jump
discontinuity located at a point x = Σ(t), to be determined, for t ≥ ts. The PDE

𝜕A
𝜕t

(c) + 𝑣 𝜕c
𝜕x

= 0, where A(c) = 𝜙c + (1 − 𝜙)a(c),

no longer holds throughout any subinterval [xL, xR] of the spatial domain that
contains Σ(t), since the function c(x, t) is no longer differentiable everywhere in
that interval. To calculate the shock speed, we develop a version of the mass bal-
ance equation that relaxes the smoothness requirements on c(x, t).

To make the calculation useful in later problems as well as the current one, let
us examine a more general conservation law having the form

𝜕A
𝜕t

(c) + 𝜕F
𝜕x

(c) = 0, (5.50)

where A(c) denotes an accumulation function and F(c) represents a generic flux
function. For the current problem,

A(c) = 𝜙c + (1 − 𝜙)a(c); F(c) = 𝑣c. (5.51)
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Exercise 5.14 Show that, for any fixed interval [xL, xR] in which Eq. (5.50) holds,

d
dt ∫

xR

xL

A dx + F(c(xR, t)) − F(c(xL, t)) = 0. (5.52)

Equation (5.52) says that the net flux of c at the endpoints xL and xR exactly
balances the rate of accumulation in the interval. This integral conservation law
holds under more general conditions than the differential equation (5.50), since
the former does not assume that c(x, t) is differentiable in the interval [xL, xR].

Now examine the integral in Eq. (5.52) more closely, by splitting it at the
yet-to-be-determined locus Σ(t) of the jump discontinuity:

d
dt ∫

Σ(t)

xL

A dx + d
dt ∫

xR

Σ(t)
A dx + F(c(xR, t)) − F(c(xL, t)) = 0.

By the Leibniz rule,

d
dt ∫

Σ(t)

xL

A dx =
∫

Σ(t)

xL

𝜕A
𝜕t

dx + A(c(Σ−, t)) Σ′(t),

d
dt ∫

xR

Σ(t)
A dx =

∫

xR

Σ(t)

𝜕A
𝜕t

dx − A(c(Σ+, t)) Σ′(t),

where

c(Σ−, t) = lim
x→Σ(t)−

c(x, t), c(Σ+, t) = lim
x→Σ(t)+

c(x, t).

Upon combining the surviving integrals, we find that

∫

xR

xL

𝜕A
𝜕t

dx − [[b]]Σ′(t) + F(c(xR, t)) − F(c(xL, t)) = 0, (5.53)

where

[[⋅]] = lim
x→Σ+

(⋅) − lim
x→Σ−

(⋅)

denotes the jump in any variable (⋅) across the shock.
Now let xL → Σ− and xR → Σ+. In this limit the integral in Eq. (5.53) vanishes,

leaving the identity

Σ′(t) = [[F]]
[[A]]

. (5.54)

Equation (5.54) is the Rankine–Hugoniot condition for the shock speed Σ′(t).
It is a variant of the original conservation law (5.50) valid at a jump discontinuity
in the solution c(x, t).

For the accumulation and flux functions (5.51) of interest in the adsorption prob-
lem, the Rankine–Hugoniot condition yields the following equation:

Σ′(t) = 𝑣[[c]]
[[A]]

= 𝑣

𝜙 + (1 − 𝜙)[[a]]∕[[c]]
. (5.55)
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a

c
c−cs

Slope [[a]]/[[c]]

c+

a+

a1

Figure 5.15 Chord on the isotherm
defining the speed of the adsorbate
concentration shock. Also shown is the
concentration value cs guaranteed by the
mean value theorem.

As Figure 5.15 illustrates, the ratio [[a]]∕[[c]] that appears in the denominator rep-
resents the slope of the chord connecting the points on the isotherm correspond-
ing to upstream and downstream concentration values, c− and c+, respectively, at
the shock Σ(t). By the mean value theorem, there exists a concentration value cs
between c− and c+ such that

a′(cs) =
[[a]]
[[c]]

. (5.56)

Therefore, utilizing the definition (5.47), we can write Eq. (5.55) for the shock
speed as

Σ′(t) = U(cs).

This equation gives the slope of the characteristic curve that separates the region
in Figure 5.14 where dx∕dt = U(c−) from the region where dx∕dt = U(c+).

For the initial-value problem (5.49), U(c−) = U(cmax ) and U(c+) = U(0). The
solution c(x, t), plotted at several values of t, appears in Figure 5.16. This solution
remains continuous until the larger concentration values overtake the smaller
ones at time ts. After that, a shock separating the value cmax from 0 propagates to
the right with a speed U(cs) whose value lies between those associated with the
two endpoint concentrations.

Exercise 5.15 Using the normalized concentration value cmax = 1, the Langmuir
isotherm (5.40), and Eq. (5.56), calculate cs for the initial-boundary conditions (5.49)
in terms of the parameters 𝜅1 and 𝜅2. Use the result to calculate the shock speed U(cs).

c(x,0)

cmax

x0 x

Shock forms at time ts
Figure 5.16 Graphs of the
solution c(x, t) at several time
levels, showing the formation
of a concentration shock under
the influence of a
concave-down adsorption
isotherm.
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In reality, diffusion smooths the sharp concentration profile. Nevertheless, the
method of characteristics, applied in the diffusion-free limit, reveals that any
concave-down adsorption isotherm exerts a sharpening—and hence numerically
vexing—effect on advancing concentration fronts. A similar front-sharpening
effect occurs in multifluid flows in porous media, as Chapter 6 explores.
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6

Multifluid Flows

Complexities arise when several immiscible fluid phases flow through the
rock. The feature that distinguishes these flows from single-fluid flows is the
presence of at least one continuum-scale interface between different fluid phases.
Although we can detect this interface through microscopes, we typically do not
see it or explicitly model it at scales of observation larger than around 10−3 m.
This fact notwithstanding, the physics of microscopic fluid–fluid interfaces exert
profound influences on the macroscopically observable properties of these flows,
so Section 6.1 devotes some attention to the microscopic scale.

Flows of this type occur in a wide range of settings, including:

● Petroleum reservoirs (oil + gas + brine)
● Contaminated aquifers (water + nonaqueous-phase liquids, NAPL)
● Near-surface soils (water + air, possibly with NAPL)
● Carbon dioxide sequestration (brine + CO2)
● Geothermal reservoirs (liquid water + steam).

Far more exotic fluid mixtures appear in applications such as enhanced oil
recovery and groundwater remediation, where various surfactants, foams, and
emulsions flow simultaneously with other fluid phases. In these flows, chemical
reactions and interphase mass transfer play important roles in the design.
Although the balance laws established in Chapter 2 can accommodate these
more complicated physics, this chapter restricts attention to multifluid flows in
which chemical reactions and interphase mass transfer are absent or negligible.
Chapter 7 introduces models of flows with interphase mass transfer.

Throughout this chapter, for simplicity, we treat the permeability as isotropic.
One can relax this assumption; see Section 3.7.

The Mathematics of Fluid Flow Through Porous Media, First Edition. Myron B. Allen.
© 2021 John Wiley & Sons, Inc. Published 2021 by John Wiley & Sons, Inc.
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6.1 Capillarity

6.1.1 Physics of Curved Interfaces

Every interface between immiscible fluids possesses surface energy. We define the
interfacial tension 𝜎 between two immiscible fluids to be the energy per unit
area required to maintain the two-dimensional interface that separates them. For
any pair of chemically homogeneous, immiscible fluids at a fixed temperature, we
treat 𝜎 as a positive constant. (When the fluids are miscible, 𝜎 = 0.) The term inter-
facial tension reflects the fact that the dimension MT−2 of energy per unit area is
the same as the dimension of force per unit length. In this interpretation, 𝜎 gives
the magnitude of the force per unit area tangent to the interface, acting perpen-
dicular to any arc lying in it. This section exploits this interpretation in analyzing
the balance of forces on an interface.

The following principle lies at the core of multifluid flow through porous media:
If the interface between two immiscible fluids is curved, then the fluids have dif-
ferent pressures at the interface. A mathematical explanation of this principle,
reviewed in this subsection, requires the use of integrals along paths and inte-
grals over surfaces. A brief review of integrals over smooth surfaces appears in
Appendix D.

To see how interfacial tension affects fluid pressures, consider any smooth piece
Σ of the surface separating immiscible fluids labeled 1 and 2. Denote the curve
bounding the surface by 𝜕Σ, as drawn in Figure 6.1. Assume the following:

● Σhas a continuously differentiable parametrization (see Appendix D) and there-
fore possesses a unit-length normal vector field n(x) that points toward fluid 2.

● There exists a continuously differentiable, closed path 𝜸, defined on a parameter
interval [a, b], that parametrizes the boundary 𝜕Σ, with ||𝜸′(s)|| = 1 for all s ∈
[a, b].

● The path 𝜸 is oriented positively with respect to the normal vector field n. In
other words, as we look down on the surface from the direction toward which
n points, 𝜸 traces 𝜕Σ counterclockwise, as shown in Figure 6.1.

Σ

γ (s)

n × t
n

t = γ ′(s)

∂Σ

Fluid 1

Fluid 2 Figure 6.1 A piece Σ of smooth surface with
boundary 𝜕Σ, which is parametrized by a smooth
path 𝜸. At each point 𝜸(s) on the path, the vector
t(s) = 𝜸′(s) is tangent to the path and to the
surface; n(s) is perpendicular to the surface, and
n(s) × t(s) is also tangent to the surface but
perpendicular to the path.
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For each parameter value s ∈ [a, b], the unit-length vector t(s) = 𝜸′(s) is tangent
to the path—and hence to the surface Σ—at the point 𝜸(s) on 𝜕Σ. Also tangent to
Σ at 𝜸(s) is the unit-length vector n(𝜸(s)) × t(s), which is perpendicular to the path
at 𝜸(s). In this geometry, the force perpendicular to 𝜸, per unit length of arc, at the
point 𝜸(s) is 𝜎 n(𝜸(s)) × t(s). The total force exerted by interfacial tension along the
arc 𝜸 is therefore

∫𝜸
𝜎 n × t ds =

∫

b

a
𝜎 n(𝜸(s)) × 𝜸′(s) ds.

Denote the pressure of fluid phase 1 by p1 and that of fluid phase 2 by p2. These
pressures give the outward force per unit area acting perpendicular to the sur-
face Σ. If the interface is at equilibrium, these forces on Σ balance the interfacial
force:

∫Σ
p1n da +

∫Σ
p2(−n) da −

∫𝜸
𝜎n × t ds = 0.

Here da denotes the element of surface integration, reviewed in Appendix D.
To simplify this equation, we convert the boundary integral over the path 𝜸 to

a surface integral over Σ. This task uses Theorem D.3.1, a corollary to the Stokes
theorem, also described in Appendix D, with 𝜎n playing the role of the function f
in that theorem:

∫𝜸
𝜎n × t ds =

∫Σ
𝜎 [(∇ ⋅ n)n − n ⋅ (∇n)] da.

See Eq. (D.2) for the representation of n ⋅ ∇n in Cartesian coordinates.

Exercise 6.1 Use the product rule and the fact that n is a unit-length vector field
to show that n ⋅ (∇n) = 0.

It follows from Exercise 6.1 that only the first term in the integral on the right
survives:

∫Σ
(p1 − p2 − 𝜎∇ ⋅ n)n da = 0. (6.1)

Exercise 6.2 Justify the assertion that the only way Eq. (6.1) can hold for arbitrary
pieces Σ of smooth surface is for the integrand to vanish:

p1 − p2 = 𝜎∇ ⋅ n. (6.2)

Equation (6.2), a local force balance, is the Young–Laplace equation, named for
the English physician Thomas Young and the renowned French mathematician
Pierre-Simon Laplace.
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Exercise 6.3 Calling Thomas Young a physician scarcely does him justice. Review
a biography to learn how many fields this early nineteenth-century polymath
advanced through his original contributions. For a detailed biography, see [130].

As a force balance, Eq. (6.2) admits further simplification. Differential geome-
ters identify the function − 1

2
∇ ⋅ n(x) as the mean curvature of Σ at x [147, p. 94].

It measures the rate of change, with respect to position, of the unit normal vec-
tor n(x) at each point x ∈ Σ. To calculate this function, we represent Σ as a level
set F(x) = 0 of some continuously differentiable, real-valued function F for which
∇F(x) never vanishes. Since the vector ∇F(x) is orthogonal to the level set at x, we
can define a unit-length normal vector field for Σ as follows:

n(x) = ∇F(x)
||∇F(x)|| , for x ∈ Σ.

From this expression, one can calculate − 1
2
∇ ⋅ n(x) explicitly.

In this calculation, the direction of n(x) depends on the choice of the function
F; hence, so does the sign of − 1

2
∇ ⋅ n(x). At points x ∈ Σ where the interface bends

toward n(x) in all directions—that is, points whereΣ is concave when viewed from
the side toward which n points—the mean curvature is positive. At points where
the interface bends away from n(x)—whereΣ is convex when viewed from the side
toward which n points, as in Figure 6.1—the mean curvature is negative.

Exercise 6.4 Verify the mean curvatures of the two constant-curvature surfaces
listed below by representing each as a level set of some function F(x).

1. A sphere of radius R, with n pointing away from the center of the sphere, has mean
curvature −1∕R.

2. The side of a circular cylinder of radius R, with n pointing away from the axis has
mean curvature −1∕(2R).

Exercise 6.5 Sketch the surface defined by the equation F(x1, x2, x3) = x1x2 −
x3 = 0, then calculate the mean curvature at x = (0, 0, 0).

By analogy with the result for the mean curvature of the sphere, we define the
mean radius of curvature r of a surface having unit normal vector field n(x) as
follows:

r =
||||||

1
1
2
∇ ⋅ n

||||||
.

Thus, if the mean curvature is negative, as illustrated in Figure 6.1, then 1∕r =
1
2
∇ ⋅ n. With this notation, the Young–Laplace equation (6.2) becomes

pC = p1 − p2 = 2𝜎
r
,

provided p1 is the pressure of the fluid on the concave side of the interface.
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Figure 6.2 A curved interface Σ with the pressure on
the concave side being greater than the pressure on
the convex side.

Σ

n

p1

p2 < p1

We call the pressure difference pC = p1 − p2 the capillary pressure between
the fluids 1 and 2. In particular, for any curved interface between two immiscible
fluids (Figure 6.2):

The pressure on the concave side is greater
than the pressure on the convex side.

6.1.2 Wettability

The Young–Laplace equation (6.2) bears on fluid mechanics in porous media
because all immiscible fluid–fluid interfaces in the pore space are curved. In
the presence of two immiscible fluids, any solid surface exhibits a preferential
affinity for one fluid over the other [103]. This affinity is manifested by a contact
angle 𝜃c between the two fluids where their interface meets the solid surface, as
sketched in Figure 6.3 for two fluids in a solid tube. We call the fluid in which 𝜃c
is an acute angle the wetting fluid W ; the fluid on the other side of the interface
is the nonwetting fluid N. By convention, pC = pN − pW .

To grasp the influence that wettability and capillary pressure exert on fluids in
a porous medium, consider a single cylindrical glass tube having radius R, with
one end inserted into water and the other open to the air above it, as drawn in
Figure 6.4. In this simple physical model of a channel in a porous medium, water
is typically the wetting fluid W , with an acute contact angle 𝜃c. The resulting cur-
vature of the air–water interface results in a pressure difference according to the
Young–Laplace equation. As a consequence, the equilibrium height of water in

Figure 6.3 Wetting fluid W and
nonwetting fluid N in a tube with contact
angle 𝜃c between the wetting fluid and the
solid wall.

θc

W

N
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Water
(W)

Air
(N )

r

l
pN

pW = pN

pW = pN − γWgl

R = r cosθc

Figure 6.4 Capillary rise of water
in a tube open at the top to the air.

the tube differs from the height of water outside the tube. To relate the height dif-
ference l to the radius R of the tube, observe that, at equilibrium, the hydrostatic
equation (2.13) implies that

pN = pW + 𝛾W gl.

Here, the index N signifies the air phase, and 𝛾W denotes the true density of water.
Thus, by definition, pC = pN − pW = 𝛾W gl. But by the Young–Laplace equation,
pC = 2𝜎∕r = (2𝜎 cos 𝜃c)∕R. Equating the two expressions for pC gives Jurin’s law:

l =
2𝜎 cos 𝜃c

𝛾W g
1
R
,

named after the English scientist and physician James Jurin, who examined cap-
illary rise in tubes in 1718 [85]—one of the earliest studies in porous-flow physics.
In short, the capillary rise is inversely proportional to the radius of the tube.

For further insight into the effects of capillarity on multifluid flows in porous
media, consider a slightly more complex model, namely a bundle of glass tubes
having random radii, as shown in Figure 6.5. Here we see a range of values of
capillary rise, reflecting the statistics of the radii. This idealized analog of a porous
medium suggests that a similar range of microscopic fluid levels will characterize
the rise of the wetting fluid in the tortuous and irregular pore space of a natural
porous medium. A simple way to characterize the distribution of water levels is to

Average

Air

WaterWW

Figure 6.5 Capillary rise of water in a bundle of tubes
having different radii.
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specify, for the total volume of the tubes standing above the external water level,
the fraction of the volume occupied by water. This fraction, which the Section 6.1.3
generalizes as water saturation, provides a gauge of the average capillary pressure
in the tubes.

6.1.3 Capillarity at the Macroscale

Capillary bundles provide a conceptual bridge to the macroscopic scale, appropri-
ate to the mixture model of porous media. American engineer Miles C. Leverett
[96] pursued this line of reasoning in 1941; see [52, 74], and [138] for examples of
more recent work.

Consider a three-phase continuum consisting of immiscible phases R (rock), W
(wetting fluid), and N (nonwetting fluid). For each fluid 𝛼 = N,W , define the sat-
uration as S

𝛼
= 𝜙

𝛼
∕𝜙, where 𝜙

𝛼
denotes the volume fraction of phase 𝛼 and, as

in Chapter 3, 𝜙 = 1 − 𝜙R is the porosity of the rock. Assume that the pore space is
completely filled by N and W , so 𝜙 = 𝜙N + 𝜙W . It follows that

SN + SW = 1.

At this scale, we regard the macroscopic capillary pressure pC as an average
of capillary pressure values taken over a representative elementary volume (see
Section 2.5) in the porous medium. The reasoning at the end of Section 6.1.2
suggests the simple hypothesis pC = pC(SW ), a function that one must measure
experimentally to characterize the particular system of rock and fluids being
modeled.

In reality, this commonly adopted hypothesis is too simple. When plotted against
SW , carefully measured values of pC typically depend not only on the rock and
fluids being tested but also on the sample’s saturation history. In particular, the
values of pC depend on whether SW is increasing or decreasing. In 1930, British
soil scientist William B. Haines [68] examined this effect and proposed microge-
ometric mechanisms to explain these history dependencies. For present purposes
it suffices to observe that experimental measurements of pC versus SW give rise
to curves that exhibit hysteresis, that is, the values of pC follow different curves
depending on the saturation history.

Figure 6.6 illustrates this effect, along with several other important features of
a typical capillary-pressure plot. The term imbibition refers to flows in which
the saturation SW of the wetting fluid increases, while the term drainage refers
to flows in which SW decreases. Because of the rock’s greater affinity to the wet-
ting fluid, drainage requires more energy—and hence higher values of capillary
pressure at a given value of SW —than imbibition.
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Primary drainage

Secondary drainage

Primary imbibition

Scanning curve

SWR
1−SNR 1

pC

SW

pt

Figure 6.6 Typical capillary
pressure curves showing the effects
of hysteresis. The drainage curves
characterize flows in which the
wetting-fluid saturation decreases.
The imbibition curves characterize
flows in which the wetting-fluid
saturation increases.

In Figure 6.6, the primary drainage curve starts with a medium completely
saturated with the wetting fluid. As the plot indicates, displacement of the resident
wetting fluid by nonwetting fluid at SW = 1 requires a minimum value of pC, called
the threshold pressure, denoted by pt in Figure 6.6. As SW decreases, pC increases
toward a vertical asymptote at a saturation value SW = SWR, called the irreducible
wetting-phase saturation. At this saturation, the wetting fluid occupies a thin
film adjacent to the solid grains. Reducing SW below this value requires additional
physics, such as evaporation of the wetting phase or a change in the interfacial
tension between the two fluids N and W .

Imbibition starting at a saturation close to SWR yields a different capillary
pressure curve, called the primary imbibition curve. Here, the values of pC
are lower than the primary drainage values. In the absence of more complicated
physics, as the imbibition progresses and SW increases, the wetting fluid blocks
more and more of the microscopic flow paths. Eventually, there are no connected
microscopic flow paths available to the nonwetting fluid. As a result, it becomes
impossible to reduce the nonwetting-phase saturation below SN = SNR, called
the irreducible nonwetting-phase saturation. Thus, the primary imbibition
curve has an endpoint at SW = 1 − SNR. Drainage starting at this saturation value
yields another curve, called the secondary drainage curve. Saturation changes
starting at values of SW between SWR and 1 − SNR yield capillary pressure values
lying along intermediate scanning curves.

Hysteresis implies that the model pC = pC(SW ) cannot completely describe
the effects of fluid-interface curvature on multifluid flows. Nevertheless, this
functional relationship remains the most commonly used model, owing to its
computational convenience and the difficulty of measuring hysteretic capillary
pressure curves.
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Petrophysicists associate certain attributes of rock-fluid systems with features
of their capillary pressure curves. For example, because the drainage capillary
pressure at a specific value of SW reflects the pressure difference required for the
nonwetting fluid to enter the narrowest pore spaces being invaded at that satu-
ration, a primary drainage curve that is nearly flat over most of the saturation
interval (SWR, 1 − SNR) indicates a relatively uniform distribution of pore-space
diameters. A steeper primary drainage curve indicates a more heterogeneous mix
of pore-space diameters.

6.2 Variably Saturated Flow

In 1931, before scientists had a widely accepted model for multifluid flows in
porous media, American physicist Lorenzo A. Richards [129] proposed a model of
two-fluid flow in soils, where the fluid phases of interest are water (W) and air (A).
Richards based his work on a remarkable analysis in 1907 by another American
physicist, Edgar Buckingham, [30] for the US Department of Agriculture.

6.2.1 Pressure Head and Moisture Content

The Richards model simplifies the physics of water flows in soils by assuming that
the pressure in the air phase always equals the atmospheric pressure. This assump-
tion effectively restricts the applicability of the model to near-surface settings, in
which the nonwetting air phase is connected to the atmosphere. Specifically, we
assume that pA = 0, which is the gauge pressure of air at Earth’s surface. This
assumption eliminates the need to solve a separate flow equation for air, leaving
only the flow equation for water. The assumption also implies that

pC = pA − pW = −pW > 0. (6.3)

Figure 6.7 shows a typical distribution of water in soil near Earth’s surface. As
introduced in Section 4.3, in the vadose zone, SW < 1, and, by Eq. (6.3), pW < 0.
The lower boundary of the vadose zone is the water table, defined as the depth
where pW = 0. Beneath the water table is the phreatic zone, where SW = 1. In this
zone, pW > 0, increasing with depth. As mentioned in Section 4.3, immediately
above the water table there is often a water-saturated capillary fringe, in which
pW < 0. Water added at Earth’s surface, for example by rain, changes the boundary
condition at the top of the soil column, and water subsequently moves downward
through the soil. We call this type of flow variably saturated.

In parallel with groundwater hydrologists’ preference for using piezometric
head instead of pressure, soil scientists traditionally convert the negative water
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Z = depth below Earth’s surface

ppAA = 00

SW < 1
pW < 0

pW = 00

SW = 1
pW > 0

VadosVV e zone

Phreaticc zone

WateWW r table

Earth’s surface

pppWWW === 000
Capillary fringe

Figure 6.7 Schematic profile of
soil in the near-surface region,
showing the vadose zone (pW < 0),
the water table (pW = 0), and the
phreatic zone (pW > 0).

pressure in the vadose zone to a function having dimension L, defining the
pressure head or tension head,

Ψ =
pW

𝛾g
= −

pC

𝛾g
, (6.4)

where 𝛾 denotes the true density of water. For variably saturated soils, Ψ < 0.
Soil scientists measure pressure head using the height of water in a

tensiometer, a device consisting of a tube with a water-saturated porous
cup at the soil interface, as illustrated schematically in Figure 6.8. The porous cup
allows only water to flow into the tube from the soil, since there are no connected
microscopic flow channels available to the air. The other end of the tube is open
to the atmosphere. Water rises in the tube to a level given by x3 = Ψ − Z, where
Z(x) is the depth of the point x below Earth’s surface.

Soil scientists also traditionally refer to the moisture content Θ = 𝜙SW ,
which represents the volume of water per unit volume of the soil–air–water
mixture. Introduction of this variable recasts the functional relationship pC(SW )
for capillary pressure as Ψ(Θ). In 1980, Dutch soil scientist Rien Van Genuchten
[150] proposed a widely used closed-form expression commonly used to fit
measured data for Ψ(Θ). The graph of −Ψ(Θ) resembles that of pC(SW ), as shown

R+W+A

x3 = 0e3

x3 = −Z

x3 = Ψ−Z

Wet porous cup

Figure 6.8 Schematic diagram
of a tensiometer showing the
water-saturated porous cup at
depth Z . The cup is permeable
only to water. The water level in
the tube connected to the cup
indicates the value of the
pressure head Ψ.
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Figure 6.9 Graph of a typical pressure head
Ψ(Θ) for variably saturated flow in a soil. This
graph neglects hysteresis. Θ

Ψ

φSWR

Ψ′(Θ)>0

φ

in Figure 6.9. Therefore, we expect Ψ′(Θ) > 0. It is common to neglect the effects
of hysteresis and to treat Ψ(Θ) as an invertible function, so that Θ = Θ(Ψ), with
Θ′(Ψ) > 0.

6.2.2 The Richards Equation

The derivation of a flow equation for water in the vadose zone follows the usual
motif: Substitute Darcy’s law into the mass balance. We begin with the mass
balance.

Exercise 6.6 Assuming that there is no mass exchange between soil and water,
show that, in terms of moisture content Θ, the mass balance for water in variably
saturated flow takes the form

𝜕

𝜕t
(𝛾Θ) + ∇ ⋅ (𝛾𝜙v) = 0,

where v denotes the water velocity.

Since the water density is practically constant in this setting,

𝜕Θ
𝜕t

+ ∇ ⋅ (𝜙v) = 0. (6.5)

Following Buckingham ([30]; see also [118]), Richards assumed that water flows
according to a modified version of Darcy’s law:

𝜙v = −K(Θ)
(

1
𝛾g

∇pW − ∇Z
)

= −K(Θ)(∇Ψ + e3). (6.6)

Here, K is the unsaturated hydraulic conductivity, having dimension LT−1.
The dependence of K onΘ reflects the increase in microscopic flow paths available
to water, owing to the decrease in air saturation, as Θ increases. Figure 6.10 shows
a typical shape for the graph of K(Θ), [65, 151], with K ⩾ 0.
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Θ

K

ΘR

Figure 6.10 Graph of a typical unsaturated
hydraulic conductivity K(Θ) for variably saturated
flow in soil. The symbol ΘR denotes the irreducible
water content, corresponding to the irreducible
wetting-phase saturation on the capillary pressure
diagram shown in Figure 6.6.

Substituting for the filtration velocity 𝜙v in the mass balance equation (6.5)
using Eq. (6.6) yields the Richards equation,

𝜕Θ
𝜕t

− ∇ ⋅ [K(Θ)∇Ψ(Θ) + K(Θ)e3] = 0. (6.7)

For purely vertical flow, such as downward infiltration resulting from rainfall or
irrigation, Eq. (6.7) reduces to

𝜕Θ
𝜕t

− 𝜕

𝜕x3

[
K(Θ)

(
𝜕Ψ
𝜕x3

(Θ) + 1
)]

= 0.

Exercise 6.7 Show that, in terms of the depth Z(x) = −x3, Eq. (6.7) becomes
𝜕Θ
𝜕t

− 𝜕

𝜕Z

[
K(Θ)

(
𝜕Ψ
𝜕Z

(Θ) − 1
)]
.

In purely horizontal flow, with x = x1, Eq. (6.7) reduces to the following nonlin-
ear analog of the heat equation:

𝜕Θ
𝜕t

− 𝜕

𝜕x

[
K(Θ)𝜕Ψ

𝜕x
(Θ)

]
= 0. (6.8)

6.2.3 Alternative Forms of the Richards Equation

Equation (6.7) is a mixed formulation of the Richards equation, since the time
derivative operates on Θ while the spatial derivatives operate on Ψ. There are two
ways to reformulate Eq. (6.7) in terms of a single principal unknown. The first
is the head-based formulation: Write Θ = Θ(Ψ) and K = K(Θ(Ψ)), then use the
chain rule to obtain

Θ′(Ψ)𝜕Ψ
𝜕t

− ∇ ⋅ [K(Θ(Ψ))(∇Ψ + e3)] = 0. (6.9)

The positive coefficient Θ′(Ψ) is the specific moisture capacity.
The second reformulation is the moisture-content formulation. Here we use

the chain rule to write ∇Ψ(Θ) = Ψ′(Θ)∇Θ, getting
𝜕Θ
𝜕t

− ∇ ⋅ [DW (Θ)∇Θ + K(Θ)e3] = 0.
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The nonnegative coefficient DW (Θ) = K(Θ)Ψ′(Θ) is the soil moisture diffusivity,
having dimension L2T−1. This formulation is especially useful in modeling purely
horizontal flows, for which Eq. (6.8) becomes

𝜕Θ
𝜕t

− 𝜕

𝜕x

[
DW (Θ)𝜕Θ

𝜕x

]
= 0. (6.10)

As appealing as either of these two reformulations may seem, neither may be
a good choice for numerical work. To see how difficulties can arise, consider the
discretization of Eq. (6.9) in time using a finite-difference approximation. In
the head-based formulation, with Ψ as the principal unknown, we approximate
the accumulation term using an expression of the following form:

Θ′(Ψ)𝜕Ψ
𝜕t

≃ Θ′(Ψ(x, t∗))Ψ(x, t + Δt) − Ψ(x, t)
Δt

. (6.11)

Regardless of how one addresses other questions—such as how to approximate
spatial derivatives or where, in time, to evaluate them—the approximation (6.11)
confronts the numerical analyst with the unavoidable question of where, in time,
to evaluate the nonlinear coefficient Θ′(Ψ(x, t∗)). Because no easily computed
value of t∗ correctly represents the time interval [t, t + Δt] throughout the spatial
domain, it is highly unlikely that the numerical solution will conserve mass
globally. For a partial differential equation (PDE) derived from the mass balance,
this shortcoming is significant.

To conserve mass numerically, it is usually better to leave the flow equation in
its original, mixed formulation (6.7). Using this formulation, one can discretize in
time using an approximation of the form

𝜕Θ
𝜕t

(x, t) ≃ 1
Δt

[Θ(Ψ(x, t + Δt)) − Θ(Ψ(x, t))] ,

using, for example, Newton’s method to calculate successively better approxima-
tions of Θ(Ψ(x, t + Δt)) at every time step. For numerical methods based on this
idea, see [6, 32].

6.2.4 Wetting Fronts

One additional aspect of variably saturated flows deserves comment, namely the
effects of nonlinearity on qualitative properties of the solutions Θ. Equation (6.10)
is a nonlinear analog of the heat equation. Figures 6.9 and 6.10 suggest that the
nonlinear soil moisture diffusivity DW (Θ) behaves approximately like (Θ − ΘR)n

for some exponent n > 1, a form that recalls the porous medium equation analyzed
in Section 4.3. In particular, the parabolic nature of the PDE degenerates at the
endpoint moisture content ΘR.

As with the porous medium equation, this degeneracy allows sharp wetting
fronts to propagate at finite speeds through initially dry soil, as depicted in
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Θ

Θ0

Wetting frontt1 t2 t3

x1

Figure 6.11 An advancing moisture
content front showing a wetting front,
downstream of which the moisture
content remains undisturbed at its
initial, dry-soil value Θ0.

Figure 6.11. The distinctive feature of a wetting front is that, as it propagates,
there remains a downstream region in which the water content remains at its
irreducible value ΘR. This behavior stands in contrast to solutions of the linear
heat equation, which have infinite propagation speed (with rapid decay). In the
linear case, a disturbance instantaneously affects solution values throughout the
domain, as described in Section 4.2 in connection with the Theis model. For
a deeper mathematical discussion of wetting fronts and their implications for
numerical models, see [61].

6.3 Two-fluid Flows

6.3.1 The Muskat–Meres Model

In 1936, Russian-born American engineer Morris Muskat and American geo-
physicist Milan W. Meres [106]—citing experimental work by R.D. Wyckoff and
H.G. Botset [159]—proposed modeling the flow of immiscible fluid phases
through a porous medium by extending Darcy’s law to all of the fluids. The
Muskat–Meres model takes the following form:

𝜙
𝛼
v
𝛼
= −

k
𝛼

𝜇
𝛼

(∇p
𝛼
− 𝛾

𝛼
g∇Z), (6.12)

where the index 𝛼 ranges over all fluid phases. Here, as with the single-fluid ver-
sion of Darcy’s law, the filtration velocity𝜙

𝛼
v
𝛼

represents the apparent velocity that
one obtains by dividing the volumetric flow rate (L3T−1) of fluid phase 𝛼 across a
surface by the total surface area.

The key difference between this model and the single-fluid version of Darcy’s
law is the use of an effective permeability k

𝛼
for each fluid phase, instead of

the rock permeability k discussed in Section 3.7. Analogous to the unsaturated
hydraulic conductivity introduced earlier by Buckingham [30], the factor k

𝛼
is no

longer strictly a rock property, since it is supposed to account for the interference
to the flow of fluid phase 𝛼 arising from the presence of the other fluid. We expect
0 ⩽ k

𝛼
⩽ k, the precise value depending on the fluid-phase saturations. If only two
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fluids N and W are present, then only one of the saturations is independent, since
SN = 1 − SW .

It is common to decompose the effective permeability as k
𝛼
= kkr𝛼 , where

the relative permeability kr𝛼 accounts for all of the effects associated with
fluid–fluid resistance for the particular rock being analyzed. Paralleling the
modeling assumptions for capillary pressure discussed in Section 6.1, the most
common model for relative permeabilities assumes that they are functions of
fluid saturation: For a two-fluid system, kr𝛼 = kr𝛼(SW ).

At the current state-of-the-art, one cannot determine the relative permeabilities
on theoretical grounds alone. They must be measured for each system of fluids
and rock. Typical two-fluid relative permeability curves have the shapes shown in
Figure 6.12 and exhibit the following features:

1. They obey the inequalities 0 ⩽ kr𝛼 < 1 and krN + krW < 1.
2. The wetting-fluid relative permeability krW (SW ) = 0 for 0 ⩽ S ⩽ SWR, and

krN (SW ) = 0 for 1 − SNR ⩽ SW ⩽ 1. Here SWR and 1 − SNR are the endpoint
saturations seen in the capillary pressure curves for the fluid–fluid–rock
system.

3. Both krN and krW are concave up, that is, k′′
rN (SW ) and k′′

rW (SW ) are positive for
SWR < SW < 1 − SNR.

Not shown in Figure 6.12—and often neglected in numerical models—is the
experimental observation that relative permeabilities, like capillary pressures,
exhibit hysteresis. This fact shows that the commonly used models for relative
permeability fail to reflect some important physics.

As with capillary pressure curves, petrophysicists infer a variety of properties
of the rock–fluid system from features of the relative permeability curves. One
example is wettability. At the microscopic scale, at its residual saturation SNR, the
nonwetting fluid tends to form isolated blobs occupying the middle of the pore
spaces. This configuration hinders the flow of the wetting fluid. The blocking is
more effective than that imposed by the wetting fluid, which, at its residual satu-
ration SWR, tends to occupy a thin film adjacent to the rock grains and the concave

Figure 6.12 Typical relative permeability
curves.

SWR 1−SNR SW

kRW

kRN

1

1
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crevices between them. Based on this reasoning, we expect the endpoint relative
permeability kRN (SWR) of the nonwetting fluid to be greater than the endpoint rel-
ative permeability kRW (1 − SNR) of the wetting fluid, as shown in Figure 6.12. It
is common to use the ratio kRN (SWR)∕kRW (1 − SNR) as an indicator of wettability:
The larger the ratio, the more strongly the wetting fluid W wets the rock in the
presence of the nonwetting fluid N.

Because krN and krW both depend on SW , Eq. (6.12) are coupled. They are
also nonlinear, since the fluid saturations are unknowns to be determined as
part of the solution process, as subsequent sections discuss in more detail. The
coupled, nonlinear nature of Eq. (6.12) and their extensions to larger numbers of
fluid phases have spawned a wide variety of analytical and numerical solution
techniques, some of which we touch upon in the remainder of this section.

6.3.2 Two-fluid Flow Equations

As usual, we obtain flow equations by substituting the extension (6.12) of Darcy’s
law for filtration velocities into the mass balance equations. For a two-fluid flow
system, the mass balance equations are

𝜕

𝜕t
(𝜙

𝛼
𝛾
𝛼
) + ∇ ⋅ (𝜙

𝛼
𝛾
𝛼
v
𝛼
) = r

𝛼
, 𝛼 = N,W .

In the absence of interphase mass transfer, rN = rW = 0, and substituting Eq. (6.12)
for 𝛼 = N,W yields the two-fluid flow equations:

𝜕

𝜕t
(𝜙S

𝛼
𝛾
𝛼
) = ∇ ⋅

[
𝛾
𝛼
kkr𝛼

𝜇
𝛼

(
∇p

𝛼
− 𝛾

𝛼
g∇Z

)]
, 𝛼 = N,W , (6.13)

since 𝜙
𝛼
= 𝜙S

𝛼
.

Equations (6.13) provide two coupled, nonlinear PDEs. If we assume that the
functions 𝜙, 𝛾N , 𝛾W , k, krN , krW , 𝜇N , 𝜇W are either known or computable once we
know the fluid pressures and saturations, we still have four principal unknowns:
pN , pW , SN , and SW . Mathematical closure of the system therefore requires two
additional equations. For these, we use the capillary pressure relationship

pN = pW + pC(SW ), (6.14)

assuming that we have measured data defining pC(SW ), and the saturation restric-
tion

SN + SW = 1 (6.15)

from Section 6.1. The nonlinearities now appear more explicitly: The functions
pC(SW ), krN (SW ), and krW (SW ) all depend on principal unknowns.
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6.3.3 Classification of Simplified Flow Equations

Before trying to solve problems involving Eqs. (6.13)—(6.15), it is useful to classify
the PDEs. For this task, we simplify the physics, at least temporarily. Assume for
the moment that 𝛾N , 𝛾W , and 𝜙 are constant and that gravity effects are negligible,
as in purely horizontal flows where ∇Z = 0. Since 𝜕SN∕𝜕t = −𝜕SW∕𝜕t, Eq. (6.13)
reduce to

𝜙
𝜕SW

𝜕t
= ∇ ⋅ (𝜆W∇pW ),

−𝜙
𝜕SW

𝜕t
= ∇ ⋅ (𝜆N∇pN ), (6.16)

where the symbols

𝜆
𝛼
=

kkr𝛼

𝜇
𝛼

, 𝛼 = N,W ,

stand for the fluid mobilities.
Equations (6.16) provide two PDEs, which we may regard as governing the

two principal unknowns pN and pW . The relationships (6.14) and (6.15), together
with constitutive relationships for 𝜆N and 𝜆W , close the system. This view of
the two-fluid flow equations motivates a class of numerical solution strategies
based on simultaneous solution (SS) of the PDEs, first introduced in 1959 by
American mathematicians Jim Douglas et al. [47].

Another orchestration leads to a different view and motivates an alternative
numerical solution strategy. Adding Eqs. (6.16) gives

∇ ⋅ (𝜙v) = 0, (6.17)

where

𝜙v = −𝜆W∇pW − 𝜆N∇pN

denotes the total volumetric flow rate of fluid per unit area, having dimension
LT−1.

Exercise 6.8 Show that Eq. (6.17) is equivalent to a pressure equation,

∇ ⋅ (𝜆∇p) = ∇ ⋅
(
𝜆W − 𝜆N

2
∇pC

)
, (6.18)

where

𝜆 = 𝜆N + 𝜆W , p =
pN + pW

2
denote the total mobility and average pressure, respectively.

Provided the total mobility 𝜆(SW ) is positive and bounded away from zero,
Eq. (6.18) furnishes an elliptic PDE for the average pressure p.



�

� �

�

138 6 Multifluid Flows

Exercise 6.9 Show that the flow equation (6.16) for W is equivalent to the follow-
ing saturation equation:

𝜙
𝜕SW

𝜕t
= −∇ ⋅ [𝜙f (SW )v] − ∇ ⋅ [ f (SW )𝜆N (SW )p′

C(SW )∇SW ], (6.19)

where

f (SW ) =
𝜆W (SW )
𝜆(SW )

. (6.20)

We call the dimensionless function f (SW ) defined in Eq. (6.20) the fractional flow
function. It gives the fraction of flowing fluid that is phase W . Recall that SW is the
fraction of all fluid that is phase W . When the irreducible saturations SNR and SWR
are not zero, some of the fluid is immobile.

Figure 6.13 shows the graph of a typical fractional flow function, consistent with
the relative permeability curves shown in Figure 6.12. As Section 6.4 shows, the
curve’s S shape, with an inflection point at a saturation value lying between SWR
and 1 − SNR, has important implications for the solution of the flow equations.

Exercise 6.10 Use the fact that p′
C(SW ) < 0, as shown in Figure 6.6, to show that

Eq. (6.19) is parabolic at all saturation values for which

f (SW )𝜆N (SW )p′
C(SW ) ≠ 0.

In oilfield applications, pressure gradients attributable to pumping at wells often
dominate capillary pressure gradients as drivers of the flow. Neglecting the factor
∇pC(SW ) = p′

C(SW )∇SW in Eq. (6.19) reduces it to a nonlinear, first-order hyper-
bolic PDE for the wetting-fluid saturation SW :

𝜙
𝜕SW

𝜕t
+ ∇ ⋅ [𝜙f (SW )v] = 0. (6.21)

Section 6.4 examines solutions to a one-dimensional version of this equation.

SWR 1−SNR

SW

f

1

1

Inflection point

Figure 6.13 Typical fractional flow
function associated with relative
permeability curves having the shapes
shown in Figure 6.12.
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Equations (6.18) and (6.19) suggest a two-stage numerical solution strategy for
the two-phase flow equations: First, solve the elliptic pressure equation for p using
the most recently computed values of SW . Then use the newly computed pressure
p—from which we calculate 𝜙v—to update SW via the saturation equation. This
orchestration, known as the Implicit-Pressure-Explicit-Saturation (IMPES)
method, is commonly attributed to American engineers Herbert Stone and A.O.
Garder [142]. For further details on the SS and IMPES methods, along with
other numerical solution strategies for multifluid flow in porous media, see [11]
and [35].

6.4 The Buckley–Leverett Problem

6.4.1 The Saturation Equation

In a seminal 1942 paper, American engineers Stuart E. Buckley and Miles C.
Leverett [29] developed a simple model of two-fluid flow that sheds light on the
mechanics of oil recovery by immiscible displacement, including gas injection
and waterflooding. This model and the methods used to solve it have inspired
many subsequent analyses of enhanced oil recovery methods and of nonlinear
first-order PDEs more generally. In its simplest form, the Buckley–Leverett
problem helps elucidate the hyperbolic nature of the saturation equation (6.21)
and the shock-like fluid flows that drive oil through the rock toward production
wells.

Several simplifying assumptions reduce the problem to a first-order hyperbolic
PDE in one space dimension.

1. The flow of both the wetting and nonwetting fluids is incompressible and hori-
zontal, as drawn in Figure 6.14. Thus ∇Z = 0, and there is a coordinate system
in which

v = − 1
𝜙

(
𝜆W∇pW + 𝜆N∇pN

)
= (𝑣, 0, 0),

where 𝑣 is a positive constant.
2. The porosity 𝜙 and fluid densities 𝛾N , 𝛾W are constant.
3. The term ∇pC(SW ) is negligible, that is, the capillary effect is small, as a driver

of the flow, compared with the effects of applied pressure gradients.

Figure 6.14 One-dimensional flow
geometry used in the Buckley–Leverett
problem.

Area A

x



�

� �

�

140 6 Multifluid Flows

Exercise 6.11 Assume that there is no leakage from the tube of constant
cross-sectional area A illustrated in Figure 6.14. Integrate the saturation equation
(6.21) over the cross section to get the one-dimensional, nonlinear equation

𝜕S
𝜕t

+ 𝑣
𝜕f
𝜕x

(S) = 0. (6.22)

Here and for the rest of this section, we simplify notation by writing SW = S and
x1 = x.

Equation (6.22) is the Buckley–Leverett saturation equation. Experience
with first-order PDEs in Chapter 5 suggests the method of characteristics as a solu-
tion strategy for initial-value problems involving this equation. For concreteness,
consider the following initial-value problem:

𝜕S
𝜕t

+ 𝑣
𝜕f
𝜕x

(S) = 0, 0 < x <∞, t > 0, (6.23)

S(x, 0) =
{

1 − SNR − (x∕L)(1 − SNR − SWR), 0 ⩽ x < L,
SWR, L ⩽ x,

S(0, t) = 1 − SNR, t > 0.

These conditions prescribe values of the wetting-fluid saturation S along an initial
curve in the (x, t)-plane consisting of the nonnegative x- and t-axes. Figure 6.15
shows the ramp-like graph of the initial saturation profile. Examining this con-
tinuous initial condition will show how, after finite time, the solution develops a
discontinuity.

To implement the method of characteristics, apply the chain rule to Eq. (6.22)
to get

𝜕S
𝜕t

+ 𝑣f ′(S)𝜕S
𝜕x

= 0. (6.24)

The chain rule also gives the directional derivative of S along any continuously
differentiable path (x(s), t(s)) in the (x, t)-plane:

t′(s)𝜕S
𝜕t

+ x′(s)𝜕S
𝜕x

= dS
ds
, (6.25)

L

SWR

1−SOR

S

x

Figure 6.15 Ramp-shaped initial condition
used in the initial-value problem (6.23).
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at all points (x, t) where the wetting-fluid saturation S(x, t) is differentiable. To find
paths along which the left side of Eq. (6.24) coincides with the directional deriva-
tive on the left side of Eq. (6.25), set

t′(s) = 1, x′(s) = 𝑣f ′(S(x(s), t(s))). (6.26)

These equations define the characteristic curves (x(s), t(s)), given by the ordinary
differential equation

x′(s)
t′(s)

= dx
dt

= 𝑣f ′(S). (6.27)

The PDEs (6.24) and (6.25) imply that, along these curves, the characteristic
equation

dS
ds

= 0 (6.28)

must hold.
As in the applications of the method of characteristics in Chapter 5, we conclude

from Eq. (6.28) that S remains constant along characteristic curves. According to
Eq. (6.27), these curves are lines, each of whose slope is the value of 𝑣f ′(S) at the
point where the characteristic curve intersects the initial curve.

However, as in Section 5.4 this reasoning leads to nonsensical, multivalued
solutions when characteristic curves associated with different saturation values
cross. Figure 6.16a shows that this conflict arises for the S-shaped fractional
flow function drawn in Figure 6.13: As S decreases from its maximum value
1 − SNR to its minimum value SWR, 𝑣f ′(S) first increases, then decreases, as
shown in Figure 6.16b. Applied naïvely, the method of characteristics therefore
eventually yields multivalued solutions, as shown in Figure 6.16c. Such solutions
are physically impossible.

6.4.2 Welge Tangent Construction

The resolution to the apparent paradox of multivalued saturations parallels the
discussion in Section 5.4. We allow the solution S(x, t) to be a weak solution with
a jump discontinuity, in the form of a saturation shock, at some moving spatial
location Σ(t). Figure 6.17 illustrates such a shock.

To select the correct location and strength of this discontinuity, we enforce an
integral form of the mass balance law (6.22). Over any subinterval [xL, xR] contain-
ing the locus Σ(t),

d
dt ∫

xR

xL

S(x, t) dx = 𝑣f (S(xL, t)) − 𝑣f (S(xR, t)), (6.29)

by the fundamental theorem of calculus. Equation (6.29) does not require S(x, t) to
be differentiable. The expression on the left side of Eq. (6.29) represents the rate of
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L x

x

x

L

L

t

dx/dt
= vf ′

S

SWR

1−SNR

xL xR

t=0
t= t1

t= t2

(a)

(b)

(c)

t1

t2

Figure 6.16 Graphic solution to the
Buckley–Leverett problem: Part (a) shows
the characteristic curves, which intersect
because of the non-monotonic slope 𝑣f ′(S)
plotted in (b). The diagram on (c) shows the
graph of the solution S(x, t) at several time
levels, including the multivalued graphs
predicted by the method of characteristics
and the resolution enabled by the
introduction of a saturation shock between
xL and xR.

xL

S

SWR

1−SOR

Ss

[[S]]

Σ(t)

Figure 6.17 Saturation shock in
the solution to the
Buckley–Leverett problem.

accumulation of wetting fluid in the subinterval, while the difference appearing on
the right represents the net flux of wetting fluid across the subinterval’s endpoints.

Exercise 6.12 Following the analysis leading to Eq. (5.54), show that the satura-
tion shock Σ(t) moves with speed Σ′(t) given by the condition

Σ′(t) = 𝑣
[[f (S)]]
[[S]]

. (6.30)
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Figure 6.18 Welge tangent construction to
determine the saturation Ss at the upstream
edge of the Buckley–Leverett saturation shock.

SWR

S

f

1

[[S ]]

[[f ]]

Welge tangent

Ss

Equation (6.30) serves as a nondifferential version of the mass balance law, valid at
points in the (x, t)-domain where the saturation S undergoes a jump discontinuity.

Figure 6.18 shows how to apply the condition (6.30) to the initial-boundary-value
problem 6.23. Immediately downstream of the saturation discontinuity Σ(t),

S(Σ+, t) = SWR,

since the saturation signal propagating from the left has yet to travel this far. Imme-
diately upstream of Σ(t),

S(Σ−, t) = Ss,

where the saturation value Ss satisfies the condition

𝑣f ′(Ss) =
dx
dt

= dΣ
dt

= 𝑣
[[f ]]
[[S]]

. (6.31)

Graphically, this equation specifies Ss as the saturation value where a line pass-
ing through the initial value SWR is tangent to the graph of f (S). We call this line
the Welge tangent, after American engineer Henry G. Welge, who published the
construction in 1952 [154].

The construction illustrated in Figure 6.18 bears six remarks.

Remark 6.1 As shown in Figure 6.19, upstream of the saturation discontinuity
the characteristic curves form a rarefaction—a term borrowed from gas dynam-
ics. For the values of (x, t) in this region, the solution S(x, t) varies smoothly.

Remark 6.2 Welge’s choice of saturation discontinuity eliminates characteristic
curve crossings. Of equal importance is the fact that it does so in a manner that
connects every point (x, t) in the domain to the initial curve by a characteristic
curve, as shown in Figure 6.19. Thus, the solution depends on the initial data.
This dependence is a necessary condition for the problem to be well posed.
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x

t

Shock
x = Σ(t)

Rarefaction

L

Figure 6.19 Characteristic curves for the
Buckley–Leverett problem showing the
rarefaction and the locus of the shock Σ(t).

Remark 6.3 The Welge tangent construction resolves the problem of multival-
ued saturations by locating Σ(t) so that the shaded areas to its left and right in
Figure 6.16 are equal. Buckley, Leverett, and Welge associated this equal-area rule
with mass balance–the same principle used above to derive Eq. (6.31). Welge cred-
ited this observation to the Hungarian-American mathematician John von Neu-
mann.

Remark 6.4 The construction defines a weak solution to the Buckley–Leverett
saturation equation. Although the concept of weak solutions has the virtue of
admitting physically realistic solutions in cases where classical solutions may not
exist, it arguably opens the door too wide. Weak solutions may not be unique,
as Exercise 6.13 illustrates. The Welge tangent construction, which amounts to
a graphic interpretation of the Rankine–Hugoniot condition, singles out the phys-
ically correct weak solution to the Buckley–Leverett saturation equation.

Remark 6.5 Physical considerations motivate an apparently independent crite-
rion for identifying the correct weak solution. Recall that Eq. (6.22) neglects the
capillary pressure gradient that appears in Eq. (6.19). Including this term yields
the formally parabolic PDE

𝜕S
𝜕t

+ 𝑣 𝜕
𝜕x

f (S) − 𝜕

𝜕x

[
Dcap(S)

𝜕S
𝜕x

]
= 0,

where

Dcap(S) = − 1
𝜙

f (S)𝜆N (S)p′
C(S) ⩾ 0. (6.32)

Equation (6.32) restores the diffusion-like effect needed to smooth the sharp front
and yield a classical solution, as shown in Figure 6.20. This observation serves as
a heuristic for the vanishing viscosity principle advanced by Russian mathe-
matician Olga Oleinik [111] in the late 1950s: The correct solution is the limit,
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Figure 6.20 Classical solution to the
Buckley–Leverett problem with nonzero
capillary pressure gradient.

x

S

SWR

1−SOR

Σ(t)

as Dcap → 0, of solutions to the full equation (6.32). Hungarian-American mathe-
matician Peter Lax [93] was among the first to recognize the relevance of limits of
this type to numerical solution methods for PDEs.

Remark 6.6 The solution in Figure 6.17 exhibits a stability-like property
for first-order PDEs that we employ again in Section 6.7, in connection with
three-fluid flows: The saturation remains smooth only where the saturation speed
is nonincreasing in the upstream direction. Otherwise, faster-moving saturations
overtake slower-moving saturations, and a shock forms.

Exercise 6.13 Sketch the weak solution associated with the characteristic curves
shown in Figure 6.21.

Exercise 6.14 Sketch the solution S(x, t) at several values of t for the following
initial-value problem:

𝜕S
𝜕t

+ 𝑣
𝜕f
𝜕x

(S) = 0, 0 < x <∞, t > 0,

with initial condition

S(x, 0) =
{

Ss, 0 ⩽ x < L,
SWR, L ⩽ x,

S(0, t) = Ss, t > 0.

Here, the solution is discontinuous starting at t = 0, and the injected fluid saturation
equals the shock saturation.

Figure 6.21 Characteristic curves for the
Buckley–Leverett solution showing a shock
associated with a physically incorrect weak
solution.

x

t

Shock

L
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6.4.3 Conservation Form

The integrated form (6.29) of the Buckley–Leverett saturation equation prompts
one additional remark. In general, a PDE of the form

𝜕u
𝜕t

+ ∇ ⋅ F(u) = 0, (6.33)

where F is a vector-valued function, is a conservation law. We call F the flux
function and say that Eq. (6.33) is in conservation form. In the saturation
equation (6.21), F(u) = 𝜙f (u)v, and in the one-dimensional version (6.22),
F(u) = 𝑣f (u). In physical applications, first-order conservation laws commonly
arise from balance laws such as the mass balance. By the chain rule, Eq. (6.33) is
mathematically equivalent to the nonconservation form

𝜕u
𝜕t

+ F′(u) ⋅ ∇u = 0.

For most numerical approximations, it is preferable to leave the PDE in conser-
vation form. To see why, consider a typical Galerkin finite-element method. For
Eq. (6.33), the method seeks an approximate solution û(x, t) satisfying a system of
equations having the form

∫Ω

[
𝜕û
𝜕t

(x, t) + ∇ ⋅ F(û(x, t))
]
𝜑j(x) d𝑣 = 0, j = 1, 2,… ,N. (6.34)

Here, Ω denotes the spatial domain, and {𝜑1, 𝜑2,… , 𝜑N} is a set of test functions
for which

N∑
j=1
𝜑j(x) = 1, for all x ∈ Ω.

Exercise 6.15 Sum Eq. (6.34) and apply the divergence theorem to show that

d
dt ∫Ω

û(x, t) d𝑣 = −
∫
𝜕Ω

F(û(x, t)) ⋅ n(x) ds. (6.35)

Equation (6.35) asserts that the net flux of the approximate solution û(x, t) across
the boundary 𝜕Ω balances the rate of accumulation inside the domain Ω. In other
words, when applied to the conservation form of the PDE, spatial discretization
using the Galerkin finite-element method respects a priori the global conservation
of mass that governs the true solution u(x, t).

6.4.4 Analysis of Oil Recovery

Welge [154] exploited the tangent construction to derive a simplified method for
analyzing oil production in a fluid displacement project, such as a waterflood.
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Consider the following initial-value problem for the Buckley–Leverett saturation
equation:

𝜕S
𝜕t

+ 𝑣
𝜕f
𝜕x

(S) = 0, 0 < x <∞, t > 0,

S(x, 0) = SWR, x > 0,

S(0, t) = 1 − SNR, t ⩾ 0.

This problem models a one-dimensional waterflood in which the water saturation
at the inlet, x = 0, is the maximum possible value, 1 − SNR. The reservoir is initially
saturated with oil, with water at its minimum possible saturation SWR. A saturation
shock with water saturation Ss, consistent with the Welge tangent construction,
forms immediately.

By Eqs. (6.28) and (6.27), any water saturation value S propagates with speed

dx
dt

= 𝑣f ′(S).

Integrating this differential equation gives the spatial position of saturation value
S at time t:

x(S) = 𝑣f ′(S) t. (6.36)

We now examine the arrival of the saturation shock, where the upstream sat-
uration has value Ss, at a specified position xB, which we regard as an outlet or
oil production well. Petroleum engineers refer to this arrival as breakthrough;
Eq. (6.36) shows that it occurs at time tB = xB∕[𝑣f ′(Ss)].

At time tB, the flow rate of oil at the outlet undergoes an economically important
change. For 0 < t < tB, the flow rate of oil at the outlet is high, since—under the
model assumptions—the saturation shock effectively displaces all of the mobile
oil—that is, oil in the saturation interval 1 − SNR − SWR. However, at tB the oil
production rate drops sharply, and for t > tB the oil production rate tapers con-
tinuously toward zero, as illustrated in Figure 6.22. At some point, typically after
breakthrough, the oil production rate drops below the threshold required to justify
the cost of continued fluid injection.

Figure 6.22 Oil production rate as a function of time
predicted by the Buckley–Leverett saturation
equation. The production rate drops sharply at the
breakthrough time tB , when the saturation shock
arrives at the outlet.

t

Production
rate at xB

tB
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Based on this reasoning, Welge defined the theoretical recovery efficiency at
breakthrough as follows:

E =
(Initial oil saturation) − (Average oil saturation at tB)

1 − SNR − SWR
.

Here, the average oil saturation in the reservoir at time tB is 1 − S, where

S = 1
xB ∫

xB

0
S(x, tB) dx

is the average water saturation in the reservoir at tB. Since the initial oil saturation
is 1 − SWR,

E =
S − SWR

1 − SNR − SWR
. (6.37)

Welge’s simplified analysis reveals an elegant graphic interpretation for this
expression.

Exercise 6.16 Justify each step in the following calculation of the average water
saturation:

S = 1
xB

[
S(x, tB)x

|||
xB

0
−
∫

xB

0
x 𝜕S
𝜕x

(x, tB) dx
]

= Ss −
1
xB ∫

S(xB,tB)

S(0,tB)
x(S) dS = Ss +

1 − f (Ss)
f ′(Ss)

. (6.38)

The right side of Eq. (6.38) is the value of S where the Welge tangent line has the
value 1, as illustrated in Figure 6.23. This observation yields a graphically simple
method for estimating the recovery efficiency at breakthrough. However, owing to
flow phenomena that cannot be modeled in a one space dimension, this estimate
serves, at best, as an optimistic upper bound on economic oil recovery. Section 6.5
explores this idea.

SWR

S

f

1

Welge tangent

S

1

Figure 6.23 Welge’s graphic construction of
the average oil saturation S at the
breakthrough time tB.
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6.5 Viscous Fingering

One-dimensional models of immiscible flow in porous media show how fluid dis-
placement fronts, idealized as saturation shocks, can arise, but these models can-
not capture all of the physics that bear on the design of underground processes.
Of special significance in petroleum engineering is viscous fingering. This phe-
nomenon results from frontal instabilities in the displacement of a resident fluid,
such as oil, by a more mobile injected fluid, such as gas or water. This section treats
the injected and displaced fluids as immiscible, denoting the fluid phases using the
indices I and D, respectively.

In its simplest form, viscous fingering disrupts an initially regular displacement
front, shown schematically in Figure 6.24a. The front becomes highly oscillatory,
as depicted in Figure 6.24b, with fingers of injected fluid extending into the
displaced fluid. Once established, these fingers of more mobile injected fluid grow
longitudinally, creating high-mobility channels through which fluid I bypasses
fluid D instead of displacing it. This frontal instability reduces the recovery
efficiency far below its theoretical value, given by Eq. (6.37). Viscous fingering
therefore has significant implications for the design of such oilfield processes as
waterflooding, gas injection, and more costly enhanced oil recovery technologies.

British engineer S. Hill [72] identified the phenomenon in 1952 and provided an
early mathematical analysis of front instability in vertical columns. Several years
later, British mathematicians Philip G. Saffman and Sir Geoffrey I. Taylor [132] and
Dutch engineers R.L. Chuoke et al. [36] independently published more complete
analyses that have served as standards in a still-active literature on the subject; see
[73, 117, 161]. The analysis presented here follows closely the reasoning developed
in [132] and [36].

The idea is to examine the stability of an initially planar displacement front in
the presence of a small perturbation in its shape. In natural porous media, such

Figure 6.24 Schematic diagram of viscous
fingering: A more mobile injected fluid, having
mobility 𝜆I , displaces a less mobile fluid having
mobility 𝜆D. Part (a) shows the initially planar
displacement front; part (b) shows the
displacement front after unstable perturbations
have grown.

λI

λI

λD < λI

λD

(a)

(b)



�

� �

�

150 6 Multifluid Flows

perturbations always arise, owing to microscopic heterogeneities. When the dis-
placement is stable, the flow damps the perturbations, keeping the front nearly
planar. However, when the displacement is unstable, small variations in the front
grow into large fingers of injected fluid I. The stability analysis presented here does
not reveal how the fingers grow once they arise. It simply indicates the conditions
under which small perturbations grow or are suppressed.

6.5.1 The Displacement Front and Its Perturbation

To keep the analysis simple, adopt the following assumptions:

1. The porous medium is saturated with two immiscible fluids: an injected fluid
I and a displaced fluid D.

2. The initial saturation of fluid D is 1 − SIR throughout the medium.
3. Starting at time t = 0, we inject a mixture of fluids I and D, so that the sat-

uration of fluid I upstream of the displacement front is Ss, the saturation at
the upstream side of the Buckley–Leverett saturation shock. (See Section 6.4,
especially Exercise 6.14.) This assumption, although strictly unrealistic from
a process designer’s perspective, simplifies the problem, since the fluid mobil-
ities upstream of the displacement front remain constant.

4. The unperturbed displacement front Σ is planar, with a unit-length normal
vector n that points into fluid D and lies at an angle 𝜃 to the vertical. In other
words, if g denotes the gravitational acceleration vector, then −n ⋅ g = g cos 𝜃,
as shown in Figure 6.25. Thus, 𝜃 = 𝜋∕2 when the displacement-front velocity
is horizontal.

5. No fluid crosses the displacement front Σ.
6. The unperturbed displacement front Σ moves with constant, uniform velocity

vΣ = 𝑣Σn, where 𝑣Σ > 0.
7. We adopt a rectangular coordinate system defined by the orthonormal basis

{e1, e2, e3}, where e3 = n, and e1 and e2 span the plane of the initial displace-
ment front Σ. The origin lies on this plane at t = 0.

8. The fluid densities 𝛾I and 𝛾D and porosity 𝜙 are constant.

θ

vΣ

e1

e2

e3=n

Fluid I

Fluid D

Σ

g

Figure 6.25 Geometry of the initially
planar displacement front Σ separating
the injected fluid I from the displaced
fluid D.
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Figure 6.26 Perturbation 𝜁(x1, x2, t) to the
initial displacement front Σ.

ζ

Σ

vΣ+ν (x1, x2, t)

x1

x2

9. Capillary effects are negligible, so the displacement frontΣ remains sharp, and
the pressure is continuous across the displacement front.

10. By assumption 3, behind the fluid displacement front, fluid I has constant
mobility 𝜆I = kkrI(Ss)∕𝜇I . Ahead of the interface, fluid D has constant mobility
𝜆D = kkrD(1 − SIR)∕𝜇D.

At t = 0, a perturbation distorts the displacement front Σ, in the x3-direction, by
a distance 𝜁(x1, x2, 0), as shown in Figure 6.26. The perturbed displacement front
initially has velocity vΣ + 𝝂(x1, x2, 0). We assume that, at least at early times, the
function 𝜁(x1, x2, t) and its derivatives are small in magnitude and that the relative
velocity 𝝂(x1, x2, t) of the perturbed displacement front is also small in magnitude.

To work with a specific form of the perturbation, consider a typical Fourier com-
ponent

𝜁(x1, x2, t) = 𝜀(𝝎) exp(𝛽t + i𝝎 ⋅ x),

having small initial amplitude 𝜀(𝝎). Here, the real parameter 𝛽 serves as a stability
index for the displacement front: The perturbation grows exponentially if 𝛽 > 0;
it decays exponentially if 𝛽 < 0. The nonzero propagation vector 𝝎 = (𝜔1, 𝜔2, 0)
defines the frequencies with which the perturbation oscillates in the x1- and
x2-directions. By the identity exp(i𝜔jxj) = cos(𝜔jxj) + i sin(𝜔jxj), small values of
||𝝎|| correspond to long wavelengths 2𝜋∕||𝝎||. In keeping with the idea of a small
initial perturbation, we treat the product ||𝝎|||𝜁 | as a small quantity.

Identifying the perturbed displacement front as a level surface of the function
F(x1, x2, x3, t) = x3 − 𝜁(x1, x2, t), defined by the equation F(x, t) = 0 as shown in
Figure 6.27, helps in Section 6.5.2, where we determine the dynamics of the inter-
face. Along any path x(t) for which dx∕dt = 𝝂, the value of F remains constant.
Therefore, by the chain rule, along any such path,

0 = dF
dt

(x(t), t) = dx
dt

(t) ⋅ ∇F(x(t), t) + 𝜕F
𝜕t

(x(t), t)

= 𝝂 ⋅ ∇F + 𝜕F
𝜕t

= −𝜈1
𝜕𝜁

𝜕x1
− 𝜈2

𝜕𝜁

𝜕x2
+ 𝜈3 −

𝜕𝜁

𝜕t
. (6.39)
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x(t)
ν (x1, x2, t)

Surface where F = 0

Figure 6.27 The perturbation as a
level surface of the function
F(x, t) = x3 − 𝜁(x1, x2, t), showing a
path whose value x(t) always lies on
the surface as t increases.

Since 𝜕𝜁∕𝜕x1, 𝜕𝜁∕𝜕x2, and the coordinates of 𝝂 are all small in magnitude, we
neglect products of these quantities. Doing so reduces Eq. (6.39) to

𝜕𝜁

𝜕t
(x1, x2, t) = 𝜈3(x1, x2, t). (6.40)

6.5.2 Dynamics of the Displacement Front

We now examine how the perturbed displacement front moves by imposing the
mass balance equations and Darcy’s law for each fluid. Assumptions 6 (vΣ is con-
stant) and 8 (fluid densities remain constant) imply that the relative fluid velocities
𝝂
𝛼
= v

𝛼
− vΣ obey the following version of the mass balance:

∇ ⋅ 𝝂
𝛼
= 0, 𝛼 = I,D. (6.41)

Darcy’s law allows us to recast the problem of the displacement-front motion
in terms of velocity potentials. Since 𝜆

𝛼
and 𝛾

𝛼
are constant upstream and down-

stream of the front, each fluid 𝛼 has velocity

v
𝛼
= −

𝜆
𝛼

𝜙
(∇p

𝛼
− 𝛾

𝛼
g∇Z)

= −∇
[
𝜆
𝛼

𝜙
(p
𝛼
− 𝜆

𝛼
𝛾
𝛼
gZ)

]

= −∇
[
𝜆
𝛼

𝜙
(p
𝛼
+ 𝜆

𝛼
𝛾
𝛼
g x3 cos 𝜃)

]
, 𝛼 = I,D. (6.42)

The last step follows from the observation that, in our coordinate system, the depth
Z(x) = −x3 cos 𝜃. It follows from Eq. (6.42) that the relative velocities 𝝂

𝛼
= v

𝛼
−

𝑣Σ(0, 0, 1) are gradients of scalar potential fields:

𝝂
𝛼
= −∇Φ

𝛼
, (6.43)

where

Φ
𝛼
=
𝜆
𝛼

𝜙
p
𝛼
− 𝑣Σx3 +

𝜆
𝛼

𝜙
𝛾
𝛼
g x3 cos 𝜃, 𝛼 = I,D. (6.44)

Combining Eqs. (6.41) and (6.43) yields the Laplace equation for each of the veloc-
ity potentials ΦI ,ΦD:

∇2ΦI = 0, x3 < 𝜁 ;

∇2ΦD = 0, x3 > 𝜁. (6.45)
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To solve the PDEs (6.45) for ΦI and ΦD, we must impose boundary conditions.
At the displacement front, the condition (6.40) holds. By the definition (6.43) of
the velocity potentials and the assumption that no fluid crosses the displacement
front, this condition yields

𝜕𝜁

𝜕t
= lim

x3→𝜁−
𝝂I ⋅ e3 = lim

x3→𝜁+
𝝂D ⋅ e3,

that is,

lim
x3→𝜁−

𝜕ΦI

𝜕x3
= lim

x3→𝜁+

𝜕ΦD

𝜕x3
.

We call this condition, which constrains the fluid velocities in terms of the
displacement-front velocity, a kinematic boundary condition.

For the remaining boundary conditions, we insist that the velocity perturbation
die off as distance from the displacement front increases:

lim
x3→−∞

ΦI = 0; lim
x3→∞

ΦD = 0.

Exercise 6.17 Verify that the boundary-value problems for ΦI and ΦD have solu-
tions

ΦI = − 𝛽

||𝝎||𝜀(𝝎) exp
[||𝝎||(x3 − 𝜁) + 𝛽t + i𝝎 ⋅ x

]

= − 𝛽

||𝝎||𝜁 exp
[||𝝎||(x3 − 𝜁)

]
,

ΦD = 𝛽

||𝝎||𝜀(𝝎) exp
[
−||𝝎||(x3 − 𝜁) + 𝛽t + i𝝎 ⋅ x

]

= 𝛽

||𝝎||𝜁 exp
[
−||𝝎||(x3 − 𝜁)

]
. (6.46)

The functions in Eqs. (6.46) have the following values at the displacement front:

lim
x3→𝜁−

ΦI =
𝛽

||𝝎||𝜁 ; lim
x3→𝜁+

ΦD = − 𝛽

||𝝎||𝜁. (6.47)

6.5.3 Stability of the Displacement Front

To analyze the stability of the displacement front, we appeal to assumption 10 and
impose the condition that the pressure is continuous across the front:

lim
x3→𝜁−

pI = lim
x3→𝜁+

pD. (6.48)

Exercise 6.18 Show that the relationship (6.48) holds if and only if, at x3 = 𝜁 ,

MΦD − ΦI − [(M − 1)𝑣Σ + 𝜆I(𝛾D − 𝛾I)g cos 𝜃]𝜁 = 0, (6.49)

where M = 𝜆I∕𝜆D > 0 is the mobility ratio.
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The identities (6.47) allow us to recast Eq. (6.49) in terms of the stability index 𝛽:

𝛽 =
(M − 1)𝑣Σ + 𝜆I(𝛾D − 𝛾I)g cos 𝜃]||𝝎||

M + 1
.

Since ||𝝎|| > 0, the displacement front is unstable (𝛽 > 0) if and only if

(M − 1)𝑣Σ > 𝜆I(𝛾I − 𝛾D)g cos 𝜃. (6.50)

Two special cases lend insight into design principles for immiscible displace-
ments.

Case 6.1 Horizontal flow. Let 𝜃 = 𝜋∕2, that is, the flow is horizontal. In this
case, condition (6.50) reduces to

M > 1.

Therefore, the displacement front is stable when the displacing fluid I is less
mobile than the displaced fluid D. This observation serves as the main principle
behind polymer flooding in oil reservoirs: Additives that increase the viscosity of
injected water help keep its mobility smaller than that of the displaced oil.

Case 6.2 Vertical flow. When 𝜃 = 0, that is, when the flow is upward, the
instability condition (6.50) becomes

M > 1 +
𝜆I(𝛾I − 𝛾D)

𝑣Σ
.

In this case, provided the density ratio 𝛾I∕𝛾D of the two fluids is favorable–that
is, 𝛾I > 𝛾D –it is possible to stabilize the displacement even when M > 1, by con-
trolling the injection rate and hence the speed 𝑣Σ of the displacement front. A
similar design principle holds for intermediate angles 𝜃 ∈ (0, 𝜋∕2): When gravity
is a factor, it is possible to stabilize the displacement of a less mobile fluid by a
more mobile fluid by controlling the speed of the displacement front, provided the
density ratio 𝛾I∕𝛾D is favorable.

Fingering phenomena also arise in flows in the vadose zone, where unfa-
vorable density ratios result in gravity-driven instabilities in wetting fronts; see
[122, 127, 135].

6.6 Three-fluid Flows

This chapter closes with two sections that introduce three-fluid flows in porous
media. In this topic, even simple mathematical models entail many complexi-
ties and unsettled questions. The presentation here serves merely as a toehold
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on a large and active literature, prominent in which are [12, 22, 37, 44, 70, 87,
102, 109, 121].

Prototypically, three-fluid flows occur in petroleum reservoirs, where the three
fluid phases are natural gas (G), oil (O), and water or formation brine (W). Often W
is the most wetting phase, and G is the least wetting phase. Three-fluid flows also
arise in groundwater contaminant hydrology, where the three fluids may be water,
air, and a nonaqueous-phase liquid (NAPL), a setting first modeled numerically
by American engineer Linda Abriola [1]. In these applications, too, the aqueous
phase is often the most wetting phase, and the vapor phase—typically air contam-
inated with volatile organic compounds—is the least wetting phase.

In three-fluid flows through porous media, there are three fluid volume frac-
tions, which we denote by 𝜙G, 𝜙O, and 𝜙W , and hence three saturations: S

𝛼
=

𝜙
𝛼
∕𝜙, for 𝛼 = G,O,W . Since

SG + SO + SW = 1, (6.51)

only two of the three saturations are independent. One can therefore specify
any saturation state (SG, SO, SW ) as a point in, say, the (SG, SO)-plane, lying in
the triangular region defined by the conditions 0 ⩽ SG ⩽ 1, 0 ⩽ SO ⩽ 1, and
SG + SO ⩽ 1.

Equivalently, petroleum engineers commonly plot (SG, SO, SW ) as a point in a
region bounded by an equilateral triangle. Figure 6.28 illustrates such a ternary
diagram. The vertices labeled G,O, and W represent the points

(SG, SO, SW ) =
⎧⎪⎨⎪⎩

(1, 0, 0),
(0, 1, 0),
(0, 0, 1),

respectively. Any point in the ternary diagram corresponds to a saturation triple
(SG, SO, SW ), represented by the point P in Figure 6.28 and given by the method
of intersections. Draw line segments GG′, OO′, and WW ′ from each vertex of

Figure 6.28 A ternary diagram for
three-phase saturations showing the
geometric construction used to determine
the saturations SG , SO, SW of a point P in the
triangle.

G (SG = 1)

O (SO = 1)W(WW SW = 1)

P
O ′

W ′WW

G′
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Figure 6.29 Saturation profiles for gas, oil, and
water used in Exercise 6.19.

the triangle △GWO, through the point P, to the opposite edge of the triangle, as
shown in Figure 6.28. The saturations at P are the ratios

SG = PG′

GG′ , SO = PO′

OO′ , SW = PW ′

WW ′ . (6.52)

Exercise 6.19 Using Eqs. (6.52), sketch the path in the ternary diagram corre-
sponding to the saturation profiles shown in Figure 6.29.

6.6.1 Flow Equations

To determine the fluid saturations (SG, SO, SW ) at each point in the reservoir at
each time t, we use the mass balance equations and the Muskat–Meres extension
(6.12) of Darcy’s law for each phase. The mass balances are

𝜕

𝜕t
(𝜙S

𝛼
𝛾
𝛼
) + ∇ ⋅ (𝜙S

𝛼
𝛾
𝛼
v
𝛼
) = r

𝛼
, 𝛼 = G,O,W . (6.53)

For the remainder of this chapter, we assume that interphase mass transfer is neg-
ligible, so that rG = rO = rW = 0. Chapter 7 relaxes this assumption.

The Muskat–Meres extension of Darcy’s law gives the fluid-phase velocities as
follows:

𝜙S
𝛼
v
𝛼
= −

kkr𝛼

𝜇
𝛼

(∇p
𝛼
− 𝛾

𝛼
g∇Z), 𝛼 = G,O,W . (6.54)
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Substituting Eq. (6.54) into Eq. (6.53) following the usual motif gives the
three-fluid flow equations:

𝜕

𝜕t
(𝜙S

𝛼
𝛾
𝛼
) − ∇ ⋅

[kkr𝛼𝛾𝛼

𝜇
𝛼

(∇p
𝛼
− 𝛾

𝛼
g∇Z)

]
= 0, 𝛼 = G,O,W . (6.55)

Supplementing these PDEs are the saturation restriction (6.51); constitutive
equations for 𝜙, k, kr𝛼 , and 𝛾

𝛼
for 𝛼 = G,O,W ; the geometric information required

to define the depth Z(x); and capillary pressure functions, discussed next.

6.6.2 Rock-fluid Properties

The rock-fluid properties pC𝛼𝛽 and kr𝛼 merit several remarks. First, consider the
capillary pressures pC𝛼𝛽 :

pCGO(SG, SO) = pG − pO,

pCOW (SO, SW ) = pO − pW ,

pCGW (SG, SW ) = pG − pW . (6.56)

Only two of these relationships are independent, since pCGW = pCGO + pCOW .
Also, it is common to simplify the saturation dependencies shown in Eqs. (6.56).

While in principle each capillary pressure is a function of two saturations, M.C.
Leverett and W.R. Lewis [97] argued, based on experimental evidence, that the
constitutive equations for pCGO and pCOW can be approximated more simply as
follows:

pCGO = pCGO(SG), pCOW = pCOW (SW ). (6.57)

This simplification remains in common use [11, p. 32], [35, p. 53]. Strictly speak-
ing, none of the functional relationships shown in Eqs. (6.56) and (6.57) is correct,
since three-phase capillary pressures exhibit hysteresis, just as in two-phase flows.

Three-phase relative permeabilities also deserve comment. Based on experi-
ments in water-wet porous media, American engineer Arthur T. Corey et al. [40]
suggested the non-hysteretic functional dependencies

krG = krG(SG), krO = krO(SG, SW ), krW = krW (SW ). (6.58)

More recent experimental data in water-wet porous media suggest that these
dependencies are realistic for krO and krW but that a relationship of the form
krG = krG(SG, SW ) is more realistic for the gas phase; see [3] for a review.

Measuring three-phase relative permeabilities directly proves difficult and
costly. For this reason, scientists and engineers have proposed a variety of
methods for inferring three-phase relative permeability curves from laboratory
measurements of two-phase systems. In the early 1970s, American engineer Her-
bert L. Stone [140, 141] pioneered two of the early methods for using two-phase
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Figure 6.30 Hypothetical three-phase relative permeability contour plots showing the
isoperms for krG(SG), krO(SG , SW ), and krW (SW ).

G
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G + O + W

G + W

G + O

O + W

Figure 6.31 Saturation ternary diagram
showing the reduced ternary diagram as a
shaded region in which all three fluid phases
are mobile. Outside the isoperms where kr𝛼 = 0
for 𝛼 = G,O,W , at most two fluid phases flow. In
the diamond-shaped regions near the vertices
of the diagram only one fluid phase flows.

flow data to calculate three-phase relative permeabilities. Since then numerous
additional methods of this type have appeared; see [27, 48, 49, 121, 142] for
examples.

Figure 6.30 illustrates three-phase relative permeabilities of the forms (6.58).
Instead of trying to depict each function’s graph as a surface above the saturation
ternary diagram, the figure shows level sets of krG, krO, and krG, called isoperms.

Exercise 6.20 Justify the depiction of isoperms for krG and krW as line segments in
Figure 6.30.

These isoperm plots make it clear that fully three-phase fluid flow occurs only
inside a subregion of the saturation ternary diagram. We call this subregion the
reduced ternary diagram. As Figure 6.31 shows, the loci of irreducible gas, oil,
and water saturations form the boundaries of this subregion. At saturation values
(SG, SO, SW ) lying outside these boundaries, at most two of the fluid phases are
mobile, and in regions near the vertices of the ternary diagram only one fluid phase
is mobile.

6.7 Three-fluid Fractional Flow Analysis

The system comprising Eqs. (6.55), (6.51), and (6.57), augmented by appropriate
constitutive relationships, is daunting in complexity and, in general, solvable only
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via numerical approximations. Under certain simplifying assumptions, however,
the system reduces to an equation set that is amenable to analysis by extending
the methods used in Section 6.4 for the Buckley–Leverett problem [87, 132]. The
resulting simplified model reveals an astonishing feature of the three-fluid flow
problem.

6.7.1 A Simplified Three-fluid System

As in the Buckley–Leverett problem of Section 6.4, the first simplification is to
restrict attention to one-dimensional flows in which gravitational effects play no
role and capillary effects are negligible. These assumptions represent settings in
which the flow is purely horizontal and in which the influence of applied pressure
gradients, such as those imposed by pumping at wells, outweighs the influence of
capillarity in driving the fluid flows. Under these assumptions, the three-fluid flow
equations (6.55) reduce to the following form:

𝜕

𝜕t
(𝜙S

𝛼
𝛾
𝛼
) + 𝜕

𝜕x
(𝜙S

𝛼
𝛾
𝛼
𝑣
𝛼
) = 0, 𝛼 = G,O,W ,

with one-dimensional filtration velocities

𝜙S
𝛼
𝑣
𝛼
= −𝜆

𝛼

𝜕p
𝜕x
.

Here, 𝜆
𝛼
= kkr𝛼∕𝜇𝛼 denotes the mobility of fluid phase 𝛼. Since capillarity is neg-

ligible in this model, all three fluids have the same pressure p.
Further simplification is possible under the special assumptions that the poros-

ity 𝜙 and fluid densities 𝛾
𝛼

are constant. Strictly speaking, the latter assumption
is unrealistic for pressure-driven flows involving a gas phase, but it facilitates an
analysis of the qualitative behavior of the system. Under these additional assump-
tions, the flow equations reduce even further to

𝜙
𝜕S

𝛼

𝜕t
− 𝜕

𝜕x

(
𝜆
𝛼

𝜕p
𝜕x

)
= 0, 𝛼 = G,O,W . (6.59)

Exercise 6.21 Following the logic of the IMPES formulation discussed in Section
6.3, add Eq. (6.59) over all fluid phases and use the saturation restriction (6.51) to
obtain a pressure equation,

− 𝜕

𝜕x

(
𝜆
𝜕p
𝜕x

)
= 0. (6.60)

Here, 𝜆 = 𝜆G + 𝜆O + 𝜆W stands for the total mobility. This tactic leaves two indepen-
dent PDEs of the form (6.59).

The pressure equation (6.60) shows that the total filtration velocity

𝜙𝑣 = −𝜆
𝜕p
𝜕x
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is a function at most of time. This result makes sense physically in a
one-dimensional geometry in which all fluids flow incompressibly. The remainder
of this section focuses on flows in which 𝜙𝑣 is a prescribed constant, determined
by conditions at an inlet. Each fluid phase velocity is then 𝑣

𝛼
= f

𝛼
𝑣, where, by

analogy with Eq. (6.20), the ratio

f
𝛼
(SG, SW ) =

𝜆
𝛼
(SG, SW )

𝜆(SG, SW )

is the fractional flow function for phase 𝛼. This function gives the fraction of the
flowing fluid that consists of phase 𝛼.

We are left with the two first-order saturation equations:

𝜕SG

𝜕t
+
𝜕FG

𝜕x
(SG, SW ) = 0,

𝜕SW

𝜕t
+
𝜕FW

𝜕x
(SG, SW ) = 0. (6.61)

These equations, written in conservation form, involve the flux functions

FG(SG, SW ) = fG(SG, SW ) 𝑣, FW (SG, SW ) = fW (SG, SW ) 𝑣.

Defining

S =
[

SG
SW

]
, F(S) =

[
FG(SG, SW )
FW (SG, SW )

]
,

reduces Eqs. (6.61) to a more compact vector form:

𝜕S
𝜕t

+ 𝜕

𝜕x
F(S) = 0. (6.62)

The system (6.62) is a two-equation analog of the Buckley–Leverett saturation
equation (6.22), with F(S) serving as the flux function.

6.7.2 Classification of the Three-fluid System

We now examine the classification of the system (6.62) of first-order PDEs. By the
chain rule, the system is equivalent to the following equation:

𝜕

𝜕t

[
SG
SW

]
+
[

FGG FGW
FWG FWW

]
𝜕

𝜕x

[
SG
SW

]
=
[

0
0

]
. (6.63)

Here, the derivative or Jacobian matrix of F has entries

FGG =
𝜕FG

𝜕SG
, FGW =

𝜕FG

𝜕SW
, FWG =

𝜕FW

𝜕SG
, FWW =

𝜕FW

𝜕SW
.
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In vector-matrix notation, the system (6.63) has the form
𝜕S
𝜕t

+ F′(S)𝜕S
𝜕x

= 0, (6.64)

where F′(S) stands for the derivative of the flux function.
The analysis seeks self-similar solutions, as introduced in Section 4.2.4.

Exercise 6.22 Show that the system (6.64) is invariant under the stretching trans-
formation

𝜉 = 𝜀x, 𝜏 = 𝜀t, 𝜼 = 𝜀
0S.

It follows (see Eq. (4.35)) that self-similar solutions have the form

S(x, t) = U(𝜁), 𝜁 = x
t
.

Exercise 6.23 Show that the system (6.64) reduces to the following system of ordi-
nary differential equations for U(𝜁):

F′(U(𝜁))U′(𝜁) = 𝜁U′(𝜁). (6.65)

One solution to Eq. (6.65) is U′(𝜁) = 0, which implies that U(𝜁)—and hence
the saturation vector S(x, t)—is constant. Of greater interest are nonconstant solu-
tions. For any such solution U(𝜁), Eq. (6.65) requires that its tangent vector U′(𝜁)
be an eigenvector of the Jacobian matrix F′(U(𝜁)), with eigenvalue 𝜁 , for all values
of the similarity variable 𝜁 where U is differentiable.

Exercise 6.24 Show that the eigenvalues of F′ are roots of the quadratic equation

𝜁
2 − (FGG + FWW )𝜁 + det

[
FGG FGW
FWG FWW

]
= 0, (6.66)

where det stands for the determinant.

Hence at any value of the saturation vector S, the derivative F′ possesses two eigen-
values 𝜁+(S) and 𝜁−(S), given by

𝜁± = 1
2
(FGG + FWW )

± 1
2

√
(FGG + FWW )2 − 4(FGGFWW − FGW FWG).

Exercise 6.25 Show that the eigenvectors of F′(S) corresponding to the eigenvalues
𝜁± have the forms

U′
± =

[
U ′

G
U ′

W

]
±
, (6.67)
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where
U ′

G

U ′
W

=
𝜁±(S) − FWW (S)

FWG(S)
=

FGW (S)
𝜁±(S) − FGG(S)

. (6.68)

(Since an eigenvector is unique only up to a nonzero multiplicative constant, it suffices
to specify the ratio of the two entries.)

We now confront the fact that solutions 𝜁±(S) to a quadratic equation of the
form (6.66) can conceivably be complex-valued for certain points S in the reduced
ternary diagram. The nature of these solutions determines the classification of the
system (6.61).

● If 𝜁±(S) are both real at the saturation value S and the matrix F′(S) possesses
linearly independent eigenvectors of the form (6.67) (so the matrix is diagonal-
izable), then the system (6.64) is hyperbolic at S. An important special case
arises when 𝜁+(S) ≠ 𝜁−(S), in which case the system is strictly hyperbolic at S.

● If 𝜁+(S) and 𝜁−(S) are both real and equal to each other but the eigenvectors
(6.67) fail to be linearly independent, then the system is parabolic at S.

● In the remaining case, 𝜁+(S) and 𝜁−(S) are not real-valued but are complex con-
jugates of each other. In this case, the system is elliptic at S.

Conceivably, the classification of the system (6.64) may be different at different
points S in the saturation ternary diagram.

6.7.3 Saturation Velocities and Saturation Paths

When the system (6.64) is strictly hyperbolic at all points in the reduced ternary
diagram, we associate with each point S two distinct, real eigenvalues 𝜁± and their
corresponding, linearly independent eigenvectors U′

±. To interpret the eigenval-
ues, consider their defining equation,

F′U′
± = 𝜁±U′

±. (6.69)

By the chain rule,
𝜕U
𝜕x

(𝜁(x, t)) = U′(𝜁)𝜕𝜁
𝜕x

= 1
t

U′(𝜁),

and hence Eq. (6.69) and the original system (6.63) yield

−𝜕U
𝜕t

= F′ 𝜕U
𝜕x

= 1
t
F′U′(𝜁) = 1

t
𝜁U′ = 𝜁±

𝜕U
𝜕x
.

From previous applications of the method of characteristics (see Sections 5.4
and 6.4), we know that the resulting system

𝜕U
𝜕t

+ 𝜁±
𝜕U
𝜕x

= 0
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of PDEs implies that U (hence S) remains constant along the characteristic curves
defined by the differential equations

dx
dt

= 𝜁±.

Thus, passing through each point in the (x, t)-domain are two curves: a fast char-
acteristic curve, obeying the differential equation

dx
dt

= 𝜁+(S(x, t)), (6.70)

and a slow characteristic curve, obeying
dx
dt

= 𝜁−(S(x, t)). (6.71)

Because any saturation value S travels with one of these velocities, we refer to the
eigenvalues 𝜁± as saturation velocities.

To interpret the eigenvectors, regard each value of U′
+ as a vector associated with

the corresponding point S in the reduced ternary diagram. The resulting vector
field defines a family of integral curves—curves everywhere tangent to U′

+—in
S-space and associated with saturation velocity 𝜁+, as illustrated using solid curves
in Figure 6.32. The vector field U′

− defines a different family of integral curves,
associated with saturation velocity 𝜁−, shown in Figure 6.32 as dotted curves.

Exercise 6.26 Using Eq. (6.68), show that
dSG

dSW
=
𝜁±(S) − FWW (S)

FWG(S)
, provided FWG(S) ≠ 0;

dSW

dSG
=
𝜁±(S) − FGG(S)

FGW (S)
, provided FGW (S) ≠ 0.

Solutions to the differential equations in Exercise 6.26 have the form SG = SG(SW )
and SW = SW (SG), respectively. Hence, any change in the saturation value S pro-
ceeds along an integral curve in the reduced ternary diagram. Following [71], we
call these curves saturation paths.

Figure 6.32 Two families of integral curves in the
reduced ternary diagram defined by the
eigenvectors U′

± of the flux matrix for three-phase
flow. Arrowheads show the directions of increasing
saturation velocity. The solid curves are associated
with the fast saturation velocity 𝜁+; the dotted
curves are associated with the slow saturation
velocity 𝜁−.

G

WO
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The saturation velocities and saturation paths play important roles in the solu-
tion of flow problems, as an example in Section 6.7.4 demonstrates. Following
Remark 6.6 in Section 6.4.2, it is also important to ascertain whether the saturation
velocities 𝜁± increase or decrease along the respective saturation paths. Figure 6.32
shows a simple case, when the saturation velocity is monotonic along each satu-
ration path.

6.7.4 An Example of Three-fluid Displacement

We now apply the ideas developed so far for three-fluid flows to analyze a simpli-
fied, hypothetical three-fluid displacement in a one-dimensional oil reservoir. For
this purpose, assume that the system (6.63) is strictly hyperbolic at every point S
in the reduced ternary diagram. This assumption bears discussion at the end.

The example involves a Riemann problem, in which we seek a self-similar
solution to an initial-value problem having piecewise constant initial data on the
x-axis:

𝜕S
𝜕t

+ F′(S)𝜕S
𝜕x

= 0,−∞ < x < ∞,

S(x, 0) =
{

SL, if −∞ < x ⩽ 0,
SR, if 0 < x <∞. (6.72)

Assume that SL ≠ SR, so the initial condition consists of a constant left satura-
tion state SL, modeling the injected fluids, and a constant right saturation state
SR, modeling the initially resident reservoir fluids. Assume also that only water is
mobile at the injected saturation state SL and that the initial saturation state SR is
a constant, three-fluid mixture in which only oil and gas are mobile, as illustrated
in Figure 6.33.

The solution of Riemann problems for systems of first-order hyperbolic
equations involves many subtleties that we do not fully explore here; for more
details see [12, 81, 88]. Still, one can deduce several features of the solution to the
problem (6.72) from observations made in the previous subsection. According to
the results of Exercise 6.26, saturation values follow saturation paths. Figure 6.33
shows two saturation routes connecting SL and SR that follow such paths. Both are
consistent with the method of characteristics, but only one is physically correct.

To determine which, we apply the stability-like condition observed in the
two-fluid Buckley–Leverett problem of Section 6.4: For saturations to remain
smoothly varying, saturation velocities must be nonincreasing as we move
upstream from SR to SL. Otherwise, faster-moving saturations overtake
slower-moving ones, and a shock forms. Route 2 in Figure 6.33 cannot sat-
isfy this condition, since the segment that follows a saturation path associated
with a fast saturation velocity is upstream of the segment that follows a saturation
path associated with a slow saturation velocity.
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Figure 6.33 Two saturation routes
connecting the constant states SL and SR via
saturation paths in the Riemann problem
(6.72). Arrows on the saturation paths
indicate the directions of increasing
saturation velocity.
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Figure 6.34 Saturation profile for the
three-phase displacement modeled by the
Riemann problem (6.72). SL

SI
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In contrast, on route 1 the upstream segment follows a saturation path associ-
ated with a slow saturation velocity, while the downstream segment follows a satu-
ration path associated with a fast velocity. In addition, as the arrows in Figure 6.33
indicate, the upstream segment obeys the stability-like condition, since the satu-
ration velocity increases as we move downstream. The saturation state S therefore
varies smoothly along this segment, with values remaining constant along slow
characteristic curves, as illustrated in Figure 6.34. Borrowing from the gas dynam-
ics literature, we call this smoothly varying part of the solution a rarefaction.

On the downstream segment of route 1—the segment closer to SR—the satura-
tion velocity increases in the upstream direction. Thus, upstream saturation values
overtake downstream values, and a shock forms, as shown in Figure 6.34.

As Figure 6.34 shows, for a fixed time t1 > 0, the saturation profile correspond-
ing to saturation route 1 connects a self-similar, smoothly varying rarefaction to a
saturation shock via a constant intermediate saturation state SI . The figure shows
an oil bank moving downstream of the saturation shock, as expected in many oil
recovery projects involving fluid injection.

The simplicity of this example belies the complexity of the three-phase Rie-
mann problem. More complicated combinations of shocks and rarefactions arise,
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for example, when saturation velocities are not monotonic along saturation paths;
see, for example, [12, 70].

The simplified three-fluid flow model admits even more exotic behavior. In 1986,
American mathematicians John Bell, John Trangenstein, and Gregory Shubin [20]
identified a class of three-fluid relative permeabilities, based on the Stone model
(see Section 6.6), for which the system (6.64) of PDEs is not strictly hyperbolic
everywhere in the saturation ternary diagram. In particular, they found regions in
saturation space in which the system is elliptic. This finding is both astonishing
and problematic. Well-posed elliptic problems require boundary conditions, and
in the (x, t)-plane this requirement calls for the imposition of future values—that
is, prescribed values at times later than those imposed on an initial curve, as illus-
trated in Figure 5.5b.

Since the discovery of elliptic regions in idealized three-fluid flows, a rich liter-
ature has grown around the topic, with varying interpretations; see, for example,
[91, 143]. One interpretation [83, 84], not universally accepted, proposes treating
strict hyperbolicity as a requirement for a realistic model of the form (6.63). This
requirement imposes restrictions on properties of three-phase relative permeabil-
ities beyond the assumptions inherent in the Stone model. On the other hand,
numerical evidence from models based on capillary tube bundles (see Section 6.1)
indicates that elliptic regions of saturation space can indeed arise in physically
realizable models of porous media [78].
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Flows With Mass Exchange

This last chapter examines multifluid flows in which the fluid phases exchange
mass. Although interphase mass transfer occurs to some extent in all multifluid
flows in porous media, in some applications its effects are too important to neglect.

Many enhanced oil recovery technologies fall into this category. For example,
injecting carbon dioxide into oil reservoirs leads to the dissolution of carbon diox-
ide in the oil and to some evaporation of the lighter hydrocarbon species in the
oil [91, Chapter 7]. As the process evolves, the oil phase becomes less viscous,
and the interfacial tension between the oil and the injected fluid decreases. Under
favorable conditions, this process develops into a highly efficient miscible dis-
placement, in which very little oil remains in the reservoir zones swept by the
injected fluid. Interphase mass transfer is also important in many groundwater
contamination problems, for example when an immiscible nonaqueous-phase liq-
uid (NAPL) invades an aquifer and volatile organic compounds dissolve in the
aqueous phase [1].

Modeling processes of this type requires that we account not only for the physics
of multifluid flows in porous media but also for changes in fluid properties that
occur as chemical species cross the phase boundaries through evaporation and
dissolution. We call models of such flows compositional models.

Because compositional models are so computationally intensive, this chapter
provides only a brief overview of their formulation, with references to more
detailed literature on the subject. Although there exist quasi-analytic solutions for
some special cases—see [51], [19, Chapter 16] and [82], for examples—numerical
analysis remains by far the dominant approach to solving problems of this type.
Throughout the chapter, we assume that the reservoir is isothermal, that is, the
temperature of the reservoir is uniform in space and constant in time.

The Mathematics of Fluid Flow Through Porous Media, First Edition. Myron B. Allen.
© 2021 John Wiley & Sons, Inc. Published 2021 by John Wiley & Sons, Inc.
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Table 7.1 Phases in a compositional model.

Phase Index 𝜶

Aqueous liquid W
Hydrocarbon liquid L
Hydrocarbon vapor V
Solid rock matrix R

7.1 General Compositional Equations

7.1.1 Constituents, Species, and Phases

Consider a multiphase, multispecies continuum having the four phases listed in
Table 7.1. All three fluid phases may be present in a petroleum reservoir, in the
form of aqueous formation brine (W), liquid oil (L), and natural-gas vapor (V).
Assume that the solid phase R is inert, so that the rock neither dissolves into fluid
phases nor adsorbs mass from them.

We allow N + 1 chemical species, indexed as i = 1, 2,… ,N,𝓁. The species i =
1, 2,… ,N represent organic species, such as those found in the hydrocarbon fluids
L and V , and water. The index 𝓁 stands for the rock species. Clearly, 𝓁 must be a
pseudospecies, lumping together the minerals in the reservoir rock. In practice,
the organic species and water, i = 1, 2,… ,N, must also be pseudospecies, since
it is impossible to track the flow and transport of the hundreds of thousands of
molecular species that comprise any naturally occurring oil or formation brine.
Methods for lumping molecular species into pseudospecies include grouping the
molecular species by molecular weights or carbon numbers, perhaps assigning
species such as CO2 and CH4 to their own pseudospecies based on their distinctive
dissolution and evaporation properties.

To apply the tools of continuum mechanics to this system, we identify 4(N + 1)
constituents, each consisting of an ordered pair (i, 𝛼), where i represents the
species and 𝛼 represents the phase in which it resides. For example, if carbon
dioxide (CO2) has species index i = 1 and methane (CH4) has index i = 2, then the
constituent (1,V) denotes carbon dioxide in the hydrocarbon vapor phase, while
(1,L) stands for a different constituent, namely carbon dioxide in the hydrocarbon
liquid, and (2,L) stands for methane in the hydrocarbon liquid.

Each constituent (i, 𝛼) has a true density 𝛾(i,𝛼), having dimension [mass of i in
𝛼/volume of 𝛼], and a velocity v(i,𝛼). The assumption that the rock is inert implies
that 𝛾(𝓁,𝛼) = 0 for 𝛼 ≠ R and that 𝛾(i,R) = 0 for i = 1, 2,… ,N. Each phase 𝛼 has a
volume fraction 𝜙

𝛼
, with dimension [volume of 𝛼/total volume]. We define the
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Table 7.2 Derived quantities used in compositional modeling.

Symbol Name Definition

𝛾
𝛼

Mass density of phase𝛼
N∑

i=1
𝛾(i,𝛼)

𝜔(i,𝛼) Mass fraction of speciesi in phase𝛼 𝛾(i,𝛼)∕𝛾𝛼
𝜌 Bulk density of fluids 𝜙

∑
𝛼≠R

S
𝛼
𝛾
𝛼

𝜔i Mass fraction ofi in fluids 𝜙

𝜌

∑
𝛼≠R

S
𝛼
𝛾
𝛼
𝜔(i,𝛼)

v
𝛼

Barycentric velocity of phase𝛼 1
𝛾
𝛼

N∑
i=1
𝛾(i,𝛼)v(i,𝛼)

𝝂(i,𝛼) Diffusion velocity of(i, 𝛼) v(i,𝛼) − v
𝛼

porosity and fluid-phase saturations as usual:

𝜙 = 1 − 𝜙R Porosity,

S
𝛼
= 𝜙

𝛼
∕𝜙 Saturation of phase 𝛼, 𝛼 = W ,L,V .

Based on these quantities, we define a set of derived quantities listed in Table 7.2.
These quantities obey the following restrictions:

● Mass fractions sum to 1 in each fluid phase and overall: For 𝛼 = W ,L,V ,
N∑

i=1
𝜔(i,𝛼) =

N∑
i=1
𝜔i = 1.

● Volume fractions sum to 1:∑
𝛼

𝜙
𝛼
=
∑
𝛼≠R

S
𝛼
= 1.

● Diffusion velocities sum to 𝟎 in each fluid phase 𝛼:
N∑

i=1
𝝂(i,𝛼) = 𝟎.

7.1.2 Mass Balance Equations

With the definitions given above, the mass balance for species i in fluid phase 𝛼
has the following form:

𝜕

𝜕t
(
𝜙S

𝛼
𝛾(i,𝛼)

)
+ ∇ ⋅

(
𝜙S

𝛼
𝛾(i,𝛼)v(i,𝛼)

)
= r(i,𝛼), (7.1)
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for i = 1, 2,… ,N and 𝛼 = W ,L,V . (The assumption that the rock species is inert
obviates the need to solve a mass balance for species 𝓁.) Here, r(i,𝛼) stands for the
rate of mass exchange into constituent (i, 𝛼) from other constituents. Overall mass
balance for the system requires

N+1∑
i=1

∑
𝛼

r(i,𝛼) = 0.

Since the solid phase R is inert and consists only of species 𝓁, r(𝓁,𝛼) = 0 for all
phases, and r(i,R) = 0 for all species. In this case,

N∑
i=1

∑
𝛼≠R

r(i,𝛼) = 0.

In many compositional processes, there are no significant stoichiometric chem-
ical reactions, that is, no reactions that convert mass from a species i to mass of
another chemical species. The only reactions that occur are phase exchanges, as
when a species in fluid phase V dissolves in fluid phase W or a species in fluid
phase L evaporates into fluid phase V . Consequently, there is no net production or
loss of any species:∑

𝛼≠R
r(i,𝛼) = 0, i = 1, 2,… ,N. (7.2)

Exercise 7.1 Rewrite Eq. (7.1) using phase velocities, then sum over all fluid
phases, using Eq. (7.2), to get the following mass balance equation for species
i = 1, 2,… ,N:

𝜕

𝜕t
(𝜌𝜔i) + ∇ ⋅

[
𝜙
(

SW𝛾W𝜔(i,W)vW + SL𝛾L𝜔(i,L)vL + SV𝛾V𝜔(i,V)vV
)]

+ ∇ ⋅
(
j(i,W) + j(i,L) + j(i,V)

)
= 0, i = 1, 2,… ,N. (7.3)

Here,

j(i,𝛼) = 𝜙S
𝛼
𝛾
𝛼
𝜔(i,𝛼)𝝂(i,𝛼)

stands for the diffusive flux of species i in phase 𝛼.

7.1.3 Species Flow Equations

To obtain flow equations for each species, we adopt the Muskat–Meres extension
(6.12) of Darcy’s law for the fluid velocities v

𝛼
in Eq. (7.3):

𝜙S
𝛼
v
𝛼
= −𝜆

𝛼
(∇p

𝛼
− 𝛾

𝛼
g∇Z), 𝛼 = W ,L,V .

Here,

𝜆
𝛼
=

k kr𝛼

𝜇
𝛼

denotes the mobility of fluid phase 𝛼.
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Petroleum engineers commonly neglect the diffusive fluxes j(i,𝛼), reasoning that
the transport attributable to applied pressure gradients dominates the transport
attributable to hydrodynamic dispersion. This assumption may be reasonable in
oilfield operations. The assumption may not be as appropriate in applications to
groundwater contamination by NAPL. In this setting, diffusion in the vapor phase
may play a significant role in the transport of toxic volatile compounds, small con-
centrations of which may be of concern. Realistic or not, the assumption leads to
the following flow equation for each species i in the fluids:

𝜕

𝜕t
[
𝜙
(

SW𝛾W𝜔(i,W) + SL𝛾L𝜔(i,L) + SV𝛾V𝜔(i,V)
)]

− ∇ ⋅ [𝜆W𝛾W𝜔(i,W)
(
∇pW − 𝛾W g∇Z

)
+ 𝜆L𝛾L𝜔(i,L)

(
∇pL − 𝛾Lg∇Z

)
+ 𝜆V𝛾V𝜔(i,V)

(
∇pV − 𝛾V g∇Z

)
], i = 1, 2,… ,N. (7.4)

The accumulation and flux terms in each equation allow for the transport of
species i in each of the three fluid phases 𝛼 = W ,L,V .

Closing this system requires several categories of additional relationships. The
first category consists of the restrictions

N∑
i=1
𝜔(i,𝛼) = 1, for 𝛼 = W ,L,V ;

N∑
i=1
𝜔i =

∑
𝛼≠R

S
𝛼
= 1.

We often treat the porosity 𝜙 and depth Z as known functions of position.
Next, for three fluid phases, there are two independent capillary pressure func-

tions, for which the following functional relationships have some empirical justi-
fication [164]:

pL = pW + pCLW (SW ),

pV = pL + pCVL(SW , SV ).

For the relative permeabilities, it is common to adopt the Corey model [40], intro-
duced in Section 6.6, for water-wet rock–fluid systems:

krW = krW (SW ),

krL = krL(SW , SV ),

krV = krV (SV ).

Finally, we need functional relationships to determine the compositions and sat-
urations of fluid phases W , L, and V , given the overall fluid composition

𝝎 = (𝜔1, 𝜔2,… , 𝜔N ) (7.5)

and a fluid pressure, such as pV . Then, we must calculate the true density 𝛾
𝛼

of
each fluid phase given its composition

𝝎
𝛼
= (𝜔(1,𝛼), 𝜔(2,𝛼),… , 𝜔(N,𝛼))
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and pressure p
𝛼
. Conceptually, these relationships have the form

𝝎
𝛼
= 𝝎

𝛼
(𝝎, pV ),

S
𝛼
= S

𝛼
(𝝎, pV ),

𝛾
𝛼
= 𝛾

𝛼
(𝝎

𝛼
, p

𝛼
), (7.6)

all for 𝛼 = W ,L,V . In practice, these relationships often take the form of systems
of nonlinear algebraic equations that define the functions in Eqs. (7.6) implicitly.
Section 7.4 provides a brief glimpse into this technically challenging aspect of com-
positional modeling.

7.2 Black-oil Models

A stalwart among oil reservoir models, the black-oil or beta model is a special
type of compositional model in which the fluid-phase properties depend only on
pressure. In addition, the fluid-phase compositions obey a highly restrictive set of
interphase mass transfer rules. Although these assumptions seem quite limiting,
the black-oil model works quite well for reservoir flows involving nonvolatile oils
and no significant changes in interfacial tension among the fluid phases.

7.2.1 Reservoir and Stock-tank Conditions

We allow all three fluid phases W ,L, and V to be present. We admit only three
pseudospecies. To identify them, petroleum engineers distinguish between reser-
voir conditions—the constant temperature and variable pressure characteristic
of the underground formation—and stock-tank conditions, defined as 15 ∘C
and 101.325 kPa (1 atm). For most oil reservoirs, reservoir temperatures and pres-
sures are higher than stock-tank conditions. Therefore, the densities of phases W
and V at stock-tank conditions are typically lower than at reservoir conditions. In
addition, a parcel of the liquid hydrocarbon phase L brought from reservoir condi-
tions to lower-pressure stock-tank conditions will typically release some dissolved
natural gas from solution.

To account for the effects of gas dissolving in oil, we identify the following pseu-
dospecies, based on the fluids that are present at stock-tank conditions:

● Species g, a pseudospecies whose composition is the composition of the reservoir
gas at stock-tank conditions.

● Species o, a pseudospecies whose composition is the composition of the hydro-
carbon liquid at stock-tank conditions.

● Species 𝑤, a pseudospecies whose composition is the composition of formation
brine at stock-tank conditions.
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Table 7.3 Partitioning of pseudospecies in a black-oil model.

Pseudospecies Mass fraction Mass fraction Mass fraction

in W in L in V

g 0 𝜔(g,L) 1
o 0 𝜔(o,L) 0
𝑤 1 0 0
Sum 1 1 1

We denote the densities of these species at stock-tank conditions by 𝛾STC
g , 𝛾STC

o , and
𝛾

STC
𝑤

, respectively.
In a black-oil model, these three species partition among the fluid phases W ,

L, and V at reservoir conditions according to the rules summarized in Table 7.3.
The only interphase mass transfers allowed under these rules involve species g
dissolving in and evaporating from the liquid hydrocarbon phase L as the pressure
changes. To quantify this mass exchange, engineers define the solution gas–oil
ratio: For a parcel of phase L at reservoir conditions,

RS(pL) =
STC volume of g dissolved in phase L

STC volume of o in phase L
.

Exercise 7.2 Show that

𝜔(g,L) =
𝜅

1 + 𝜅
, 𝜔(o,L) =

1
1 + 𝜅

,

where 𝜅 = RS𝛾
STC
g ∕𝛾STC

o .

7.2.2 The Black-oil Equations

With these definitions and assumptions, the flow equations for the three species
g, o, and𝑤 take forms that are simpler than the general flow equations (7.4) devel-
oped in Section 7.1. The simplest case is the flow equation for the species𝑤. Since
this species resides only in the aqueous phase W , in which 𝜔(𝑤,W) = 1,

𝜕

𝜕t
(
𝜙SW𝛾W

)
− ∇ ⋅

[
𝜆W𝛾W

(
∇pW − 𝛾W g∇Z

)]
= 0. (7.7)

Now relate the true density 𝛾W of phase W at reservoir conditions to the true
density 𝛾STC

𝑤
of species 𝑤 at stock-tank conditions by writing

𝛾W =
𝛾

STC
𝑤

BW (pW )
.
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The factor BW (pW ) is the formation volume factor of the aqueous phase,
a dimensionless, empirically measured function that is closely related to the
compressibility of the aqueous phase. Substituting for 𝛾W and dividing through
by the constant 𝛾STC

𝑤
reduces Eq. (7.7) to the black-oil equation for water:

𝜕

𝜕t

(
𝜙SW

BW

)
− ∇ ⋅

[
𝜆W

BW

(
∇pW − 𝛾W g∇Z

)]
= 0. (7.8)

In this equation, the dimension M does not appear in the accumulation term
(the term involving 𝜕∕𝜕t). Motivated by this observation, engineers often refer to
Eq. (7.8) and its analogs for species o and g using the misnomer “volume balance
equations.”

The flow equation for species o also involves accumulation and flux only in one
fluid phase, the hydrocarbon liquid L. However, since the gas species g can be
transported in phase L, 𝜔(o,L) may differ from 1:

𝜕

𝜕t
(
𝜙SL𝛾L𝜔(o,L)

)
− ∇ ⋅

[
𝜆L𝛾L𝜔(o,L)

(
∇pW + ∇pCLW − 𝛾Lg∇Z

)]
= 0.

Paralleling the derivation for species 𝑤, we relate the density of phase L to the
densities of its constituents at stock-tank conditions:

𝛾L =
𝛾

STC
o + RS(pL)𝛾STC

g

BL(pL)
.

Here, BL(pL) is the empirically measured formation volume factor for the liquid
hydrocarbon phase.

Exercise 7.3 In Eq. (7.4), substitute for 𝛾L and simplify to get the black-oil
equation for oil,

𝜕

𝜕t

(
𝜙SL

BL

)
− ∇ ⋅

[
𝜆L

BL

(
∇pW + ∇pCLW − 𝛾Lg∇Z

)]
= 0. (7.9)

Finally, the flow equation for the gas species g must track the transport of species
g in both the vapor and liquid hydrocarbon phases.

Exercise 7.4 Begin with the flow equation

𝜕

𝜕t
[𝜙(SL𝛾L𝜔(g,L) + SV𝛾V𝜔(g,V))]

−∇ ⋅ [𝜆L𝛾L𝜔(g,L)(∇pW + ∇pCLW − 𝛾Lg∇Z)

+ 𝜆V𝛾V𝜔(g,V)(∇pW + ∇pCLW + ∇pCVL − 𝛾V g∇Z)] = 0.
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Define the formation volume factor for the vapor phase V by the relationship

𝛾V =
𝛾

STC
g

BV

and use the fact that 𝜔V
g = 1 to get the black-oil equation for gas,

𝜕

𝜕t

[
𝜙

(SLRS

BL
+

SV

BV

)]

−∇ ⋅
[
𝜆LRS

BL

(
∇pW + ∇pCLW − 𝛾Lg∇Z

)

+
𝜆V

BV

(
∇pW + ∇pCLW + ∇pCVL − 𝛾V g∇Z

)]
= 0.

(7.10)

Equations (7.8), (7.9), and (7.10) furnish three coupled, nonlinear PDEs
governing the transport of the pseudospecies 𝑤, o, and g, respectively. The flow
equation for g is more complicated than the equations for 𝑤 and o, because the
pseudospecies g can reside, at nonzero mass fractions, in both the vapor phase
V and the hydrocarbon liquid phase L. There are many numerical methods for
solving this coupled system, including extensions of the simultaneous solution
(SS) and the IMPES methods briefly introduced in Section 6.3. See [11,35,115] for
details.

7.3 Compositional Flows in Porous Media

Although the black-oil model discussed in Section 7.2 enjoys a reputation as the
workhorse of petroleum reservoir simulation, in many oil recovery processes, such
as miscible gas flooding, more significant effects of composition on fluid-phase
properties play critical roles in the physics [131]. This section examines a set of
flow equations that model these phenomena. Section 7.4 sketches the fluid-phase
thermodynamics that determine fluid-phase compositions.

7.3.1 A Simplified Compositional Formulation

For simplicity’s sake, we restrict attention to compositional flows in which inter-
phase mass transfer is limited to mass exchanges between the hydrocarbon liq-
uid phase L and the hydrocarbon vapor phase V . This assumption is unrealistic,
because it neglects the dissolution of species such as methane and carbon dioxide
in the aqueous phase W . However, it allows us to examine the thermodynamic
principles in a simple setting that involves two-phase vapor–liquid equilibrium.
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If we label the fluid-phase species i = 1, 2,… ,N so that species N is the water
pseudospecies 𝑤, as in Section 7.2, the assumption above implies that

𝜔(i,W) = 0, i = 1, 2,… ,N − 1;

𝜔(N,L) = 𝜔(N,V) = 0.

Therefore, 𝜔(N,W) = 1, and the flow equation for water reduces to the following
PDE:

𝜕

𝜕t
(
𝜙SW𝛾W

)
− ∇ ⋅

[
𝜆W𝛾W

(
∇pL − ∇pCLW − 𝛾W g∇Z

)]
= 0.

Remaining are the N − 1 flow equations for the species residing in the hydro-
carbon liquid and vapor phases:

𝜕

𝜕t
(
𝜙𝛾H𝜔(i,H)

)
− ∇ ⋅

[
𝜆L𝛾L𝜔(i,L)

(
∇pL − 𝛾Lg∇Z

)]
− ∇ ⋅

[
𝜆V𝛾V𝜔(i,V)

(
∇pL + ∇pCVL − 𝛾V g∇Z

)]
= 0, (7.11)

for i = 1, 2,… ,N − 1. Here,

𝛾H = SL𝛾L + SV𝛾V

stands for the total density of the hydrocarbon fluids, and

𝜔(i,H) =
SL𝛾L𝜔(i,L) + SV𝛾V𝜔(i,V)

𝛾H

denotes the total mass fraction of species i in the hydrocarbon fluids.

7.3.2 Conversion to Molar Variables

Petroleum engineers commonly write compositional models in terms of molar
quantities. This reformulation facilitates the thermodynamic calculations
required in fluid-phase behavior calculations outlined in Section 7.4. For this
purpose, given N − 1 species or pseudospecies in the hydrocarbon fluid phases
L and V , Table 7.4 defines molar variables corresponding to the mass-related
variables.

These quantities obey the following restrictions:
N−1∑
i=1
𝜔̃(i,𝛼) =

N−1∑
i=1
𝜔̃(i,H) = YL + YV = 1.

Once we know the molar densities 𝛾̃L and 𝛾̃V of the hydrocarbon phases, the
phase mole fractions YL and YV stand in direct correspondence to the saturations
SL and SV , as the following exercise shows.

Exercise 7.5 Show that

SL =
YL𝛾̃V

YL𝛾̃V + YV 𝛾̃L
, SV =

YV 𝛾̃L

YL𝛾̃V + YV 𝛾̃L
. (7.12)
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Table 7.4 Molar quantities used in compositional reservoir modeling.

Symbol Name Definition

M̃i Molar mass of species i Mass of i per mole of i
𝛾̃ (i,𝛼) Molar density of species i 𝛾(i,𝛼)∕M̃i

𝛾̃
𝛼

Molar density of phase 𝛼
N−1∑
i=1

𝛾̃ (i,𝛼)

𝜔̃(i,𝛼) Mole fraction of species i 𝛾̃ (i,𝛼)∕𝛾̃𝛼
in phase 𝛼

𝜌̃H Bulk molar density 𝜙(SL𝛾̃L + SV 𝛾̃V )
of hydrocarbons

𝜔̃(i,H) Mole fraction of species i
SL𝛾̃L𝜔̃(i,L) + SV 𝛾̃V 𝜔̃(i,V)

𝜌̃H

in hydrocarbons

Y
𝛼

Mole fraction of phase 𝛼
S
𝛼
𝛾̃
𝛼

SL𝛾̃L + SV 𝛾̃V

in hydrocarbons

Multiplying each hydrocarbon species flow equation (7.11) by 1∕M̃i and using
the definitions in Table 7.4 yield the following molar form of the species flow
equations:

𝜕

𝜕t
(
𝛾̃ (i,H)𝜔̃(i,H)

)
− ∇ ⋅

[
𝜆L𝛾̃L𝜔̃(i,L)(∇pL + −𝛾L∇Z)

]
− ∇ ⋅

[
𝜆V 𝛾̃V 𝜔̃(i,V)(∇pL + ∇pCVL − 𝛾V∇Z)

]
= 0, (7.13)

for i = 1, 2,… ,N − 1.
Summing over the species i = 1, 2,… ,N − 1 gives a molar form of the total

hydrocarbon flow equation,

𝜕𝜌̃H

𝜕t
− ∇ ⋅ [(𝜆L𝛾̃L + 𝜆V 𝛾̃V )∇pL + 𝜆V 𝛾̃V∇pCVL

− (𝜆L𝛾̃L𝛾L + 𝜆V 𝛾̃V𝛾V )∇Z] = 0. (7.14)

Some numerical formulations utilize Eq. (7.14) as a pressure equation, leaving N −
2 independent equations of the form (7.13) to update the species mole fractions
𝜔̃(i,H) at each time step. This approach parallels that used in IMPES methods for
two-phase flow and black-oil models, as introduced in Section 6.3. For examples
of different numerical formulations of compositional models, including analogs of
the simultaneous solution (SS) method, see [2,38,56,109,149,162].
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7.4 Fluid-phase Thermodynamics

As discussed in Section 7.1, closing the system (7.13) of flow equations requires
additional relationships. In particular, we must determine

● the molar compositions of each hydrocarbon phase:

𝝎̃
𝛼
=
(
𝜔̃(1,𝛼), 𝜔̃(2,𝛼),… , 𝜔̃(N−1,𝛼)

)
, for 𝛼 = L,V ,

● the saturations SL and SV ,
● the molar densities 𝛾̃L, 𝛾̃V ,

given the overall hydrocarbon mole fractions

𝝎̃ =
(
𝜔̃(1,H), 𝜔̃(2,H),… , 𝜔̃(N−1,H)

)
.

In practice, these additional relationships do not take the explicit forms that
Eqs. (7.6) suggest. Instead, they commonly take the form of thermodynamic con-
straints, which furnish a system of nonlinear algebraic equations that define the
functional relationships (7.6) implicitly. This system must be solved numerically,
using an iterative method such as Newton’s method [5, Chapter 4]. This section
sketches the origins of this system of equations and gives a brief description of
their consequences in certain types of compositional flows.

7.4.1 Flash Calculations

The thermodynamic constraints arise from the assumption that the fluid phases
remain in local thermodynamic equilibrium. According to this assumption,
the time needed for the two phases L and V to reach their equilibrium composi-
tions, saturations, and densities after mixing is much shorter than the time scales
associated with the species transport. As a consequence, at each point in space
and time, the two fluids are in thermodynamic equilibrium with each other. This
assumption enables us to use principles of equilibrium thermodynamics eluci-
dated in 1878 by American mathematician J. Willard Gibbs [60] and advanced
significantly during the ensuing century; see Prausnitz et al. [125] for an encyclo-
pedic reference.

At the core of vapor–liquid equilibrium calculations is a set of constraints requir-
ing that the fugacities f(i,L) and f(i,V) of each species i in the fluid phases L and V
be equal. The fugacity generalizes the concept of the partial pressure in an ideal
gas. The equal-fugacity constraints f(i,L) = f(i,V) arise from a minimization principle
derived by Gibbs. Section 7.4.2 reviews one approach for calculating fugacities in
isothermal hydrocarbon mixtures given phase compositions and pressures.

Figure 7.1 depicts the overall logic of the thermodynamic calculations. There
are two steps. The first is more computationally intensive: Given the pressures pL
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Flash
calculations

Equation
of state

γL, γV

SL, SV

ω
pL, pV

ωL, ωV

YL, YV

Figure 7.1 Flow chart for equation-of-state thermodynamic calculations in a
compositional model.

and pV and the array 𝝎̃ of overall mole fractions, determine the compositions and
mole fractions of the two hydrocarbon fluid phases,

𝝎̃L, 𝝎̃L,YL,YV . (7.15)

This step uses a procedure commonly referred to as the flash calculation. It
determines the 2N unknowns listed in (7.15) by solving a nonlinear system of 2N
algebraic equations that includes the following:

1. N − 1 equal-fugacity constraints, having the form

f(i,L)(𝝎̃L, pL) − f(i,V)(𝝎̃V , pV ) = 0, i = 1, 2,… ,N − 1. (7.16)

2. N − 2 restrictions on the species mole fractions:

YL𝜔̃(i,L) + YV 𝜔̃(i,V) = 𝜔̃(i,H), i = 1, 2,… ,N − 2. (7.17)

3. A restriction derived by summing the restrictions (7.17) for i = 1, 2,… ,N − 1:

YL + YV = 1.

4. Two restrictions on phase compositions:
N−1∑
i=1
𝜔̃(i,L) = 1 =

N−1∑
i=1
𝜔̃(i,V).

The second step in the thermodynamic calculations is to determine the true
densities 𝛾L and 𝛾V and saturations SL and SV of the two hydrocarbon phases.
In an isothermal continuum, given the phase compositions and pressure of each
phase, one can determine the phase molar densities using an equation of state, as
sketched in Section 7.4.2 Once we know the phase molar densities of phases L and
V , we compute their saturations using Eqs. (7.12).

7.4.2 Equation-of-state Methods

A common methodology for implementing these thermodynamic calculations is
to use equation-of-state methods. Equations of state relate a fluid’s pressure,
molar density, composition, and temperature. The development of such equations
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follows a venerable tradition beginning with Dutch physicist Johannes van der
Waals in 1873; it requires intimate knowledge of molecular thermodynamics as
well as an instinct for curve-fitting to model the behavior of gases and liquids. This
section provides only a brief overview of this highly technical field. For detailed
examples of equation-of-state methods, see [38,57,100,101,109].

In the context of hydrocarbon fluid mixtures, it is common to write the equation
of state for a fluid phase 𝛼 in terms of its dimensionless compressibility factor,

Z
𝛼
=

p
𝛼

𝛾̃
𝛼
RgasT

.

Here, T denotes the temperature, and Rgas is the gas constant, 8.31434 J mol−1 K−1

in SI units. Since Z
𝛼
= 1 when the phase 𝛼 is an ideal gas, the compressibility fac-

tor effectively measures the departure of the fluid’s density–pressure relationship
from ideality.

Among the most commonly used equations of state are the cubic equations
of Redlich and Kwong [126], Soave [137], and Peng and Robinson [116]. These
equations have the form

Z3
𝛼
+ c2Z2

𝛼
+ c1Z

𝛼
+ c0 = 0,

where the coefficients c0, c1, and c2 are parameters determined by the composition,
pressure, and temperature of phase 𝛼. By calculating these coefficients and finding
the corresponding roots Z

𝛼
for the fluid phases L and V , one can compute the

molar densities 𝛾̃L and 𝛾̃V . Then, using the phase mole fractions YL and YV , one
can determine the saturations SL and SV using the results of Exercise 7.5.

One attractive feature of equation-of-state methods is their internal consistency.
Each equation of state furnishes an expression for the fugacity f(i,𝛼) of species i in
phase 𝛼; see Peng and Robinson [116] for an example. This fact allows us to develop
flash calculations that maintain mathematical consistency with the calculations of
phase molar densities and saturations.

Fluid-phase thermodynamics impose heavy computational burdens on compo-
sitional simulators. Flash calculations are especially time consuming, since the
equal-fugacity constraints (7.16) require iterative methods for solving nonlinear
algebraic systems. A compositional simulator must execute these calculations
in every spatial grid cell at every time step and, typically, at every iteration of
the iterative time-stepping method required to solve the nonlinear species flow
equations (7.13).
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Appendix A

Dedicated Symbols

This appendix lists symbols used to denote specific physical quantities. In many
cases, the main text employs subscripts, superscripts, and accent marks for partic-
ular instances of these quantities; the table below makes no attempt to list all of
these particular cases.

Throughout the book, vectors appear in boldface font; tensors appear in bold
sans-serif font.

Table A.1 Dedicated symbols for physical quantities.

Symbol Physical quantity Dimension

B Formation volume factor 1
c Concentration ML−3

1 if normalized
D Diffusion coefficient L2T−1

D Hydrodynamic dispersion tensor L2T−1

f Fractional flow 1
F,F Flux or force LT−1 or MLT−2

g Gravitational acceleration LT−2

H Piezometric head L
I Identity tensor 1
j Diffusive flux ML−2T−1

k,k Permeability L2

K,K Hydraulic conductivity LT−1

log Natural logarithm 1

The Mathematics of Fluid Flow Through Porous Media, First Edition. Myron B. Allen.
© 2021 John Wiley & Sons, Inc. Published 2021 by John Wiley & Sons, Inc.
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Table A.1 (Continued)

Symbol Physical quantity Dimension

p Pressure ML−1T−2

Pe Péclet number 1
Q Volumetric flow rate L3T−1

r Radial coordinate L
RS Solution gas–oil ratio 1
Re Reynolds number 1
s Drawdown L
S Fluid saturation or storativity 1
Sp Storage M−1LT2

Ss Specific storage L−1

t Time T
T Transmissivity L2T−1

T Stress ML−1T−2

v Average interstitial velocity LT−1

x,x Spatial position L
z Axial coordinate L
Z Depth L
Z
𝛼

Compressibility factor of phase 𝛼 1
𝛾 True density ML−3

𝛿 Dirac 𝛿 distribution 1
𝜃 Angle or azimuth Radians
Θ Moisture content 1
𝜆 Fluid mobility M−1L3T
𝜇 Dynamic viscosity ML−1T−1

𝜈 Kinematic viscosity L2T−1

𝜌 Density ML−3

𝜎 Surface tension MT−2

𝜙 Porosity 1
𝜙v Filtration velocity or specific discharge LT−1

𝜙̂ Polar angle Radians
Ψ Pressure head or tension head L
𝜔 Mass fraction 1
∥ x ∥ Euclidean length,

√
x ⋅ x L
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Appendix B

Useful Curvilinear Coordinates

Although many treatments gloss over the representations of differential operators
in polar, cylindrical, and spherical coordinates, the conversions are worth review-
ing, since Chapters 2 and 4 use the results.

B.1 Polar Coordinates

In two space dimensions, the following transformation defines polar coordinates
in terms of the standard Cartesian coordinates (x1, x2):

𝚽
([

r
𝜃

])
=
[

r cos 𝜃
r sin 𝜃

]
=
[

x1
x2

]
. (B.1)

The radial coordinate r =∥ x ∥=
√

x ⋅ x represents distance from the origin; 𝜃
represents the counterclockwise angle from the x1-axis.

Exercise B.1

(A) Show that the transformation (B.1) has derivative

𝚽′ =
[
𝜕x1∕𝜕r 𝜕x1∕𝜕𝜃
𝜕x2∕𝜕r 𝜕x2∕𝜕𝜃

]
=
[

cos 𝜃 −r sin 𝜃
sin 𝜃 r cos 𝜃

]
,

with Jacobian determinant

det 𝚽′ = r.

(B) Apply the chain rule to the composition 𝜑(𝚽(r, 𝜃)) to show that the
two-dimensional gradient ∇𝜑 of a differentiable function has matrix rep-
resentation[

𝜕𝜑

𝜕x1
,
𝜕𝜑

𝜕x2

]
=
[

cos 𝜃 𝜕𝜑
𝜕r

− sin 𝜃
r

𝜕𝜑

𝜕𝜃
, sin 𝜃 𝜕𝜑

𝜕r
+ cos 𝜃

r
𝜕𝜑

𝜕𝜃

]
. (B.2)

The Mathematics of Fluid Flow Through Porous Media, First Edition. Myron B. Allen.
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(C) Show that the two-dimensional Laplace operator in polar coordinates is

∇2 = ∇ ⋅ ∇ = 1
r
𝜕

𝜕r

(
r 𝜕
𝜕r

)
+ 1

r2
𝜕

2

𝜕𝜃2 .
(B.3)

Transforming integrals from Cartesian coordinates to polar coordinates requires
the change-of-variables theorem [99, Section 6.2]. For a transformation 𝚽 that
maps a region  of (r, 𝜃)-space into a region 𝚽() in the rectangular coordinates
(x1, x2), this theorem gives

∫𝚽()
f (x1, x2) dx1 dx2 =

∫


f (𝚽(r, 𝜃)) | det 𝚽′(r, 𝜃)| dr d𝜃

=
∫


f (x1(r, 𝜃), x2(r, 𝜃)) r dr d𝜃, (B.4)

for a sufficiently well behaved function f .

B.2 Cylindrical Coordinates

The following coordinate transformation defines cylindrical coordinates:

𝚽
⎛⎜⎜⎝
⎡⎢⎢⎣

z
r
𝜃

⎤⎥⎥⎦
⎞⎟⎟⎠
=
⎡⎢⎢⎣

z
r cos 𝜃
r sin 𝜃

⎤⎥⎥⎦
=
⎡⎢⎢⎣

x1
x2
x3

⎤⎥⎥⎦
. (B.5)

Here, x1, x2, and x3 are Cartesian coordinates, and

−∞ < z < ∞, 0 ≤ r <∞, 0 ≤ 𝜃 < 2𝜋.

As Figure B.1 illustrates, the axial coordinate z gives the position along an axis,
which we take to be the x1 axis; the radial coordinate r gives distance from the
axis, and the azimuth 𝜃 gives the angle with respect to a reference plane passing
through the axis.

x1 = z

x2

x3
r

θ

Figure B.1 Cylindrical coordinates.



�

� �

�

B.2 Cylindrical Coordinates 185

In the standard orthonormal basis {e1, e2, e3} associated with Cartesian coordi-
nates, the derivative of the transformation (B.5) is

𝚽′ =
⎡⎢⎢⎣
𝜕x1∕𝜕z 𝜕x1∕𝜕r 𝜕x1∕𝜕𝜃
𝜕x2∕𝜕z 𝜕x2∕𝜕r 𝜕x2∕𝜕𝜃
𝜕x3∕𝜕z 𝜕x3∕𝜕r 𝜕x3∕𝜕𝜃

⎤⎥⎥⎦
=
⎡⎢⎢⎣

1 0 0
0 cos 𝜃 −r sin 𝜃
0 sin 𝜃 r cos 𝜃

⎤⎥⎥⎦
,

with Jacobian determinant

det 𝚽′ = r.

By the chain rule, for any differentiable function 𝜑(x(z, r, 𝜃)),[
𝜕𝜑

𝜕z
,
𝜕𝜑

𝜕r
,
𝜕𝜑

𝜕𝜃

]
=
[
𝜕𝜑

𝜕x1
,
𝜕𝜑

𝜕x2
,
𝜕𝜑

𝜕x3

]
𝚽′
,

which we solve to find the matrix representation of ∇𝜑(x(z, r, 𝜃)) in cylindrical
coordinates:[

𝜕𝜑

𝜕x1
,
𝜕𝜑

𝜕x2
,
𝜕𝜑

𝜕x3

]
=
[
𝜕𝜑

𝜕z
, cos 𝜃 𝜕𝜑

𝜕r
− sin 𝜃

r
𝜕𝜑

𝜕𝜃
, sin 𝜃 𝜕𝜑

𝜕r
+ cos 𝜃

r
𝜕𝜑

𝜕𝜃

]
. (B.6)

The left side of Eq. (B.6) gives the coordinates of ∇𝜑 with respect to the basis
{e1, e2, e3}:

∇𝜑 =
3∑

j=1

𝜕𝜑

𝜕xj
ej.

Often of greater utility in the cylindrical coordinate system is the associated basis
{ez, er , e𝜃} of unit-length, mutually orthogonal vectors:

ez = e3,

er = (cos 𝜃)e1 + (sin 𝜃)e2,

e
𝜃
= (− sin 𝜃)e1 + (cos 𝜃)e2.

Exercise B.2 Sketch these vectors, and show that

∇𝜑 = 𝜕𝜑

𝜕z
ez +

𝜕𝜑

𝜕r
er +

1
r
𝜕𝜑

𝜕𝜃
e
𝜃
.

Exercise B.3 Show that, in cylindrical coordinates, the Laplace operator has the
following form:

∇2 = ∇ ⋅ ∇ = 𝜕
2

𝜕z2 + 1
r
𝜕

𝜕r

(
r 𝜕
𝜕r

)
+ 1

r2
𝜕

2

𝜕𝜃2 .
(B.7)

To transform integrals from Cartesian coordinates to cylindrical coordinates, we
again use the change-of-variables theorem. For a transformation 𝚽 that maps a
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region of a generic three-dimensional space, having coordinates (u1,u2,u3), into
a region 𝚽() in the rectangular coordinates (x1, x2, x3), this theorem gives

∫𝚽()
f (x1, x2, x3) dx1 dx2 dx3

=
∫


f (𝚽(u1,u2,u3))| det 𝚽′(u1,u2,u3)| du1 du2 du3

=
∫


f (r cos 𝜃, r sin 𝜃, z) r dr d𝜃 dz,

for any sufficiently well-behaved function f . For example, the integral of a suffi-
ciently well-behaved function f over all of three-dimensional space is

∫

∞

−∞ ∫

∞

−∞ ∫

∞

−∞
f (x1, x2, x3) dx1 dx2 dx3

=
∫

∞

−∞ ∫

2𝜋

0 ∫

∞

0
f (r cos 𝜃, r sin 𝜃, z) r dr d𝜃 dz.

B.3 Spherical Coordinates

The coordinate transformation

𝚽
⎛⎜⎜⎝
⎡⎢⎢⎣

r
𝜃

𝜙̂

⎤⎥⎥⎦
⎞⎟⎟⎠
=
⎡⎢⎢⎣

r sin 𝜙̂ cos 𝜃
r sin 𝜙̂ sin 𝜃

r cos 𝜙̂

⎤⎥⎥⎦
=
⎡⎢⎢⎣

x1
x2
x3

⎤⎥⎥⎦
defines spherical coordinates. Here,

0 ≤ r <∞, 0 ≤ 𝜃 < 2𝜋, 0 ≤ 𝜙 ≤ 𝜋.

As shown in Figure B.2, the radial coordinate r gives distance from the origin;
the polar angle 𝜙̂ gives the angle with respect to an axis passing through the
origin, and the azimuth 𝜃 gives the angle with respect to a plane passing through
that axis.

Exercise B.4 Calculate the derivative 𝚽′ in Cartesian coordinates.

We associate with spherical coordinates the basis {er , e𝜃, e𝜙}, where

er = sin𝜙[(cos 𝜃)e1 + (sin 𝜃)e2] + (cos 𝜙̂)e3,

e
𝜃
= −(sin 𝜃)e1 + (cos 𝜃)e2,

e
𝜙
= cos 𝜙̂[(cos 𝜃)e1 + (sin 𝜃)e2] − (sin 𝜙̂)e3.
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Figure B.2 Spherical coordinates.

φ̂

x1

x2

x3

r

θ

Exercise B.5 For a differentiable function 𝜑(x(r, 𝜃, 𝜙)), show that

∇𝜑 = 𝜕𝜑

𝜕r
er +

1
r sin 𝜙̂

𝜕𝜑

𝜕𝜃
e
𝜃
+ 1

r
𝜕𝜑

𝜕𝜙̂

e
𝜙

and

∇2
𝜑 = 1

r2
𝜕

𝜕r

(
r2 𝜕𝜑

𝜕r

)
+ 1

r2 sin2
𝜙̂

𝜕
2
𝜑

𝜕𝜃2 + 1
r2 sin 𝜙̂

𝜕

𝜕𝜙̂

(
sin 𝜙̂ 𝜕𝜑

𝜕𝜙̂

)
.

Exercise B.6 Use the change-of-variables theorem to establish the following for-
mula for converting an integral from Cartesian coordinates to spherical coordinates:

∫𝚽()
f (x1, x2, x3) dx1 dx2 dx3

=
∫


f (r sin 𝜙̂ cos 𝜃, r sin 𝜙̂ sin 𝜃, r cos 𝜙̂) r2 sin 𝜙̂ dr d𝜃 d𝜙̂,

for any sufficiently well behaved function f .
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Appendix C

The Buckingham Pi Theorem

This appendix reviews a short proof of a central theorem in dimensional analysis.
The proof is often attributed to Edgar Buckingham [31], an American physicist
who also played a key role in the early analysis of multifluid flows in porous
media, as reviewed in Section 6.2. However, a French mathematician, Joseph
Bertrand [22], established the fundamental concept of the theorem in 1878.

C.1 Physical Dimensions and Units

All physical dimensions involve products of powers of basic dimensions, denoted
abstractly as L1,… ,LM . For us, these basic dimensions are length L, mass M, and
time T. A variable is dimensionless if its dimension is 1.

Assigning a numerical value to a dimensional variable requires choosing a
system of units in which to measure variables having dimensions L1,… ,LM .
For example, the SI (Système Internationale) uses meters (m), kilograms (kg),
and seconds (s) to measure length, mass, and time, respectively; see Section 1.3.
A system of units is consistent if, for each index j = 1,… ,M, it measures all
occurrences of dimension Lj using the same unit. For example, in SI the unit of
velocity is m s−1, and the unit of force is kg m s−2 = N, the newton. Both measure
length in meters. The numerical value of a dimensionless variable is independent
of the choice of units, so long as we use consistent sets of units.

The Buckingham Pi theorem rests on the underlying requirement that any
physical law must be unit-free. More specifically, consider a physical law of the
form

𝜑(q1,… , qm) = 0, (C.1)

giving a relationship between dimensional quantities q1,… , qm. To be unit-free,
this relationship must hold no matter what consistent set of units we use to
measure q1,… , qm. This condition essentially guarantees that physical laws not
depend on subjective choices of the units used to measure physical variables.

The Mathematics of Fluid Flow Through Porous Media, First Edition. Myron B. Allen.
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C.2 The Buckingham Theorem

Theorem C.1 Buckingham Pi Theorem For any unit-free physical law of the
form (C.1) giving a relationship among dimensional variables q1,… , qm, there is a
set Π1,… ,Πm−l of dimensionless variables, with 0 ≤ l < m, for which an equivalent
law of the form

Φ(Π1,… ,Πm−l) = 0

holds.

Proof: The argument proceeds in two steps. Step 1 is to find the dimensionless
variables Π1,… ,Πm−l and the parameter l. Each dimensionless variable, denoted
generically by Π, has the form

Π =
m∏

j=1
qnj

j , (C.2)

for some exponents n1,… ,nm. Let L1,… ,Lk be the basic dimensions required to
form the variables q1,… , qm. Thus, k ≤ m, and each dimensional variable qj has
dimension

dim(qj) = La1j
1 · · ·Lakj

k ,

for some integer powers a1j,… , akj. Therefore,

dim(Π) =
m∏

j=1
dim (qj)nj =

m∏
j=1

(
La1j

1 · · ·Lakj

k

)nj
=

k∏
l=1

Ln1al1+···+nmalm
l .

But the condition dim(Π) = 1 implies that the exponents of L1,… ,Lk all vanish.
This condition yields the homogeneous linear system

⎡⎢⎢⎣
a11 · · · a1m
⋮ ⋮

ak1 · · · akm

⎤⎥⎥⎦
⎡⎢⎢⎣

n1
⋮

nm

⎤⎥⎥⎦
=
⎡⎢⎢⎣

0
⋮
0

⎤⎥⎥⎦
. (C.3)

Since k ≤ m, this system is possibly underdetermined. The number of linearly
independent (hence nonzero) solution vectors (n1,… ,nm) is m − l, where l ≤ m
denotes the rank of the k × m matrix in Eq. (C.3). Each of these solutions defines
an independent dimensionless variable of the form (C.2). We denote these dimen-
sionless variables as Πj, for j = 1,… ,m − l.

Step 2 of the proof is to find a dimensionless law equivalent to Eq. (C.1). Begin
by substituting dimensionless variables Π1,… ,Πm−l for m − l of the dimensional
variables q1,… , qm. Renumbering the dimensional variables if necessary, we
deduce a functional relationship that is equivalent to Eq. (C.1) having the form

𝜑(q1,… , qm) = Φ(Π1,… ,Πm−l, qm−l+1,… , qm) = 0. (C.4)
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The hypothesis that the physical law (C.1) is unit-free allows us to measure
the dimensional quantities qm−l+1,… , qm in any consistent set of units, getting
any numerical values we wish for these arguments of Φ, while the values of
the dimensionless quantities Π1,… ,Πm−l remain unchanged. It follows that Φ
cannot depend on the numerical values of qm−l+1,… , qm. Therefore, Eq. (C.4)
reduces to the simpler form:

Φ(Π1,… ,Πm−l) = 0. ◾
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Appendix D

Surface Integrals

This appendix contains a brief review of surface integration. It covers three topics:
(i) the definition of a surface integral; (ii) the statement of the Stokes theorem,
which relates a surface integral to an integral over the boundary of the surface;
and (iii) a corollary to the Stokes theorem used in deriving the Young–Laplace
equation (6.2). For more detailed coverage of these topics, consult [99,
Chapters 7-8].

D.1 Definition of a Surface Integral

The definition of a surface integral rests on the concept of parametrizations. A
parametrization of a of surface Σ in three-dimensional Euclidean space represents
the surface as a smooth image of a region, called the parameter domain, in the
plane ℝ2. More precisely, let Ω ⊂ ℝ2 be the parameter domain together with its
boundary 𝜕Ω, as drawn in Figure D.1. A continuously differentiable, one-to-one
function 𝝋 defined on Ω parametrizes the surface Σ if:

1. 𝝋(Ω) = Σ.
2. The derivative𝝋′(𝝃), a 3 × 2 matrix, has linearly independent columns at every

point 𝝃 = (𝜉1, 𝜉2) in the parameter domain Ω.

Geometrically, the columns of 𝝋′(𝝃), given by

𝝉1 = 𝝋′(𝝃)
[

1
0

]
, 𝝉2 = 𝝋′(𝝃)

[
0
1

]
,

are vectors tangent to the surface Σ at each point 𝝋(𝝃). Condition 2 on 𝝋′

ensures that these vectors are noncollinear and hence that their cross product
𝝉1(𝝃) × 𝝉2(𝝃) ≠ 𝟎. As a result, there exists a continuous, unit-length vector field

n(𝝃) =
𝝉1(𝝃) × 𝝉2(𝝃)

∥ 𝝉1(𝝃) × 𝝉2(𝝃) ∥

The Mathematics of Fluid Flow Through Porous Media, First Edition. Myron B. Allen.
© 2021 John Wiley & Sons, Inc. Published 2021 by John Wiley & Sons, Inc.
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e1

ee2

e3

Σ

τ1ττ

τ2ττ

n

ϕ

ξ2

ξ2
Ω

∂Ω

Figure D.1 A parametrized surface Σ = 𝝋(Ω)
showing the unit normal vector n and the tangent
vectors 𝝉1 and 𝝉2.

that is perpendicular to Σ at every point on the surface, as shown in Figure D.1.
The function n is the unit normal vector field on Σ. Since 𝝋 is continuously dif-
ferentiable, n is continuous.

Given such a parametrization, the surface integral of a real-valued, integrable
function f defined on a neighborhood of the surface Σ is

∫∑f n da =
∫ ∫Ω

f (𝝋(𝜉1, 𝜉2)) n(𝜉1, 𝜉2) d𝜉1 d𝜉2.

Similarly, for an integrable, vector-valued function f defined on a neighborhood of
Σ,

∫∑f ⋅ n da =
∫ ∫Ω

f(𝝋(𝜉1, 𝜉2)) ⋅ n(𝜉1, 𝜉2) d𝜉1 d𝜉2.

D.2 The Stokes Theorem

The Stokes theorem relates surface integrals of certain derivatives to integrals
around the bounding arcs. In this respect, it belongs to a class of theorems—such
as the fundamental theorem of calculus and the divergence theorem—that
relate integrals of derivatives to values on boundaries. These theorems figure
prominently in the mechanics of continua.

In this case, the derivative of interest is the curl

∇ × F =
(
𝜕F3

𝜕x1
−
𝜕F2

𝜕x3
,

𝜕F1

𝜕x3
−
𝜕F3

𝜕x1
,

𝜕F2

𝜕x1
−
𝜕F1

𝜕x2

)

of a continuously differentiable, vector-valued function F(x) defined in a region
containing a surface Σ that has a well-defined unit normal vector field n(x).

Let Σ have boundary 𝜕Σ, parametrized by a continuously differentiable, closed
path 𝜸 defined on an interval [a, b] chosen so that the tangent vector field
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𝜸′(s) = t(s) has unit length for every value of the parameter s ∈ [a, b]. The Stokes
theorem relates the surface integral of ∇ × F to the path integral of F:

∫∑(∇ × F) ⋅ n da =
∫𝜸

F ⋅ t ds =
∫

b

a
F(𝜸(s)) ⋅ 𝜸′(s) ds. (D.1)

See [99, Chapter 8].

D.3 A Corollary to the Stokes Theorem

Section 6.1 uses a corollary of Eq. (D.1) in deriving the Young–Laplace equation
(6.2).

Theorem D.1 If the vector-valued function f is continuously differentiable in a
neighborhood of the surface Σ and the vector fields n and t are as in Eq. (D.1), then

∫𝜸
f × t ds =

∫∑
[
(∇ ⋅ f)n − n ⋅ ∇f

]
da.

Here, the derivative ∇f has the following matrix representation with respect to an
orthonormal basis {e1, e2, e3}:

⎡⎢⎢⎣
𝜕f1∕𝜕x1 𝜕f1∕𝜕x2 𝜕f1∕𝜕x3
𝜕f2∕𝜕x1 𝜕f2∕𝜕x2 𝜕f2∕𝜕x3
𝜕f3∕𝜕x1 𝜕f3∕𝜕x2 𝜕f3∕𝜕x3

⎤⎥⎥⎦
.

Using this representation, we calculate the vector n ⋅ ∇f via matrix multiplication:

[
n1 n2 n3

] ⎡⎢⎢⎣
𝜕f1∕𝜕x1 𝜕f1∕𝜕x2 𝜕f1∕𝜕x3
𝜕f2∕𝜕x1 𝜕f2∕𝜕x2 𝜕f2∕𝜕x3
𝜕f3∕𝜕x1 𝜕f3∕𝜕x2 𝜕f3∕𝜕x3

⎤⎥⎥⎦
. (D.2)

Proof: Since 𝟎 is the only vector that is orthogonal to every vector, it suffices to
show that the following equation holds for every constant vector w:

w ⋅
{
∫𝜸

f × t ds −
∫∑

[
(∇ ⋅ f)n − n ⋅ ∇f

]
da

}
= 0.

Toward this end, let F = f × w in Eq. (D.1):

∫𝜸
(f × w) ⋅ t ds =

∫∑
[
∇ × (f × w)

]
⋅ n da.

Exercise D.1 For general, differentiable vector-valued functions f, t, and w, prove
the following vector identity:

(f × w) ⋅ t = −w ⋅ (f × t).
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If you have exceptional stamina, verify the following additional identity:

∇ × (f × w) = (∇ ⋅ w)f − (∇ ⋅ f)w + (w ⋅ ∇)f − (f ⋅ ∇)w.

Here, the expression (f ⋅ ∇)w) has the following representation with respect to the
standard orthonormal basis:

⎡⎢⎢⎢⎢⎢⎢⎣

f1
𝜕𝑤1

𝜕x1
+ f2

𝜕𝑤1

𝜕x2
+ f3

𝜕𝑤1

𝜕x3

f1
𝜕𝑤2

𝜕x1
+ f2

𝜕𝑤2

𝜕x2
+ f3

𝜕𝑤2

𝜕x3

f1
𝜕𝑤3

𝜕x1
+ f2

𝜕𝑤3

𝜕x2
+ f3

𝜕𝑤3

𝜕x3

⎤⎥⎥⎥⎥⎥⎥⎦

.

Exercise D.2 Verify the identity [(w ⋅ ∇)f] ⋅ n = w ⋅ (n ⋅ ∇f).

Applying the results of Exercises D.1 and D.2 together with the fact that ∇ ⋅ w = 0
and (f ⋅ ∇)w = 0 in our case, we obtain

w ⋅
∫𝜸

f × t ds =
∫∑ {(∇ ⋅ f)w ⋅ n − [(w ⋅ ∇)f] ⋅ n} da

= w ⋅
∫∑

[
(∇ ⋅ f)n − n ⋅ ∇f

]
da,

as desired. ◾
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