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Abstract

We show that the issue of the drag exerted by an incompressible fluid on a body in uniform motion has played a major role in the early
development of fluid dynamics. In 1745 Euler came close, technically, to proving the vanishing of the drag for a body of arbitrary shape; for this
he exploited and significantly extended the existing ideas on decomposing the flow into thin fillets; he did not however have a correct picture of
the global structure of the flow around a body. Borda in 1766 showed that the principle of live forces implied the vanishing of the drag and should
thus be inapplicable to the problem. After having at first refused the possibility of a vanishing drag, d’Alembert in 1768 established the paradox,
but only for bodies with a head–tail symmetry. A full understanding of the paradox, as due to the neglect of viscous forces, had to wait until the
work of Saint-Venant in 1846.
c© 2008 Elsevier B.V. All rights reserved.
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1. Introduction

The first hint of d’Alembert’s paradox – the vanishing of the
drag for a solid body surrounded by a steadily moving ideal
incompressible fluid – had appeared even before the analytical
description of the flow of a “perfect liquid”1 was solidly
established. Leonhard Euler in 1745, Jean le Rond d’Alembert
in 1749 and Jean-Charles Borda in 1766 came actually very
close to formulating the paradox, using momentum balance
(in an implicit way) or energy conservation arguments, which
actually predate its modern proofs.2 D’Alembert in 1768 was
the first to recognize the paradox as such, although in a
somewhat special case. Similarly to Euler and Borda, his
reasoning did not employ the equations of motion directly,
∗ Corresponding author. Tel.: +33 4 92003035; fax: +33 4 92003058.
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1 Kelvin’s name of an incompressible inviscid fluid.
2 See, e.g. Serrin, 1959 and Landau and Lifshitz, 1987.
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but nevertheless used a fully constituted formulation of the
laws of hydrodynamics, and exploited the symmetries he
had assumed for the problem. A general formulation of
d’Alembert’s paradox for bodies of an arbitrary shape was
given in 1846 by Adhémar Barré de Saint-Venant, who pointed
out that the vanishing of the drag can be due to not taking into
account viscosity. Other explanations of the paradox involve
unsteady solutions, presenting for example a wake, as discussed
by Birkhoff.3

Since the early derivations of the paradox did not rely on
Euler’s equation of ideal fluid flow, it was not immediately
recognized that the idealized notion of an inviscid fluid motion
was here conflicting with the physical reality. The difficulties
encountered in the theoretical treatment of the drag problem
were attributed to the lack of appropriate analytical tools rather
than to any hypothetical flaws in the theory. In spite of the great
achievements of Daniel and Johann Bernoulli, of d’Alembert
3 Euler, 1745; D’ Alembert, [1749]; Borda, 1766; Saint-Venant, 1846, 1847;
Birkhoff, 1950: Chap. 1, §9.
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8 The lift need not vanish if there is circulation.
9 See, e.g., Landau and Lifshitz, 1987: §11.

10 Darrigol, 2005: Appendix A.
and of Euler4 the theory of hydrodynamics seemed beset with
insurmountable technical difficulties; to the contemporaries it
thus appeared of little help, as far as practical applications were
concerned. There was a dichotomy between, on the one hand,
experiments and the everyday experience and, on the other hand
the eighteenth century’s limited understanding of the nature
of fluids and of the theory of fluid motion. This dichotomy is
one of the reasons why neither Euler nor Borda nor the early
d’Alembert were able to recognize and to accept the possibility
of a paradox.

We shall also see, how the problem setting became more
and more elaborated in the course of time. Euler, in his early
work on the drag problem appeals to several physical examples
of quite different nature, such as that of ships navigating
at sea and of bullets flying through the air. D’Alembert’s
1768 formulation of the drag paradox is concrete, precise
and much more mathematical (in the modern sense of the
word) than Euler’s early work. This is how d’Alembert was
able to show – with much disregard for what experiments or
(sometimes irrelevant) physical intuition might suggest – that
the framework of inviscid fluid motion necessarily leads to a
paradox.

For the convenience of the reader we begin, in Section 2, by
recalling the modern proofs of d’Alembert’s paradox: one proof
– somewhat reminiscent of the arguments in Euler’s 1745 work
– relies on the calculation of the momentum balance, the other
one – connected with Borda’s 1766 paper – uses conservation
of energy. In Section 3 we describe Euler’s first attempt, in
1745, to calculate the drag acting on a body in a steady flow
using a modification of a method previously introduced by
D. Bernoulli.5 In Section 4 we discuss d’Alembert’s 1749
analysis of the resistance of fluids. In Section 5 we review
Euler’s contributions to the drag problem made after he had
established the equations of motions for ideal fluid flow.
Section 6 is devoted to Borda’s arguments against the use of
a live-force (energy conservation) argument for this problem.
In Sections 7 and 8 we discuss d’Alembert’s and Saint-
Venant’s formulation of the paradox. In Section 9 we give the
conclusions.

Finally, we mention here something which would hardly be
necessary if we were publishing in a journal specialized in the
history of science: the material we are covering has already
been discussed several times, in particular by such towering
figures as Saint-Venant and Truesdell.6 Our contributions can
only be considered incremental, even if, occasionally, we
disagree with our predecessors.

2. Modern approaches to d’Alembert’s paradox

Let us consider a solid body K in a steady potential flow
with uniform velocity U at infinity. In the standard derivation
of the vanishing of the drag7 one proceeds as follows: Let
4 See, e.g., Darrigol, 2005; Darrigol and Frisch, 2008.
5 Bernoulli, 1736.
6 Truesdell, 1954; Saint- Venant [1888].
7 See, e.g., Serrin, 1959.
Ω be the domain bounded in the interior by the body K
and in the exterior by a sphere S with radius R (eventually,
R → ∞). The force acting upon K is calculated by writing
a momentum balance, starting from the steady incompressible
3D Euler equation

v · ∇v = −∇ p, ∇ · v = 0. (1)

The contribution of the pressure term gives the sum of the force
acting on the body K and of the force exerted by the pressure
on the sphere S. It may be shown, using the potential character
of the velocity field, that the latter force vanishes in the limit
R → ∞. The contribution of the advection term can be written
as the flux of momentum through the surface of the domain
Ω : the flux through the boundary of K vanishes because of the
boundary condition v · n = 0; the flux through the surface of
S vanishes because the velocity field is asymptotically uniform
(v ' U for R → ∞). From all this it follows that the force on
the body vanishes. This approach proves the vanishing of both
the drag and the lift.8

Alternatively, one can use energy conservation to show the
vanishing of the drag.9 Roughly, the argument is that the work
of the drag force, due to the motion with velocity U , should be
balanced by either a dissipation of kinetic energy (impossible in
ideal flow when it is sufficiently smooth) or by a flow to infinity
of kinetic energy, which is also ruled out for potential flow. This
argument shows only the vanishing of the drag.

A more detailed presentation of such arguments may be
found in the book by Darrigol.10

In the following we shall see that many technical aspects of
these two modern approaches were actually discovered around
the middle of the eighteenth century.

3. Euler and the new principles of Gunnery (1745)

In 1745 Euler published a German translation of Robins’
book “New Principles of Gunnery” supplemented by a series
of remarks whose total amount actually makes up the double of
the original volume. In the third remark of the first proposition
(Dritte Anmerkung zum ersten Satz) of the 2nd Chapter Euler
attempts to calculate the drag on a body at rest surrounded by a
steadily moving incompressible fluid.11

In 1745 the general equations governing ideal incompress-
ible fluid flow were still unknown. Nevertheless, Euler managed
the remarkable feat of correctly calculating the force acting on
an element of a 2D steady flow around a solid body. For this, as
we shall see, he borrowed and extended the results obtained by
D. Bernoulli a few years earlier.12
11 For the German original of the third remark, cf. Euler, 1745: 259–270
(of Opera omnia which we shall use for giving page references); an
English version, taken from Hugh Brown’s 1777 translation is available at
www.oca.eu/etc7/EE250/texts/euler1745.pdf. We shall sometimes use our own
translations.
12 Bernoulli, 1736, 1738.

http://www.oca.eu/etc7/EE250/texts/euler1745.pdf
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Fig. 1. Figure 14 of Euler, 1745: 263: this figure represents a fillet of fluid
aAMm, deflected by the solid body, but the shape of the body is not fully
specified.

Euler begins by noting that instead of calculating the drag
acting on a body moving in a fluid one can calculate the drag
acting on a resting body immersed in a moving fluid. Thus, he
considers a fluid moving into the direction AB13 (cf. Figs. 1 and
3), past a solid body CD.14 Then Euler continues by describing
the motion of fluid particles and establishes a relation between
the trajectory and velocity of each fluid particle and the force
which is acting on this particle. He observes that, instead of
determining the force on the body, one can evaluate the reaction
on the fluid:

But since all parts of the fluid, as they approach the body, are deflected
and change both their speed and direction [of motion], the body has to
experience a force of strength equal to that needed for this change in
speed as well as direction of the particles.15

Thus, one has to determine the force which is applied at
each point of the fluid. Euler chooses a fillet16 AaMm of fluid
with an infinitesimal width and observes that the velocity17 v

of the particles passing through the section Mm is inversely
proportional to its (infinitesimal) width Mm = δz; so that
v δz = v0 δz0, where δz0 = Aa and v0 are the width of the fillet
and the velocity at the reference point A.18 For later reference
let us call this relation mass conservation. Euler assumes that
the particles passing through the section Aa follow the fillet
AaMm. This is equivalent to assuming that the velocity in each
section Mm along the trajectory depends only on the location
13 Here, contrary to the usage in Eulers’ memoir, all geometrical points will
be denoted by roman letters, leaving italics for algebraic quantities.
14 These are Euler’s own words; examination of various of his figures and of

the scientific context shows that the body extends below CD and, perhaps also
above.
15 Euler, 1745: 263. Weil aber alle Theile der flüßigen Materie, so bald sich

dieselben dem Körper nahen, genöthiget werden auszuweichen, und so wohl
ihre Geschwindigkeit, als ihre Richtung zu verändern, so muß der Körper eine
eben so große Kraft empfinden, als zu dieser Veränderung so wohl in der
Geschwindigkeit, als der Richtung der Theilchen, erfordert wird.
16 Euler uses the word “Canal” (channel).
17 Following early eighteenth century notation, Euler represents a velocity by

the corresponding height of free fall to achieve the given velocity, starting a
rest; in modern notation this would be

√
2gh. In the 1745 paper Euler takes

mostly g = 1 – but occasionally g = 1/2 – and denotes the height by v. In
order not to confuse the reader, we shall here partially modernize the notation
and in particular denote the velocity by v.
18 Euler denotes our δz, δz0 and v0 by z, a and

√
2b, respectively.
Fig. 2. Figure 1 of Bernoulli, 1736. A centripetal argument is used to calculate
the normal force acting along a fillet of fluid represented here just by the curve
BD (changes in width are ignored).

of the point M and not on time, in modern terms a stationary
flow. Here the concepts of streamline and of stationarity in two
dimensions appear for the first time explicitly.

With the above assumption, Euler defines

AP = x, P Q = dx, P M = y, O N = dy,

p = dy/dx, M N =

√
dx2 + dy2 = dx

√
1 + p2.

(2)

Since the force exerted by the body on the fluid is oriented
upward, we prefer orienting the vertical axis upward. Hence
y and p will be negative in what follows. Otherwise we shall
mostly follow Euler’s notation. Euler calculates the normal and
tangential components, dFN and dFT, of the infinitesimal force
acting on the element of fluid fillet MNnm (see Fig. 1).19

With the assumed unit density, the mass of fluid in MNnm is

δz × M N = δzdx
√

1 + p2. (3)

The normal acceleration dFN in the direction MR is
calculated by Euler as a centripetal acceleration, i.e., given by
the product of the square of the velocity v2 and the curvature

(1 + p2)
3
2 dp/dx . Euler may here be following D. Bernoulli.20

The latter, in a paper concerned among other things with jets
impacting on a plane, had developed an analogy between an
element of fluid following a curved streamline and a point mass
on a curved trajectory (cf. Fig. 2). Multiplying the acceleration
by the elementary mass and using mass conservation,21 Euler
then obtains

dFN = v0δz0vdp/(1 + p2), (4)

in which the velocity v along the fillet is considered to be a
function of the slope p.
19 The notation dFN and dFT is ours.
20 Bernoulli, 1736 and 1738: Section XIII, §13.
21 Bernoulli, 1738: 287 assumed a fillet of uniform width (fistulam

implantatam esse uniformis quidem amplitudinis) and thus did not use mass
conservation to relate the varying width and velocity.
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23 Euler, 1745: 267. Hier kömmt es also nur darauf an, wo das Ende des
Canals angenommen werden soll. Geht man so weit, biß die flüßige Materie um
den Körper völlig vorbey geflossen, und ihren vorigen Lauf wiederum erlanget
hat, so wird . . . , und der Winkel mSB verschwindet, dahero der Cosinus
desselben = 1 wird. In diesem Fall würde also die auf den Körper nach der
Direction AB würkende Kraft . . . und der Körper litte gar keinen Wiederstand.
24 Euler, 1745: 268–269. . . . unendlich flüßig . . . und von einer unendlichen

Kraft zusammen gedruckt . . .
25 Euler, 1745: 267. Woraus erhellet, daß man für Wasser und Luft nicht

denjenigen Punkt des Canals, wo die Bewegung hinter dem Körper mit der
ersten wiederum völlig übereinkommt, für den letzten annehmen könne.
To obtain the tangential force dFT in the direction mS on the
element of fillet, Euler writes

δzdx
√

1 + p2d(v2/2) = −dFT dx
√

1 + p2, (5)

and thus

dFT = −δzd(v2/2) = −δz0(v0/v)d(v2/2). (6)

For the case of Fig. 1 the force is oriented in the direction mS,
because the fluid is moving more slowly at N than at M. Euler
does not elaborate on how he derives (5) but this seems typically
a “live-force” argument of a kind frequently used at that time,
for example by the Bernoullis.22 Indeed the l.h.s. is the variation
of the live force (kinetic energy) and the r.h.s. is what we would
now call the work of the tangential force per unit mass.

So as to later determine the drag, that is the force on the body
in the vertical direction, Euler adds these normal and tangential
elementary forces, projected onto the vertical axis oriented in
the direction BA. He thus obtains the following elementary
vertical force on the fluid:

dFBA = v0δz0

(
vdp

(1 + p2)
3
2

+
pdv√

1 + p2

)
. (7)

Here a “miracle” happens: the r.h.s. of (7) is the exact
differential of

v0δz0

(
vp√

1 + p2

)
. (8)

Finding the exact form of the function v(p), as we now know,
requires the solution of a non-trivial boundary value problem.
The exact form does however not matter for the integrability
property and – from a modern perspective – can be related to the
global momentum conservation property of the Euler equation.
In 1745 Euler did not comment on the miracle. It is worth
stressing that it does not survive if any error is made regarding
the numerical factors appearing in the normal and tangential
forces.

Euler is now able to exactly integrate the elementary force
along a fillet from its starting point A, assumed to be far
upstream (p = −∞), to a point m with a finite slope p. Noting
that −p/

√
1 + p2 is the cosine of the angle MSB, he obtains

the following force on the body, due to the fillet:

FAB = −v2
0δz0

(
1 −

v

v0
cos MSB

)
. (9)

Note that this is a force from a given fillet of infinitesimal
width which must still be integrated over a set of fillets
encompassing the whole fluid. More important here is where
to terminate the fillet. It is clear that the relevant fillets start far
upstream in the vertical direction; but where do they lead after
having come close to the solid body? Euler considers various
possibilities, such as a 90◦ deflection. He then envisages a very
interesting case:
22 Cf., e.g., Darrigol, 2005: Chap. 1.
Fig. 3. Figure 15 of Euler, 1745: 268 from which he tries to explain that the
drag should be calculated using only the portion AM of the fillet.

It remains therefore only to fix upon the point which is to be esteemed
the last of the canal. If we go so far that the fluid may pass by the body,
and attain its first direction and velocity then shall δz = δz0, and the
angle mSB vanish, and therefore its cosine = 1, then shall the force
acting on the body in the direction AB = −v2

0δz0(1 − 1) = 0, and the

body suffers no resistance. 23

From a technical point of view Euler’s 1745 derivation of
the vanishing of the drag force has many features of the modern
proof. However Euler refuses here to see a paradoxical property
of the model of ideal fluid flow (for which the equations are not
even completely formulated). He accepts the possibility that the
vanishing of the drag applies to certain exotic fluids which are
“infinitely fluid . . . and also compressed by an infinite force”24

such as the hypothetical ether surrounding celestial bodies
(called by him “subtle heavenly material”), but he firmly rejects
it for water and air. Indeed, immediately after the previous
citation he writes:

Hence it appears, that for air or water, we are not to take the point of the
canal for last, where the motion behind the body corresponds exactly
with that at the beginning of the canal. 25

Euler then explains why in his opinion the “last point”
should not at all be taken far downstream, but rather near the
inflection point M where the angle MSB achieves its maximum
value, as shown in Fig. 3.26 As pointed out to us by Olivier
Darrigol, in Euler’s opinion the portion AM of the canal AD is
the only one that exerts a force on the body, the alleged reason
26 Truesdell, 1954: XL writes that “Euler supposes that the oncoming fluid
turns away from the axis, leaving a dead-water region ahead of the body”;
actually, Euler does not assume any dead-water region in his Third Remark.
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being that the force caused by the deflection in the portion MD
is not directed toward the body:

The other part DM produces a force which is opposite to the first, and
would cause the body to move back in the direction BA. Now, as only
a true pressure [a positive one] can set a body into motion, the latter
force can only act on the body insofar as the pressure of the fluid matter
from behind is strong enough to move the body forwards .27

Hence he departed from strict dynamical reasoning to follow a
dubious intuition of the transfer of force through the fluid.28

To sum up, Euler performed a real tour de force by deriving
the correct expression for the force on a fillet of fluid without
having the equations of motion but practically he was not
able to reach much beyond Newton’s impact theory when
considering the global interaction between the fluid and the
body.

4. d’Alembert and the treatise on the resistance of fluids
(1749)

In a treatise29 written for the prize of the Berlin Academy
of 1749 whose subject was the determination of the drag a
flow exerts upon a body, d’Alembert gives a description of the
motion of the fluid analogous to that of Euler. It is not clear
if d’Alembert knew about Euler’s “Commentary on Gunnery”.
As noted by Truesdell,30 some figures in d’Alembert’s treatise
are rather similar to those found in the Gunnery but there
are also arguments in the Gunnery which would have allowed
d’Alembert, had he been aware of them, to extend his 1768
paradox to cases not possessing the head–tail symmetry he
had to assume. Anyway, d’Alembert was fully aware of D.
Bernoulli’s work on jet impact in which, as we already pointed
out, a similar figure is found.

In the treatise d’Alembert described the motion of an
incompressible fluid in uniform motion at large distance,
interacting with a localized axisymmetric body. He observed
that the streamlines and the velocity of the fluid at each point
in space are time-independent. The velocity a of the fluid far
upstream of the body is directed along the axis of symmetry
(which he takes for the abscissa); the other axis is chosen to be
perpendicular to this direction. In this frame a point M of the
fluid is characterized by the cylindrical coordinates (x, z) and
the corresponding velocity has the components avx and avz .31

D’Alembert’s first aim is to derive the partial differential
equations which determine the motion of the fluid, and the
appropriate boundary conditions with which they must be
27 Euler, 1745: 268. Aus dem andern Theil DM aber ensteht eine Kraft,
welche jener entgegen ist, und von welcher des Körper nach der Direction
BA zurück gezogen werden sollte. Da nun kein Körper anders, als durch einen
würklichen Druck in Bewegung gesetzt werden kann, so kann auch die letztere
Kraft nur in so ferne auf den Körper würken, als der Druck der flüßigen Materie
von hinten stark genug ist, den Körper vorwärts zu stossen.
28 Darrigol, private communication, 2007.
29 D’Alembert, [1749], 1752.
30 Truesdell, 1954: LII.
31 D’Alembert uses a similarity argument to prove that the velocity field

around a body of a given shape is proportional to the incoming velocity a
(D’Alembert, [1749]: §42–43, 1752: §39).
supplemented. He observed that, in order to determine the drag
on the body, one must first determine

. . . the pressure of the fillet of Fluid which glides immediately on the
surface of the body. For this it is necessary to know the velocity of the
particles of the fillet. 32

By considering the motion of fluid particles during an
infinitesimal time interval, d’Alembert is able to find the
expressions of the two components of the force acting on an
element of fluid:

γz = a2
(

−vx
∂vz

∂x
− vz

∂vz

∂z

)
, (10)

and

γx = a2
(

−vx
∂vx

∂x
− vz

∂vx

∂z

)
. (11)

From this d’Alembert derived for the first time the partial
differential equations for axisymmetric, steady, incompressible
and irrotational flow, but he does not use such equations in
considering the problem of “fluid resistance”.33

How does d’Alembert calculate the drag? From an
assumption about the continuity of the velocity he infers,
contrary to Euler, that there must be a zone of stagnating fluid
in front of the body and behind it, bordered by the streamline
TFMDLa which attaches to the body at M and detaches at L
(see Fig. 4).34

In his calculation of the drag d’Alembert used an approach
which differed from that of Euler in the Gunnery: instead
of calculating the balance of forces acting on the fluid he
considered the pressure force exerted on the body by the fluid
fillet in immediate contact with it. D’Alembert noted first that,
for each surface element of the body, the force exerted by the
fluid particles is perpendicular to this surface, because of the
vanishing of the tangential forces, characterizing the flow of an
ideal fluid.35

In conformity with Bernoulli’s law, d’Alembert expressed
the pressure along the body as a2(1−v2

x −v2
z ). With ds denoting

the element of curvilinear length along the sections of the body
by an axial plane such as that of Fig. 4, the infinitesimal element
of surface of revolution of the body upon which this pressure is
acting is 2π zds. The component along the axis of the pressure
force exerted is

2πa2(1 − v2
x − v2

z )zdz. (12)

Further integration along the profile AMDLC yields the vertical
component of the drag.

Then came a very important remark. D’Alembert noted that
in the case of a body which is not only axisymmetric but has
32 D’Alembert, 1752: xxxi. . . . la pression du filet de Fluide qui glisse
immédiatement sur la surface du corps. Pour cela il est nécessaire de connoı̂tre
la vitesse des particules de ce filet.
33 Cf. Truesdell, 1954: LIII, Grimberg, 1998: 44–46, Darrigol, 2005: 20–21.
34 D’Alembert, [1749]: §39, 1752: §36.
35 D’Alembert, [1749]: §40, 1752: §37. This vanishing, as we know,

characterizes an ideal fluid; d’Alembert did not relate it to the nature of the
fluid.
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40 Euler, 1755, 1756.
41 Saint-Venant, [1888], probably mostly written around 1846.
42
Fig. 4. Figure 14 of D’Alembert, [1749] redrawn. Not all elements shown here
are used in our arguments.

a head–tail symmetry,36 the contributions to the drag from two
symmetrically located points would be equal and of opposite
sign and thus cancel.37 In order to avoid the vanishing of the
drag, he assumed that the attachment point M and the separation
point L are not symmetrically located:
From there it follows that the arcs LD and DM cannot be equal;
because, if they were, the quantity—

∫
2πydy(p2

+q2) would be equal
to zero so that the body would not experience any force from the fluid:
which is contrary to experiments.38

This stress on “experiments”, already present in the 1749
manuscript and which will not reappear in d’Alembert’s 1768
paradox paper, seems to reflect just common sense. It cannot be
explained by d’Alembert’s hypothetical desire to adhere to late
recommendations by the Berlin Academy which emphasized
comparisons with experiments for the 1750 prize on resistance
of fluids. D’Alembert did not seem pleased with such late
changes and these recommendations were probably formulated
only in May 1750.39

D’Alembert’s new idea, compared to Euler, is to consider
the drag as the resultant of the pressure forces directed along
the normal to the surface of the body over its entirety. But for
d’Alembert it is still unimaginable to obtain a vanishing drag.

5. Euler and the ‘Dilucidationes’ (1756)

The Dilucidationes de resistentia fluidorum (Enlightenment
regarding the resistance of fluids) have been written in 1756,
36 In d’Alembert [1752] this additional symmetry is explicitly assumed;
in d’Alembert, [1749] the language used only suggests such a symmetry.
37 D’Alembert, [1749]: §62, 1752: §70.
38 D’Alembert, 1752: §70. Delà il s’ensuit que les arcs LD, DM ne sauroient

être égaux ; car s’ils l’étoient, alors la quantité −
∫

2πydy(p2
+q2) seroit égale

à zéro de manière que le corps ne souffriroit aucune pression de la part du
fluide : ce qui est contre l’expérience.
39 D’Alembert, 1752: xxxviii; Yushkevich and Taton, 1980: 312–314; Grim-

berg, 1998: 9.
one year after Euler established his famous equations in their
final form.40 In his review of previous efforts to understand the
drag problem for incompressible fluids, Saint-Venant41 writes
the following about the Dilucidationes:

And it is obvious that, when the flow is assumed indefinite or very
broad, the theory of the Dilucidationes can only be and actually is just
a return to the vulgar theory, . . . . 42

Here, Saint-Venant understands by “vulgar theory” the
impact theory which goes back to the seventeenth century.
Actually, in 1756 Euler was rather pessimistic regarding the
applicability of his equations to the drag problem:

But the results which I have presented in several previous memoirs
on the motion of fluids do not help much here. Because, even though
I have succeeded in reducing everything that concerns the motion
of fluids to analytical equations, the analysis has not reached the
sufficient degree of completion which is necessary for the solving of
such equations.43

Truesdell discusses the Dilucidationes in detail.44 Actually
this paper is quite famous because of a remark Euler
made on the cavitation that arises from negative pressure in
incompressible fluids. Truesdell is also rightly impressed by
Euler’s success in doing something non-trivial with his equation
for flows around a parabolic cylinder; for this Euler uses a
system of curvilinear coordinates based on the streamlines and
their orthogonal trajectories.

The Dilucidationes are however not contributing much to
our understanding of drag. In Section 15, Euler expresses his
doubts regarding the applicability of his 1745 calculation to
both the front and the back of a body (which would result in
vanishing drag):

. . . the boat would be slowed down at the prow as much as it would be
pushed at the poop . . . .45

We must mention here that, because of a possible non-
vanishing transfer of kinetic energy to infinity, the modern
theory of the d’Alembert paradox does not apply to flow with a
free surface, such as a boat on the sea.

Thus, in the Dilucidationes we find a first attempt to
introduce a new analytical treatment of streamlines unrelated
to the previous theories and coming closer to the modern
description of a fluid flow. Nevertheless, Euler does not succeed
in using his 1755 equations to improve our understanding of the
drag problem.
Saint-Venant, [1888]: 35. Et il est évident que, lorsque le courant est
supposé indéfini ou très large, la théorie des Dilucidationes d’Euler ne peut
être et n’est réellement qu’un retour pur et simple à la théorie vulgaire,
43 Euler, 1760: 200. Quae ego etiam nuper in aliquot dissertationibus de

motu fluidorum exposui, nullum subsidium huc afferunt. Etiamsi enim omniam
quae ad motum fluidorum pertinent, ad aequationes analyticas reduxi, tamen
ipsa Analysis minime adhuc ita est exculta, ut illis aequationibus resoluendis
sufficiat.
44 Truesdell, 1954: C–CVII.
45 Euler, 1760: 206 . . . puppis nauis paecise tanta vi propelleretur, quanta

prora repellitur. . . .



1884 G. Grimberg et al. / Physica D 237 (2008) 1878–1886
6. Borda’s memoir (1766)

In his memoir Borda, a prominent French “Geometer” and
experimentalist, studies the loss of “live force” (energy) in
incompressible flows, in particular in pipes whose section is
abruptly enlarged.46 At the end of his memoir Borda gives
an example of what would be, in his opinion, “a bad use” of
the principle of conservation of live forces. This is precisely
the problem of determining the drag force that a moving fluid
exerts upon a body at rest. The particles of the fluid in the
neighborhood of the body “delineate curved lines or rather
move in small curved channels”; the pressure force acting
upon the body has to be determined. But the channels become
narrower at certain locations similarly to a siphon, so that the
principle of live forces cannot be used. To prove this point he
then presents the following argument for the vanishing of the
drag:

. . . suppose that the body D moves uniformly through a quiescent fluid,
driven by the action of the weight P . According to this principle [of
live forces], the difference of the live force of the fluid must be equal to
the difference of the actual descent of the weight; however, since the
motion is supposed to have reached uniformity, the difference of the
live forces equals zero. Therefore, the difference of the actual descent
is also zero, which cannot happen unless the weight P is itself zero. As
the weight P measures the resistance of the fluid, the supposition of the
principle [of live forces] necessarily leads to a vanishing resistance.47

This constitutes the first derivation of the d’Alembert
paradox using an energy dissipation argument. Borda’s
explanation of why the live-force conservation argument is
inapplicable rests on the aforementioned analogy with the
siphon problem. This is illustrated by a figure48 not reproduced
here because of its poor quality. There one sees a fillet of
fluid narrowing somewhat as it approaches the body. The
modern concept of dissipation in high-Reynolds-number flow
being confined to regions with very strong velocity gradients is
definitely not what Borda had in mind.

Borda’s reasoning is correct, but like Euler in 1745 and
d’Alembert in 1749, he does not formulate the vanishing of
the drag as a paradox. In his remarks Borda addresses neither
the question of the nature of the fluid, nor the consequences of
having stationary streamlines, nor the problem of the contact
between the fluid and the body (absence of viscosity in the
case of ideal flow) which, as we know, are quite central to the
understanding of the paradox.
46 Borda, 1766.
47 Borda, 1766: 604–605. . . . supposons que le corps D se meuve

uniformément dans un fluide tranquille, entraı̂né par l’action du poids P: on
sait que suivant le principe, la différence de la force vive du fluide devra être
égale à la descente actuelle du poids P; mais puisque le mouvement est censé
parvenu à l’uniformité, la différence des forces vives = 0; donc la différence de
la descente actuelle sera aussi = 0, ce qui ne se peut pas à moins que le poids
P ne soit lui-même = 0: or le poids P marque la résistance du fluide : donc la
supposition du principe dont il s’agit, donne toujours une résistance nulle.
48 Borda, 1766: Figure 14, found at the end of the 1766 volume on p. 847.
7. D’Alembert’s memoirs on the paradox (1768 and 1780)

In Volume V of his “Opuscules” published in 1768, a
part of a memoir is entitled “Paradox on the resistance of
fluids proposed to geometers.”49 D’Alembert considers again
an axisymmetric body, but now with a head–tail symmetry.
More precisely, he assumes a plane of symmetry perpendicular
to the direction of the incompressible flow at large distance and
dividing the body into two mirror-symmetric pieces. To avoid
the problem of possible separation of streamlines upstream and
downstream of the body, he assumes that the front part and
the rear part of the body have needle-like endings. First of all
he asserts that the velocities at every location in the fluid are
perfectly symmetric in front/rear of the body, and that

. . . under this assumption the law of the equilibrium and the
incompressibility of the fluid will be perfectly obeyed, because, the
rear part of the body being similar and equal to its front part, it
is easy to see that the same values of p and q [i.e. the velocity
components] which will give at the first instant the equilibrium and
incompressibility of the fluid at the front part will give the same results
for the rear part. 50

This statement is directly related to the remark in Section 70
of d’Alembert’s 1752 treatise. In fact, the assumption used by
d’Alembert in 1749 and 1752 to avoid a paradox is here lifted,
since no separation of streamlines occurs except at the needle-
like end points. D’Alembert here assumes that the solution with
mirror symmetry is the only one: “The fluid has only one way
to be moved by the encounter of the body.” The pressure forces
at the front and rear part of the body are then also axisymmetric
and mirror symmetric. Hence they combine into a force of
resistance (drag) which vanishes. D’Alembert concluded:

Thus I do not see, I admit, how one can satisfactorily explain by
theory the resistance of fluids. On the contrary, it seems to me that the
theory, developed in all possible rigor, gives, at least in several cases, a
strictly vanishing resistance; a singular paradox which I leave to future
Geometers to elucidate. 51

It is clear that d’Alembert’s argument is less general than that
of Borda, since he is restricting the formulation of the paradox
to bodies with a head–tail symmetry. Nevertheless, d’Alembert
is the first one to seriously propose the vanishing of the drag as a
paradox. Twelve years later in Volume VIII of his “Opuscules”
d’Alembert revisits the paradox in the light of a letter received
from “a very great Geometer” who is not named and who
points out that, when considering the flow inside or around a
49 D’Alembert, 1768. In the eighteenth century “Geometer” was frequently
used to mean “mathematician” (pure or applied).
50 D’Alembert, 1768: 133. . . . dans cette supposition les loix de l’équilibre

& de l’incompressibilité du fluide seront parfaitement observées; car la partie
postérieure étant (hyp.) semblable et égale à la partie antérieure, il est aisé de
voir que les mêmes valeurs de p & de q; qui donneront au premier instant
l’équilibre & l’incompressibilité du fluide à la partie antérieure, donneront les
mêmes résultats à la partie postérieure.
51 D’Alembert, 1768: 138. Je ne vois donc pas, je l’avoue, comment on peut

expliquer par la théorie, d’une maniere satisfaisante, la résistance des fluides.
ll me paroı̂t au contraire que cette théorie, traitée & approfondie avec toute la
rigueur possible, donne, au moins en plusieurs cas, la résistance absolument
nulle ; paradoxe singulier que je laisse à éclaircir aux Géometres [sic].
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symmetric body, there may be, in addition to the symmetric
solution, another one which does not possess such symmetry
and to which d’Alembert’s argument for the vanishing of the
resistance does not apply.52 D’Alembert concurs and discussed
the issue at length. It should however be noted that a breaking of
the symmetry was already assumed by him in his early work on
the resistance when he assumed that the (hypothetical) points
of attachment and detachment of the streamline following the
body are not symmetrically located (see Section 4).

Thus d’Alembert was definitely the first to formulate the
vanishing of the drag as a paradox within the accepted model
of that time, namely incompressible fluid flow, implicitly taken
as ideal.53 He was however formulating it only for bodies with
head–tail symmetry, not realizing that techniques introduced by
Euler and Borda could have allowed him to obtain the paradox
for bodies of arbitrary shapes.

8. Saint-Venant and the first precise formulation of the
paradox (1846)

In three notes published in 1846 and then in a memoir
published in 1847, Saint-Venant gives for the first time a
general formulation of the paradox. A detailed write-up, mostly
dating from the same period, was published only posthumously
in 1888 and contains also a very interesting discussion of
previous work.54 Saint-Venant’s memoir marks the beginning
of the modern theory of the d’Alembert paradox which was
to flourish, in particular with major contributions by Ludwig
Prandtl.55

We here give only a very brief description of the key
results of Saint-Venant. He first specified the properties of
the incompressible fluid: the pressure force is normal to the
surface element on which it is acting and therefore equal in
all directions. The fluid moves steadily around a body at rest.
He gives a derivation of the paradox, closely related to Borda’s.
Indeed, it suffices to establish the equation for the live forces
acquired by the fluid to see that the live-force (energy) loss of
the system is zero:

If the motion has reached, as one always assumes, a steady state, the
live force acquired by the system at every instant is zero; the work
performed by the exterior pressures is also zero and the same applies to
the work of the interior actions of the fluid whose density is assumed to
be unchanging. Thus, the work of the impulse of the fluid on the body,
and, consequently, the impulse itself, is necessarily equal to zero. 56
52 D’Alembert, 1780: 212; Birkhoff, 1950: 21–22.
53 The idea of viscosity ripened only in the XIXth century, see e.g. Darrigol,

2005; in the eighteenth century there was only a concept of tenaciousness,
e.g. resistance to the introduction of a body into fluid, which was still a long
way from actual viscosity.
54 Saint-Venant, 1846, 1847, [1888].
55 Cf., e.g. Darrigol, 2005: Chap. 7.
56 Saint-Venant, 1847: 243–244. Si le mouvement est arrivé, comme on le

suppose toujours, à l’état de permanence, la force vive, acquise à chaque instant
par le système, est nulle ; le travail des pressions extérieures est nul aussi, et il
en est de même du travail des actions intérieures du fluide dont nous supposons
que la densité ne change pas. Donc le travail de l’impulsion du fluide sur le
corps, et, par conséquent, cette impulsion elle-même, est nécessairement zéro.
He adds that the situation is different for a real fluid made of
molecules in which there is friction at the contact between two
neighboring fluid elements:

But one finds another result if, instead of an ideal fluid – object of
the calculations of the geometers of the last century – one uses a real
fluid, composed of a finite number of molecules and exerting in its
state of motion unequal pressure forces or forces having components
tangential to the surface elements through which they act; components
to which we refer as the friction of the fluid, a name which has been
given to them since Descartes and Newton until Venturi.57

Thus, d’Alembert’s paradox is explained by Saint-Venant for
the first time as a consequence of ignoring viscous forces. Of
course, a precise formulation of the paradox would not have
been possible without a clear distinction between ideal and
viscous fluids.

9. Conclusion

The problem of the resistance of bodies moving in fluids
was – and still is – of great practical importance. It was thus
naturally one of the first non-trivial problems tackled within
the nascent eighteenth century hydrodynamics. Euler, who was
not only a great “Geometer” but a person acutely aware of
the needs of gunnery and ship building, tried – as we have
seen – reaching beyond the old impact theory of Newton—
and failed. He was lacking both the concept of viscous forces
and a deep understanding of the global aspects of the topology
of the flow around a body. His “failure” – as is frequently
the case with major scientists – was however very creative:
born was the idea of analyzing a steady flow into a set of
fluid fillets of infinitesimal and non-uniform section; he also
managed to calculate the forces acting on such fillet several
years before there was any representation of the dynamics in
terms of partial differential equations. Borda, being both a
Geometer and an experimentalist, felt compelled to qualify as
non-sensical a very simple live-force argument discovered by
himself and which predicted a vanishing drag for bodies of
arbitrary shape. D’Alembert, another brilliant Geometer, was
probably less constrained by experimental considerations, and
dared eventually to present the paradox known by his name. His
proof reveals a very good understanding of the global topology
of the flow but otherwise is very simple and limited intrinsically
to bodies with a head–tail symmetry.

We must stress that the statement as a paradox is very much
tied to the type of analytical representation of an ideal flow.
From this point of view, experiments on flow past bodies,
be they real or thought experiments, have rather been an
obstacle to grasping the distinction between an ideal fluid and
a real one. The same kind of epistemological obstacle has
57 Saint-Venant, 1847: 244. Mais on trouve un autre résultat si, au lieu du
fluide idéal, objet des calculs des géomètres du siècle dernier, on remet un
fluide réel, composé de molécules en nombre fini, et exercant dans l’état du
mouvement, des pressions inégales ou qui ont des composantes tangentielles
aux faces à travers desquelles elles agissent; composantes que nous désignons
par le nom de frottement du fluide, qui leur a été donné depuis Descartes et
Newton jusqu’à Venturi.
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accompanied the earlier birth of the principle of inertia, which
no experiment could at that time truly reveal; it was necessary to
distance oneself from real conditions and to find an appropriate
mathematical representation. Finding such representations for
fluid dynamics was a painfully slow process: a full century
elapsed between Euler’s fragmentary results on drag and Saint-
Venant’s full understanding of the d’Alembert paradox.
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XXXIV, Section I, 132–138.

D’Alembert Jean le Rond, 1780 ‘Sur la Résistance des fluides,’ in Opuscules
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