Во всех задачах используются прямоугольные декартовы координаты $x,\,y,\,z.$

1. Потребляемая мощность N мешалки зависит от плотности ρ и вязкости μ размешиваемой жидкости, частоты вращения лопаток f и геометрических размеров l_1, l_2, \ldots, l_n рабочей части мешалки:

$$N = \varphi(\rho, \mu, f, l_1, \dots, l_n).$$

Используя пи-теорему, определить вид зависимости N от параметров задачи.

2. Известно поле скоростей при плоскопараллельном течении вязкой однородной несжимаемой жидкости под действием некоторых внешних объемных сил:

$$\vec{v}(x,y) = (3x + 2y; 2x - 3y).$$

Давление в жидкости постоянно ($p=p_0=$ = const), вязкость $\mu=$ const и плотность жидкости ρ известны.

а) Найти вектор массовой плотности внешних объемных сил.

- б) Найти компоненты p_{xx} и p_{xy} тензора напряжения в точке $x=3,\ y=2.$
- в) Как формулируется и называется условие на границе вязкой жидкости с неподвижным твердым телом? Выполняется ли оно на поверхности y=0?
- 3. В зазоре между двумя покоящимися бесконечными параллельными пластинами x=0 и x=H покоится жидкость. Температуры пластин T_1 и T_2 постоянны, распределение температуры в жидкости стационарно и зависит только от координаты x. Коэффициент теплопроводности жидкости \varkappa постоянен, объемные источники энергии отсутствуют.
 - а) Написать (в развернутом виде) дифференциальное уравнение в частных производных, которому удовлетворяет распределение температуры жидкости.
 - б) Найти распределение температуры в жидкости.
 - в) Какое количество теплоты проходит в единицу времени через единицу площади каждой из пластин?