Available online at www.sciencedirect.com

ScienceDirect

PHYSIGA |

ELSEVIE Physica D 237 (2008) 1840—1854
www.elsevier.com/locate/physd
Principles of the motion of fluids™
Leonhard Euler
Available online 5 May 2008
Abstract

The elements of the theory of the motion of fluids in general are treated here, the whole matter being reduced to this: given a mass of fluid,
either free or confined in vessels, upon which an arbitrary motion is impressed, and which in turn is acted upon by arbitrary forces, to determine the
motion carrying forward each particle, and at the same time to ascertain the pressure exerted by each part, acting on it as well as on the sides of the
vessel. At first in this memoir, before undertaking the investigation of these effects of the forces, the Most Famous Author! carefully evaluates all
the possible motions which can actually take place in the fluid. Indeed, even if the individual particles of the fluid are free from each other, motions
in which the particles interpenetrate are nevertheless excluded, since we are dealing with fluids that do not permit any compression into a narrower
volume. Thus it is clear that an arbitrary small portion of fluid cannot receive a motion other than the one which constantly conserves the same
volume; even though meanwhile the shape is changed in any way. It would hold indeed, as long as no elementary portion would be compressed at
any time into a smaller volume; furthermore? if the portion expanded into a larger volume, the continuity of the particles was violated, these were
dispersed and no longer clung together, such a motion would no longer pertain to the science of the motion of fluids; but individual droplets would
separately perform their motion. Therefore, this case being excluded, motion of the fluids must be restricted by this rule that each small portion
must retain for ever the same volume; and this principle restricts the general expressions of motion for elements of the fluid. Plainly, considering an
arbitrary small portion of the fluid, its individual points have to be carried by such a motion that, when at a moment of time they arrive at the next lo-
cation, until then they occupy a volume equal to the previous one; thus if, as usual, the motion of a point is decomposed parallel to fixed orthogonal
directions, it is necessary that a certain established relation hold between these three velocities, which the author has determined in the first part.

In the second part the author proceeds to the determination of the motion of a fluid produced by arbitrary forces, in which matter the whole
investigation reduces to this that the pressure with which the parts of the fluid at each point act upon one another shall be ascertained; which
pressure is denoted most conveniently, as customary for water, by a certain height; this is to be understood thus, that each element of the fluid
sustains a pressure the same as if were pressed by a heavy column of the same fluid, whose height is equal to that amount. Thus, in such way
in each point of the fluid the height referring to the state of the pressure will be given; since it is not equal to the one in the neighbourhood, it
will perturb the motion of the elements. But this pressure depends as well on the forces acting on each element of the fluid, as on those, acting in
the whole mass; thus, by the given forces, the pressure in each point and thereupon the acceleration of each element — or its retardation — can be
assigned for the motion, all which determinations are expressed by the author through differential formulas. But, in fact, the full development of
these formulas mostly involves the greatest difficulties. But nevertheless this whole theory has been reduced to pure analysis, and what remains to
be completed in it depends solely upon subsequent progress in Analysis. Thus it is far from true that purely analytic researches are of no use in
applied mathematics; rather, important additions in pure analysis are now required.
© 2008 Published by Elsevier B.V.

I. First part

* This is an English adaptation by Walter Pauls of Euler’s memoir ‘Principia

motus fluidorum’ (Euler, 1756-1757). Updated versions of the translation may
become available at http://www.oca.eu/etc7/EE250/texts/euler1761eng.pdf.
For a detailed presentation of Euler’s fluid dynamics papers, cf. Truesdell,
1954, which has also been helpful for this translation. Euler’s work is discussed
in the perspective of eighteenth century fluid dynamics research by Darrigol
and Frisch (2008). The help of O. Darrigol, U. Frisch, G. Grimberg and G.
Mikhailov is also acknowledged. Explanatory footnotes and references have
been supplied where necessary; Euler’s memoir had neither footnotes nor a list
of references.

! Summaries, which at that time were not placed at the beginning of the
corresponding paper, were published under the responsibility of the Academy;

0167-2789/$ - see front matter (©) 2008 Published by Elsevier B.V.
doi:10.1016/j.physd.2008.04.019

1. Since liquid substances differ from solid ones by the fact
that their particles are mutually independent of each other, they
can also receive most diverse motions; the motion performed by
an arbitrary particle of the fluid is not determined by the motion

the presence of the words “Most Famous Author”, rather common at the time,
cannot be taken as evidence that Euler usually referred to himself in this way.

21n the original, we find “verum quoniam”; the literal translation “since
indeed” does not seem logically consistent.
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of the remaining particles to the point that it cannot move in
any other way. The matter is very different in solid bodies,
which, if they were inflexible, would not undergo any change
in their shape; in whatsoever way they be moved, each of their
particles would constantly keep the same location and distance
with respect to other particles; it thus follows that, the motion
of two or, if necessary, three of all the particles being known,
the motion of any other particle can be defined; furthermore
the motion of two or three particles of such a body cannot be
chosen at will, but must be constrained in such a way that these
particles preserve constantly their positions with respect to each
other.?

2. But if, moreover, solid bodies are flexible, the motion
of each particle is less constrained: because of bending, the
distance as well as the relative position of each particle can
be subject to change. However, the manner itself of bending
constitutes a certain law which various particles of such a body
have to obey in their motion: certainly what has to be taken
care of is that the parts that experience in their neighbourhood
such a strong bending with respect to each other are neither torn
apart from the inside nor penetrate into each other. Indeed, as
we shall see, impenetrability is demanded for all bodies.

3. In fluid bodies, whose particles are united among
themselves by no bond, the motion of each particle is much
less restricted: the motion of the remaining particles is not
determined from the motion of any number of particles. Even
knowing the motion of one hundred particles, the future motion
permitted to the remaining particles still can vary in infinitely
many ways. From which it is seen that the motion of these
fluid particles plainly does not depend on the motion of the
remaining ones, unless it be enclosed by these so that it is
constrained to follow them.

4. However, it cannot happen that the motion of all particles
of the fluid suffers no restrictions at all. Furthermore, one
cannot at will invent a motion that is conceived to occur for
each particle. Since, indeed, the particles are impenetrable,
it is immediately clear that a motion cannot be maintained
in which some particles go through other particles and,
accordingly, penetrate each other: also, because of this reason
such motion certainly cannot be conceived to occur in the fluid.
Therefore, infinitely many motions must be excluded; after their
determination the remaining ones are grouped together. It is
seen worthwhile to define them more accurately regarding the
property which distinguishes them from the previous ones.

5. But before the motion by which the fluid is agitated at any
place can be defined, it is necessary to see how every motion,
which can definitely be maintained in this fluid, be recognized:
these motions, here, I will call possible, which I will distinguish
from impossible motions which certainly cannot take place. We
must then find what characteristic is appropriate to possible
motions, separating them from impossible ones. When this is
done, we shall have to determine which one of all possible
motions in a certain case ought actually to occur. Plainly we
must then turn to the forces which act upon the water, so that

3 Here Euler refers to the motion of rigid solid bodies treated previously in
Euler, 1750.

the motion appropriate to them may be determined from the
principles of mechanics.

6. Thus, I decided to inquire into the character of the possible
motions, such that no violation of impenetrability can occur
in the fluid. I shall assume the fluid to be such as never to
permit itself to be forced into a lesser space, nor should its
continuity be interrupted. Once the theory of fluids has been
adjusted to fluids of this nature, it will not be difficult to extend
it also to those fluids whose density is variable and which do
not necessarily require continuity.*

7. If, thus, we consider an arbitrary portion in such a fluid,
the motion, by which each of its particles is carried has to be set
up so that at each time they occupy an equal volume. When this
occurs in separate portions, any expansion into a larger volume,
or compression into a smaller volume is prohibited. And, if
we turn attention to this only property, we can have only such
motion that the fluid is not permitted to expand or compress.
Furthermore, what is said here about arbitrary portions of the
fluid, has to be understood for each of its elements; so that the
volume of its elements must constantly preserve its value.

8. Thus, assuming that this condition holds, let an arbitrary
motion be considered to occur at each point of the fluid;
moreover, given any element of the fluid, consider the brief
translations of each of its boundaries. In this manner the
volume, in which the element is contained after a very short
time, becomes known. From there on, this volume is posed to
be equal to the one occupied previously, and this equation will
prescribe the calculation of the motion, in so far as it will be
possible. Since all elements occupy the same volumes during
all periods of time, no compression of the fluid, nor expansion
can occur; and the motion is arranged in such a way that this
becomes possible.

9. Since we consider not only the velocity® of the motion
occurring at every point of the fluid but also its direction, both
aspects are most conveniently handled, if the motion of each
point is decomposed along fixed directions. Moreover, this de-
composition is usually carried out with respect to two or three
directions®: the former is appropriate for decomposition, if the
motion of all points is completed in the same plane; but if their
motion is not contained in the same plane, it is appropriate to
decompose the motion following three fixed axes. Because the
latter case is more difficult to treat, it is more convenient to be-
gin the investigation of possible motions with the former case;
once this has been done, the latter case will be easily completed.

10. First I will assign to the fluid two dimensions in such a
way that all of its particles are now not only found with certainty
in the same plane, but also their motion is performed in it.
Let this plane be represented in the plane of the table (Fig. 1),
let an arbitrary point / of the fluid be considered, its position
being denoted by orthogonal coordinates AL = x and LI = y.
The motion is decomposed following these directions, giving a

4 See the English translation of “General laws of the motion of fluids” in
these Proceedings.

5 Meaning here the absolute value of the velocity.

6Depending on the dimension: Euler treats both the two- and the three-
dimensional cases.
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velocity Im = u parallel to the axis AL and /n = v parallel to
the other axis AB: so that the true future velocity of this point
is o/(uu 4 vv), and its direction with respect to the axis AL is
inclined by an angle with the tangent .

11. Since the state of motion, presented in a way which suits
each point of the fluid, is supposed to evolve, the velocities
u and v will depend on the position / of the point and will
therefore be functions of the coordinates x and y. Thus, we put
upon a differentiation

du=Ldx +1ldy and dv=Mdx + mdy,

which differential formulas since they are complete,’ satisfy

furthermore ‘é—'; = dx and ‘g;/,[ = ‘;—’f. Here it is noted that

in such expression d—, the differential of L itself or dL, is
understood to be obtained from the variability with respect to y;
in similar manner in the expression d! /dx, for dl the differential
of [ itself has to be taken, which arises if we take x to vary.

12. Thus, it is in order to be cautious and not to take in
such fractional expressions ‘é];, ji s dM and 4m d’" the numerators
dL, dl, dM, and dm as denoting tﬁe complete differentials
of the functions L, [, M and m; but they designate such
differentials constantly that are obtained from variation of
only one coordinate, obviously the one, whose differential
is represented in the denominator; thus, such expressions
will always represent finite and well defined quantities.

Furthermore, in the same way are understood L = Zz, [ = Z:

M = j—; and m = Z—;; which notation of ratios has been used

for the first time by the most enlightened Fontaine,® and I will
also apply it here, since it gives a non negligible advantage of
calculation.

13. Since du = Ldx + ldy and dv = Mdx + mdy, here it
is appropriate to assign a pair of velocities to the point which is

7 Exact differentials.

8 A paper “Sur le calcul intégral” containing the notation % for the partial
derivative of f with respect to x was presented by Alexis Fontaine des
Bertins to the Paris Academy of Sciences in 1738, but it was published only
a quarter of a century later (Fontaine, 1764). Nevertheless, Fontaine’s paper
was widely known among mathematicians from the beginning of the 1740s,
and, particularly, was discussed in the correspondence between Euler, Daniel
Bernoulli and Clairaut; cf. Euler, 1980: 65-246.

at an infinitely small distance from the point /; if the distance
of such a point from the point / parallel to the axis AL is dx,
and parallel to the axis AB is dy, then the velocity of this point
parallel to the axis AL will be u + Ldx + [dy; furthermore,
the velocity parallel to the other axis AB is v + Mdx + mdy.
Thus, during the infinitely short time dt this point will be
carried parallel to the direction of the axis AL the distance
dt(u + Ldx + Idy) and parallel to the direction of the other
axis AB the distance dt (v + Mdx + mdy).

14. Having noted these things, let us consider a triangular
element /mn of water, and let us seek the location into which
it is carried by the motion during the time df. Let Im be the
side parallel to the axis AL and let In be the side parallel to
the axis AB: let us also put Im = dx and In = dy; or let the
coordinates of the point m be x + dx and y; the coordinates of
the point n be x and y + dy. It is plain, since we do not define
the relation between the differentials dx and dy, which can be
taken negative as well as positive, that in thought the whole
mass of fluid may be divided into elements of this sort, so that
what we determine for one in general will extend equally to all.

15. To find out how far the element /mn is carried during
the time dt due to the local motion, we search for the points
P, q and r, to which its vertices, or the points /, m and n are
transferred during the time d¢. Since

of point/ of pointm  of pointn
Velocity w.r.t. AL=  u u+ Ldx u+ldy
Velocity w.r.t. AB= v v+ Mdx v+ mdy

in the time dt the point / reaches the point p, chosen such that:

AP — AL =udt and Pp — Ll = vdt.

Furthermore, the point m reaches the point ¢, such that

AQ — AM = (u + Ldx)dt and
Qg — Mm = (v + Mdx)dt.

Also, the point 7 is carried to 7, chosen such that

AR — AL = (u +Ildy)dt and Rr —Ln = (v + mdy)dt.

16. Since the points /, m and n are carried to the points p,
q and r, the triangle Imn made of the joined straight lines pgq,
pr and gr, is thought to be arriving at the location defined by
the triangle pgr. Because the triangle /mn is infinitely small,
its sides cannot receive any curvature from the motion, and
therefore, after having performed the translation of the element
of water Imn in the time dt, it will conserve the straight and
triangular form. Since this element /mn must not be either
extended to a larger volume, nor compressed into a smaller one,
the motion should be arranged so that the volume of the triangle
pqr is rendered to be equal to the area of the triangle Imn.

17. The area of the triangle /mn, being rectangular at [, is
%dxdy, value to which the area of the triangle pgr should be
put equal. To find this area, the pair of coordinates of the points
P, q and r must be examined, which are:

AP = x 4+ udt; AQ = x +dx + (u + Ldx)dt,
AR = x 4+ (u +Idy)dt; Pp = y+ vdt
Qg = y+ (v+Mdx)dt, Rr = y+dy+ (v+ mdy)dt.
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Then, indeed, the area of the triangle pgr is found from the area
of the succeeding trapezoids, so that

pqr = PprR 4+ RrgQ — PpqQ.

Since these trapezoids have a pair of sides parallel to and
perpendicular to the base AQ, their areas are easily found.

18. Plainly, these areas are given by the expressions
1
PprR = EPR(Pp + Rr)
1
RrqQ = ERQ(Rr + Qq)

1
PpgQ = EPQ(Pp +Qq).

By putting these together we find:

1 1 1

Apgr = =PQ.Rr — —RQ.Pp — =PR.Qq.
2 2 2

Let us set for brevity

AQ=AP+Q; AR=AP+R; Q¢ =Pp+gq; and
Rr=Pp+r,

so that PQ = Q, PR = R, and RQ = Q — R, and we have
Apgr = 3Q®Pp +r) — 3(Q — R)Pp — JR(Pp + ¢) or
Apgr = %Q.r — %R.q.

19. Truly, from the values of the coordinates represented
before it follows that

Q =dx + Ldxdt; g = Mdxdt
R =ldydt; r =dy+ mdydt,

upon the substitution of these values, the area of the triangle is
obtained

1 1

pqr = dedy(l + Ldt)(1 + mdt) — EMI dxdydtz, or
1

pgr = 5dxdy(l +Ldt +mdt + Lmdt* — Mldt?).

This should be equal to the area of the triangle /mn, that is
= Ldxdy; hence we obtain the following equation

Ldt + mdt + Lmdt> —Mldt> =0 or
L +m + Lmdt — Mldt = 0.

20. Since the terms Lmdt and Mldt are negligible for finite
L and m, we will have the equation L + m = 0. Hence, for the
motion to be possible, the velocities u and v of any point [ have
to be arranged such that after calculating their differentials

du =Ldx +1dy, and dv=Mdx+ mdy,

one has L+m = 0. Or, since L= Z—z and m = Z—; the velocities
u and v, which are considered to occur at the point / parallel to
the axes AL and A B, must be functions of the coordinates x
and y such that % + Z—;’, = 0, and thus, the criterion of possible

" 7
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Fig. 2.
motions consists in this that Z—)’j + Z—; = 0:° and unless this

condition holds, the motion of the fluid cannot take place.

21. We shall proceed identically when the motion of the fluid
is not confined to the same plane. Let us assume, to investigate
this question in the broadest sense, that all particles of the
fluid are agitated among themselves by an arbitrary motion,
with the only law to be respected that neither condensation nor
expansion of the parts occurs anywhere: in the same way, we
seek which condition should apply to the velocities that are
considered to occur at every point, so that motion be possible:
or, which amounts to the same, all motions that are opposed to
these conditions should be eliminated from the possible ones,
this being the criterion of possible motions.

22. Let us consider an arbitrary point of the fluid A. To
represent its location we use three fixed axes AL, AB and AC
orthogonal to each other (Fig. 2). Let the triple coordinates
parallel to these axes be AL = x, LI = y and /X = z; which
are obtained if firstly a perpendicular A/ is dropped from the
point A to the plane determined by the two axes AL and AB;
and then a perpendicular /L is drawn from the point / to the
axis AL. In this manner the location of the point X is expressed
through three such coordinates in the most general way and can
be adapted to all points of the fluid.

23. Whatever the later motion of the point A, it can be
resolved following the three directions Au, Av, Lo, parallel to
the axes AL, AB and AC. For the motion of the point A we set

the velocity parallel to the direction Au = u,

the velocity parallel to the direction Av = v,

the velocity parallel to the direction Ao = w.

Since these velocities can vary in an arbitrary manner for
different locations of the point A, they will have to be considered
as functions of the three coordinates x, y and z. After
differentiating them, let us put to proceed

du =Ldx +1ldy + Adz

dv =Mdx +mdy + pdz

dw = Ndx + ndy + vdz.

9 This is the two-dimensional incompressibility condition, which in a slightly

different form has already been established by D’Alembert, 1752; cf. also
Darrigol and Frisch, 2008:§11I1.
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Henceforth the quantities L, [, A, M, m, u, N, n, v will be
functions of the coordinates x, y and z.

24. Because these formulas are complete differentials, we
obtain as above

dL dl  dL dx dl di
dy ~dx’ dz  dx dz  dy
dM dm dM du dm du
dy " dx’ dz  dx dz  dy
dN dn dN dv dn dv
dy " dx’ dz  dx dz dy
where it is assumed that the only varying coordinate is that
whose differential appears in the denominator.'?
25. Thus, this point A will be moved in the time d¢ by this

threefold motion, which is considered to take place at the point
X; hence it moves

parallel to the axis AL the distance = udt
parallel to the axis AB the distance = vdt
parallel to the axis AC the distance = wdt.

The true velocity of the point A, denoted by V, which clearly
arises from the composition of this triple motion, is given in
view of orthogonality of the three directions by V = /(uu +
vv + ww) and the elementary distance, which is travelled in
time dt through its motion, will be Vdt.

26. Let us consider an arbitrary solid element of the fluid to
see whereto it is carried during the time dt; since it amounts to
the same, let us assign a quite arbitrary shape to that element,
but of a kind such that the entire mass of the fluid can be divided
into such elements; to investigate by calculation, let the shape
be a right triangular pyramid, bounded by four vertices A, u, v
and o, so that for each one there are three coordinates

of point A of point u of pointv  of point o
wrt. AL x x +dx x X
w.rt. AB y y y+dy y
wrt. AC  z Z Z Z+dz.

Since the base of this pyramid is Auv = Imn = %dxdy and
the hight Ao = dz, its volume will be = %dxdydz.

27. Let us investigate, whereto these vertices A, i, v and o
are carried during the time d¢: for which purpose their three
velocities parallel to the directions of the three axes must be
considered. The differential values of the velocities u, v and w
are given by

Velocity of point A of point ©  of point v  of point o
wrt. AL u u+ Ldx u—+ldy u+rdz
wrt. AB v v+Mdx v+mdy v+ pudz
wrt. AC  w w+Ndx w4ndy w+Hodz

28. If we let the points A, u, v and o be transferred to
the points 7w, @, p and o in the time dt, and establish the
three coordinates of these points parallel to the axes, the small
displacement parallel to these axes will be

10 Tpe partial differential notation was so new that Euler had to remind the
reader of its definition.

AP — AL = udt
AQ—AM = (u+Ldx)dt
AR —-AL = (u+Ildy)dt

AS — AL = (u+rdz)dt
Pp — LI = vdt

Qg—Mm = (v+Mdx)dt
Rr—Ln = (v+mdy)dt
Ss — LI = (W4 pndz)dt
pr — I = wdt

q®—mpu = (w+ Ndx)dt
rp —nv = (w—+ndy)dt
so —lo = (w+vdz)dt.

Thus the three coordinates for these four points 7, @, p and
o will be
AP = x 4 udt;
pr =z + wdt
RQ =x +dx + (u + Ldx)dt;
q® = z+ (w+ Ndx)dt
AR = x + (u + ldy)dt;
rp =z + (w + ndy)dt
AS = x + (u + Adz)dt;
so =z4+dz+ (w+ vdz)dr.

Pp =y + vdr;
Qg =y + (v +Mdx)dt;
Rr =y +dy + (v + mdy)dt;

Ss =y + (v + udz)dt;

29. Since after time dt has elapsed the vertices A, i, v and
o of the pyramid are transferred to the points 7, @, p and o,
7 $po defines a similar triangular pyramid. Due to the nature
of the fluid the volume of the pyramid & ¢ po should be equal to
the volume of the pyramid Auvo put forward, that is %dxd ydz.
Thus, the whole matter is reduced to determining the volume of
the pyramid 7 @ po. Clearly, it remains a pyramid, if the solid
pqr Ppo is removed from the solid pgrm @po; the latter
solid is a prism orthogonally incident to the triangular basis
pqr, and cut by the upper oblique section p P.

30. The other solid pgrm @po can be divided by similarly
into three prisms truncated in this manner, namely

Lpgrsnt ®o; Il.prsmpo; Il.grs®po.

This has to be accomplished in such a way that
1
gdxdydz = pgsw Po + prswpo + qrsPpo — pgrm Pp.

Since such a prism is orthogonally incident to its lower base,

and furthermore has three unequal heights, its volume is found

by multiplying the base by one third of the sum of these heights.
31. Thus, the volumes of these truncated prisms will be

1

pqst o = gpqs(pn +q®+s0)
1

prswpoc = gprs(prr +rp+so)
1

qrsdpo = gqrs(qd5 +rp+so)

1
pqre dp = gpqr(pﬂ +qP+rp).
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Since pgr = pgs+ prs+qrs, the sum of the first three prisms
will definitely be small, or

1 1 1 1 1
gdxdydz = —gpn.qrs — gq d.prs — gr,o.pqs + gsa.pqr,
or

dxdydz = 2pqr.soc —2pgs.rp —2prs.q® — 2qrs.pmw.

32. Thus, it remains to define the bases of these prisms: but
before we do this, let us put

AQ=AP+Q; Qg =Pp+gq; q¢ = pr + &;
AR = AP+R; Rr =Pp+r; rpo = pr+ p;
AS = AP+S; Ss =Pp+s; so = pr+o,

in order to shorten the following calculations. After the
substitution of these values, the terms containing pm will
annihilate each other, and we shall have

dxdydz = 2pqr.c —2pgs.p — 2prs. ®
so that the value of the bases to be investigated is smaller.

33. Furthermore the triangle pgr is obtained by removing
the trapezoid PpgQ from the figure PprqQ, the latter being the

sum of the trapezoids PprR and RrqQ; from which it follows
that

1 1 1
Apgr = SPR(Pp +Rr) + SRQRr +Qq) = 5PQ(Pp +Qq);

or, because of PR = R; RQ = Q — R; and PQ = Q we shall
have

Apgr = 'R(Pp —Qq) + LQRr —Pp) = Lor — 1R
r= - — - — = -Qr — =Rg.
rq > 14 q > r 14 5 r 5 q
In the same manner we have
1 1
Apgs = EPS(Pp + Ss) + ESQ(SS + Qq)
1
- EPQ(PP +Qq),
or
1 1
Apgs = ES(PP + Ss) + E(Q —S)(Ss + Qq)
1
- gQ(PP + Qq),
from where it follows that:
1 1 1 1
A ==-SPp — —Q(Ss —Pp) = -Qs — =S¢.
pgs =3 (Pp Qq)+2Q( s —Pp) 2Qs 554
And finally
1 1 1
Aprs = EPR(Pp + Rr) + ERS(Rr + Ss) — EPS(Pp + Ss),
or
1 1 1
Aprs= ER(PP +Rr) + E(S —R)(Rr + Ss) — ES(PP + Ss)
from where it follows that

1 1 1 1
Aprs = ER(P‘D — Ss) + ES(Rr —Pp) = ESr - ERS.

34. After the substitution of these values we will obtain
dxdydz = (Qr —Rg)o + (Sq — Qs)p + (Rs — Sr) &;
thus the volume of the pyramid 7 ®po will be

1 1 1

E(Qr —Rg)o + E(Sq —Qs)p + E(RS —Sr)o.

From the values of the coordinates presented above in §. 28
follows

Q=dx +Ldxdt q =Mdxdt ¢ = Ndxdt
R =ldydt r =dy+mdydt p = ndydt
S =MAdzdt s =pdzdt o =dz+vdzdt.

35. Since here we have

Qr —Rq = dxdy(1 + Ldt + mdt + Lmdt*> — Midt?)
Sq — Qs = dxdz(—updt — Ludt® + Mrdt?)
Rs — Sr = dydz(—Adt — mAdt* + lpdt?)

the volume of the pyramid 7 ®po is found to be expressed as

1 +Ldr +Lmdt> +Lmvds
+mdt —Mldt*> —Mivdr
1 +vdt +Lvdr®> —Lnpds’
gdxdydz tmvdt®  AMnrde [
—nudt2 —Nmidt®
—NAdt?>  +Nlpde?

which (volume), since it must be equal to that of the pyramid
Apvo = %dxdydz, will satisfy, after performing a division by

dt the following equation'!.

O=L+m+4+v+dt(Lm+Lv+mv—Ml —NA—nu)
+dt2(Lmv+MnA+Nl/L — Lnp —Mlv — Nip).

36. Discarding infinitely small terms, we get this equation:'?
L +m 4+ v = 0, through which is determined the relation
between u, v and w, so that the motion of the fluid be possible.
Since L = %, m = Z—" and v = ‘2—'2’, at an arbitrary point of
the fluid A, whose position is defined by the three coordinates
x, y and z, and the velocities u, v and w are assigned in the
same manner to be directed along these same coordinates, the

criterion of possible motions is such that

du dv dw

dx + dy + dz

This condition expresses that through the motion no part of the
fluid is carried into a greater or or lesser space, but perpetually
the continuity of the fluid as well as the identical density is
conserved.

37. This property is to be interpreted further so that at the
same instant it is extended to all points of the fluid: of course,
the three velocities of all the points must be such functions of
the three coordinates x, y and z that we have % + Z—; + ”é—’; =0:

1 This is the calculation to which Euler refers in his later French memoir
Euler, 1755.

12 This is the three-dimensional incompressibility condition.
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in this way the nature of those functions defines the motion
of every point of the fluid at a given instant. At another time
the motion of the same points may be howsoever different,
provided that at an arbitrary point of time the property holds for
the whole fluid. Up to now I have considered the time simply as
a constant quantity.

38. If however, we also wish to consider time as variable so
that the motion of the point A whose position is given by the
three coordinates AL = x, LI = y and /A = z has to be defined
after the elapsed time ¢, it is certain that the three velocities
u, v and w depend not only on the coordinates x, y and z but
additionally on the time ¢, that is they will be functions of these
four quantities x, y, z and ¢; furthermore, their differentials are
going to have the following form

du = Ldx + ldy + Adz + £dt;
dv = Mdx + mdy + udz + 9Mdt,
dw = Ndx + ndy + vdz + Ndt;

Meanwhile we shall always have L + m + v = 0, having in
view that at every arbitrary instant the time ¢ is considered to
be constant, or dt = 0. Howsoever the functions u, v and w
vary with time ¢, it is necessary that at every moment of time
the following holds:

du n dv N dw
dx dy dz
Since the condition expresses that any arbitrary portion of the
fluid is carried in a time d¢ into a volume equal to itself, the

same will have to happen, due to the same condition, in the next
time interval, and therefore in all the following time intervals.

II. Second part

39. Having presented what pertains to all possible motions,
let us now investigate the nature of the motion which can really
occur in the fluid. Here, besides the continuity of the fluid and
the constancy of its density, we will also have to consider the
forces which act on every element of the fluid. When the motion
of any element is either non-uniform or varying in its direction,
the change of motion must be in accordance with the forces
acting on this element. The change of motion becomes known
from known forces, and the preceding formulas contain this
change; we will now deduce new conditions'® which single out
the actual motion among all those possible up to this point.

40. Let us arrange this investigation in two parts as well; at
first let us consider all motions being performed in the same
plane. Let AL = x, LI = y be, as before, the defining
coordinates of the position of an arbitrary point /; now, after
the elapsed time 7, the two velocities of the point / parallel to
the axes AL and AB are u and v: since the variability of time
has to be taken into account, # and v will be functions of x, y
and ¢ themselves. In respect of which we put

du =Ldx +1dy + £dt and dv = Mdx + mdy + 9Mdt

13 Here Euler probably has in mind the condition of potentiality, which he
will obtain in §§. 47 and 54 for the two-dimensional case and in §. 60 for the
three-dimensional case.

and we have established above that because of the former
condition encountered above, we have L + m = 0.

41. After an elapsed small time interval d¢ the point [ is
carried to p, and it has travelled a distance udt parallel to the
axis AL, a distance vdt parallel to the other axis AB. Hence,
to obtain the increments in velocities # and v of the point /
which are induced during time d¢, for dx and dy we must
write the distance udt and vdt, from which will arise these true
increments of the velocities

du = Ludt + lvdt + £dt and dv = Mudt + mvdt +9Ndt.

Therefore the accelerating forces, which produce these
accelerations are

Accel. force wr.t. AL =2(Lu + v + £)
Accel. force w.r.t. AB = 2(Mu + mv + 9N)

to which therefore the forces acting upon the particle of water
ought to be equal.'*

42. Among the forces which in fact act upon the particles of
water, the first to be considered is gravity; its effect, however,
if the plane of motion is horizontal, amounts to nothing. Yet if
the plane is inclined, the axis AL following the inclination, the
other being horizontal, gravity generates a constant accelerating
force parallel to the axis AL, let it be «. Next we must not
neglect friction, which often hinders the motion of water, and
not a little. Although its laws have not yet been explored
sufficiently, nevertheless, following the law of friction for solid
bodies, probably we shall not wander too far astray if we set the
friction everywhere proportional to the pressure with which the
particles of water press upon one another. !

43. First, must be brought into the calculation the pressure
with which the particles of water everywhere mutually act upon
each other, by means of which every particle is pressed together
on all sides by its neighbours; and in so far as this pressure is
not everywhere equal, to that extent motion is communicated
to that particle.'® The water simply will be put everywhere
into a state of compression similar to that which still water
experiences when stagnating at a certain depth. This depth is
most conveniently employed for representing the pressure at an
arbitrary point / of the fluid. Therefore let that height, or depth,
expressing the state of compression at /, be p, a certain function
of the coordinates x and y, and should the pressure at/ vary also
with the time, the time will also enter into the function p.

44. Thus let us set dp = Rdx + rdy + Pdt, and let us
consider a rectangular element of water, /mno, whose sides are
Im = no = dx and In = mo = dy, whose area is dxdy
(Fig. 3). The pressure at [ is p, the pressure at m is p + Rdx,
atnitis p +rdy and at o itis p + Rdx + rdy. Thus the side
Im is pressed by a force = dx(p + %Rdx), while the opposite

side no will be pressed by a force = dx(p + %Rdx + rdy);

14 The unusual factors of 2 in the previous equations have to do with a choice
of units which soon became obsolete; cf. Truesdell, 1954; Mikhailov, 1999.

I5ytis actually not clear why Euler takes the friction force proportional to the
pressure.

16 Here Euler makes full use of the concept of internal pressure, cf. Darrigol
and Frisch, 2008.
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therefore by these two forces the element /mno will be impelled
in the direction In by a force = —rdxdy. Moreover, in a similar
manner from the forces dy(p+%rdy) and dy(p+Rdx+%rdy),
which act on the sides /n and mo will result a force = —Rdxdy
impelling the element in the direction Im.

45. Thus will originate an accelerating force parallel to Im =
—R and an accelerating force parallel to /n = —r, of which the
one directed along the force of gravity « gives o« — R. Having
ignored friction so far, we obtain the following equations'”:

R=o—2Lu—2lv-2¢
r = —2Mu — 2mv — 29N

o —R=2Lu+2v+28£ or
—r  =2Mu +2mv + 290 and

from which we gather that
dp = adx —2(Lu + v+ £)dx — 2(Mu + mv +M)dy + Rdt,

a differential which must be complete or integrable.

46. Because the term « dx is integrable by itself and nothing
is determined for R, from the nature of complete differentials
it is necessary that the following holds in the notation already
employed:

dLu+Ilv+ £ _ d.Mu +mv+ M

dy dx
Since Z—fi =L, % =1 % =M, and Z—‘y’ = m it follows that
Ll gy A4Sy 1w
dy dy dy dx
+mM + vd_m = @
dx dx

which is reduced to this form:

LC+md-M)+
dL dM dl  dm dg dm
u|l———»,+v|{———)+—-——=0

dy dx dy dx dy dx

47. In fact, since we knew Ldx + ldy + £dt and Mdx +
mdy + Mdt to be complete differentials,
dL._dl  dm dM_ df di
dy dx’ dx dy’ dy dt

dM  dM
dx — dt

17 Here the so-called Euler equations of incompressible fluid dynamics appear
for the first time, but the notation and the units are not very modern, in contrast
to the memoir he will write three years later (Euler, 1755).

after the substitution of which values we have the following
equation

L+m(I—-M) +

dl —dM dl —dM dl —dM
Uu{——— | +v + =0.
dx dy dt

Plainly, this is satisfied if / = M: so that Z—z = Z—z. Since this

condition requires that Zl—bf = 3_;’18 it appears finally that the

differential formula udx + vdy must be complete; in this lies
the criterion of actual motion.

48. This criterion is independent from the preceding one,
which was provided by the continuity of the fluid and its
uniform constant density. Therefore even if the fluid in motion
changes its density, as happens in the motion of elastic fluids
such as air, this property will hold nonetheless, namely udx +
vdy has to be a complete differential. In other words, the
velocities # and v must always be functions of the coordinates
x and y, together with time ¢, in such a way that when the time
is taken constant the formula udx 4 vdy admits an integration.

49. We shall now determine the pressure p itself, which is
absolutely necessary for perfectly determining the motion of
the fluid. Since we have found that M = / we have

dp = adx —2u(Ldx +1dy) —2v(ldx + mdy) — 2Ldx
—2Mdy + Rdt.

Moreover Ldx + ldy = du — £dt; ldx + mdy = dv — 9Mdt;

hence we have

dp = adx —

2udu — 2vdv + 2Ludt + 2Mudt — 2Ldx — 29Ndy + Rdt.

Therefore, if we wish to ascertain for the present time the

pressure at each point of the fluid, with no account of its
variation in time, we shall have to consider this equation

dp = adx — 2udu — 2vdv — 2Ldx — 29Mdy,

and in our notation £ = % and 9N = ‘;—';.19 Hence
du dv

dp = adx —2udu — 2vdv — 2—dx — 2—dy,

p = adx udu vdv ’r X 7 y

in the integration of which the time is to be taken constant.

50. This equation is integrable by hypothesis, and is indeed
understood as such, if we consider the criterion of the motion
which, as we have seen, consists in that udx + vdy be a
complete differential when the time ¢ is taken constant. Let
therefore S be its integral, which consequently will be a
function of x, y and ¢ themselves. For dt = (0 we obtain
dS = udx + vdy, while assuming the time ¢ variable as well,

18 Here there are two problems. The minor problem is a typographical error in
the published version ( g—; instead of Z—E), which is not present in a 1752 copy
of the manuscript (not in Euler’s hand), henceforth referred to as Euler, 1752.
A more serious problem is that Euler here repeats the mistake of D’ Alembert,
1752 who confused a sufficient condition — the vanishing of the vorticity — with

anecessary one.

19 The printed version has L = % instead of £ = % Euler, 1752 is correct.
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let us write

dS = udx + vdy + Udt,

on which account we obtain ‘;ll—’t‘ = fl—g and ‘fi—‘t’ = ‘(’1—[;. Then, in
fact U = %.
51. After inserting these values we will obtain
d d du du
—u.dx & dy = —.dx+ —.dy
dt dt dx dy

and this differential formula is manifestly integrated at constant
time ¢ to give U. For this to become clearer, let us set dU =
Kdx + kdy; thus 4 = K and 45 = k, so that 9.dx + 45 =

Kdx + kdy = dU. Since its integral is U = %, we shall have

dp = adx — 2udu — 2vdv — 2dU
from where it appears by integration:

2dS
p = Const. + ax — uu — vv — ar

with a given function S of the coordinates x, y and ¢ themselves,
whose differential, for dr = 0 is udx + vdy.

52. In order to understand better the nature of these formulas,
let us consider the true velocity of the point /, which is V =
A/(uu + vv). And the pressure will be: p = Const. + ax —
VV — %: in which the last term dS denotes the differential of
S = f (udx + vdy) itself, where the time 7 is allowed to vary.

53. If we now wish to also take friction into account, let us
set it proportional to the pressure p. While the point [ travels
the element ds, the retarding force arising from the friction is
= %; so that, setting % = U, our differential equation will be
for constant ¢

dp = adx — ?ds — VdV - 24U,

from where we obtain by integration, taking e for the number
whose hyperbolic?® logarithm is = 1,

p:eT/e%((xdx—ZVdV—%lV) or
1 = s
p:otx—VV—ZU—?ef[ef(otx—VV—ZU)ds.

54. The criterion of the motion which drives the fluid in
reality consists in this that, fixing the time ¢, the differential
udx + vdy has to be complete: also continuity and constant
uniform density demand that % + g—; = 0, hence it follows

too that this differential udy — vdx will have to be complete.?!
From where both velocities # and v jointly must be functions of
the coordinates x and y with the time ¢ in such a way that both
differential formulas udx + vdy and udy — vdx>? be complete
differentials.

55. Let us set up the same investigation in general, giving
the point XA three velocities directed parallel to the axes AL,

20 Natural.
21 The published version has udx + vdy, a mistake not present in Euler, 1752.
22 previous mistake repeated in the published version.

AB, AC. Let u, v, w denote these functions, which depend on
coordinates x, y, z, besides t. After a differentiation we obtain

du =Ldx +1dy + rdz + £dt
dv = Mdx + mdy + pdz + 9Ndt
dw = Ndx + ndy + vdz + Ndt.

Although here the time 7 is also taken as variable, nonetheless

for the motion to be possible, by the preceding condition®® we

have L 4+ m 4+ v = 0, or, which reexpresses the same

du dv dw

il i =0,
dx+dy

dz
a condition on which the present examination does not depend.

56. After the passage of time interval d¢ the point A is carried
to 7, and it travels a distance udt parallel to the axis AL, a
distance vdt parallel to the axis AB and a distance wdt parallel
to the axis AC. Thus the three velocities of the point which has
moved from A to 7 will be:

parallel to AL = u + Lu dt 4+ lvdt + Aw dt 4 £dt;
parallel to AB = v + Mu dt + mv dt + pw dt + M dt;
parallel to AC = w + Nudt + nvdt +vwdt + Ndt,

and the accelerations parallel to the same directions will be

par. AL = 2(Lu + lv 4+ Aw + £);
par. AB = 2(Mu + mv + pw + 9M);
par. AC = 2(Nu + nv + vw 4+ ).

57. If we take the axis AC to be vertical, in such a way that
the remaining two AL and AB are horizontal, the accelerating
force due to gravity arises parallel to the axis AC with the
value —1. Then indeed, denoting the pressure at A by p, its
differential, at constant time is

dp =Rdx +rdy + pdz,
from which we obtain the three accelerating forces

par. AL =R; par. AB=—r; par. AC=—p

which are in fact easily collected in the same manner as was
done in §§. 44 and 45, so that it is not necessary to repeat the
same computation. Hence we obtain the following equations*

R=-2Lu+1lv+iw+ L)
r = —2Mu +mv + pw + M)
p = —1—=2MNu+nv+vw +N).

58. Since the differential formula dp = Rdx + rdy + pdz
has to be a complete differential, we have

dR dr dR dp_ dr dp
dy dx’ dz dx’ dz dy’
23 From Part L.

24 These are the three dimensional Euler equations.
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After a differentiation and a division by —2 the following three
equations are obtained?

udL+vdl+wd)»+d£+Ll+l 4
_ — 4+ — 4+ — m n=
I dy dy dy dy
udM + vdm + wdp + dim—i—ML—f— M+ uN
dx dx dx dx " H
udlL vdl wdr d£

—F— 4+ —+ —+ LA+ ilp+rv=
nl dz dz dz dz
udN+vdn+wdv+d‘ﬁ+NL+ M 4 vN

—_— — v

dx dx dx dx "

udM n vdm  wdp Lo am M+ n

m V=
dz dz dz dz pom
udN+vdn+wdv+d‘ﬁ+Nl+ n
—_—t — 4+ — nm + vn.
dy dy dy dy

59. Moreover, because of the nature of the complete
differentials, we have

III

dL _dl dm dM dr _ dl
dy dx’ dx dy dy dz’
du_dM'dE lydim dm

dx — dz'd dt’ dx  dt
dL _ d) d? d» dn  dN

dz dx dz _dy dx _ dy’
dv _dN df dir dn _dN

dx  dz’ dz dx  dt’
am d,u dN dn_ dm dp

dz _dx’ dy dx dz dy’
dv. _dn_ d 331 d,uv. an  dn

dy _dz’ dz _di’ dy _dr’
after substituting of which values those three equations will be
transformed into these”®

dl —dM n dl —dM n dl —dM n
dt dx dy

dl —dM

dr—dN\ (di—dN (dh—dNY
di “\ax N\ ay

dr — dN
w(d—)+(A—N)(L+U)+l,u,—nM:O,
z

du—dn du —dn diu —dn
(%) = () - (F57)+
du —dn
Z

60. Now it is manifest that these three equations are satisfied
by the following three values

[ =M;

5

A=N;, u=n
in which is contained the criterion furnished by the
consideration of the forces. Here therefore follows that in the

25 The printed version contains mistakes not present in Euler, 1752: in the
formula labelled II, instead of L there is £ in the formula labelled III there is a
v instead of u.

26 These are the equations for the vorticity.

notation chosen we have?’
du dv du dw dv dw
dy dx dz dx' dz dy
these conditions moreover are the same as those which are
required in order that the formula udx + vdy + wdz be a
complete differential. From which this criterion consists in that
the three velocities u, v and w have to be functions of x, y and
7 together with ¢ in such a manner that for fixed constant time
the formula udx + vdy + wdz admits an integration.

61. Taking the time ¢ constant or dt = 0, we have

du = Ldx +Mdy + Ndz
dv = Mdx 4+ mdy + ndz
dw = Ndx + ndy + vdz

moreover, for R, r and p the values are

R = -2(Lu + Mv + Nw + £)
r = —2Mu + mv + nw + M)
o = —1—=2Nu+nv+vw+N).

Regarding the pressure p, we obtain the following equation

dp = —dz

—2u(Ldx + Mdy + Ndz) =
—2v(Mdx 4+ mdy + ndz)
—2w(Ndx + ndy + vdz)
—28dx — 29Mdy — 2Ndz.

—dz — 2udu — 2vdv — 2wdw
—28dx — 29 — 2Ndz

62. Since in truth £ = ‘é—’;; M = fj—f; N = ‘Z—’f, we obtain by
integration

du dv dw
=C—z—uu—vv—ww—2 dx+ Zay+ 4
p Z—Uu — vV —ww /(d +d y+d z)
By the previously ascertained condition udx + vdy + wdz
is integrable. Let us denote its integral by S, which can also
involve the time ¢; taking also the time ¢ variable, we have

dS = udx + vdy + wdz + Udt,

_dU.dv _ dU. dw _ dU H
and we have 4 dt =T dr = aydr = dz.From where, with

time generally taken constant, it can be assumed in the above
integral that
dUu du

du
—dx + —dy—l——dz—dU
dx

and we obtain?8

p=C—z—uu—vv—ww—-2U, or
c 2d S
—Z—uu—vv—ww—2—.
P= ¢ dt
63. Thus, uu 4+ vv + ww is manifestly expressing the square
of the true velocity of the point A, so that, if the true velocity of

27 Here Euler repeats the mistake of assuming that the only solution is zero-
vorticity flow; in Euler, 1755 this will be corrected.

28 The published version has a ds in the denominator, instead of the correct
dt, found in Euler, 1752.
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this point is denoted V, the following equation is obtained for
the pressure?’

2dS
p=C—-z-VV TR
To use this, firstly one must seek the integral S of the
formula udx + vdy + wdz which should be complete. This
is differentiated again, taking only the time ¢ as variable. After
division by dt, one obtains the value of the formula %, which
enters into the expression for the state of the pressure p.

64. But before we may add here the previous criterion,
regarding possible motion, the three velocities u, v and w must
be such functions of the three coordinates x, y and z, and of
time ¢ that, firstly, udx + vdy + wdz be a complete differential
and, secondly, that the condition % + Z—; + ‘é—’; = 0 holds.
The whole motion of fluids endowed with invariable density is
subjected to these two conditions.

Furthermore, if we take also the time ¢ to be variable, and
the differential formula udx 4 vdy + wdz + Udt is a complete
differential, the state of the pressure at any point X, expressed
as an altitude p, will be given by

p=C—z—uu—vv—ww-2U0,

if only the fluid enjoys the natural gravity and the plane BAL is
horizontal.

65. Suppose we had attributed another direction to the
gravity or even adopted arbitrary variable forces acting on the
particles of the fluid. Differences would arise in the values of
the pressure, but the law which the three velocities of the fluid
have to obey would not suffer any changes. Thus, whatever the
acting forces, the three velocities u, v and w have to satisfy the
conditions that the differential formula udx + vdy + wdz be
complete and that Zl—)’j + Zl—; + ‘fi—’; = 0 should hold. Therefore,
the three velocities u, v and w can be fixed in infinitely many
ways while satisfying the two conditions; and then it is possible
to prescribe the pressure at every point of the fluid.°

66. However, much more difficult would be the following
question: given the acting forces and the pressure at all places,
to determine the motion of the fluid at all points. Indeed, we
would then have some equations’! of the form p = C — 7z —
uu — vv — ww — 2U, from which the relation of the functions
u, v and w would have to be defined in such a way that not
only the equations themselves would be satisfied, but also the
previously contributed rules’> would have to be obeyed; this
work would certainly require the greatest force of calculation.
It is fitting therefore to inquire in general into the nature of
functions proper to satisfy both criteria.

67. Most conveniently therefore let us begin with the
characterization of the integral quantity S, whose differential
is udx 4+ vdy + wdz, when time is held constant. Let thus

29 This is basically the Bernoulli pressure law for potential flow.

30 Many statements in this paragraph are rendered invalid by the generally
incorrect assumption of potential flow.

31 The plural is here used probably because this relation has to be satisfied at
all points.

32 Incompressibility and potentiality.

S be a function of x, y and z, the time ¢ being contained in
constant quantities. When S is differentiated, the coefficients
of the differentials dx, dy and dz are the velocities u, v and
w which at the present time suit the point of fluid A, whose
coordinates are x, y and z. The question thus arises here to find
the functions S of x, y and z such that du | Z—; + ‘é—’;’ = 0; now,

dx
i — ds — 4s — dS ;
since we have u = oV = @ and w = 7 it follows that

ddS ddS ddS _ n 33
ol + Pl + 4= 0.

68. Since it is not plain how this can be handled in general, I
shall consider certain rather general cases. Let

S = (Ax + By + C2)".

We have
ds
T =nA(Ax+By+ Cz)" ! and
x
ddS
— =n(n — )AA(Ax + By + Cz)" 2
dx?
and the expressions for ‘é—‘;? and % will be similar. Thus we

have to satisfy
n(n — 1)(Ax + By +Cz)"2(AA+BB +CC) =0

which is plainly satisfied when either n = 0 or n = 1. Thus we
have the solutions S = Const. and S = Ax + By + Cz, where
the constants A, B and C are arbitrary.

69. But if n is neither 0, nor 1, we necessarily have: AA +
BB + CC = 0: and then S is given by

S = (Ax + By + Cz)"

for any value of the exponent n; even the time ¢ itself will
possibly enter in n. Furthermore we can add up arbitrarily many
such S and obtain yet another solution.>* The function

S=a+Bx+yy+d8z+e(Ax +By+C2)" +
((A/x + B/y + C/Z)n’ + 77(A”x + B//y + C//Z)n” +
9(A”’x + B///y + C///Z)n”’ etc.

will satisfy the condition only if we have:
AA+BB+CC=0; A'A+BB +CC =0;
A//A// + B//B// + C//c// — 0 etc

70. Here suitable values are given for S in which the
coordinates x, y, z have either one, or two, or three, or four
dimensions®

I.S=A
II. S=Ax+By+Cz
II. S = Axx +Byy + Czz 4+ 2Dxy + 2Exz + 2Fyz with A 4
B+C=0

33 This is what will later be called Laplace’s equation.

34 1n modern terms, Euler is here using the linear character of the Laplace
equation.

35 In modern terms we would say “which are polynomials in x, y, z of degrees
up to four”.
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IV. S = Ax®+By3+Cz3+3Dxxy+3Fxxz+Hyyz+6Kxyz+
3Exyy+3Gxzz+3lyzz with A+E+G =0; B+D+I1=
0;C+F+H=0

V.
+ Ax* 4+ 6Dxxyy +4Gx>y + 4Hxy? + 12Nxxyz
S = +By* + 6Bxxzz + 4Ixz + 4Kxz® + 120xyyz
+Cz* + 6Fyyzz + 4Ly3z + 4Myz® + 12Pxyzz

with

A+D+E=0 G+H+P=0
B+D+F=0 I+K+0=0
C+E+F=0 L+M+N=0.

71. Hence it is clear how these formulas are to be obtained
for any order. First, simply give to the various terms the
numerical coefficients which belong to them from the law of
permutation, or, equivalently, which arise when the trinomial
x + y + z is raised to that same power. Let indefinite letters
A, B, C, etc., be adjoined to the numerical coefficients. Then,
ignoring the coefficients, observe whenever there occur three
terms of the type LZx> + MZy? + NZz? having a common
factor Z formed from the variables. Whenever this occurs, set
the sum of the literal coefficients L + M + N equal to zero. For
example, for the fifth power we have

S = Ax> +5Dx*y 4+ 50x*z + 10Gx3yy + Bx3zz +
20Kx3yz + 30Nxyyzz +
Bx® + 5Ex*y + 5¢x*z + 10Hx3yy + 932z +
20Lx3 vz +300xyyzz
+Cx° + 5Fx4y + 5%tz + 101x3yy +Ix3zz +
20Mx3yz + 30Pxyyzz

and the following determinations of the coefficient letters are
obtained

A+G+®=0, D+H+0=0;, ©4+I14+P=0;
B+H+$9=0, E4+G+N=0; &+F+P=0;
K+L+M=0;

C+I+3=0; F+B6+N=0; F+H+0=0.

In the same way for the sixth order such determinations will
give 15, for the seventh 21, for the eighth 28 and so on.

72. In the very first formula S = A the coordinates x, y and z
are clearly not intertwined. Thus the three velocities u, v and w
are equal to zero, and hence this describes a quiet state of fluid.
Also the pressure at an arbitrary point for different times will
be able to vary in an arbitrary manner. Indeed A is an arbitrary
function of time and, for a given time ¢, the pressure at the point
risp =C— % — z. Through this formula is revealed the
state of the fluid, when it is subjected at an arbitrary instant to
arbitrary forces, which nevertheless balance each other, so that
no motion in the fluid can arise from them: where it happens, if
the fluid is enclosed in a vase from which it can nowhere escape,
it is also compressed by suitable forces inside.

73. Moreover, the second formula S = Ax + By + Cz, after
differentiation, gives these three velocities to the point A:

u=A; v=B and w=C.

Thus simultaneously, all points of the fluid are carried by an
identical motion in the same direction. From which the whole
fluid moves in the same manner as a solid body, carried only
by a forward motion. But at different times the velocities as
well as the direction of this motion are able to be varied in an
arbitrary way, depending on what the extrinsic driving forces
require. Therefore, the pressure at the point XA at the time ¢ on
which A, B, C depend, is*® p = C — 7 — AA — BB — CC —
2x% — Zy% — 2z%.

74. The third formula S = Axx + Byy + Czz 4+ 2Dxy +
2Exz 4 2Fyz, where A + B 4 C = 0, gives the following
three velocities®’ of the point A: u = 2Ax + 2Dy + 2Ez;
v = 2By + 2Dx + 2Fz; w = 2Cz 4+ 2Ex + 2Fy, or w =
2Ex + 2Fy — 2(A + B)z. Here, at a given instant, different
points of the fluid are carried by different motions; moreover,
in the time development an arbitrary motion of a given point
is permitted, because A, B, D, E, F can be arbitrary functions
of the time ¢. Finally, a much greater variety can take place, if
more elaborate values are given to the function S.

75. In the second case the motion of the fluid was
corresponding to the forward motion of a solid body in which,
plainly, at any instant the different parts are carried by a motion
equal and parallel to itself. In other cases the motion of the
fluid could be suspected to correspond to solid-body motion,
either rotational or anomalous. It suffices to put forward such
a hypothesis — beyond the second case — to find that it cannot
take place. Indeed, in order to happen, not only would it be
necessary that the pyramid 7 $po would be equal,*® but also
similar to the pyramid Auvo, or that the following holds

n®=r=dx=(QQ+qq+ ?P)

7p =2 =dy =/ RR+rr+ pp)

7o =2 =dz =./(SS+ss+00)

Pp =y = \/(dxz +dy?) =
VIQ=R?+(q =+ (®—-p)?

$o = o = J(dxz +dz%) =

VIQ =87 +(q =57+ (¢ —0)?)

po =vo = J/(dy* +dz*) =

VIR =8P+ (=) + (o — )7,

where we applied the values taken from §. 32.

76. Then the three latter equations, combined with the
former, are reduced to these:

QR +gr+ Pp =0; QS+ gs + 0 =0 and
RS +rs+ po =0.

36 The printed version, but not Euler, 1752, has a missing BB in the formula.

37 In both the printed version and in Euler, 1752, the first velocity component
is mistakenly denoted by «.

38 In volume.
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Moreover, if the values assigned in §. 34 are substituted for the
letters Q, R, S, g, r, s, @, p, o and the higher-order terms for
the rests are neglected, the three former will give

1=1+4+2Ldt; [+M=0;

1=14+2mdt; A+N=0;

1=1+42vdt; p+n=0,

sothat wehave L=0m =0andv =0,M = —/, N = —X and
n=—u.

77. Thus, the three velocities of this point A would have to
be compared to the condition that the following hold*®

du =ldy + \dz;
dv = —ldx + ndz;
dw = —idx — udy.

But the second condition demands a motion of the fluid such
that /| = M, A = N and n = u; hence all the coefficients /,
XA and p vanish; also the velocities u#, v and w will take the
same value everywhere in the fluid. Therefore it is plain that
the motion of the fluid cannot correspond to solid-body motion
other than pure translational.

78. To ascertain the effect of the forces which act from the
outside upon the fluid, it is first necessary to determine those
forces*® which are required for effecting the motion which we
have assumed to exist in the fluid. These are equivalent to the
forces which in fact work upon the fluid; furthermore we have
seen above in §. 56 that three accelerating forces are required,
which are here repeated. If an element of fluid is conceived
here, whose volume, or mass is dxdydz, the moving forces
required for the motion are

par. AL = 2dxdydz(Lu + v+ Aw + £) =
du du du du
2dxdyd — — — 4+ —
Ty Z(”dx vyt T dt)
par. AB = 2dxdydz(Mu + mv + pw + 9) =
dv dv dv dv
2dxdyd — — —+—
ey Z<udx Tyt Tt dt)
par. AC = 2dxdydz(Nu + nv +vw +MN) =
dw dw dw dw
2dxdyd — — —+—,
Ty Z<udx vy TV T dt)
so that by triple integration the components of the total forces
which must act on the whole mass of fluid may be obtained.
79. But since the second condition requires that udx +vdy+
wdz be a complete differential, whose integral is S, let us put as
before, with time allowed to vary, dS = udx+vdy+wdz+Udt.

’

’

; du _ dv.du _ dw.du _ dU i
Since O = dod = dvd dt = dx those three moving forces
emerge“:

d d d du
par. AL = 2dxdydz <u utv v;—w w )
X

39 In the printed version, but not in Euler, 1752, there are several sign
mistakes.

40 Here, internal forces are meant.
41 There is a misprint in the printed version, w instead of +.

d d d dUu
par.AB:dedydz(uu+v vt wdw + )

dy
udu + vdv + wdw + dU
dz '
80. Let us set now uu + vv + ww +2U = T. The function T

depends on the coordinates x. y, z; take it at a given instant of
time 7:42

par. AL = 2dxdydz <

dT = Kdx + kdy + «dz.

The three moving forces of the element dxdydz are*?

par. AL = Kdxdydz
par. AB = kdxdydz
par. AC = kdxdydz

and by triple integration these formulas ought to be extended
throughout the mass of the fluid; thus forces equivalent to all**
and their directions may be obtained. Truly this discussion is
for a later investigation, which I shall not deepen here.

81. Furthermore, the quantity T = uu+vv+ww+2U, which
is analyzed in this calculation, furnishes a simpler formula for
expressing the pressure through the height p; we have indeed
p = C — z — T when the particles of the fluid are pressed
upon solely by the gravity. But if an arbitrary particle A is
acted upon by three accelerating forces which are Q, q and &,
acting parallel to the directions of the axes AF, AB and AC,
respectively, after a calculation similar to the previous one has
been carried out, the pressure will be given by

p=C+/(de+qdy+Q§dz)—T.

Thus it is plain that the differential Q + gdy + ®dz must
be complete, as otherwise a state of equilibrium, or at least
a possible one, could not exist. That this condition must be
imposed on the acting forces Q, g and ¢ was shown very clearly
by the most famous Mr. Clairaut.*>

82. Here are, therefore, the principles of the entire doctrine
of the motion of fluids, which, even if they at first sight
may seem insufficiently fruitful, nevertheless embrace almost
everything treated both in hydrostatics and in hydraulics, so that
these principles must be regarded as having very broad extent.
For this to appear more clearly, it is worthwhile to show how
the precepts learned in hydrostatics and hydraulics follow.

83. Let us therefore consider first a fluid in a state of rest, so
that we have u = 0, v = 0 and w = 0; in view of T = 2U, the
pressure in an arbitrary point A of the fluid is

p=C+/(de+qdy+@dz)—2U.

Here, U is a function of the time ¢ itself which we take as
constant. Indeed, we investigate the pressure at a given time;

42 There is a misprint: u instead of «.

43 Here is again a misprint: k instead of «.
44 The pressure forces.

43 Clairaut, 1743.
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the quantity U can be included in the constant C, so that we
obtain

p=C+/(de+qdy+d5dz)

where Q, g an @ are the forces acting on the particle of water
A, parallel to the axes AL, AB and AC.

84. The pressure p can only depend on the position of
the point A that is on the coordinates x, y and z; it is thus
necessary that [(Qdx + gdy + @dz) be a prescribed function
of them, which therefore admits integration. Thus it is firstly
clear that in the manner indicated the fluid cannot be sustained
in equilibrium, unless the forces acting on each element of the
fluid are such that the differential formula Qdx 4 gdy + ®dz is
complete. Thus, if its integral is denoted P, the pressure at A will
be p = C + P. Therefore, if the only force present is gravity,
impelling parallel to the direction CA, we shall have p = C—z;
hence, if the pressure is fixed at one point A, the constant C can
be obtained. From which the pressure at a given time will be
defined completely at all points of the fluid.

85. However, with time passing, the pressure at a given place
can change; and this plainly occurs, if variability is assumed
for the forces impelling on the water, whose calculation cannot
be made from those forces which are assumed to act on each
element of the fluid,*® but in such a way that they keep each
other in equilibrium and produce no motion. But if, moreover,
these forces are not subject to any change, the letter C will
indeed denote a constant quantity, not depending on time ¢;
and at a given location A we will always find the same pressure
p=C+P.

86. It is possible to determine the extremal shape of a fluid
in a permanent state, when it is not subjected to any force.*’
Certainly, at the extreme surface of the fluid at which the fluid
is left to itself and not contained within the walls of the vase
in which it is enclosed, the pressure must be zero. Thus we
shall obtain the following equation: P = const; the shape of
the external surface of the fluid is then expressed through a
relation between the three coordinates x, y and z. And if for the
external circumference held P = E, since C = —E, in another
arbitrary internal location A the pressure would be p = P — E.
In this manner, if the particles of the fluid are driven by gravity
only, and because p = C — z, the following will hold at for the
external surface z = C; from which the external free surface is
perceived to be horizontal.

87. Next, everything which has so far been brought out
concerning the motion of a fluid through tubes is easily derived
from these principles. The tubes are usually regarded as very
narrow, or else are assumed to be such that through any section
normal to the tube the fluid flows across with equal motion:
from there originates the rule, that the speed of the fluid at any
place in the tube is reciprocally proportional to its amplitude.
Let therefore A be an arbitrary point of such a tube, of which
the shape is expressed by two equations relating the three

46 That is the internal pressure forces.

47 Here, Euler will comment on the shape of the free (extreme) surface of a
fluid contained in an open vessel.

coordinates x, y and z, so that thereupon for any abscissa x
the two remaining coordinates y and z can be defined.

88. Let henceforth the cross section of this tube at A be rr; in
another fixed location of the tube, where the cross-sectionis ff,
let the velocity at the present time be T; now after time dt has
elapsed, let the velocity become & + di, so that I is a function

of time ¢, and similarly with dtj . Hence the true velocity of the

fluid at A will be at the present time V = £ rfr s Since now y and
z are obtained from the shape of the tube, we have dy = ndx
and dz = 6dx; thus the three velocities of the point A in the
fluid, parallel to directions AL, AB and AC, are

_ fftj 1 _ fftj n
rr /(A +nn +99) rr J/(1+nn +99)
ffo 0

e J( 4+ +600)

and hence, uu + vv + ww = VV = ! 56 :and rr is function
of x itself, thus of the dependent Varlables y and z.

89. Since udx + vdy + wdz must be a complete differential,
the integral of which is denoted = S, we have:

ff8dx(1+nn+60) fﬂj

ds = 171° dx /(1 + 0y + 66
rr JA 4+ +00)  rr VIt +06).

Moreover, dx./(1 + nn + 00) expresses the element of the
tube itself; if we denote it by ds, we shall obtain dS = £L24.
although & is a function of the time,*8 here we fix the time and,
furthermore, the quantities s and rr do not depend on time but

only on the shape of the tube; thus we have S = & [ L£45,

90. Turning now to the pressure p which is found at the point
of the tube A, the quantity U has to be considered; it arises
from the differentiation of the quantity S, if the time only is
considered as variable, so that we have U = %. Thus, since
the integral formula [ 2L L f 45 does not involve time 7, on the one
hand we shall have 43 = U = dU = [ Lrds f 45 and on the other

dr
hand it will follow from §. 80 that

f4t$t$ 2dts ffds
,,4

T=

Therefore, after introducing arbitrary actions of forces Q, g and
@, the pressure at A will be

f4t$t$ 2dt§ f fds

p=C+f(de+qdy+<ﬁdZ)

This is that same formula which is commonly written for the
motion of a fluid through tubes; but now much more widely
valid, since arbitrary forces acting on the fluid are assumed
here, while this formula is commonly restricted to gravity
alone. Meanwhile it is in order to remember that the three
forces Q, ¢ and @ must be such that the differential formula
Qdx + qgdy + @ dz be complete, that is, admit integration.

48 A5 was stated in §. 88.
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