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From Newton’s mechanics to Euler’s equationsI
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Abstract

The Euler equations of hydrodynamics, which appeared in their present form in the 1750s, did not emerge in the middle of a desert. We shall
see in particular how the Bernoullis contributed much to the transmutation of hydrostatics into hydrodynamics, how d’Alembert was the first
to describe fluid motion using partial differential equations and a general principle linking statics and dynamics, and how Euler developed the
modern concept of internal pressure field which allowed him to apply Newton’s second law to infinitesimal elements of the fluid.
c© 2007 Elsevier B.V. All rights reserved.
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Quelques sublimes que soient les recherches sur les fluides, dont nous sommes
redevables à Mrs. Bernoullis, Clairaut, & d’Alembert, elles découlent si
naturellement de mes deux formules générales : qu’on ne scauroit assés admirer
cet accord de leurs profondes méditations avec la simplicité des principes, d’où
j’ai tiré mes deux équations, & auxquels j’ai été conduit immédiatement par les
premiers axiomes de la Mécanique.1

(Leonhard Euler, 1755)

1. Introduction

Leonhard Euler had a strong interest in fluid dynamics and
related subjects during all his adult life. In 1827, at age twenty,
he published an important paper on the theory of sound. In
that paper, he gave a quantitative theory of the oscillations
of the column of air in a flute or similar instruments. On
a slate found after his death on 7 September 1783 he had
I The present article includes large sections of Chapter 1 of Darrigol, 2005,
thanks to the kind permission of Oxford University Press. We mention that one
of the authors (OD) is a theoretical physicist by early training who became a
historian of science some twenty years ago, while the other one (UF) is a fluid
dynamicist interested in Euler’s equations since the seventies.

∗ Corresponding author. Tel.: +33 4 92003035; fax: +33 4 92003058.
E-mail address: uriel@obs-nice.fr (U. Frisch).

1 Euler, 1755c: 316[original publication page]/92[omnia page]: However
sublime the researches on fluids that we owe to Messrs Bernoullis, Clairaut,
and d’Alembert may be, they derive so naturally from my two general formulas
that one could not cease to admire this agreement of their profound meditations
with the simplicity of the principles from which I have drawn my two equations
and to which I have been immediately driven by the first axioms of Mechanics.
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developed a theory of aerostatic balloons, having just learned
about the first manned ascent of a balloon designed by the
Montgolfier brothers. Altogether, he published more than forty
papers or books devoted to fluid dynamics and applications.
After his arrival in Saint-Petersburg in 1727, and perhaps
before, Euler was planning a treatise on fluid mechanics based
on the principle of live forces. He recognized the similarity
of his project with Daniel Bernoulli’s and left the field open
to this elder friend. During the fourteen years of his first
Petersburg stay, Euler was actively involved in establishing the
theoretical foundations of naval science, thereby contributing
to the ongoing effort of the Russian state in developing a
modern and powerful fleet. His Sciencia Navalis, completed by
1738 and published in 1749, contained a clear formulation of
hydrostatic laws and their application to the problem of ship
stability. It also involved a few Newtonian considerations on
ship resistance. Soon after his move to Berlin in 1741, he edited
the German translation of Benjamin Robins’s New Principles of
Gunnery, as a consequence of Frederick II’s strong interest in
the science of artillery. Published in 1745, this edition included
much innovative commentary on the problem of the resistance
of the air to the motion of projectiles, especially regarding the
effects of high speed and cavitation.2
2 Euler, 1727, [1784] (balloons), 1745, 1749. For general biography, cf.
Youschkevitch, 1971; Knobloch, 2008 and references therein. On Euler and
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Today’s fluid dynamics cannot be conceived without the
fundamental basis of Euler’s equations, as they appear in
“Principes généraux du mouvement des fluides”, presented to
the Académie Royale des Sciences et Belles-Lettres (Berlin)
on 4 September 1755 and published in 1757. In Euler’s own
notation, they read:(
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(1)

Here, P , Q, and R are the components of an external force, such
as gravity. The modern reader with no special training in the
history of science will nevertheless recognize these equations
and be barely distracted by the use of q instead of ρ for density,

of
(

du
dx

)
instead of ∂u

∂x and of d.qu instead of ∂(qu).3

Euler’s three memoirs on fluid dynamics written in 1755
contain, of course, much more than these equations. They are
immediately intelligible to the modern reader, the arguments
being strikingly close to those given in modern treatises. They
mark the emergence of a new style of mathematical physics
in which fundamental equations take the place of fundamental
principles formulated in ordinary or geometrical language.
Euler’s equations are also the first instance of a nonlinear field
theory and remain to this day shrouded in mystery, contrary for
example to the heat equation introduced by Fourier in 1807 and
the Maxwell equations discovered in 1862.

Our main goal is to trace the development and maturation
of the physical and mathematical concepts, such as internal
pressure, which eventually enabled Euler to produce his
memoirs of the 1750s.4 The emergence of Euler’s equations
was the result of several decades of intense work involving
such great figures as Isaac Newton, Alexis Clairaut, Johann
and Daniel Bernoulli, Jean le Rond d’Alembert . . . and Euler
himself. It is thus also our goal to help the reader to see how
such early work, which is frequently difficult because it is not
couched in modern scientific language, connects with Euler’s
hydraulics, cf. Mikhailov, 1983. On sound, cf. Truesdell, 1955: XXIV–XXIX.
On the early treatise on fluids, cf. Mikhailov, 1999, and pp. 61–62, 80 in Euler,
1998. On naval science, cf. Nowacki, 2006; Truesdell, 1954: XVII–XVIII,
1983. On gunnery, cf. Truesdell, 1954: XXVIII–XLI.

3 Euler, 1755b.
4 Detailed presentations of these may be found in Truesdell’s 1954 landmark

work on Euler and fluid dynamics.
maturing views on continuum mechanics and his papers of the
1750s.

Section 2 is devoted to the first applications of Newtonian
mechanics to fluid flow, from Newton to the Bernoullis.
Whereas Isaac Newton treated a few particular problems
with heteroclite and ad hoc methods, Daniel and Johann
Bernoulli managed to solve a large class of problems through
a uniform dynamical method. Section 3 shows how Jean le
Rond d’Alembert’s own dynamical method and mathematical
creativity permitted a great extension of the investigated class
of flows. Despite its now antiquated formulation, his theory
had many of the key concepts of the modern theory of
incompressible flows. In Section 4 we discuss Euler’s memoirs
of the 1750s. Finally, a few conclusions are presented in
Section 5. Another paper in these Proceedings focuses on
Euler’s 1745 third remark (Theorem 1) à propos Robins’s
Gunnery. This remark, which actually constitutes a standalone
paper of eleven pages on the problem of steady flow around
a solid body, is at the crossroads of eighteenth-century fluid
dynamics: it uses many ideas of the Bernoullis to write the
equations in local coordinates and has been viewed, correctly
or not, as a precursor of d’Alembert’s derivation of the paradox
of vanishing resistance (drag) for ideal flow.5

2. From Newton to the Bernoullis

2.1. Newton’s principia

Through the eighteenth century, the main contexts for
studies of fluid motion were water supply, water-wheels,
navigation, wind-mills, artillery, sound propagation, and
Descartes’s vortex theory. The most discussed questions were
the efflux of water through the short outlet of a vessel, the
impact of a water vein over a solid plane, and fluid resistance
for ships and bullets. Because of its practical importance and
of its analogy with Galilean free-fall, the problem of efflux got
special attention from a few pioneers of Galilean mechanics. In
1644, Evangelista Torricelli gave the law for the velocity of the
escaping fluid as a function of the height of the water level; in
the last quarter of the same century, Edme Mariotte, Christiaan
Huygens, and Isaac Newton tried to improve its experimental
and theoretical foundations of this law.6

More originally, Newton devoted a large section of his
Principia to the problem of fluid resistance, mainly to disprove
the Cartesian theory of planetary motion. One of his results, the
proportionality of inertial resistance to the square of the velocity
of the moving body, only depended on a similarity argument.
His more refined results required some drastically simplified
models of the fluid and its motion. In one model, he treated
the fluid as a set of isolated particles individually impacting
the head of the moving body; in another, he preserved the
continuity of the fluid but assumed a discontinuous, cataract-
like motion around the immersed body. In addition, Newton
5 Grimberg, Pauls and Frisch, 2008. Truesdell, 1954: XXXVIII–XLI.
6 Cf. Truesdell, 1954: IX–XIV; Rouse and Ince, 1957: Chaps. 2–9;

Garbrecht, 1987; Blay, 1992, Eckert, 2005: Chap. 1.
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Fig. 1. Compound pendulum.

investigated the production of a (Cartesian) vortex through the
rotation of a cylinder and thereby assumed shear stresses that
transferred the motion from one coaxial layer of the fluid to
the next. He also explained the propagation of sound through
the elasticity of the air and thereby introduced the (normal)
pressure between successive layers of the air.7

To sum up, Newton introduced two basic, long-lasting con-
cepts of fluid mechanics: internal pressure (both longitudinal
and transverse), and similarity. However, he had no general
strategy for subjecting continuous media to the laws of his new
mechanics. While his simplified models became popular, his
concepts of internal pressure and similarity were long ignored.
As we will see in a moment, much of the prehistory of Euler’s
equation has to do with the difficult reintroduction of internal
pressure as a means to derive the motion of fluid elements. Al-
though we are now accustomed to the idea that a continuum
can be mentally decomposed into mutually pressing portions,
this sort of abstraction long remained suspicious to the pioneers
of Newtonian mechanics.

2.2. Daniel Bernoulli’s hydrodynamica

The Swiss physician and geometer Daniel Bernoulli was
the first of these pioneers to develop a uniform dynamical
method to solve a large class of problems of fluid motion. His
reasoning was based on Leibniz’s principle of live forces, and
modeled after Huygens’s influential treatment of the compound
pendulum in his Horologium oscillatorium (1673).8

Consider a pendulum made of two point masses A and B
rigidly connected to a massless rod that can oscillate around
the suspension point O (Fig. 1). Huygens required the equality
of the “potential ascent” and the “actual descent,” whose
translation in modern terms reads:

mA(v
2
A/2g)+ mB(v

2
B/2g)

mA + mB
= zG, (2)

where m denotes a mass, v a velocity, g the acceleration of
gravity, and zG the descent of the gravity center of the two
7 Cf. Smith, 1998. Newton also discussed waves on water and the shape of a
rotating fluid mass (figure of the Earth).

8 Bernoulli, 1738; Huygens, 1673.
Fig. 2. Parallel-slice flow in a vertical vessel.

masses measured from the highest elevation of the pendulum
during its oscillation. This equation, in which the modern reader
recognizes the conservation of the sum of the kinetic and
potential energies, leads to a first-order differential equation for
the angle θ that the suspending rod makes with the vertical. The
comparison of this equation with that of a simple pendulum
then yields the expression (a2mA + b2mB)/(amA + bmB) for
the length of the equivalent simple pendulum (with a = OA
and b = OB).9

As D. Bernoulli could not fail to observe, there is a close
analogy between this problem and the hydraulic problem of
efflux, as long as the fluid motion occurs by parallel slices.
Under the latter hypothesis, the velocity of the fluid particles
that belong to the same section of the fluid is normal to
and uniform through the section. If, moreover, the fluid is
incompressible and continuous (no cavitation), the velocity in
one section of the vessel completely determines the velocity in
all other sections. The problem is thus reduced to the fall of a
connected system of weights with one degree of freedom only,
just as is the case of a compound pendulum.

This analogy inspired D. Bernoulli’s treatment of efflux.
Consider, for instance, a vertical vessel with a section S
depending on the downward vertical coordinate z (Fig. 2). A
mass of water falls through this vessel by parallel, horizontal
slices. The continuity of the incompressible water implies that
the product Sv is a constant through the fluid mass. The equality
of the potential ascent and the actual descent implies that at
every instant10∫ z1

z0

v2(z)

2g
S(z)dz =

∫ z1

z0

zS(z)dz, (3)

where z0 and z1 denote the (changing) coordinates of the two
extreme sections of the fluid mass, the origin of the z-axis
9 Cf. Vilain, 2000: 32–36.
10 Bernoulli, 1738: 31–35 gave a differential, geometric version of this

relation.
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Fig. 3. Idealized efflux through small opening (without vena contracta).

coincides with the position of the center of gravity of this mass
at the beginning of the fall, and the units are chosen so that
the density of the fluid is one. As v(z) is inversely proportional
to the known function S of z, this equation yields a relation
between z0 and v(z0) = ż0, which can be integrated to give the
motion of the highest fluid slice, and so forth. D. Bernoulli’s
investigation of efflux amounted to a repeated application of
this procedure to vessels of various shapes.

The simplest sub-case of this problem is that of a broad
container with a small opening of section s on its bottom
(Fig. 3). As the height h of the water varies very slowly, the
escaping velocity quickly reaches a steady value u. As the
fluid velocity within the vessel is negligible, the increase of the
potential ascent in the time dt is simply given by the potential
ascent (u2/2g)sudt of the fluid slice that escapes through the
opening at the velocity u. This quantity must be equal to the
actual descent hsudt . Therefore, the velocity u of efflux is the
velocity

√
2gh of free fall from the height h, in conformity with

Torricelli’s law.11

D. Bernoulli’s most innovative application of this method
concerned the pressure exerted by a moving fluid on the walls
of its container, a topic of importance for the physician and
physiologist he also was. Previous writers on hydraulics and
hydrostatics had only considered the hydrostatic pressure due
to gravity. In the case of a uniform gravity g, the pressure per
unit area on a wall portion was known to depend only on the
depth h of this portion below the free water surface. According
to the law enunciated by Simon Stevin in 1605, it is given by
the weight gh of a water column (of unit density) that has a unit
normal section and the height h. In the case of a moving fluid,
D. Bernoulli defined and derived the “hydraulico-static” wall
pressure as follows.12

The section S of the vertical vessel ABCG of Fig. 4 is
supposed to be much larger than the section s of the appended
tube EFDG, which is itself much larger than the section ε of
11 Bernoulli, 1738: 35. This reasoning assumes a parallel motion of the
escaping fluid particle. Therefore, it only gives the velocity u beyond the
contraction of the escaping fluid vein that occurs near the opening (Newton’s
vena contracta): cf. Lagrange, 1788: 430–431; Smith, 1998.
12 Bernoulli, 1738: 258–260. Mention of physiological applications is found

in D. Bernoulli to Shoepflin, 25 Aug 1734, in Bernoulli, 2002: 89: “Hydraulico-
statics will also be useful to understand animal economy with respect to the
motion of fluids, their pressure on vessels, etc.”
Fig. 4. Daniel Bernoulli’s figure accompanying his derivation of the velocity-
dependence of pressure (1738: plate).

the hole o. Consequently, the velocity u of the water escaping
through o is

√
2gh. Owing to the conservation of the flux, the

velocity v within the tube is (ε/s)u. D. Bernoulli goes on to
say:13

If in truth there were no barrier FD, the final velocity of the water in the same
tube would be [ s/ε times greater]. Therefore, the water in the tube tends to a
greater motion, but its pressing [nisus] is hindered by the applied barrier FD.
By this pressing and resistance [nisus et renisus] the water is compressed [com-
primitur], which compression [compressio] is itself kept in by the walls of the
tube, and thence these too sustain a similar pressure [pressio]. Thus it is plain
that the pressure [pressio] on the walls is proportional to the acceleration. . . that
would be taken on by the water if every obstacle to its motion should instanta-
neously vanish, so that it were ejected directly into the air.

Based on this intuition, D. Bernoulli imagined that the tube
was suddenly broken at ab, and made the wall pressure P
proportional to the acceleration dv/dt of the water at this
instant. According to the principle of live forces, the actual
descent of the water during the time dt must be equal to the
potential ascent it acquires while passing from the large section
S to the smaller section s, plus the increase of the potential
ascent of the portion EabG of the fluid. This gives (the fluid
density is one)

hsvdt =
v2

2g
svdt + bsd

(
v2

2g

)
, (4)

where b = Ea. The resulting value of the acceleration dv/dt
is (gh − v2/2)/b. The wall pressure P must be proportional to
this quantity, and it must be identical to the static pressure gh
in the limiting case v = 0. It is therefore given by the equation

P = gh −
1
2
v2, (5)
13 Bernoulli, 1738: 258–259, translated in Truesdell, 1954: XXVII. The
compressio in this citation perhaps prefigures the internal pressure later
introduced by Johann Bernoulli.
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15 On the Hydrodynamica, cf. Truesdell, 1954: XXIII–XXXI; Calero, 1996:
422–459; Mikhailov, 2002.
16
Fig. 5. Effects of the velocity-dependence of pressure according to Bernoulli
(1738: plate).

which means that the pressure exerted by a moving fluid on the
walls is lower than the static pressure, the difference being half
the squared velocity (times the density). D. Bernoulli illustrated
this effect in two ways (Fig. 5): by connecting a narrow vertical
tube to the horizontal tube EFDG, and by letting a vertical jet
surge from a hole on this tube. Both reach a water level well
below AB.

The modern reader may here recognize Bernoulli’s law. In
fact, D. Bernoulli did not quite write Eq. (5), because he chose
the ratio s/ε rather than the velocity v as the relevant variable.
Also, he only reasoned in terms of wall pressure, whereas
modern physicists apply Bernoulli’s law to the internal pressure
of a fluid.

There were other limitations to D. Bernoulli’s considera-
tions, of which he was largely aware. He knew that in some
cases, part of the live force of the water went to eddying motion,
and he even tried to estimate this loss in the case of a suddenly
enlarged conduit. He was also aware of the imperfect fluidity of
water, although he decided to ignore it in his reasoning. Most
importantly, he knew that the hypothesis of parallel slices only
held for narrow vessels and for gradual variations of their sec-
tions. But his method confined him to this case, since it is only
for systems with one degree of freedom that the conservation of
live forces suffices to determine the motion.14

To summarize, by means of the principle of live forces,
Daniel Bernoulli was able to solve many problems of quasi-
onedimensional flow and thereby related wall pressure to
fluid velocity. This unification of hydrostatic and hydraulic
considerations justified the title Hydrodynamica which he gave
to the treatise he published in 1738 in Strasbourg. Besides
the treatment of efflux, this work included all the typical
questions of contemporary hydraulics except fluid resistance
(which D. Bernoulli probably judged as being beyond the scope
of his methods), a kinetic theory of gases, and considerations on
Cartesian vortices. It is rightly regarded as a major turning point
in the history of hydrodynamics, because of the uniformity and
14 Bernoulli, 1738: 12 (eddies), 124 (enlarged conduit); 13 (imperfect fluid).
rigor of its dynamical method, the depth of physical insight, and
the abundance of long-lasting results.15

2.3. Johann Bernoulli’s hydraulica

In 1742, Daniel’s father Johann Bernoulli published his
Hydraulica, with an antedate that made it seem anterior to his
son’s treatise. Although he had been the most ardent supporter
of Leibniz’s principle of live forces, he now regarded this
principle as an indirect consequence of more fundamental laws
of mechanics. His asserted aim was to base hydraulics on an
incontrovertible, Newtonian expression of these laws. To this
end he adapted a method he had invented in 1714 to solve the
paradigmatic problem of the compound pendulum.

Consider again the pendulum of Fig. 1. According to
J. Bernoulli, the gravitational force mBg acting on B is
equivalent to a force (b/a)mBg acting on A, because according
to the law of levers two forces that have the same moment have
the same effect. Similarly, the “accelerating force” mBbθ̈ of the
mass B is equivalent to an accelerating force (b/a)mBbθ̈ =

mB(b/a)2aθ̈ at A. Consequently, the compound pendulum is
equivalent to a simple pendulum with a mass mA + (b/a)2mB
located on A and subjected to the effective vertical force mAg+

(b/a)mBg. It is also equivalent to a simple pendulum of length
(a2mA + b2mB)/(amA + bmB) oscillating in the gravity g,
in conformity with Huygens’ result. In sum, Johann Bernoulli
reached his equation of motion by applying Newton’s second
law to a fictitious system obtained by replacing the forces
and the momentum variations at any point of the system with
equivalent forces and momentum variations at one point of the
system. This replacement, based on the laws of equilibrium
of the system, is what J. Bernoulli called “translation” in the
introduction to his Hydraulica.16

Now consider the canonical problem of water flowing by
parallel slices through a vertical vessel of varying section
(Fig. 2). J. Bernoulli “translates” the weight gSdz of the
slice dz of the water to the location z1 of the frontal section
of the fluid. This gives the effective weight S1gdz, because
according to a well-known law of hydrostatics, a pressure
applied at any point of the surface of a confined fluid is
uniformly transmitted to any other part of the surface of the
fluid. Similarly, J. Bernoulli translates the “accelerating force”
(momentum variation) (dv/dt)Sdz of the slice dz to the frontal
section of the fluid, with the result (dv/dt)S1dz. He then obtains
the equation of motion by equating the total translated weight
to the total translated accelerating force as:

S1

∫ z1

z0

gdz = S1

∫ z1

z0

dv
dt

dz. (6)

For J. Bernoulli the crucial point was the determination of the
acceleration dv/dt . Previous authors, he contended, had failed
Bernoulli, 1714; 1742: 395. In modern terms, J. Bernoulli’s procedure
amounts to equating the sum of moments of the applied forces to the sum of
moments of the accelerating forces (which is the time derivative of the total
angular momentum). Cf. Vilain, 2000: 448–450.
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to derive correct equations of motion from the general laws of
mechanics because they were only aware of one contribution
to the acceleration of the fluid slices: that which corresponds
to the instantaneous change of velocity at a given height z,
or ∂v/∂t in modern terms. They ignored the acceleration due
to the broadening or to the narrowing of the section of the
vessel, which J. Bernoulli called a gurges (gorge). In modern
terms, he identified the convective component v(∂v/∂z) of the
acceleration. Note that his use of partial derivatives was only
implicit: thanks to the relation v = (S0/S)v0, he could split v
into a time dependent factor v0 and a z-dependent factor S0/S
and thus express the total acceleration as (S0/S)(dv0/dt) −

(v2
0 S2

0/S3)(dS/dz).17

Thanks to the gurges, J. Bernoulli successfully applied Eq.
(6) to various cases of efflux and retrieved his son’s results.18

He also offered a novel approach to the pressure of a moving
fluid on the side of its container. This pressure, he asserted,
was nothing but the pressure or vis immaterialis that contiguous
fluid parts exerted on one another, just as two solids in contact
act on each other:19

The force that acts on the side of the channel through which the liquid flows. . . is
nothing but the force that originates in the force of compression through which
contiguous parts of the fluid act on one another.

Accordingly, J. Bernoulli divided the flowing mass of water
into two parts separated by the section z = ζ . Following the
general idea of “translation”, the pressure that the upper part
exerts on the lower part is:

P(ζ ) =

∫ ζ

z0

(g − dv/dt)dz. (7)

More explicitly, this is:

P(ζ ) =

∫ ζ

z0

gdz −

∫ ζ

z0

v
∂v

∂z
dz −

∫ ζ

z0

∂v

∂t
dz

= g(ζ − z0)−
1
2
v2(ζ )+

1
2
v2(z0)−

∂

∂t

∫ ζ

z0

vdz. (8)

In a widely different notation, J. Bernoulli thus obtained a
generalization of his son’s law to non-stationary parallel-slice
flows.20
17 Bernoulli, 1742: 432–437. He misleadingly called the two parts of
the acceleration the “hydraulic”and the “hydrostatic” components. Truesdell
(1954: XXXIII) translates gurges as “eddy” (it does have this meaning in
classical latin), because in the case of sudden (but small) decrease of section
J. Bernoulli imagined a tiny eddy at the corners of the gorge. In his treatise
on the equilibrium and motion of fluids (1744: 157), d’Alembert interpreted
J. Bernoulli’s expression of the acceleration in terms of two partial differentials.
18 D’Alembert later explained this agreement: see below, pp. 7–8.
19 Bernoulli, 1742: 442.
20 Bernoulli, 1742: 444. His notation for the internal pressure was π . In the

first section of his Hydraulica, which he communicated to Euler in 1739, he
only treated the steady flow in a suddenly enlarged tube. In his enthusiastic
reply (5 May 1739, in Euler, 1998: 287–295), Euler treated the accelerated
efflux from a vase of arbitrary shape with the same method of “translation,”
not with the later method of balancing gravity with internal pressure gradient,
contrary to Truesdell’s claim (1954: XXXIII). J. Bernoulli subsequently wrote
his second part, where he added the determination of the internal pressure to
Euler’s treatment.
J. Bernoulli interpreted the relevant pressure as an internal
pressure analogous to the tension of a thread or the mutual
action of contiguous solids in connected systems. Yet, he did
not rely on this new concept of pressure to establish the
equation of motion (6). He only introduced this concept as a
short-cut to the velocity-dependence of wall-pressure.21

To summarize, Johann Bernoulli’s Hydraulica departed
from his son’s Hydrodynamica through a more direct reliance
on Newton’s laws. This approach required the new concept
of a convective derivative. It permitted a generalization of
Bernoulli’s law to the pressure in a non-steady flow. J. Bernoulli
had a concept of internal pressure, although he did not use it in
his derivation of his equation of fluid motion. Like his son’s,
his dynamical method was essentially confined to systems with
one degree of freedom only, so that he could only treat flow by
parallel slices.

3. D’Alembert’s fluid dynamics

3.1. The principle of dynamics

In 1743, the French geometer and philosopher Jean le
Rond d’Alembert published his influential Traité de dynamique,
which subsumed the dynamics of connected systems under
a few general principles. The first illustration he gave of
his approach was Huygens’s compound pendulum. As we
saw, Johann Bernoulli’s solution to this problem leads to the
equation of motion:

mAg sin θ + (b/a)mBg sin θ = mAaθ̈ + (b/a)mBbθ̈ , (9)

which may be rewritten as

a(mAg sin θ − mAaθ̈ )+ b(mBg sin θ − mBbθ̈ ) = 0. (10)

The latter is the condition of equilibrium of the pendulum
under the action of the forces mAg − mAγ A and mBg − mBγ B
acting respectively on A and B. In d’Alembert’s terminology,
the products mAg and mBg are the motions impressed (per
unit time) on the bodies A and B under the sole effect of
gravitation (without any constraint). The products mAγ A and
mBγ B are the actual changes of their (quantity of) motion (per
unit time). The differences mAg − mAγ A and mBg − mBγ B
are the parts of the impressed motions that are destroyed by the
rigid connection of the two masses through the freely rotating
rod. Accordingly, d’Alembert saw in Eq. (10) a consequence
of a general dynamic principle following which the motions
destroyed by the connections should be in equilibrium.22

D’Alembert based his dynamics on three laws, which
he regarded as necessary consequences of the principle of
sufficient reason. The first law is that of inertia, according to
which a freely moving body moves with a constant velocity
in a constant direction. The second law stipulates the vector
21 For a different view, cf. Truesdell, 1954: XXXIII; Calero, 1996: 460–474.
22 D’Alembert, 1743: 69–70. Cf. Vilain, 2000: 456–459. D’Alembert

reproduced and criticized Johann Bernoulli’s derivation on p. 71. On
Jacob Bernoulli’s anticipation of d’Alembert’s principle, cf. Lagrange, 1788:
176–177, 179–180; Dugas, 1950: 233–234; Vilain, 2000: 444–448.
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superposition of motions impressed on a given body. According
to the third law, two (ideally rigid) bodies come to rest after
a head-on collision if and only if their velocities are inversely
proportional to their masses. From these three laws and further
recourse to the principle of sufficient reason, d’Alembert
believed he could derive a complete system of dynamics
without recourse to the older, obscure concept of force as cause
of motion. He defined force as the motion impressed on a
body, that is, the motion that a body would take if this force
were acting alone without any impediment. Then the third law
implies that two contiguous bodies subjected to opposite forces
are in equilibrium. More generally, d’Alembert regarded statics
as a particular case of dynamics in which the various motions
impressed on the parts of the system mutually cancel each
other.23

Based on this conception, d’Alembert derived the principle
of virtual velocities, according to which a connected system
subjected to various forces remains in equilibrium if the work of
these forces vanishes for any infinitesimal motion of the system
that is compatible with the connections.24 As for the principle
of dynamics, he regarded it as a self-evident consequence of
his dynamic concept of equilibrium. In general, the effect of
the connections in a connected system is to destroy part of
the motion that is impressed on its components by means
of external agencies. The rules of this destruction should be
the same whether the destruction is total or partial. Hence,
equilibrium should hold for that part of the impressed motions
that is destroyed through the constraints. This is d’Alembert’s
principle of dynamics. Stripped of d’Alembert’s philosophy
of motion, this principle stipulates that a connected system in
motion should be at any time in equilibrium with respect to the
fictitious forces f − mγ , where f denotes the force applied on
the mass point m of the system, and γ is the acceleration of this
mass point.

3.2. Efflux revisited

At the end of his treatise on dynamics, d’Alembert
considered the hydraulic problem of efflux through the vessel
of Fig. 2. His first task was to determine the condition of
equilibrium of a fluid when subjected to an altitude-dependent
gravity g(z). For this purpose, he considered an intermediate
slice of the fluid, and required the pressure from the fluid above
this slice to be equal and opposite to the pressure from the fluid
below this slice. According to a slight generalization of Stevin’s
hydrostatic law, these two pressures are given by the integral of
the variable gravity g(z) over the relevant range of elevation.
Hence the equilibrium condition reads:25

S(ζ )
∫ ζ

z0

g(z)dz = −S(ζ )
∫ z1

ζ

g(z)dz, (11)
23 D’Alembert, 1743: xiv–xv, 3. Cf. Hankins, 1968; Fraser, 1985.
24 The principle of virtual velocities was first stated generally by Johann

Bernoulli and thus named by Lagrange (1788: 8–11). Cf. Dugas, 1950:
221–223, 320. The term ’work’ is, of course, anachronistic.
25 D’Alembert, 1743: 183–186.
or∫ z1

z0

g(z)dz = 0. (12)

According to d’Alembert’s principle, the motion of the fluid
under a constant gravity g must be such that the fluid is in
equilibrium under the fictitious gravity g(z) = g−dv/dt , where
dv/dt is the acceleration of the fluid slice at the elevation z.
Hence comes the equation of motion∫ z1

z0

(
g −

dv
dt

)
dz = 0, (13)

which is the same as Johann Bernoulli’s equation (6). In
addition, d’Alembert proved that this equation, together with
the constancy of the product Sv, implied the conservation
of live forces in Daniel Bernoulli’s form (Eq. (3)). In his
subsequent treatise of 1744 on the equilibrium and motion
of fluids, d’Alembert provided a similar treatment of efflux,
including his earlier derivations of the equation of motion and
the conservation of live forces, with a slight variant: he now
derived the equilibrium condition (13) by setting the pressure
acting on the bottom slice of the fluid to zero.26 Presumably, he
did not want to base his equations of equilibrium and motion
on the concept of internal pressure, in conformity with his
general avoidance of internal contact forces in his dynamics.
His statement of the general conditions of equilibrium of a
fluid, as found at the beginning of his treatise, only required the
concept of wall-pressure. Yet, in a later section of his treatise
d’Alembert introduced “the pressure at a given height”:

P(ζ ) =

∫ ζ

z0

(g − dv/dt)dz, (14)

just as Johann Bernoulli had done, and for the same purpose of
deriving the velocity dependence of wall-pressure.27

In the rest of his treatise, d’Alembert solved problems
similar to those of Daniel Bernoulli’s Hydrodynamica,
with nearly identical results. The only important difference
concerned cases involving the sudden impact of two layers of
fluids. Whereas Daniel Bernoulli still applied the conservation
of live forces in such cases (save for possible dissipation into
turbulent motion), d’Alembert’s principle of dynamics there
implied a destruction of live force. Daniel Bernoulli disagreed
with these and a few other changes. In a contemporary letter
to Euler, he expressed his exasperation over d’Alembert’s
treatise:28

I have seen with astonishment that apart from a few little things there is nothing
to be seen in his hydrodynamics but an impertinent conceit. His criticisms are
puerile indeed, and show not only that he is no remarkable man, but also that
he never will be.29
26 D’Alembert, 1743: 19–20.
27 D’Alembert, 1743: 139.
28 D. Bernoulli to Euler, 7 Jul 1745, quoted in Truesdell, 1954: XXXVIIn.
29 This is but an instance of the many cutting remarks exchanged between

eighteenth-century geometers; further examples are not needed here.
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3.3. The cause of winds

In this judgment, Daniel Bernoulli overlooked that
d’Alembert’s hydrodynamics, being based on a general
dynamics of connected systems, lent itself to generalizations
beyond parallel-slice flow. D’Alembert offered striking
illustrations of the power of his approach in a prize-winning
memoir published in 1747 on the cause of winds.30 As thermal
effects were beyond the grasp of contemporary mathematical
physics, he focused on a cause that is now known to be
negligible: the tidal force exerted by the luminaries (the Moon
and the Sun). For simplicity, he confined his analysis to the
case of a constant-density layer of air covering a spherical globe
with uniform thickness. He further assumed that fluid particles
originally on the same vertical line remained so in the course
of time and that the vertical acceleration of these particles
was negligible (owing to the thinness of the air layer), and
he neglected second-order quantities with respect to the fluid
velocity and to the elevation of the free surface. His strategy
was to apply his principle of dynamics to the motion induced
by the tidal force f and the terrestrial gravity g, both of which
depend on the location on the surface of the Earth.31

Calling γ the absolute acceleration of the fluid particles, the
principle requires that the fluid layer should be in equilibrium
under the force f + g + γ (the density of the air is one
in the chosen units). From earlier theories of the shape of
the Earth (regarded as a rotating liquid spheroid), d’Alembert
borrowed the equilibrium condition that the net force should
be perpendicular to the free surface of the fluid. He also
required that the volume of vertical cylinders of fluid should
not be altered by their motion, in conformity with his constant-
density model. As the modern reader would expect, from these
two conditions d’Alembert derived some sort of momentum
equation, and some sort of incompressibility equation. He did
so in a rather opaque manner. Some features, such as the lack
of specific notation for partial differentials or the abundant
recourse to geometrical reasoning, disconcert modern readers
only.32 Others were problematic to his contemporaries: he
often omitted steps and introduced special assumptions without
warning. Also, he directly treated the utterly difficult problem
of fluid motion on a spherical surface without preparing the
reader with simpler problems.
30 As a member of the committees judging the Berlin Academy’s prizes on
winds and on fluid resistance (he could not compete as a resident member),
Euler studied d’Alembert’s submitted memoirs of 1747 and 1749. The subject
set for the first prize, probably written by Euler, was “to determine the order
& the law wind should follow, if the Earth were surrounded on all sides by the
Ocean; so that one could at all times predict the speed & direction of the wind
in all places.” The question is here formulated in terms of what we now call
Eulerian coordinates (“all places”), cf. Grimberg, 1998: 195.
31 D’Alembert, 1747. D’Alembert treated the rotation of the Earth and the

attraction by the Sun and the Moon as small perturbing causes whose effects
on the shape of the fluid surface simply added (D’Alembert, 1747: xvii, 47).
Consequently, he overlooked the Coriolis force in his analysis of the tidal
effects (in D’Alembert, 1747: 65, he writes he will be doing as if it were the
luminary that rotates around the Earth).
32 D’Alembert used a purely geometrical method to study the free oscillations

of an ellipsoidal disturbance of the air layer.
Fig. 6. Spherical coordinates for d’Alembert’s atmospheric tides. The fat line
represents the visible part of the equator, over which the luminary is orbiting.
N is the North pole.

Suppose, with d’Alembert, that the tide-inducing luminary
orbits above the equator (with respect to the Earth).33 Using
the modern terminology for spherical coordinates, call θ the
colatitude of a given point of the terrestrial sphere with respect
to an axis pointing toward the orbiting luminary, φ the longitude
measured from the meridian above which the luminary is
orbiting (this is not the geographical longitude), η the elevation
of the free surface of the fluid layer over its equilibrium
position, vθ and vφ the θ - and φ-components of the fluid
velocity with respect to the Earth, h the depth of the fluid in
its undisturbed state, and R the radius of the Earth (see Fig. 6).

D’Alembert first considered the simpler case when φ is
negligibly small, for which he expected the component vφ also
to be negligible. To first order in η and v, the conservation of
the volume of a vertical column of fluid yields:

1
h
η̇ +

1
R

∂vθ

∂θ
+

vθ

R tan θ
= 0, (15)

which means that an increase of the height of the column is
compensated for by a narrowing of its basis (the dot denotes the
time derivative at a fixed point of the Earth surface). Since the
tidal force f is much smaller than the gravity g, the vector sum
f + g − γ makes an angle ( fθ − γθ )/g with the vertical. To first
order in η, the inclination of the fluid surface over the horizontal
is (∂η/∂θ)/R. Therefore, the condition that f + g − γ should
be perpendicular to the surface of the fluid is approximately
identical to34

γθ = fθ −
g

R

∂η

∂θ
. (16)

As d’Alembert noted, this equation of motion can also be
obtained by equating the horizontal acceleration of a fluid slice
33 The sun and the moon actually do not, but the variable part of their action
is proportional to that of such a luminary.
34 D’Alembert, 1747: 88–89 (formulas A and B). The correspondence with

d’Alembert’s notation is given by: θ 7→ u, vθ 7→ q, ∂η/∂θ 7→ −v, R/hω 7→ ε,
R/gK 7→ 3S/4pd3 (with f = −K sin 2θ ).
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to the sum of the tidal component fθ and of the difference
between the pressures on both sides of this slice. Indeed, the
neglect of the vertical acceleration implies that at a given height,
the internal pressure of the fluid varies as the product gη.
Hence, d’Alembert was aware of two routes to the equation
of motion, through his dynamic principle, or through an
application of the momentum law to a fluid element subjected
to the pressure of contiguous elements. In some sections he
favored the first route, in others the second.35

In his expression of the time variations η̇ and v̇θ , d’Alembert
considered only the forced motion of the fluid for which the
velocity field and the free surface of the fluid rotate together
with the tide-inducing luminary at the angular velocity −ω.
Then the values of η and vθ at the colatitude θ and at the time
t + dt are equal to their values at the colatitude θ + ωdt and at
the time t . This gives

v̇θ = ω
∂vθ

∂θ
, η̇ = ω

∂η

∂θ
. (17)

D’Alembert equated the relative acceleration v̇θ with the
acceleration γθ , for he neglected the second-order convective
terms, and judged the absolute rotation of the Earth as
irrelevant (he was aware of the centripetal acceleration, but
treated the resulting permanent deformation of the fluid surface
separately; and he overlooked the Coriolis acceleration). With
these substitutions, his Eqs. (15) and (16) become ordinary
differential equations with respect to the variable θ .

D’Alembert eliminated η from these two equations, and
integrated the resulting differential equation for Newton’s value
−K sin 2θ of the tide-inducing force fθ . In particular, he
showed that the phase of the tides (concordance or opposition)
depended on whether the rotation period 2π/ω of the luminary
was smaller or larger than the quantity 2πR/

√
gh, which he

had earlier shown to be identical with the period of the free
oscillations of the fluid layer.36

In another section of his memoir, d’Alembert extended his
equations to the case when the angle φ is no longer negligible.
Again, he had the velocity field and the free surface of the
fluid rotate together with the luminary at the angular velocity
−ω. Calling Rωdt the operator for the rotation of the angle ωdt
around the axis joining the center of the Earth and the luminary
and v(P, t) the velocity vector at point P and at time t , we have:

v(P, t + dt) = Rωdt v(Rωdt P, t). (18)

Expressing this relation in spherical coordinates, d’Alembert
obtained:
35 D’Alembert, 1747: 88–89. He represented the internal pressure by the
weight of a vertical column of fluid. In his discussion of the condition
of equilibrium (1747: 15–16), he introduced the balance of the horizontal
component of the external force acting on a fluid element and the difference
of weight of the two adjacent columns as “another very easy method” for
determining the equilibrium. In the case of tidal motion with φ ≈ 0, he directly
applied this condition of equilibrium to the “destroyed motion” f + g − γ . In
the general case (D’Alembert, 1747: 112–113), he used the perpendicularity of
f + g − γ to the free surface of the fluid.
36 The elimination of η leads to the easily integrable equation
(gh − R2ω2)dvθ + ghd(sin θ)/ sin θ − R2ωK sin θd(sin θ) = 0.
v̇θ = ω

(
∂vθ

∂θ
cosφ −

∂vθ

∂φ

sinφ
tan θ

− vφ sinφ sin θ
)
, (19)

v̇φ = ω

(
∂vφ

∂θ
cosφ −

∂vφ

∂φ

sinφ
tan θ

+ vθ sinφ sin θ
)
. (20)

For the same reasons as before, d’Alembert identified these
derivatives with the accelerations γθ and γφ . He then applied
his dynamic principle to get:

γθ = fθ −
g

R

∂η

∂θ
, (21)

γφ = −
g

R sin θ
∂η

∂φ
. (22)

Lastly, he obtained the continuity condition:

η̇ = ω

(
∂η

∂θ
cosφ −

∂η

∂φ

sinφ
tan θ

)
= −

(
∂vθ

∂θ
+

vθ

tan θ
+

1
sin θ

∂vφ

∂φ

)
, (23)

in which the modern reader recognizes the expression of a
divergence in spherical coordinates.37

D’Alembert judged the resolution of this system to be
beyond his capability. The purpose of this section of his memoir
was to illustrate the power and generality of his method for
deriving hydrodynamic equations. For the first time, he gave
the complete equations of motion of an incompressible fluid in
a genuinely two-dimensional case. Thus emerged the velocity
field and partial derivatives with respect to two independent
spatial coordinates. Although Alexis Fontaine and Euler had
earlier developed the needed calculus of differential forms,
d’Alembert was first to apply it to the dynamics of continuous
media. His notation of course differed from the modern one:
where we now write ∂ f/∂x , Fontaine wrote d f/dx , and
d’Alembert often wrote A, with d f = Adx + Bdy + · · · .

3.4. The resistance of fluids

In 1749 d’Alembert submitted a Latin manuscript on the
resistance of fluids for another Berlin prize, and failed to win.
The Academy judged that none of the competitors had reached
the point of comparing his theoretical results with experiments.
D’Alembert did not deny the importance of this comparison
for the improvement of ship design. But he judged that the
relevant equations could not be solved in the near future, and
that his memoir deserved consideration for its methodological
innovations. In 1752, he published an augmented translation of
this memoir as a book.38
37 D’Alembert, 1747: 111–114 (Eqs. E, F, G, H, I). To complete the
correspondence given in note (36), take φ 7→ A, vφ 7→ η, γθ 7→ π , γφ 7→ ϕ,
g/R 7→ p, ∂η/∂θ 7→ −ρ, ∂η/∂φ 7→ −σ , ∂vθ /∂θ 7→ r , ∂vθ /∂φ 7→ λ,
∂vφ/∂θ 7→ γ , ∂vφ/∂φ 7→ β. D’Alembert has the ratio of two sines instead
of the product in the last term of Eqs. (19) and (20). An easy, modern way
to obtain these equations is to rewrite (18) as v̇ = [(ω × r) · ∇]v + ω × v,
with v = (0, vθ , vφ), r = (R, 0, 0), ω = ω(sin θ sinφ, cos θ sinφ, cosφ), and
∇ = (∂r , ∂θ /R, ∂φ/(R sin θ)) in the local basis.
38 D’Alembert, 1752: xxxviii. For an insightful study of d’Alembert’s work

on fluid resistance, cf. Grimberg, 1998 (which also contains a transcript of
the Latin manuscript submitted for the Berlin prize). See also Calero, 1996:
Chapter 8.
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Compared with the earlier treatise on the equilibrium and
motion of fluids, the first important difference was a new
formulation of the laws of hydrostatics. In 1744, d’Alembert
started with the uniform and isotropic transmissibility of
pressure by any fluid (from one part of its surface to another).
He then derived the standard laws of this science, such as
the horizontality of the free surface and the depth-dependence
of wall-pressure, by qualitative or geometrical reasoning. In
contrast, in his new memoir he relied on a mathematical
principle borrowed from Alexis-Claude Clairaut’s memoir of
1743 on the shape of the Earth. According to this principle, a
fluid mass subjected to a force density f is in equilibrium if
and only if the integral

∫
f · dl vanishes over any closed loop

within the fluid and over any path whose ends belong to the
free surface of the fluid.39

D’Alembert regarded this principle as a mathematical ex-
pression of his earlier principle of the uniform transmissibility
of pressure. If the fluid is globally in equilibrium, he reasoned,
it must also be in equilibrium within any narrow canal of sec-
tion ε belonging to the fluid mass. For a canal beginning and
ending on the free surface of the fluid, the pressure exerted by
the fluid on each of the extremities of the canal must vanish. Ac-
cording to the principle of uniform transmissibility of pressure,
the force f acting on the fluid within the length dl of the canal
exerts a pressure ε f · dl that is transmitted to both ends of the
canal (with opposite signs). As the sum of these pressures must
vanish, so does the integral

∫
f ·dl. This reasoning, and a similar

one for closed canals, establish d’Alembert’s new principle of
equilibrium.40

Applying this principle to an infinitesimal loop, d’Alembert
obtained (the Cartesian-coordinate form of) the differential
condition

∇ × f = 0, (24)

as Clairaut had already done. Combining it with his principle
of dynamics, and confining himself to the steady motion
(∂v/∂t = 0, so that γ = (v · ∇)v) of an incompressible fluid,
he obtained the two-dimensional, Cartesian-coordinate version
of

∇ × [(v · ∇)v] = 0, (25)

which means that the fluid must formally be in equilibrium with
respect to the convective acceleration. D’Alembert then showed
that this condition was met whenever ∇ × v = 0. Confusing a
sufficient condition with a necessary one, he concluded that the
latter property of the flow held generally.41
39 D’Alembert, 1752: 14–17. On the early history of theories of the figure of
the Earth, cf. Todhunter, 1873. On Clairaut, cf. Passeron, 1995. On Clairaut’s
principle and Newton’s and MacLaurin’s partial anticipations, cf. Truesdell,
1954: XIV–XXII.
40 As is obvious to the modern reader, this principle is equivalent to the

existence of a single-valued function (P) of which f is the gradient and which
has a constant value on the free surface of the fluid. The canal equilibrium
results from the principle of solidification, the history of which is discussed in
Casey, 1992.
41 D’Alembert, 1752: art. 78. The modern hydrodynamicist recognizes in Eq.

(25) a particular case of the vorticity equation. The condition ∇ × v = 0 is that
of irrotational flow.
Fig. 7. Flow around a solid body according to D’Alembert (1752: plate 13).

This property nonetheless holds in the special case of motion
investigated by d’Alembert, that is, the stationary flow of an
incompressible fluid around a solid body when the flow is
uniform far away from the body (Fig. 7). In this limited case,
d’Alembert gave a correct proof of which a modernized version
follows.42

Consider two neighboring lines of flow beginning in the
uniform region of the flow and ending in any other part of
the flow, and connect the extremities through a small segment.
According to d’Alembert’s principle together with the principle
of equilibrium, the integral

∮
(v·∇)v·dr vanishes over this loop.

Using the identity

(v · ∇)v = ∇

(
1
2

v2
)

− v × (∇ × v), (26)

this implies that the integral
∮
(∇ × v) · (v × dr) also vanishes.

The only part of the loop that contributes to this integral is that
corresponding to the little segment joining the end points of
the two lines of flow. Since the orientation of this segment is
arbitrary, ∇ × v must vanish.

D’Alembert thus derived the condition

∇ × v = 0 (27)

from his dynamical principle. In addition, he obtained the
(incompressibility) condition

∇ · v = 0 (28)

by considering the deformation of a small parallelepiped of
fluid during an infinitesimal time interval. More exactly, he
42 For a more literal rendering of d’Alembert’s proof, cf. Grimberg,
1998: 43–48.
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(u − iv)(dx + idy) = d(ϕ+ iψ). The real part ϕ of this potential is the velocity
potential introduced by Euler in 1752; its imaginary part ψ is the so-called
stream function, which is a constant on any line of current, as d’Alembert
noted.
45 D’Alembert gave a proof of this equivalence, which he did not regard as

obvious.
Fig. 8. D’Alembert’s drawing for a first proof of the incompressibility
condition. He takes an infinitesimal prismatic volume NBDCC’N’B’D’ (upper
figure). The faces NBDC and N’B’D’C’ are rectangles in planes passing
through the axis of symmetry AP; after an infinitesimal time dt the points
NBDC have moved to nbdc (lower figure). Expressing the conservation
of volume and neglecting higher-order infinitesimals, he obtains Eq. (29).
From the 1749 manuscript in the Berlin-Brandeburgische Akademie der
Wissenschaften; courtesy Wolfgang Knobloch and Gérard Grimberg.

obtained the special expressions of these two conditions in the
two-dimensional case and in the axially-symmetric case. In the
latter case, he wrote the incompressibility condition as:

dq

dx
+

dp

dz
=

p

z
, (29)

where z and x are the radial and axial coordinates and p and
q the corresponding components of the velocity. D’Alembert’s
1749 derivation (repeated in his 1752 book) is illustrated by a
geometrical construction (Fig. 8).43

In order to solve the system Eqs. (27) and (28) in the two-
dimensional case, d’Alembert noted that the two conditions
meant that the forms udx + vdy and vdx − udy were exact
differentials (u and v denote the velocity components along
the orthogonal axes Ox and Oy). This property holds, he
ingeniously noted, if and only if (u − iv)(dx + idy) is an
exact differential. This means that u and −v are the real and
imaginary parts of a (holomorphic) function of the complex
variable x + iy. They must also be such that the velocity
is uniform at infinity and at a tangent to the body along
its surface. D’Alembert struggled to meet these boundary
conditions through power-series developments, to little avail.44
43 It thus would seem appropriate to use “d’Alembert’s condition” when
referring to the condition of incompressibility, written as a partial differential
equation.
44 D’Alembert, 1752: 60–62. D’Alembert here discovered the

Cauchy–Riemann condition for u and −v to be the real and imaginary
components of an analytic function in the complex plane, as well as a
powerful method to solve Laplace’s equation 1u = 0 in two dimensions. In
1761: 139, d’Alembert introduced the complex potential ϕ + iψ such that
The ultimate goal of this calculation was to determine the
force exerted by the fluid on the solid, which is the same as the
resistance offered by the fluid to the motion of a body with a
velocity opposite to that of the asymptotic flow.45 D’Alembert
expressed this force as the integral of the fluid’s pressure over
the whole surface of the body. The pressure is itself given
by the line integral of −dv/dt from infinity to the wall, in
conformity with d’Alembert’s earlier derivation of Bernoulli’s
law. This law still holds in the present case, because −dv/dt =

−(v · ∇)v = −∇(v2/2). Hence the resistance could be
determined, if only the flow around the body was known.46

D’Alembert was not able to solve his equations and to
truly answer the resistance question. Yet, he had achieved
much on the way: through his dynamical principle and his
equilibrium principle, he had obtained hydrodynamic equations
for the steady flow of an incompressible axisymmetrical flow
that we may retrospectively identify as the incompressibility
condition, the condition of irrotational flow, and Bernoulli’s
law. The modern reader may wonder why he did not try
to write general equations of fluid motion in Cartesian-
coordinate form. The answer is plain: he was following an
older tradition of mathematical physics according to which
general principles, rather than general equations, were applied
to specific problems.

D’Alembert obtained his basic equations without recourse
to the concept of pressure. Yet, he had a concept of internal
pressure, which he used to derive Bernoulli’s law. Curiously,
he did not pursue the other approach sketched in his theory of
winds, that is, the application of Newton’s second law to a fluid
element subjected to a pressure gradient. Plausibly, he favored
a derivation that was based on his own principle of dynamics
and thus avoided the kind of internal forces he judged obscure.

It was certainly well known to d’Alembert that his
equilibrium principle was nothing but the condition of uniform
integrability (potentiality) for the force density f. If one then
introduces the integral, say P , one obtains the equilibrium
equation f = ∇ P that makes P the internal pressure! With
d’Alembert’s own dynamical principle, one then reaches the
equation of motion

f − ρ
dv
dt

= ∇ P, (30)
46 D’Alembert had already discussed fluid resistance in part III of his treatise
of 1744. There, he used a molecular model in which momentum was transferred
by impact from the moving body to a layer of hard molecules. He believed,
however, that this molecular process would be negligible if the fluid molecules
were too close to each other – for instance when fluid was forced through the
narrow space between the body and a containing cylinder. In this case (1744:
205–206), he assumed a parallel-slice flow and computed the fluid pressure on
the body through Bernoulli’s law. For a head-tail symmetric body, this pressure
does not contribute to the resistance if the flow has the same symmetry. After
noting this difficulty, d’Alembert invoked the observed stagnancy of the fluid
behind the body to retain only the Bernoulli pressure on the prow.



1866 O. Darrigol, U. Frisch / Physica D 237 (2008) 1855–1869
which is nothing but Euler’s second equation. But d’Alembert
did not proceed along these lines, and rather wrote equations of
motion not involving internal pressure.47

4. Euler’s equations

We finally turn to Euler himself, for whom we shall be
somewhat briefer than we have been with the Bernoullis and
d’Alembert (whose papers are not easily accessible to the
untrained modern reader; not so with Euler). “Lisez Euler, lisez
Euler, c’est notre maı̂tre à tous” (Read Euler, read Euler, he is
the master of us all) as Pierre-Simon Laplace used to say.48

4.1. Pressure

After Euler’s arrival in Berlin, he wrote a few articles
on hydraulic problems, one of which was motivated by his
participation in the design of the fountains of Frederick’s
summer residence Sanssouci. In these works of 1750–51, Euler
obtained the equation of motion for parallel-slice pipe flow by
directly relating the acceleration of the fluid elements to the
combined effect of the pressure gradient and gravity. He thus
obtained the differential version

dv
dt

= g −
dP

dz
(31)

of Johann Bernoulli’s equation (7) for parallel-slice efflux.
From this, he derived the generalization (8) of Bernoulli’s
law to non-permanent flow, which he applied to evaluate the
pressure surge in the pipes that would feed the fountains of
Sanssouci.49

Although d’Alembert had occasionally used this kind of
reasoning in his theory of winds, it was new in a hydraulic
context. As we saw, the Bernoullis did not rely on internal
pressure in their own derivations of the equations of fluid
motion. In contrast, Euler came to regard internal pressure as
a key concept for a Newtonian approach to the dynamics of
continuous media.

In a memoir of 1750 entitled “Découverte d’un nouveau
principe de mécanique,” he claimed that the true basis of
continuum mechanics was Newton’s second law applied to the
infinitesimal elements of bodies. Among the forces acting on
the elements he included “connection forces” acting on the
boundary of the elements. In the case of fluids, these internal
forces were to be identified to the pressure.50

Euler’s first attempt to apply this approach beyond the
approximation of parallel-slices was a memoir on the motions
47 In this light, d’Alembert’s later neglect of Euler’s approach should not be
regarded as a mere expression of rancor.
48 Reported by Libri, 1846: 51.
49 Euler, 1752. On the hydraulic writings, cf. Truesdell, 1954:

XLI–XLV; Ackeret, 1957. On Euler’s work for the fountains of Sanssouci, cf.
Eckert, 2002, 2008. As Eckert explains, the failure of the fountains project and
an ambiguous letter of the King of Prussia to Voltaire have led to the myth of
Euler’s incapacity in concrete matters.
50 Euler, 1750: 90 (the main purpose of this paper was the derivation of the

equations of motion of a solid).
of rivers written around 1750–1751. There he analyzed steady
two-dimensional flow into fillets and described the fluid motion
through the Cartesian coordinates of a fluid particle expressed
as functions of time and of a fillet-labeling parameter (a partial
anticipation of the so-called Lagrangian picture). He wrote
partial differential equations expressing the incompressibility
condition and his new principle of continuum dynamics.
Through a clever combination of these equations, he obtained
for the first time the Bernoulli law along the stream lines of an
arbitrary steady incompressible flow. Yet he himself judged that
he had reached a dead end, for he could not solve any realistic
problem of river flow in this manner.51

4.2. The Latin memoir

An English translation of the Latin memoir will be included
in these Proceedings.

This relative failure did not discourage Euler. Equipped with
his new principle of mechanics and probably stimulated by the
two memoirs of d’Alembert, which he had reviewed, he set
out to formulate the equations of fluid mechanics in their full
generality. A memoir entitled “De motu fluidorum in genere”
was read in Berlin on 31 August 1752 and published under the
title “Principia motus fluidorum” in St. Petersburg in 1761 as
part of the 1756–1757 proceedings. Here, Euler obtained the
general equations of fluid motion for an incompressible fluid in
terms of the internal pressure P and the Cartesian coordinates
of the velocity v.52

In the first part of the paper, he derived the incompressibility
condition. For this, he studied the deformation during a time
dt of a small triangular element of water (in two dimensions)
and of a small triangular pyramid (in three dimensions). The
method here is a slight generalization of what d’Alembert did in
his memoir of 1749 on the resistance of fluids. Euler obtained,
in his own notation:

du

dx
+

dv
dy

+
dw
dz

= 0. (32)

In the second part of the memoir, he applied Newton’s
second law to a cubic element of fluid subjected to the gravity
g and to the pressure P acting on the cube’s faces. By a now
familiar bit of reasoning, this procedure yields (for unit density)
in modern notation:

∂v
∂t

+ (v · ∇)v = g − ∇ P. (33)

Euler then eliminated the pressure gradient (basically by taking
the curl) to obtain what we now call the vorticity equation:[
∂

∂t
+ (v · ∇)

]
(∇ × v)− [(∇ × v) · ∇]v = 0, (34)
51 Euler, 1760, Truesdell, 1954: LVIII–LXII.
52 Euler, 1756–1757. Cf. Truesdell, 1954: LXII–LXXV. D’Alembert’s role

(also the Bernoullis’s and Clairaut’s) is acknowledged by Euler somewhat
reluctantly in a sentence at the beginning of the third memoir cited in epigraph
to the present paper.
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55 Euler, 1755b: 284/63, 286/65. Cf. Truesdell, 1954: LXXXV–C.
56 As observed by Truesdell, 1954: XC–XCI), in Section 66 Euler reverts to
in modern notation. He then stated that “It is manifest that
these equations are satisfied by the following three values
[∇ × v = 0], in which is contained the condition provided
by the consideration of the forces [i.e. the potential character
of the r.h.s. of (33)]”. He thus concluded that the velocity was
potential, repeating here d’Alembert’s mistake of confusing
a necessary condition with a sufficient condition. This error
allowed him to introduce what later fluid theorists called the
velocity potential, that is, the function ϕ(r) such that v = ∇ϕ.
Eq. (33) may then be rewritten as:

∂

∂t
(∇ϕ)+

1
2
∇

(
v2

)
= g − ∇ P. (35)

Spatial integration of this equation yields a generalization of
Bernoulli’s law:

P = g · r −
1
2
v2

−
∂ϕ

∂t
+ C, (36)

wherein C is a constant (time-dependence can be absorbed in
the velocity potential). Lastly, Euler applied this equation to the
flow through a narrow tube of variable section to retrieve the
results of the Bernoullis.

Although Euler’s Latin memoir contained the basic
hydrodynamic equations for an incompressible fluid, the form
of exposition was still in flux. Euler frequently used specific
letters (coefficients of differential forms) for partial differentials
rather than Fontaine’s notation, and he measured velocities
and accelerations in gravity-dependent units. He proceeded
gradually, from the simpler two-dimensional case to the fuller
three-dimensional case. His derivation of the incompressibility
equation was more intricate than we would now expect. And
he erred in believing in the general existence of a velocity
potential. These characteristics make Euler’s Latin memoir
a transition between d’Alembert’s fluid dynamics and the
fully modern foundation of this science found in the French
memoirs.53

4.3. The French memoirs

An English translation of the second French memoir will be
included in these Proceedings.

The first of these memoirs “Principes généraux de l’état
d’équilibre des fluides” is devoted to the equilibrium of fluids,
both incompressible and compressible. Euler realized that his
new hydrodynamics contained a new hydrostatics based on
the following principle: the action of the contiguous fluid on
a given, internal element of fluid results from an isotropic,
normal pressure P exerted on its surface. The equilibrium of
an infinitesimal element subjected to this pressure and to the
force density f of external origin then requires:

f − ∇ P = 0. (37)

As Euler showed, all known results of hydrostatics follow from
this simple mathematical law.54
53 Cf. Truesdell, 1954: LXII–LXXV.
54 Euler, 1755a.
The second French memoir, “Principes généraux du
mouvement des fluides,” is the most important one. Here, Euler
did not limit himself to the incompressible case and obtained
the “Euler’s equations” for compressible flow:

∂tρ + ∇ · (ρv) = 0, (38)

∂t v + (v · ∇)v =
1
ρ
(f − ∇ P), (39)

to which a relation between pressure, density, and heat must be
added for completeness.55

The second French memoir is not only the coronation of
many decades of struggle with the laws of fluid motion by
the Bernoullis, d’Alembert and Euler himself, it also contains
much new material. Among other things, Euler now realized
that ∇ × v needed not vanish, as he had assumed in his Latin
memoir, and gave an explicit example of incompressible vortex
flow in which it did not.56 In a third follow-up memoir entitled
“Continuation des recherches sur la théorie du mouvement des
fluides,” he showed that even if it did not vanish, Bernoulli’s law
remained valid along any stream line of a steady incompressible
flow (as he had anticipated on his memoir of 1750–1751 on
river flow). In modern terms: owing to the identity

(v · ∇)v = ∇

(
1
2

v2
)

− v × (∇ × v), (40)

the integration of the convective acceleration term along a line
of flow eliminates ∇ × v and contributes the v2/2 term of
Bernoulli’s law.57

In his second memoir, Euler formulated the general problem
of fluid motion as the determination of the velocity at any time
for given values of the impressed forces, for a given relation
between pressure and density, and for given initial values of
fluid density and the fluid velocity. He outlined a general
strategy for solving this problem, based on the requirement
that the form (f − ρv̇) · dr should be an exact differential (in
order to be equal to the pressure differential). Then he confined
himself to a few simple, soluble cases – for instance uniform
flow (in the second memoir), or flow through a narrow tube
(in the third memoir). In more general cases, he recognized the
extreme difficulty of integrating his equations under the given
boundary conditions:58

We see well enough . . . how far we still are from a complete knowledge of
the motion of fluids, and that what I have explained here contains but a feeble
beginning. However, all that the Theory of fluids holds, is contained in the two
equations above [Eq. (1)], so that it is not the principles of Mechanics which
we lack in the pursuit of these researches, but solely Analysis, which is not yet
sufficiently cultivated for this purpose. Thus we see clearly what discoveries
remain for us to make in this Science before we can arrive at a more perfect
Theory of the motion of fluids.
the assumption of non-vortical flow, a possible leftover of an earlier version of
the paper.
57 Euler, 1755c: 345/117.
58 Euler, 1755b: 315/91.
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5. Conclusions

In retrospect, Euler was right in judging that his “two
equations” were the definitive basis of the hydrodynamics of
perfect fluids. He reached them at the end of a long historical
process of applying dynamical principles to fluid motion. An
essential element of this evolution was the recurrent analogy
between the efflux from a narrow vase and the fall of a
compound pendulum. Any dynamical principle that solved
the latter problem also solved the former. Daniel Bernoulli
appealed to the conservation of live forces; Johann Bernoulli
to Newton’s second law together with the idiosyncratic concept
of translatio; d’Alembert to his own dynamical principle of
the equilibrium of destroyed motions. With this more general
principle and his feeling for partial differentials, d’Alembert
leapt from parallel-slice flows to higher problems that involved
two-dimensional anticipations of Euler’s equations. Although
his method implicitly contained a general derivation of these
equations in the incompressible case, his geometrical style and
his abhorrence of internal forces prevented him from taking this
step.

Despite d’Alembert’s reluctance, another important element
of this history turns out to be the rise of the concept of internal
pressure. The door on the way to general fluid mechanics
opened with two different keys, so to speak: d’Alembert’s
principle, or the concept of internal pressure. D’Alembert
(and Lagrange) used the first key, and introduced internal
pressure only as a derivative concept. Euler used the second
key, and ignored d’Alembert’s principle. As Euler guessed (and
as d’Alembert suggested en passant), Newton’s old second
law applies to the volume elements of the fluid, if only
the pressure of fluid on fluid is taken into account. Euler’s
equations derive from this deceptively simple consideration,
granted that the relevant calculus of partial differentials is
known. Altogether, we see that hydrodynamics rose through
the symbiotic evolution of analysis, dynamical principles, and
physical concepts. Euler pruned the unnecessary and unclear
elements from the abundant writings of his predecessors,
and combined the elements he judged most fundamental in
the clearest and most general manner. He thus obtained an
amazingly stable foundation for the science of fluid motion.

The discovery of sound foundations only marks the
beginning of the life of a theory. Euler himself suspected
that the integration of his equations would in general be a
formidable task. It soon became clear that their application
to problems of resistance or retardation led to paradoxes.
In the following century, physicists struggled to solve these
paradoxes by various means: viscous terms, discontinuity
surfaces, instabilities. A quarter of a millennium later, some
very basic issues remain open, as many contributions to this
conference amply demonstrate.
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