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Non-linear waves in a thin layer of magnetic fluid

A. N. Golubiatnikov
Lomonosov Moscow State University, 119192, Moscow, Michurinsky Prospekt, 1

The problem of propagation of non-linear waves with small amplitude in a thin layer of
paramagnetic liquid with variable thickness in heterogeneous magnetic field is considered
in shallow water theory. The equations of motion are derived and the method of solving
the problem with a weak discontinuity is developed. With the help of this method the
problem with a weak shock wave is solved. The example of equilibrium initial state is
considered.

1. Shallow water equations in magnetic field. We will consider the
flat problem. Let y = ζ(x, t) and y = −h(x, t) be the forms of higher and lower
surfaces in relation to the constant gravity field g. The function h(x, t) is given.
As it known [1, 2], equations of motion in shallow water theory could be derived
in the assumption of smallness of the ratio of layer thickness to the characteristic
wavelength ε = (ζ + h)/λ ≤ 1. Permeability µ is considered to be piecewise
constant, µ = 1 outside the layer and µ > 1 within the layer. Thus, the motion of
liquid and magnetic field are connected to each other only by boundary conditions
on the surface of layer [3].

Vertically we solve the equation of equilibrium, and the solution defines the
pressure

p = p1(x, t)− ρg(y − ζ).

Normal to the surface of the layer, taking into account the order terms of the
ε, is n = (−ζx, 1), tangent vector is τ = (1, ζx). Subscript x means derivative.

Pressure above the layer is assumed to be zero. Then an arbitrary function
p1, taking into account conditions [Hτ ] = 0 and [µHn] = 0, is defined by the jump
of normal-normal component of Maxwell stress tensor

p1 =
1

8π

[
µ(H2

n −H2
τ )
]1
0
= −µ− 1

8πµ
((H0

n)
2 + µ(H0

τ )
2) < 0. (1)

The state outside the layer is denoted by zero, and the state into the layer
is denoted by one. Surface tension is not considered. The behaviour analysis of
magnetic field, that is regular in the neighborhood of the layer, shows that external
field distortion by the thin layer is appears only in terms of order ε2. It could be
seen in example of flattened ellipsoid [4]. Thus, in the expression (1), that is
calculated with the terms of order ε, only the external magnetic field enters. Let
us stopped on the term of order 1.
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Traditional approach to the calculation of hydrodynamics terms in the theory
of an ideal incompressible homogeneous fluid [1, 2] with considering of known
variable depth h(x, t) gives the following equations for the average to the thickness
of layer velocity of longitudinal motion v and thickness of layer ζ + h



(ζ + h)t + ((ζ + h)v)x = 0, vt + vvx + g ζx = −p1,x/ρ, (2)

where ρ is a density of liquid.
It is very helpful to introduce a mass of part of layer m, that is counted,

for example, from movable wall (piston), as an independent lagrangian variable,
which included in the function x(t,m). So, the first equation in (2) gives us the
following: ρ(ζ + h) = 1/xm and v = xt. As a result we get

ρxtt +
(
g/(2x2

m)
)
m

= ρghx − p1,x. (3)

Equation (3) has the form of Euler equation with lagrangian

Λ =
ρx2

t

2
− g

2xm
+ ρgh(x, t)− p1(x, t), (4)

which will be used next in solving problem with a weak discontinuity.
Conditions on strong discontinuities (discontinuities of the first derivatives

of the law of motion x(t,m)) in the absence of concentrated inflows of mass,
momentum and energy follow from the form of Λ [3]. Let t = T (m) be the
movement time in mass of discontinuity. Let us introduce shock time τ = t−T (m),
that is equals to zero on the discontinuity. Thus, in the variables τ,m we have

xt = xτ , xm(t,m) = xm(τ,m)− T ′(m)xτ .

It should be mentioned that in this variables operation of differentiation with
respect to them on the discontinuity saves the continuity of differentiable function.

On the strong discontinuity we have

[x] = 0, [Λxτ
] = 0. (5)

In addition to that conditions we should write one more inequality, that is
connected with the energy dissipation in the shallow water theory [1],

[xτΛxτ
− Λ]

1
0 ≤ 0.

The state 0 is correspond to the state before discontinuity and the state 1 is
correspond to the state after discontinuity. Function T (m) on the strong discon-
tinuity is unknown too. In the case of weak discontinuity, that always propagates
with the characteristic speed, motion of discontinuity against the known back-
ground is known also. In this case there are discontinuity of the second deriva-
tions or of derivations of higher order of the function x(t,m), and values of this
derivatives are defined by motion equations and its’ differential continuations (by
transport equations [5]).

2. Discontinuities of small amplitude. We will consider the class of
solutions to the equations (3) with the weak discontinuity, that is created by
piston’s analytical moving of the form

xp(t) = x0(0) + α2t
2/2 + α3t

3/6 + . . . .

We restrict our consideration to the case of motion of discontinuity against the
known static backgroud x0(m) (at h(x) and p1(x)) for simplicity.

In work [6] in the theory of an ideal magnetohydrodynamics were developed
the method of solution of the one-dimensional problems with weak discontinuity,
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which moves against an arbitrary background. We will expound this method here
in the more general lagrangian form. We will use the designations v = xτ and
w = xm(τ,m).

The definition of the background speed of sound 1/T ′
0 is Λ0

vv = 0. There is
Λ0
vw > 0 and Λ0

vvv < 0 for lagrangian (4). Let α2 ̸= 0. Then the solution of the
first transport equation (Riccati’s equation [5]) is defined the acceleration of the
liquid on the discontinuity

vτ =
1

(Λ0
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1/2

C2 +

m∫
0

Λ0
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2(Λ0
vw)

3/2
dm

−1

. (6)

Calculating of all derivatives of the background is providing under the condition
v0 = 0.

It should be mentioned that the value of acceleration has an order of one,
but the velocity is equals to zero exactly. All the next derivatives with respect
to the τ of law of motion are defined by linear equations in quadratures. The
constant C2 is proportional to the initial acceleration of the piston α2 ̸= 0. If the
α2 < 0, the acceleration of liquid is always negative. If the α2 > 0, there is a
possibility for acceleration to take the infinity value in finite time (overturning of
weak discontinuity). The case of α2 = 0 is correspond to special solution of the
Riccati’s equation vτ = 0.

Let us consider now the following situation: there is small, in relation to the
background speed of sound, initial velocity of the piston α1 > 0, that is created
weak shock wave. Then we linearized the second condition on the discontinuity
(5) and find the correction to the value of T ′

0, which correspond to the speed of
shock wave,

δT ′ = −Λ0
vvv[v]/(2Λ

0
vvT ′).

Then we linearize the equation of motion in relation to the small velocity v on
the discontinuity, solve the correspond linear differential equation and get using
(6)
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Constant C1 could be expressed via α1.
Formula (7) shows that if the C2 is positive, besides the overturning of the

weak discontinuity when vτ → ∞, the velocity v for any value of C1 > 0 grows un-
boundedly too. This says that the shock wave becomes strong and the appropriate
theory is not applicable on the merits.

In the case of equillibrium the second equation of (2) gives

ρgζ0 + p1 = C0, w0 =
g

C0 − p1 + ρgh
. (8)

Calculating the derivatives of lagrangian (4) gives

Λ0
vw = gT ′

0/(ρw
3), Λ0

vvv = −3g(T ′
0)

3/(ρw4
0), T ′

0 = (ρw3
0/g)

1/2.

It is convenient to go to the variable x, taking into account that w dm = dx.
Then for the acceleration of liquid on the weak discontinuity we get

vτ = (g/ρ)w
3/4
0

C2 −
x0(t)∫

xp(t)

(3/2)w
7/4
0 dx


−1

,
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and for the velocity on the weak shock wave we get

v = C1(ρ/g)
1/4w

3/4
0

∣∣∣∣∣∣∣1−
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,

where x0(t) corresponds to the motion of the background’s characteristic t =
T0(m).

Analysis of the formulae shows that singularity, which is connected with equal-
ity to zero of denominator of the specific volume w0 (8) when the discontinuity
tends to the zero thickness of the layer ζ0 + h = 0, can appear. It is possible only
when the acceleration of piston is negative. In this case we can trace the attenua-
tion process of the shock wave [6, 7]. However if the acceleration is positive before
this situation the overturning of weak discontinuity occurs.
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