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A B S T R A C T

Static shapes of a magnetic fluid axisymmetric volume on a horizontal plane in the magnetic field of a vertical
line conductor are studied theoretically in case of non-wetting while the current is slowly changing in a quasi-
static manner. The possibility of the fluid shape hysteresis for a cyclic increase and decrease of the current and
of spasmodic changes at certain values of the current is investigated.

1. Introduction

The behavior of the free surface of an infinite magnetic fluid (MF)
volume near a vertical line conductor with current is considered to be a
classical problem in ferrohydrodynamics and it was firstly developed in
[1]. In [2] a rapid jump of the MF ascension height was discovered
theoretically and confirmed in the experiment for some value of the
current in case of small magnetic fields. In [1,2] only the case of wetting
was considered. The problem of a finite MF volume on a horizontal
plane near a vertical line conductor was studied in [3] in case of wetting
for any magnetic fields. It was shown that the fluid shape hysteresis for
a cyclic increase and decrease of the current and spasmodic changes at
certain values of the current are possible. In this paper we consider a
similar problem as in [3] but in case of non-wetting. Due to that,
instead of a pyramidal shape in case of wetting (where the base is the
widest), the diameter of such drop in case of non-wetting is maximal at
some intermediate value of its height.

2. Theory

We consider a heavy, incompressible, homogenous, isothermal MF
drop of the finite volume V on a horizontal plane in the magnetic field
of a vertical line conductor of the radius r0 with the current I (Fig. 1).
The case of non-wetting is considered, that is to say, the MF does not
wet solid boundaries, so θ90° < 1, θ ≤ 180°2 , where θ1 is the wetting
angle of the line conductor, θ2 is the wetting angle of the horizontal
plane. The MF is immersed in a non-magnetic liquid with the same
density (the case of hydroimponderability). The MF has a free axially
symmetric surface of revolution z h r= ( ), r x y= +2 2 (the axis z is

directed along the axis of the line conductor, see Fig. 1).
In this geometry, the magnetic field of the line conductor H| | is not

deformed by the MF and HH| | = , H r I cr( ) = 2 /( ), where c is the speed
of light in vacuum [4]. We consider that the MF magnetization M can
be described by the Langevin law [5]: M ξ M L ξ( ) = ( )S ,
L ξ ξ ξ( ) = coth − 1/ , ξ mH kT= /( ), m M n= /S . Here MS is the MF satura-
tion magnetization, m is the magnetic moment of one ferromagnetic
particle, n is the number of ferromagnetic particles per unit volume, T
is the fluid temperature, k is the Boltzmann constant, ξ is the Langevin
parameter which corresponds to the current in a line conductor.

We use the hydrostatic equation [1]:

p M H ρ j f lg 0−∇ + ∇ + = , = , .j j j j (1)

Here the indices f and l denote the MF and the non-magnetic
M( = 0)l liquid surrounding the MF, p is the fluid pressure, ρ is the
fluid density, g is the gravitational acceleration. We also use the
boundary condition on the free surface h(r) [1]:

p p σK− = ± 2 .l f (2)

Here σ is the interfacial tension between the MF and the non-magnetic
liquid, K K h h= ( ′, ″) is the mean curvature of the surface. The signs
“+”(“−”) should be chosen when the non-magnetic liquid is situated
above (beneath) the MF.

From Eqs. (1) and (2) we derive a general inhomogeneous non-
linear second-order differential equation and get a general analytical
solution for any axially symmetric shape of the MF free surface h(r) in
any axisymmetric magnetic field in the non-dimensional form [3]. Here
we need to describe separately the non-dimensional upper contact
surface of the fluids h r h r*( *) ≥ *( *)d1 (r r r* = /d d 0 is the non-dimensional
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distance, or the MF thickness, between the center of a line conductor
and a point, where the tangent line to the free surface of the MF is
vertical) and the non-dimensional lower contact surface of the fluids
h r h r*( *) ≤ *( *)d2 :
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Here r r r* = /i i 0 is the non-dimensional radius of points, where the
surface h r*( *)i touches the line conductor or the horizontal plane,
correspondingly, so r* = 11 . Here Bi, Ci, Di are unknown constants, p0f,
p0l are constants of integration of Eq. (1), and some other non-
dimensional parameters are introduced: r r r* = / 0, H r* = 1/ *,
ξ mI cr kT= 2 /( )0 0 , P nkTr σ= /1 0 . Later, the signs “*” are omitted and
parameters are considered as non-dimensional, unless otherwise
specifically agreed.

On contact lines of three media, for r = 1 and r r= 2, the Jung
condition should be satisfied. It gives the following boundary condi-
tions:

G r θ G r r θ( = 1) = −cos , ( = ) = sin .1 1 2 2 2 (6)

For r r= d the function h r( )1 (h r( )2 ) is decreasing (increasing) and at this
point the tangent line to the free surface of the MF is vertical, so
G r r( = ) = −1d1 and G r r( = ) = 1d2 . From these equations and Eqs. (6)
we get the dependence of the constants B1, C1 on the radius rd and of
the constants B2, C2 on the radii rd and r2:
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It should be noted that Eqs. (5) give the following relation between the
constants B1 and B2:

B r r B r( , ) = − ( ).d d2 2 1 (8)

The constant D D h r D h r= = ( ) = = ( )d d1 1 2 2 could be determined from
Eq. (3) and h r( ) = 02 2 , as following:

∫D G

G
dr=

1 −
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2 (9)

The MF volume V (Fig. 1) could be calculated by the following formula:

∫ ∫V π rh dr π rh dr= 2 − 2 .
r

r

r

1
1 2

d d

2 (10)

If we set the values of the problem parameters and fix the values of
the variables ξ0 and rd, the system of Eqs. (3)–(9) allows us to
determine the MF shape h(r) in a state of hydrostatic equilibrium, if
it exists, or to show that for these fixed values of parameters and
variables there is no static MF shape.

3. Numeric computation

A program is written in the computer simulation software Maple to
determine the MF shape and its volume. To fulfill the assumption of
non-wetting with respect to all solid interfaces, i.e., the plane and the
line conductor, different combinations “neutral liquid – MF – solid
surface material” could be used. For example, in [6] the solid surface
was made of polymethyl methacrylate (PMMA) chemically modified by
rinsing it with a commercial antispread liquid (TE1403DA53, Dr.
Tillwich GmbH, Germany); the MF was a water-based ferrofluid
(EMG705, Ferrotec Corp., USA); the neutral liquid was a mixture of
hydrogenated terphenyl and 1-bromonaphthalene (No. 18095, Cargille
Labs, USA), which is immiscible with the MF. Furthermore, in [7] the
solid surface was also made of PMMA; the MF was also a water-based
ferrofluid; the neutral liquid was a transformer oil. We use the
following dimensional parameters (similar to the examples mentioned
above) for the numeric calculations: θ1 , θ = 120°2 , T = 300 °K,
M = 80 Gs , n = 1.1·10 cm17 −3, σ = 7 dyn/cm and r = 0.065 cm0 .

The dependence V V r= ( )d for different fixed values of ξ0 is
presented in Fig. 2. It is shown that there are four critical values of
ξ0: ξ = 0.587501 , ξ = 0.623502 , ξ = 0.624503 , ξ = 0.673804 , for which the
form of the dependence V r ξ( , )d 0 strongly changes. If ξ ξ0 ≤ ≤0 01, the
dependence V V r ξ= ( , )d 0 is a monotonous one (lines 1, 2 in Fig. 2). If
ξ ξ>0 01, the dependence is multivalued (only in case of non-wetting) as
it is shown in Fig. 3: for one value of rd there are up to three different
volumes V (line 3), because Eq. (8) can have up to three different roots
r2. The middle solutions presented by the dashed line in Figs. 2 and 3
are usually unstable. If ξ ξ=0 02, the line V V r ξ= ( , )d 02 has an inflection
point. If ξ ξ ξ< <02 0 03, the dependence has a maximum and a mini-
mum: one value of V corresponds to up to three values of rd (line 4). If
ξ ξ ξ≤ <03 0 04, the dependence has two branches and each branch tends
to its own asymptote (line 5). If ξ ξ≥0 04, the dependenceV V r ξ= ( , )d 0 is

Fig. 1. Schematic image of the MF volume.

Fig. 2. The dependence V V r= ( )d for different values of ξ0: 1) ξ = 00 , 2) ξ = 0.50 , 3)

ξ = 0.590 , 4) ξ = 0.6240 , 5) ξ = 0.6250 , 6) ξ ξ= = 0.67380 04 .
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a monotonous one and it tends to its asymptote (line 6).
Thus, for both cases of wetting [3] and non-wetting under the same

geometry of the interfaces, the MF shape is liable to bistability under
the change of the current. It means that spasmodic changes of rd and
the current-induced shape hysteresis should occur for the big enough
drops V V> c1 (V V> c2) and for ξ ξ>0 01 (ξ ξ>0 02): the MF shape
changing while the current is increasing does not coincide with the
MF shape changing while the current is decreasing. The critical value of
volume V = 30347c1 (8.3 cm3) is determined by the inflection point for

ξ ξ= = 0.58750 01 (10.9 A); V = 10852c2 (3 cm3) is determined by the
inflection point for ξ ξ= = 0.62350 02 (11.5 A).

4. Conclusion

The method to calculate the magnetic fluid shape in a state of
hydrostatic equilibrium on the horizontal plane at the constant value of
the current in the vertical line conductor is proposed in case of non-
wetting. For some fixed values of the current in the conductor and of
the magnetic fluid volume, various static shapes are obtained numeri-
cally. Like in case of wetting, the bistability could also lead to the
presence of spasmodic and hysteresis phenomena in case of non-
wetting.
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Fig. 3. Details of the dependence V V r= ( )d for ξ = 0.590 (line 3 in Fig. 2).

A.S. Vinogradova et al. Journal of Magnetism and Magnetic Materials 431 (2017) 169–171

171

http://refhub.elsevier.com/S0304-8853(16)32454-4/sbref1
http://refhub.elsevier.com/S0304-8853(16)32454-4/sbref1
http://refhub.elsevier.com/S0304-8853(16)32454-4/sbref2
http://refhub.elsevier.com/S0304-8853(16)32454-4/sbref3
http://refhub.elsevier.com/S0304-8853(16)32454-4/sbref3
http://refhub.elsevier.com/S0304-8853(16)32454-4/sbref4
http://refhub.elsevier.com/S0304-8853(16)32454-4/sbref4
http://refhub.elsevier.com/S0304-8853(16)32454-4/sbref5

	Magnetic fluid axisymmetric volume on a horizontal plane near a vertical line conductor in case of non-wetting
	Introduction
	Theory
	Numeric computation
	Conclusion
	Acknowledgment
	References




