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Abstract—The origin of periodic structures in a layer of a lyotropic nematic liquid crystal observed
in the director (vector, describing the anisotropic properties of the medium) reorientation experiment is
studied. Such perturbations with the wavevector perpendicular to the initial orientation can develop in
a liquid crystal layer in the unstable equilibrium state when the director is parallel to the walls under
the condition that its orthogonality to the boundary corresponds to the minimum anchoring energy. It is
shown that the linear dependence of the domain period on the layer thickness observed experimentally
can be theoretically described when the Frank orientation elasticity energy is considered in the most
general form taking the divergence terms into account and the anchoring energy of orientation is small
as compared with the bulk energy. A relation between the coefficient of the divergence terms (saddle-
splay elastic constant) and two other coefficients in the Frank energy is obtained.
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Media in which the molecules and other base units are strongly elongated can be related to the class of
nematic liquid crystals. In this case, a mean direction of orientation of the major axes described by a unit
vector n called the director [1] exists in the liquid-crystal phase. The presence of an additional macroscopic
parameter leads to appearance of the internal energy of the Frank orientation elasticity which in the most
generic case with allowance for the properties of symmetry of the medium including the equivalence of the
directions n and −n takes the form:

2FV = K1(divn)2 + K2(n, curln)2 + K3
∣
∣[n, curln]

∣
∣2

+ K24
(

∇in j∇ jni − (∇knk)2),

the constant coefficients Ki are the Frank constants. In this case the last term has the divergence form by
virtue of the identity ∇in j∇ jni − (∇knk)2 ≡ ∇i(nj∇ jni − ni∇knk) and has no effect on the equations of
motion or equilibrium of the medium and the equation of the director orientation. However, this term must
be taken into account in the boundary conditions (weak anchoring) when the orientation vector is not given
on the boundary but can be found from the condition of minimum anchoring energy. Usually, the anchoring
energy is given by the Papini–Papoular relation [2]

FS = γ +
W
2

(

1 − (sin Ω
√

1 − n2
m + cosΩ∣nm∣)2),

where nm = (n, m), m is the unit outward normal to the boundary, γ , W , and Ω are constants, and Ω is the
angle between the light orientation axis and the normal to the surface (Ω ∈ [0, π/2]).
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In [3–5] it was shown that taking the divergence terms in the Frank energy into account can lead to
instability of surface waves with the free boundary. In [6–11] the role of these terms was studied for a liquid
crystal layer in the equilibrium state which is enclosed between two rigid walls. It was found that nontrivial
periodic solutions can exist in the presence of such terms in the case of a layer with plane boundaries
and homogeneous boundary conditions. The question of the effect of the layer thickness and the relation
between the Franc coefficients on the existence of such solutions and their number was also considered in
these studies. In [12] there was proposed a method of measuring the saddle-splay elastic constant K24 based
on studying periodic structures arising in the nematic layer under the action of a magnetic field.

In [13] domain structures developed in the layer of a lyotropic nematic liquid crystal (disulfoindantron-
water system) in the process of transition of the director from the planar (parallel to the walls) to homeotropic
(perpendicular to the boundaries) orientation were described. In Fig. 1 we have reproduced the schematic
diagram of the experiment. In the initial state (in filling the cell), the planar orientation develops in the layer
due to the action of viscous forces (zone II in Fig. 1). In this case the homeotropic orientation corresponds to
the minimum anchoring energy for the system under consideration. In a certain time homeotropic domains
(zone I in Fig. 1) begin to develop in the stopped medium. In those cases, in which the boundaries of the
reoriented domains were perpendicular to the initial director position, periodic domain structures develop
in the undisturbed zone in a time of the order of several minutes. Their wavevector was perpendicular to
the orientation vector. These structures were recorded experimentally in the form of dark stripes in the zone
with planar orientation. In this study it was noted that for the layer in a cell the total reorientation time was
equal to approximately one hour while the domain structure existence time amounts to from several to tens
minutes. In this case the domain period did not vary during all time of propagation of the reorientation front
and agreed within a good accuracy with the layer thickness varied from 30 to 200 μm. In [13] a dynamic
description of the effects observed was proposed and the effect of various forces was estimated by means of
the dimension theory. In the present study a possible theoretical description of the origin of such structures
due to taking the divergence terms in the Frank energy into account is proposed.

1. FORMULATION OF THE PROBLEM
ON EQUILIBRIUM OF THE LAYER

For the problem of nematic equilibrium the equations governing the director field in the absence of
external body forces and the weak anchoring take the form [14]:

(

δ j
k − njnk

)
(

∂FV

∂nj − ∇i

(
∂FV

∂∇in j

))

= 0, (1.1)

(

δ j
k − njnk

)
(

∂FV

∂∇in j
mi +

dFS

dnm
m j

)

= 0. (1.2)

In this case the pressure can be found from the equation ∇i(p + FV ) = 0 after the director field has been
determined and the boundary conditions have been specified. Equations (1.1) and (1.2) are projected on the
plane orthogonal to the vector n to eliminate the indefinite Lagrange multipliers that appear owing to the
condition of its constant length.

We will consider the plane problem of equilibrium of the layer of a nematic liquid crystal that occu-
pies the gap between the planes z = ±h in the Cartesian coordinate system (x, y, z) with the undisturbed
homogeneous director orientation n = (0, 1, 0). In the disturbed state the director is given as follows:
n = (−sinϕ cosθ , cos ϕ cosθ , −sinθ), where ϕ and θ are the angles of deviation from the initial direction
of the director. Then the linearized equilibrium equations (1.1) for perturbations of the angles ϕ and θ ,
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Pattern of the domain under consideration: zone I corresponds to orientation of the director perpendicularly to the Oxy
plane and zone II to the initial planar domain; 2h is the domain period.

which were obtained analogously in [6] for another initial state of the director, can be written as follows:

K2θxx + K1θzz = (K2 − K1)ϕxz, (1.3)

K1ϕxx + K2ϕzz = (K2 − K1)θxz. (1.4)

In this case, owing to the properties of the investigated medium, which were established in [15, 16], in
Eqs. (1.3), (1.4) we will consider the most general case for the Frank energy in which the constants Ki are
different and the quantity K3 does not enter into the equations.

The weak anchoring can be reduced to the relations

K2 ϕz = θx
(

K2 − K24), (1.5)

K1 θz − ϕx
(

K24 − K1
)

=±Wθ , (1.6)

where the subscripts “x” and “z” denote the partial derivatives with respect to the corresponding coordinates.
Condition (1.5) can be applied to both boundaries. In condition (1.6) the upper and lower signs relate to
upper and lower boundaries, respectively. Since the undisturbed state corresponds to the maximum anchor-
ing energy, equation (1.6) differs from the corresponding boundary conditions (weak anchoring) [10, 11] by
opposite sign on the right-hand side.

2. NONTRIVIAL PERIODIC SOLUTIONS

We will seek the solutions for the undisturbed state in the form:

θ = f (z)sin kx, ϕ = g(z)cos kx.

Then the system (1.3), (1.4) can be reduced to a fourth-order equations with constant coefficients, for
example, for the functions f (z). Its characteristic polynomial has the roots ±k of double multiplicity. The
solutions for f (z) and g(z) can be written in the form:

g(z) = (A1 + A2z)exp(kz) + (A3 + A4z)exp(−kz),

f (z) = (D1 + D2z)exp(kz) + (D3 + D4z)exp(−kz),
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where, by virtue of Eqs. (1.3), (1.4), the coefficients Ai and Di are connected by the relations

A2 = D2, kA1 − kD1 = λA2, (2.1)

A4 + D4 = 0, kA3 + kD3 = λD4, (2.2)

λ =
K1 + K2

K1 − K2
.

The boundary conditions (weak anchoring) (1.5), (1.6) together with relations (2.1), (2.2) make it pos-
sible to write a linear homogeneous system for the coefficients Ai and Di. The condition of existence of a
nontrivial solution of this system (its determinant must be equal to zero) leads to the equation

−4k6K4
24h2 + k4{−4hK2W (λ + 1) + sinh2(2kh)ζ

}

K2
24

+ k3K24K2Wξ sinh(4kh) + k2W 2K2
2 sinh2(2kh)(λ + 1)2 = 0,

ζ = (λK24 − λK1 − λK2 + K1 − K2)2,

ξ = λ (λ + 1)K24 − K2 + K1 − 2λK2 − λ 2K2 − λ 2K1.

(2.3)

From relation (2.3) it follows that the presence of the divergence terms in the Frank energy is necessary
for existence of nontrivial solutions which are absent when K24 = 0. We will use the experimental data
[13]; hence, with allowance for the form of the solution and the property of equivalence of the directions
n and −n we can set 2kh = π . In that study it was also noted that the surface forces affect the medium
only slightly. This is confirmed by the fact that the director in a cell changes its orientation over a long
period of time. For example, this can be related to the nature of interaction between the nematic and the
boundary. In review [17] it was noted that in certain cases other approximations in which the anchoring
energy for the director positions far from the axis of light orientation varies only slightly must be considered
instead of the Papini–Papoular model. For example, the elliptic sine can be taken [18] as the function that
describes the anchoring energy. In this case, if we set W = 0 in Eq. (2.3), this admits a linear relation
between the perturbation wavelength and the layer thickness. Taking the experimental data into account,
from this relation it follows that K24 is connected with other coefficients in the Frank energy as follows:

π2K2
24 = sinh2(π)(λK24 − λK1 − λK2 + K1 − K2)2.

The last relation can be used to determine the parameter K24.
Summary. An approach which makes it possible to obtain solutions that describe periodic structures

observed in the layer of a lyotropic nematic liquid crystal is proposed. It is shown that their existence is
possible if the divergence terms are taken into account in the Frank orientation elasticity energy. A rela-
tion between the wavenumber, the layer thickness, and the Frank coefficients is obtained for the periodic
solutions when the orientation energy is considered in the most general form admitted by the properties of
symmetry of the medium, i.e., with four different constants. An investigation of this equation shows that the
linear dependence of the perturbation period on the layer thickness is possible if the effect of the anchoring
orientation energy on the medium boundary is negligibly small as compared with its bulk value. Taking the
available experimental data into account, an equation relating the divergence constant in the Frank energy
with three other constants is obtained.

The work was carried out with support from the Russian Foundation for Basic Research (project No. 15-
01-00361).
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