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Abstract The problem of periodic domain initiation in a thin lyotropic nematic liquid crystal layer
is studied This layer has a planar director initial orientation, but the anchoring energy is minimized by
the homeotropic one The periodic structures whose wave vector is perpendicular to the director exist
during the director reorientation process from the planar orientation to the homeotropic one when the
reorientation wave front appears It is shown that the divergent terms of the Frank orientation elasticity
energy plays an important role in this effect The saddle splay Frank constant and the anisotropic
anchoring energy coefficient are estimated
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Various periodic stripe domains are observed in nematic liquid crystals These structures can appear spon
taneously or as a result of external actions [1] Such effects can be caused by the divergent terms of the Frank
orientation elasticity energy [2] In this paper the appearance of periodic structures is theoretically described
for the case of lyotropic nematic liquid crystals (more specifically, for the case of a disulfoindanthrone water
system [3])

Let us consider a liquid crystal layer bounded by two walls In the initial state, the orientation unit
vector n (also called the director) is directed along the walls By virtue of the boundary conditions, however,
the homeotropic orientation corresponds to the anchoring energy minimum when the director is perpendicular
to the boundary of the medium With the course of time, the reorientation process is observed in the layer:
first, this process is observed in some segments of the cell and, then, is propagated through the entire
domain in the form of a wave front When the reorientation front is perpendicular to the initial position
of the director, some periodic structures appear near the front in the unperturbed zone; the wave vector of
these structures is perpendicular to the orientation vector Finally, the periodic structures are propagated
through the entire unperturbed zone [3] It is found experimentally that the appearance time of periodic
stripe domains is much less than the reorientation time over the entire cell and that their period is almost
unchanged during the motion of the reorientation front A dynamic model of this effect is also considered
in [3]

In this paper we describe the appearance of such cells with consideration of the divergent terms of the
Frank elasticity energy whose one constant approximation is as follows [1, 4]:

2Fy = KijVinj + Koy (Vinjani - (ank)Q) . (1)

Here K and K»4 are the constant Frank coefficients The second term of (1) is of divergent form; hence,
this term has no effect on the equations inside the volume and is used in the boundary conditions The
Rapini Papoular anchoring energy is given by the formula [1, 4]

2Fs =2v+ W (1 — (sin24/1 — n2 + cos Q|ny|)2) ,
where v and W are constant coefficients and 2 is the angle between the easy orientation axis and the
outer unit normal v to the surface; here Q € [0,7/2] This axis specifies the director’s orientation in the

unperturbed state and can rotate about the cone whose generatrices makes the angle 2 with the normal
The minimum of the anchoring energy is attained when the normal to the surface, the easy orientation axis,
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and the director belong to the same plane [5] Then, the equilibrium equations and the boundary conditions
can be written as [5 7]

; , OFy oFy
J . —
(57— nins) ( oy~ Vi (avw)) =0, 2)
; , OF dFg
(6% - njnk) (8%‘;3, v + dn. I/j> =0. (3)

The pressure can be determined from the equilibrium conditions V;(p + Fy) = 0 when the orientation
vector field is found The equations expressed by (2) and (3) are projected onto the plane perpendicular to n;
as a result, the Lagrange undetermined multipliers are eliminated (these multipliers arise from the condition
that the director is of constant length)

2

Let us analyze the equilibrium of the nematic occupying the layer —h < z < h, where (x,y, z) is the
chosen Cartesian coordinate system In the unperturbed state, the director is parallel to the walls: n =
(cos g, sintpg,0) In (3) we put Q = 0; the unperturbed planar orientation is not a minimum state of
the anchoring energy Now we consider the perturbed solution in the form of small horizontal and vertical
deviations from the initial state; the corresponding deviation angles are denoted by v and # Then, the
linearized equilibrium equations (2) for the perturbations can be written as

AG=0, AyY=0. (4)
For z = £h, the linearized boundary conditions are specified by the equations [8]
K, = K4(0y cos thg — b sin ), (5)

FKO. £+ K24(wac sin g — % COS wO) =-Wb, (6)

where the subscripts x, y, and z indicate the partial derivatives with respect to the corresponding coordinates,
the condition expressed by (5) is valid on both the boundaries, and in (6) the upper and lower signs correspond
to the upper and lower boundaries, respectively The unperturbed state corresponds to the maximum of the
anchoring energy; hence, Eq (6) differs from the boundary conditions discussed in [8] by the opposite sign
in the right hand side

The solutions to Eqs (4) are sought in the form

1 = (Cy exp(kz) + Caexp(—kz)) coskz + (Cs exp(kz) + Cyexp(—kz)) sinkz,

0 = (Dy exp(kz) + Ds exp(—kz)) coskx + (D3 exp(kz) + Dy exp(—kz)) sin kz,

where k > 0 is a real number and C; and D; are arbitrary constants The boundary conditions (5) and (6)
are used to determine the amplitudes of perturbations As a result, we obtain a system of homogeneous
linear equations for C; and D;; this system consists of two subsystems with equal determinants A nontrivial
solution can be found by equating these determinants to zero, which leads to the equations

E(K? — K2,sin” ¢g) = WK th(kh), k(K?— K3, sin?g) = WK cth(kh).

From these equations we conclude that, for k£ > 0 and )9 = /2, such a nontrivial solution exists if | Ko4| < K
This conclusion is in contradiction with the experimental estimates for Ko4 given in [9, 10] For a lyotropic
nematic liquid crystal used in the experiments of [3], however, the Frank coefficients differ from one another
by an order of magnitude compared to the Frank coefficients for typical thermotropic liquid crystals [11, 12];
hence, the above inequality can be valid

From the above mentioned experiments and taking into account that the observed period of perturbations
is almost coincident with the thickness of the layer, we conclude that the following upper estimate is valid
for the anisotropic component of the anchoring energy: W/K < 105 1/m

Thus, the divergent terms of the Frank orientation elasticity energy are the cause of periodic structures
in a lyotropic nematic liquid crystal Our approach allows one to experimentally estimate a value of the
saddle splay elastic constant K54 for such a medium
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