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A  plane  transformation  front of a stream  of non-interacting  particles  into  a continuous  medium,  which
is  assumed  to be  incompressible,  elastic,  anisotropic  and non-linear,  is considered.  The  structure  of  the
compaction  front  is  investigated  using  the  Kelvin–Voigt  model  of  a  viscoelastic  medium.  It is  shown  that
additional  boundary  conditions,  which  follow  from  the requirement  for the existence  of  a  discontinuity
structure,  must  be formulated  on  the compaction  front  in  certain  cases  along  with  the  boundary  condi-
tions  which  follow  from  the  conservation  laws.  These  additional  conditions  depend  on  the  equations  that
are  adopted  to describe  the  structure,  and their  number  depends  on the  relations  between  the  velocity  of
the  front  and the  velocities  of the  small  perturbations  behind  the  front.  It  is  shown  that  in  the  phase  space
of  the  shear  strains  and  normal  velocity  of  the  front,  the  set  of  states  behind  all  the  possible  compaction
fronts  (an  analogue  of  the  shock  adiabat)  can consist  of  manifolds  of various  dimensions  (from  one  to
three).  The  piston  problem,  which,  as  is shown,  has  a unique  solution  in the  entire  permissible  region  of
values  of  shear  and normal  stresses  assigned  on  the piston,  is  investigated.

©  2016  Elsevier  Ltd. All  rights  reserved.

A stream of non-interacting particles incident to a plane boundary, where the stream of particles is compacted and the particles adhere
nd ultimately transform into a continuous medium, which is assumed to be elastic, incompressible, weakly anisotropic and weakly non-
inear, is considered in this paper. It is assumed that viscosity effects appear and that the flow is described by the Kelvin–Voigt equations
n a narrow layer immediately after adhesion at large velocity gradients. Variation of the shear components of the stresses and the velocity
ccurs in the layer.

When flow is considered on a large scale, this layer can be treated as a discontinuity surface, and the flow in it can be treated as the
tructure of the discontinuity. The discontinuity is a phase transformation surface, on the different sides of which different systems of
quations hold. On one side, the equations of motion of free particles hold, and on the other side the equations of elasticity theory hold.
e will call this discontinuity, which has an internal structure, a compaction front. The purpose of this study is to investigate the variation

f quantities in a compaction front.
A similar problem with the formation of an isotropic elastic medium was  previously considered.1 Complication of the problem by

ncluding the anisotropy of the medium formed in the treatment, apart from its methodical interest, may  be caused by the study of
roblems of the creation of media by spraying,2 if it is required that the medium formed would have specified anisotropy. In this case,
efore the particles adhere, they should also have anisotropy and should be oriented in a definite manner. The latter can be achieved, for
xample, by applying an electric or magnetic field. In addition, anisotropy of the medium formed can appear naturally when the particles
dhere, if the free particles have a non-zero tangential velocity relative to the medium formed on the compaction front at the time of
dhesion.
Please cite this article in press as: Kulikovskii AG, Sveshinkova EI. The formation of an anisotropic elastic medium on the compaction
front of a stream of particles. J Appl Math Mech (2015), http://dx.doi.org/10.1016/j.jappmathmech.2016.04.009

The problem under consideration is one of a set of problems associated with discontinuities on which a phase transformation of the
edium passing through them occurs. Discontinuities of this type are often called “multi-parameter”,1 i.e., their shock adiabat has a
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Fig. 1.

imensionality greater than 1. One of the first examples of such multi-parameter discontinuities studied included ionization and recom-
ination fronts in a magnetic field.3

There are problems which are very closely related according to the nature of the processes occurring to the problem studied below. The
rocess of the freezing of ice from a stream of water on a stationary surface and the process of the polymerization of a stream of a medium
re possible examples.

. Statement of the problem

A homogeneous stream of non-interacting particles impinges on a plane boundary at a certain angle to it. We  take the direction
rthogonal to the boundary and, therefore, to the compaction front formed as the x3 = x axis of a Cartesian coordinate system (Fig. 1). The
1 and x2 axes lie in the plane of the front. It is assumed that all tthe flow parameters depend only on the x coordinate and the time t, i.e.,
he flow is assumed to be one-dimensional in the form of plane waves.

In the region ahead of the front, the velocity of the particles in the stream of free particles does not vary with time when there are no
xternal forces, i.e., the perturbations of the motion are transported together with the particles. The velocity and density of the stream of
articles are assumed to be constant and known.

As a result of passage through the compaction front, a continuous medium, which is assumed to be elastic and at rest, forms. The
ront moves relative to the medium formed behind it in the positive direction of the x axis with velocity W.  In the system of coordinates
onnected to the front the components of the velocity of the stream ahead of it are

nd behind the front their values are {�+
1 , �+

2 , �+
3 }.

The mass conservation law on the phase transformation front has the form

(1.1)

here �0 and � are the densities in the stream of particles and in the elastic medium. When the parameters of the incident stream are given,
quality (1.1) is used to determine the velocity of the front W relative to the medium formed behind it. The medium formed is assumed to be
omogeneous and incompressible (� = const), and the parameters of the incident stream are assumed to be time-independent; therefore,

n the entire region behind the front

�x
+ = −W = const

hus, the motion of the medium along the x axis has been determined, and only the tangential components of the velocity (��), the
tresses (��) and the strains (u�) (everywhere below � = 1, 2) in the elastic medium formed are subject to further study. The quantity V
nd, therefore, W can take different values in different problems and are among the principal physical parameters on which the form of
he solution depends.

Since an elastic medium is assumed to be incompressible, for brevity, below we  will set � = const = 1.

. Motion of the medium behind the compaction front

The elastic medium formed behind the compaction front is assumed to be incompressible, weakly non-linear and weakly anisotropic.
ts velocity in Lagrangian coordinates in the direction of the x� axis is defined in terms of the displacement vector component w� as

� = ∂w�/∂t. The elastic properties of the medium are given by its elastic potential � in the form of a function of the components of the
hear strain u� = ∂w�/∂x. Assuming that u� � 1, we  can represent the elastic potential of such a medium in the form of the first principal
erms of the expansion in the components u1 and u2, which take into account the non-linearity and anisotropy, in the form5

(2.1)
Please cite this article in press as: Kulikovskii AG, Sveshinkova EI. The formation of an anisotropic elastic medium on the compaction
front of a stream of particles. J Appl Math Mech (2015), http://dx.doi.org/10.1016/j.jappmathmech.2016.04.009

he constants f, g and � specify the elastic properties of the medium. The first term in this expansion is the elastic potential of a linear
sotropic medium. The coefficient f, i.e., the shear modulus, determines the velocity of linear transverse waves in this medium co =

√
f ,

ince it is assumed that � = 1.

dx.doi.org/10.1016/j.jappmathmech.2016.04.009
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The directions of the x1 and x2 axes in the plane of the front were chosen so that expansion (2.1) would not contain a term proportional
o u1u2. Then the anisotropy of the medium in the plane of the front is characterized by a single coefficient g, which is assumed to be small,
ts value being such that the non-linear and anisotropic terms in expansion (2.1) are of the same small order of magnitude, i.e., g/f ∼u2

a .
he numbering of the u1 and u2 axes is assumed below to be such that g/� > 0.

The last term in expansion (2.1) represents the influence of the small non-linearity, which is assumed to be isotropic. The non-linearity
oefficient � can have either sign, which indicates the direction of the convexity of the graph of the function �(u) when g = 0: when � > 0,
he convexity of the graph is turned upward (as is characteristic of metals), and when � < 0, it is turned downward (as is typical of rubber
nd elastomers).

Expression (2.1) does not take into account the dependence of the elastic potential on the thermodynamic parameters, for example, the
ntropy. This can be done, because it is assumed that its value is nearly constant in the phenomena considered.

A medium with � > 0 is considered below, because the most interesting qualitative features of the fronts studied are displayed in this
ase, as well as because from the analytical point of view the case when � < 0 differs significantly from the case when � > 0, and the
imultaneous treatment of these cases would require much space.

Elastic potential (2.1) establishes the relationship between the stresses and strains

(2.2)

The equations of the transverse motion of an elastic medium in the Lagrangian system of coordinates have the form

(2.3)

he potential � is defined by expression (2.1).
System of equations (2.3) is hyperbolic and has two  families of characteristics and, accordingly, two types of small perturbations, whose

elocities are different due to the anisotropy. We  will call them slow and fast in accordance with the values of their velocities.
In the system of coordinates connected to the medium these velocities are functions of the strain components5,6

(2.4)

On an unperturbed background with no strains, when u1 = u2 = 0, the velocities of the two slow waves ±co
1, which move in opposite

irections, and the velocities of the two fast waves ±co
2 are defined by the expressions

(2.5)

. Relations on the compaction front following from the conservation laws

The mass conservation law (1.1) for V = const and the medium is incompressible, as was  stated above, enables us to eliminate the
ongitudinal motions (along the x axis) of the medium from the discussion only and to consider the motion only in planes parallel to the
ront.

The law of conservation of momentum for the tangential components when � = 1 gives

here �−
� and �−

� are the stresses and velocities ahead of the front, about which it is known that �−
� = V� and �−

� = 0 due to the absence of
nteractions in the particle stream. Thus, behind the compaction front the shear stresses in the elastic medium are defined by the expression

(3.1)

Since, according to the assumption made, the elastic properties of the medium do not depend on the thermodynamic parameters, a
elation on the discontinuity that expresses the law of conservation of energy is not required. For transverse motions, only relations (3.1),
hich should be considered at all possible values of W,  are of significance.

Since according to equalities (2.2), the stresses in an elastic medium are expressed in terms of the shear strain u+
� , we  can conduct the

urther investigation in the variables of the shear strains u�.
Since relations (3.1), which serve as the boundary conditions, are necessary for proceeding in all cases, we will call them fundamental.
We will clarify the question of the completeness of the system of boundary conditions.

. Evolutionarity of a compaction front

For the existence of a compaction front to be possible, the condition for its evolutionarity must be satisfied. In the mathematical
iterature it is called the correctness condition, and it ensures a unique solution of the problem of the interaction of a discontinuity with
mall perturbations which are orientated in the same direction as the discontinuity. The evolutionarity condition states7,8 that just as
Please cite this article in press as: Kulikovskii AG, Sveshinkova EI. The formation of an anisotropic elastic medium on the compaction
front of a stream of particles. J Appl Math Mech (2015), http://dx.doi.org/10.1016/j.jappmathmech.2016.04.009

any boundary conditions should be set on the front as there are small perturbations going out from it plus usually one more condition,
hich is used to define a perturbation of the velocity of the front. In the case under consideration the velocity W of the discontinuity is
etermined independently, so that the evolutionarity condition requires equality between the number of relations on the discontinuity
nd the number of outgoing small perturbations of different types.

dx.doi.org/10.1016/j.jappmathmech.2016.04.009
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Since the particles in the incident stream do not interact with each other, no small perturbations go out from the discontinuity in the
pstream direction, and there are outgoing small perturbations only in the elastic medium behind the front.

Two of the transverse waves of small perturbations moving in the negative direction along the x axis are always outgoing. Two other
aves moving in the same direction as the front can overtake it or lag behind, and in the latter case they also become outgoing. Thus,
epending on the relationship between the velocity W of the front and the velocities of the small perturbations on the front, a different
umber of boundary conditions must be set.

If W < c1(u1, u2), only two waves moving relative to the medium in the negative direction along the x axis will be outgoing. Two  boundary
onditions that are necessary for evolutionarity are represented by two relations of type (3.1) that correspond to the law of conservation
f transverse momentum.

When c1(u1, u2) < W < c2(u1, u2), a slow wave moving in the positive direction lags behind the front and becomes the third outgoing
ave. In this case one more additional condition besides the conservation laws indicated is required for evolutionarity on the front.

When W > c2(u1, u2), all four small perturbations are outgoing, and two  additional conditions are necessary.
The source for obtaining the specific form of the additional boundary conditions on a discontinuity front is usually an investigation of

ts structure. When the general conditions that hold in the case under consideration are sufficient, the requirement for the existence of
he structure at once produces the number of additional boundary conditions on the discontinuity that is specified by the conditions for
ts evolutionarity.8

. Structure of a compaction front

The structure of a discontinuity (a compaction front in the present case) refers to a continuous solution of the equations of motion in the
arrow transitional layer (which represents a discontinuity in a small-scale treatment of it), which describes the continuous variation of
he flow parameters from the values ahead of the front to the values behind the front. The solution in this region is described by differential
quations supplemented by dissipative terms and thus by a model that is more general than an elastic medium.

In this paper the Kelvin–Voigt model of a viscoelastic medium was  adopted to describe the structure. In this model the elastic part of
he stresses is defined, as before, by elastic potential (2.1) in the form �� = ∂�/∂u�. The viscous components, which are represented by the
uantities �∂��/∂x, are added to them. For simplicity, the viscosity coefficient � will be assumed to be constant. It was assumed above
hat � = 1; therefore, in the equations below the coefficient � represents the kinematic viscosity. The viscous stresses become small and
an be neglected for sufficiently small ∂��/∂x. A Kelvin–Voigt medium is then transformed into an elastic medium, and this occurs within
he structure.

The differential equations of the one-dimensional motions of a Kelvin–Voigt medium in Lagrangian variables have the form

(5.1)

The solution of this system in the form of a travelling wave moving together with the front with the constant velocity W is called the
tationary structure of the front. We  replace x by the new variable � = −x + Wt,  which is positive behind the front and represents the distance
rom the point under consideration to the front. In the system of coordinates moving together with the front the flow is assumed to be
tationary, and the equations of system (5.1) become ordinary with respect to the variable �. The second equation enables us to eliminate
he derivatives of �� from the first equation, which, after a single integration, takes the form

(5.2)

ere Q� denotes the integration constants. The equalities u−
� = 0 (the unstrained state) hold on the leading edge of the adhesion front.

ehind the adhesion front, as � → ∞,  the solution should asymptotically approach the constant values u� = u+
� and u� = �+ as du�/d� → 0.

hen, for the integration constants we obtain

Thus, the velocity of the compaction front W and the parameters u+
� , i.e., the values of the components of the shear strains in the elastic

edium behind the front, can be regarded as the given parameters of the structure problem.

. Types of compaction fronts

The solutions of the front structure problem can be represented in the form of integral curves of a system of ordinary differential
quations, which can be reduced using Eqs (5.1) and (2.1) to the form

(6.1)

The treatment will be performed in u1, u2, W phase space, i.e., in the u1, u2 phase planes for various values of W from the range 0 < W < ∞.
Please cite this article in press as: Kulikovskii AG, Sveshinkova EI. The formation of an anisotropic elastic medium on the compaction
front of a stream of particles. J Appl Math Mech (2015), http://dx.doi.org/10.1016/j.jappmathmech.2016.04.009

ote that system (6.1) is identical to the system of equations used in Refs 5 and 9 to study the structure of shock waves in the elastic medium
nder consideration. The structure of the shock waves was represented by the integral curve joining the singular points of system (6.1).

In the problem under consideration, among the integral curves of system (6.1) in the u1, u2 plane for a specified value of W,  we should
eek (if possible) an integral curve which leads from the state that presumably corresponds to point O(u� = 0) at the time of the formation

dx.doi.org/10.1016/j.jappmathmech.2016.04.009
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f the Kelvin–Voigt medium to a state behind the front, where du�/d� = 0 and u� = u+
� . Such a state can only be one of the singular points

f system (6.1), in which the equalities L� = 0 hold simultaneously.
System of equations (5.1), (2.1) represents a hyperbolic system, to which dissipative terms in the form of second derivatives of the

nknowns have been added. It has been proved for equations of this type that the type of a singular point is determined by the velocity of
otion of the discontinuity relative to the characteristic velocities calculated for the state at that point.4,5,10 In the case under consideration,

rom the results related to systems of equations of this type it follows that:

if W > c2(u+
�), the singular point of system (6.1) is a node with integral curves emerging from it as � increases,

if c1(u+
1 , u+

2 ) < W < c2(u+
1 , u+

2 ), the singular point is a saddle point,
if W < c1(u+

1 , u+
2 ), the singular point is a node with incoming integral curves.

The structure of the compaction front is represented in the u1, u2 plane by an integral curve going from the origin of coordinates to
 certain singular point. If this point is a node with incoming integral curves, we will call a front that has such a structure slow (slow
haracteristics overtake it). If the integral curves of the front structure end at a saddle point, we will call the front fast (fast characteristics
vertake it, but slow characteristics do not overtake it). We  will call fronts which neither fast nor slow characteristics overtake ultrafast.

. Isoclines of the equations of the structure and their properties

The singular points of system (6.1) in the u1, u2 plane lie on the intersection of the lines L�(u1, u2) = 0. These same lines are isoclines for
he integral curves of system (6.1). The integral curves intersect the line L1 = 0 in the direction parallel to the u2 axis (at points of intersection
here du1/d� = 0), and they intersect the line L2 = 0 in the direction parallel to the u1 axis (where du2/d� = 0). The signs of the functions L1

nd L2 specify directions corresponding to an increase in � along the integral curves. The behaviour of the isoclines will be used to resolve
he question of whether a compaction front has a structure.

The equations of the isoclines for the vertical (� = 1) and horizontal (� = 2) directions of the integral curves have the form

(7.1)

For a fixed value of W,  the curves L1 = 0 and L2 = 0 in the u1, u2 phase plane have a qualitatively identical form and consist of two
ranches, one of which is an oval that lies on one side of one of the axes of coordinates (the u2 axis for L1 = 0 and the u1 axis for L2 = 0) and

s symmetrical about the other axis. The second branch lies on the other side of this axis and goes to ±∞ as it asymptotically approaches
he axis. The dashed curves shown in Fig. 2 correspond to Q� > 0, and we  use the notations p and q, which are defined by the equalities

(7.2)

When the sign of Q� changes, the corresponding isocline transforms into its mirror image about the axis serving as the asymptote.
he arrangement of the branches about the axes of coordinates and the dimensions of the ovals depend both on the velocity W and the
onstants Q�. For this reason, when the problem is solved, it is sometimes more convenient to use the integration constants Q� at once
nstead of u+

� .
The oval can exist as a branch of the isocline L1 only when q > 0, i.e., in u1, u2, W phase space to the left of the point W = co

1 on the W
xis. Similarly, the oval can exist as a branch of the isocline L2 when W < co

2. Therefore, in the investigation it is useful to divide the region
f variation of W into the ranges

(7.3)
Please cite this article in press as: Kulikovskii AG, Sveshinkova EI. The formation of an anisotropic elastic medium on the compaction
front of a stream of particles. J Appl Math Mech (2015), http://dx.doi.org/10.1016/j.jappmathmech.2016.04.009

he ovals become smaller as the velocity W increases and as the integration constants Q� increase. At large Q� the ovals (one or both) are
otally absent. For the case when Q� > 0 presented in Fig. 2, the disappearance of the oval of the isocline L1 as Q1 increases occurs when it
hrinks to the point with abscissa u1 = −

√
q/3  on the u1 axis, and the disappearance of the oval of the isocline L2 as Q2 increases occurs

hen it shrinks to the point with ordinate u2 = −
√

p/3  on the u2 axis.

dx.doi.org/10.1016/j.jappmathmech.2016.04.009
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Fig. 3.

The intersection of the isoclines L1 = 0 and L2 = 0 in the u1, u2 plane gives from one to five singular points, depending on the values of
he parameters indicated.

. Sets of states behind a compaction front (an analogue of a shock adiabat) for an elastic medium with � > 0

The goal is to determine the set of final points of the structure for all possible discontinuities with a specified initial state.
We will successively examine ranges (7.3), into which the W axis of the u1, u2, W phase space is divided at the values W = co

1 and W = co
2.

In the first range in (7.3) the isocline picture in the u1, u2 plane at small positive values of Q� is presented in Fig. 3. The isoclines L1 are
epicted by dashed lines, and the isoclines L2 are depicted by solid lines. In this case their intersection gives the five singular points A, B, C,

 and F. The figure also indicates the signs of L� in the different regions between the isoclines, which enable us to determine the direction
f the integral curves in different parts of the u1, u2 plane and the types of singular points. In Fig. 3 it is indicated by arrows. In the case
nder consideration point A is a node with incoming lines, points B and C are saddle points, and points D and F are nodes with emerging

ines.
In the region where the initial point O is located, the inequalities L� < 0 indicate that the integral curve emerging from point O should

nter the third quadrant of the u1, u2 plane and reach node A. It is depicted by a thick arrow. As the integration constants Q� are varied,
he position of point A, determined by the u+

1 and u+
2 values, varies continuously in a certain region, whose boundaries will be determined

elow. The point A(u+
�) remains bound by the integral curve to point O, i.e., no additional conditions in the form of equalities on the front

eyond the conservation laws are required for the existence of a structure in the front, behind which the state is specified by point A (a
ode). In this case the integral curves cannot reach the remaining singular points from point O, i.e., this solution is unique. Note that Fig. 3
like Fig. 2 above) corresponds to Q1 > 0 and Q2 > 0. In the case of other signs of the integration constants Q�, point A (a sink) can be found
n any quadrant.

When the integration constants Q� increase (or at least one of them increases) at a fixed value of the velocity W,  the ovals, as branches
f the isoclines L�, decrease in size, and their points of intersection A and B become closer and then merge into the point of contact of the
soclines. As at least one of the Q� increases further, the points of intersection of the ovals vanish, and no integral curve going from state O
o any singular point exists.

States with a point of contact between the isoclines are boundary states for the existence of a solution to the structure problem. For
ach fixed value of the velocity W,  these points form a closed curve in the u1, u2 phase plane. A solution of the structure problem exists
ithin it.

Since a pair of singular points of the structure equations can serve as states on different sides of a certain shock wave in an elastic
edium, the approach of two singular points (a saddle point and a sink) followed by their merging signifies the existence of an infinitely
eak, slow shock wave, whose velocity is clearly equal to the slow characteristic velocity for the state (u+

1 , u+
2 ) behind the discontinuity.

his means that the velocity W of a compaction front whose structure ends at the point of merging of singular points A and B is identical to
he slow characteristic velocity at that point. In gas dynamics, in the theory of detonation such discontinuities, whose velocity is identical
o the velocity of the small perturbations behind them, are called Jouguet waves. (This term will also be used in this paper.) Also, in the
hase space the points corresponding to them, where the singular points of the structure equations merge, will be called Jouguet points.

Thus, the region where a solution of the structure problem in the u1, u2 plane exists at sufficiently small velocity values W = const is
ounded by a line consisting of the Jouguet points of the slow waves. In the three-dimensional u1, u2, W phase space the boundary of the
egion within which a solution to the structure problem exists is a surface consisting of the Jouguet points of the slow waves. We  will call it
he Jouguet surface. The three-dimensional set bounded by the Jouguet surface corresponds to all the possible states of the elastic medium
ehind the compaction front of the slow type and is, thus, part of the shock adiabat for the phase transformation front of the stream of
articles into the elastic medium. For the existence of these solutions on a compaction front it is sufficient to specify only the conservation

aws, and no additional conditions, such as equalities, are required. The form of the Jouguet surface will be determined below.
Please cite this article in press as: Kulikovskii AG, Sveshinkova EI. The formation of an anisotropic elastic medium on the compaction
front of a stream of particles. J Appl Math Mech (2015), http://dx.doi.org/10.1016/j.jappmathmech.2016.04.009

For all the states in the set obtained, the final point of the integral curve going from the origin of coordinates O was  node A with incoming
ines within the Jouguet line of the slow waves. However, it turns out that in the range of velocities W indicated there is an integral curve
hat goes from point O to a saddle point located outside the Jouguet line of the slow type. This is possible only when the singular point, i.e.,
he saddle point, lies on the u2 axis (u+

1 = 0, and, therefore, Q1 = 0) and the integral curve extends from point O along the u2 axis. In such

dx.doi.org/10.1016/j.jappmathmech.2016.04.009
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Fig. 4.

 case a branch of the isocline L1 from the oval is transformed into a circle of radius
√

q with centre at the origin of coordinates, and the
ther branch extends along the u2 axis.

This situation is illustrated in Fig. 4. The isocline L1 is represented by a dashed line, and L2 is represented by a solid line. The branch of
he latter in the form of an oval becomes smaller as Q2 increases and then vanishes. As long as the value of Q2 is small, the oval and the
ircle intersect, and sink A is a solution (Fig. 4a). At the instant when the plots of L� are just touching, three singular points (the two saddle
oints and the sink) merge at |u2| = √

q, producing Jouguet point A of the slow wave (Fig. 4b), which is reachable from the initial state O
nd at which W = c1(u+

�). When Q2 increases further, the oval of the isocline L2 continues to shrink, and the integral curve from the origin
f coordinates goes to saddle point B, giving a solution in the form of a fast front (Fig. 4c). The oval vanishes when u2 = −

√
p/3, upon

hich the two singular points B (a saddle point) and D (a source) merge. The types of the singular points indicate that it is a fast Jouguet
ave, the velocity of whose front is W = c2(u+

�), i.e., is equal to the fast characteristic velocity along a state behind the front. Therefore, a
olution of the structure problem still exists for the segment of the u2 axis between the two  Jouguet points of the slow and fast waves

(8.1)

rom definition (7.2) of p and q it is easy to see that these inequalities can hold only when

(8.2)

.e., a solution containing part of the u2, W plane exists for velocities that satisfy condition (8.2).
As a result, in the first velocity range of (7.3), i.e., when W <

√
f − g, the three-dimensional set of states behind the compaction front

btained above for velocities that satisfy condition (8.2) should be added to the adjacent two-dimensional region lying in the u2, W plane
f the phase space between the two curves consisting of the Jouguet points of the slow and fast waves along a state behind the front.

The equation of the boundary consisting of the Jouguet points of both the slow and fast waves will be found in explicit form below.
n doing so, the following must be taken into account. As was stated above, in an incompressible anisotropic elastic medium there are
wo types of small transverse perturbations, namely, slow and fast, which correspond to the two  characteristic velocities in the system of
quations of the theory of elasticity. As is seen from expressions (2.4), their values behind the front, c+

1 and c+
2 , differ slightly due to the

mall degrees of non-linearity and anisotropy (adopted in this study) and can coincide as u+
1 and u+

2 vary. In each u1, u2 plane (W = const)
here are two points where c+

1 = c+
2 . They lie on the u2 axis and have the ordinates

(8.3)

t such points the Jouguet surfaces can clearly intersect.

. Jouguet lines and surfaces. The shock adiabat

The Jouguet points in a W = const plane lie where the isoclines L� come into contact. Using Eqs (7.1), we can conclude that the set of
ouguet points in u1, u2, W phase space is described by the equation

(9.1)

The function J(u1, u2, W)  represents a figure consisting of two  surfaces, one of which contains the Jouguet points of the slow waves,
hile the other contains the Jouguet points of the fast waves. Figure 5 shows the intersection of the surface J = 0 with the u2, W meridional
lane, where u1 = 0. In a cross section we obtain two  curves symmetrical about the W axis

(9.2)

he first of them intersects the W axis at the point W = co
1 and consists of the Jouguet points of the slow waves, and the second curve

ntersects the W axis at the point W = co
2 and consists of the Jouguet points of the fast waves. Both continue in the direction of decreasing

. When W =
√

f − 2g, they intersect at the points G(0, ±
√

g/�) in Fig. 5, where the characteristic velocities c1 and c2 (of the slow and

ast waves) switch roles. In u1, u2, W phase space the points G have the coordinates 0, ±
√

g/�,
√

f − 2g.
Please cite this article in press as: Kulikovskii AG, Sveshinkova EI. The formation of an anisotropic elastic medium on the compaction
front of a stream of particles. J Appl Math Mech (2015), http://dx.doi.org/10.1016/j.jappmathmech.2016.04.009

The surface J = 0 intersects each of the u1, u2 planes on two  closed curves. It is more convenient to represent their form in a u1, u2 plane
W = const) in the polar system of coordinates

dx.doi.org/10.1016/j.jappmathmech.2016.04.009
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In this system Eq. (9.1) is a biquadratic equation in r. Its solutions have the form

(9.3)

nd are represented in each u1, u2 plane (W = const) by two closed curves that encircle the origin of coordinates. Both curves are symmetrical
bout the u1 and u2 axes, and one of them always lies within the other. The equalities W = c+

1 and W = c+
2 hold on the inner and outer

urves, respectively. The curves have two common points only in the case when the radicand in formula (9.3) vanishes, i.e., when � = ±/2
nd W = f – 2 g. This value of W satisfies the condition under consideration W < co

1. The points of intersection lie on the u2 axis, have

rdinates (8.3) in the plane W =
√

f − 2g and are the points described above where the characteristic velocities are equal: c+
1 = c+

2 . In Fig. 5
hey are denoted by G and −G.

Thus, in the u1, u2, W phase space the set of states behind a compaction front (an analogue of a shock adiabat) at W < co
1 contains a

hree-dimensional region within the surface consisting of the Jouguet points of the slow waves. In Fig. 5 this region is shaded.
In addition, for velocities that satisfy condition (8.2) this set also includes a two-dimensional region in the form of part of the u2, W

lane between the two branches of (9.2) for the slow and fast Jouguet points. As was  shown above, such a solution exists only for values
f u2 in range (8.1), which corresponds to condition (8.2), i.e., in the u, W plane to the right of the points where c1 = c2. In Fig. 5 this part
f the shock adiabat is covered with vertical hatching. In a large-scale treatment for the evolutionarity of discontinuities of this type, the
dditional condition u1 = 0 must be imposed on the front along with the conservation laws. In addition, double inequality (7.3), which
estricts the region of final states behind the structures of these fronts in the plane indicated, should be taken into account.

The isoclines and integral curves in the second range of (7.3), where q < 0 and the branch in the form of the oval of the isocline L1 (the
ashed curve in Fig. 3) is absent, is investigated similarly, and for arbitrary values of Q� no solutions in the form of a structure exist except

n the case of u1 = 0, Q1 = 0, in which a picture similar to the one depicted in Fig. 4, is obtained. The structure exists in a two-dimensional
egion in the u2, W meridional plane between the lines

hich consist of the Jougnet points of the fast waves. This region is a continuation of the two-dimensional part of the region of states
ehind the front described for W < co

1 (Fig. 5) and is also marked by vertical hatching.
When W > co

2, both of the isoclines L� in the u1, u2 plane consist of only one branch, and there is no branch in the form of ovals. The
nly intersection point is a source, which integral curves cannot enter. In this case there is no solution in the form of a structure for any u�

alues. Within the compaction front no elastic strains appear, and behind the front they should remain equal to zero: u� = 0. As a result,
he region of states behind the front in u1, u2, W phase space at the velocity values W > co

2 consists of a one-dimensional set in the form of
he segment of the W axis demarcated in Fig. 5 by the thick line. This means that when the compaction front is treated as a discontinuity
urface under the large-scale approach, the equalities u� = 0 should be regarded as two additional conditions (to the conservation laws) on
he discontinuity, which ensure the evolutionarity of ultrafast adhesion fronts, at which W > co

2.
In conclusion we mention the problem of a compaction front in the case when the anisotropy parameter g in expression (2.1) is not

mall. Then, for small u� the quadratic terms containing the constants f and g are of the same order of magnitude, and the term containing
, which corresponds to the non-linearity, can be neglected. In this case the characteristic velocities c� take the constant values c� = co

�,
hich divide the region of variation of W into the three ranges (7.3). The variation of u� in this case can be obtained from the versions

onsidered by taking the limit as � → 0. It is easy to see that u+
� = 0 when W > co

2, that u+
1 = 0 and u+

2 is arbitrary when W < co
2 and that

oth u+
� are arbitrary when W < co

1.
+ +
Please cite this article in press as: Kulikovskii AG, Sveshinkova EI. The formation of an anisotropic elastic medium on the compaction
front of a stream of particles. J Appl Math Mech (2015), http://dx.doi.org/10.1016/j.jappmathmech.2016.04.009

Finally, we mention that the values of the transverse velocity components �� are found from the values of u� using relations (3.1). Since
he primary term in the expression for the elastic potential is the first term, the character of the variation of the velocities in the adhesion
ront qualitatively repeats the variation of the u� values.

dx.doi.org/10.1016/j.jappmathmech.2016.04.009
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0. The self-similar wave problem in a half-space

The self-similar wave problem in a half-space, which is often called the piston problem, refers here to the problem in which the
edium formed behind a compaction front is adjacent to a plane, i.e., a piston, which moves with a specified constant velocity relative

o the homogeneous medium ahead of the front. It is assumed here that all three components of the piston velocity are identical to the
orresponding velocity components of the elastic medium adjacent to it. The solution of the piston problem contains a compaction front
nd may  contain elastic waves that move through the elastic medium behind this front with small velocities.

In the “hyperbolic” approximation considered below, in which the dissipative effects are neglected in the continuous processes and the
iscontinuities are assumed to be infinitely thin (however, the relations on them are guaranteed by the fact that they have a structure), the
roblem is self-similar. All the quantities depend on x/t, and the solution consists of one or several waves separated by regions with constant
arameters. Since all waves move relative to the medium, an expanding region with constant parameters that satisfy the conditions on
he piston is always adjacent to the piston.

On the piston, beside the three velocity components, three stress components can be specified. In the case of an incompressible medium,
he normal component of the stresses is constant everywhere behind the compaction front and is determined immediately behind it
ccording to the conservation of the normal component of the momentum, and it will not be subject to further study. The normal stress
n the piston is determined uniquely by the velocity of the front relative to the specified flow of particles and the value W of the relative
elocity of the elastic medium formed relative to the front.

According to equalities (2.2), the shear stresses are expressed in terms of u�; therefore, below we  will assume that the values of u� = u∗
�

re given and that they are arbitrary in a certain range.
First consider range (8.2). As was already noted in Section 7, the origin of coordinates in the u1, u2 plane belongs to the region of u�

alues behind slow compaction fronts, which is bounded by the Jouguet curve for the slow fronts (only slow fronts are possible under
ondition (8.2)). In the solution of the problem behind a slow front which is not a Jouguet front, the homogeneous state adjacent to the
iston follows.

If the state u� behind the front belongs to the boundary of the region of states behind slow fronts (9.1) in the u1, u2 plane, the Jouguet
quality W = c1(u1, u2) holds on this front according to the foregoing. Behind such a front, in the space adjacent to it, a slow non-overturning
iemann wave can propagate in the elastic medium.5,6 If the integral curves of the slow Riemann waves are drawn in the u1, u2 plane from
ach point on the boundary (the Jouguet line), they fill the entire u1, u2 plane without intersecting. Thus, if the point (u∗

1, u∗
2) lies outside

he region of states behind a slow compaction front, a slow Riemann wave (which corresponds to the characteristic velocity c1(u1, u2)) is
losest to the piston. In this wave the u� values vary from the u∗

� values in the region adjacent to the piston, to the values at a certain point
n the Jouguet line which represents the states immediately behind the slow Jouguet compaction front.

If the value of W satisfies the inequality

he states behind the compaction front in the u1, u2 plane, as in the preceding case, contain a region of values of the states behind the slow
ronts, which is restricted by the Jouguet line. Nevertheless, as was shown, on the u2 axis there is a segment, whose points represent states
ehind the fast fronts. The ends of this segment u(�)

2 satisfy the conditions c2(0,  u(�)
2 ) = W .  On the u2 axis there is also a point with ordinate

(3)
2 =

√
g/�, in which c1(0, u2) = c2(0, u2), and its position does not depend on the value of the velocity W.  In the case considered above,

n which condition (8.2) is satisfied, this point was always found within the region of the states behind the slow fronts and consequently
id not play any role. In the range of W values under consideration this point lies outside the region of the slow compaction waves and
articipates5 in the construction of solutions with elastic waves. The u(1)

2 , u(2)
2 , u(3)

2 values satisfy the inequalities

The solution of a problem similar to the preceding one can consist of only one compaction front, if the point (u∗
1, u∗

2) belongs to the

et of states behind slow or fast fronts described above. If u∗
1 = 0, and the ordinate u∗

2 lies between u(2)
2 and u(3)

2 , the solution consists of a

ast Jouguet front with a state behind the front u1 = 0, u2 = u(2)
2 . Behind this front there is an expanding fast elastic Riemann wave,5 behind

hich the state is represented by any point on the u2 axis from the range u(2)
2 < u2 < u(3)

2 on the u2 axis (the range −u(2)
2 < u2 < u(3)

2 on
he u2 axis represents the integral curve of the fast elastic Riemann wave). Beside the waves enumerated, a slow elastic Riemann wave,
hich has a smaller velocity and is closer to the piston, may  be present in the solution of the problem. In it the u� values vary from the u∗

�
alues on its trailing edge to the values on a slow Jouguet line or to the values behind the fast front on the segment

f the u2 axis. The integral curves of the slow elastic Riemann waves5 are depicted in Fig. 6.
Please cite this article in press as: Kulikovskii AG, Sveshinkova EI. The formation of an anisotropic elastic medium on the compaction
front of a stream of particles. J Appl Math Mech (2015), http://dx.doi.org/10.1016/j.jappmathmech.2016.04.009

Construction of the solution is most complicated when the u∗
1 value is fairly small and u∗

2 > u(3)
2 . In this case upon motion along a slow

iemann wave (which is closest to the piston) away from the piston, the u� values vary along the integral curve from the u∗
� values until

he point (u1, u2) is no longer on the u2 axis between the u(2)
2 and u(3)

2 values. Then (after a region with constant u1 = 0 and u2) a fast elastic

iemann wave follows, in which u2 decreases from the trailing edge of the wave to the leading edge and takes the value u(2)
2 on its leading

dge. The leading edge of this wave is adjacent to the fast Jouguet compaction front, in which

dx.doi.org/10.1016/j.jappmathmech.2016.04.009
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If the velocity W lies in the second range in (7.3), then unlike the preceding case, the region corresponding to the slow fronts vanishes,
hile on the u2 axis the point with the ordinate u(1)

2 vanishes, and the points with the ordinates u(2)
2 and u(3)

2 remain. The set of solutions
s reorganized, and the solutions containing the slow compaction fronts disappear from it.

In the third range in (7.3) the points on the u2 axis with ordinates u(�)
2 are absent, and only the point with the ordinate u(3)

2 remains.
n the ultrafast front the u� values do not vary (they remain equal to zero), but there is variation of u� in the fast and slow elastic waves,

hich are separated from one another and from the compaction front by regions with constant parameters.
Thus, it has been shown that a solution of the piston problem exists and is uniquely defined for all compaction front velocities W and

ll possible shear strains values u∗
� specified on the piston. Finally, the u∗

� values are assumed to be small enough for the representation of
he elastic potential by expansion (2.1) to be valid.

1. Conclusion

For non-linear elastic media with a stiffness that decreases as the strains increase (� > 0) under the condition of small strains, the
tructure of the fronts for the formation of an elastic medium from a stream of free particles was  investigated under the condition that the
tructure of the front is described by the Kelvin–Voigt equations. The shock adiabat, i.e., the set of states behind all possible fronts moving
owards a specified stream of particles, was constructed under the assumption that the fronts have a structure. In the u1, u2, W space of
alues, the shock adiabat, qualitatively depicted in Fig. 5, consists of parts of different dimensionality. This determines the presence or
bsence of additional relations for the variation of a quantity on the fronts. The requirement for the existence of a structure in the case
f slow fronts does not place restrictions on the variation of quantities in the form of conditions expressed as equalities. Apart from the
elations in the form of the equalities u1 = 0 (fast fronts) or u1 = 0, u2 = 0 (ultrafast fronts), there are relations in the form of inequalities that
estrict the variation of quantities in the fronts of different types. Figure 5 qualitatively describes these restrictions.
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