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Abstract—Exact solutions can demonstrate possible ways of the behavior of gas dynamics solutions
when the density of the medium, being initially in equilibrium, decreases. In the present study a method
of solving the wave equation with variable speed of sound is designed within the framework of the
acoustic approximation using an expansion in series in terms of the characteristic variable. It is shown
that in each step there exists an integral of the equations of motion which makes it possible to express
the solution in finite form. The motion is initiated by the impact of a piston which generates a weak
accelerated shock wave. The presence of a homogeneous gravity field is taken into account.
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The processes of acceleration of shock waves due to decrease in the initial density can occur in both
star’s and planetary atmospheres subjected to local heating or ionization. Already Sedov [1] revealed this
effect within the framework of gas dynamics when solving the problem of point explosion in a medium with
variable density when there is no counterpressure. On the other hand, taking the initial constant pressure into
account, a decrease in the density automatically leads to an increase in the sonic speed and, consequently,
in the shock wave velocity, i.e., prerequisites for the loss of inertiality of the medium, the instability, and the
development of various dynamic processes are produced.

A very simple example of an exact solution can be presented; it concerns with the problem of a piston
which starts to move at a constant velocity in a pressureless gas and produces an accelerated shock wave
when a certain law of decrease in the initial equilibrium density is fulfilled [2, problem 25.37]. In a more
realistic situation the effects of counterpressure and electromagnetic and gravity fields should be taken into
account, as well as relativity theory. The exact solutions of this problem within the framework of the special
and general relativity theory but without regard for the counterpressure were given in [3], while the results
with taking the counterpressure into account within framework of the special theory but without gravity were
announced in [4] and those with account for the frozen-in transverse magnetic field and the counterpressure
in the Newtonian mechanics were given in [5, 6] and in a gravity field in [7]. In [8] the complete investigation
of the class of self-similar problems with homogeneous gravity field when the initial density decreases in
accordance with the power-law was carried out. In [9] a general review of earlier studies can be found.

1. EQUATIONS AND RELATIONS ON A DISCONTINUITY

We will consider the class of solutions of one-dimensional adiabatic flow of a perfect gas with plane
waves in a homogeneous gravity field g within the frameworks of Newtonian mechanics. We will use the
Lagrangian mass coordinate m.

Let x(m, t) be the law of motion, v = xt be the velocity, ρ = 1/xm be the density, p = f (m)ργ be the
pressure, and γ be a constant specific heat ratio. The subscripts t and m denote the partial derivatives.
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In these variables the complete equation of motion takes the form:

vt + pm + g = 0. (1.1)

Here, the x axis is directed counter the action of the gravity force.
The relations on discontinuity m = ms(t) give

[x]10 = 0, [vṁs − p]10 = 0,

[(
v2

2
+

p
(γ − 1)ρ

)
ṁs − pv

]1

0
= 0,

(1.2)

where zero denotes the initial equilibrium state and unity denotes the state downstream of the discontinuity.
By virtue of the equilibrium equation p0 = g(m0 − m), where m0 is the total gas layer mass (calculated

per unit cross-sectional area). The function x0(m) is arbitrary.
Linearization of the equation of motion (1.1) about the equilibrium state with respect to the variable

u(m, t) = x − x0 and use of the assumption of continuity of the entropy function f (m) (this is fulfilled
correct to (p1 − p0)

2 inclusively [10]) give the equation

utt − (b2
0(m)um)m = 0, (1.3)

where b2
0 = γ p0ρ0 is the square of the undisturbed speed of sound with respect to the mass which is contin-

uous. The initial density is ρ0 = 1/x0
m. The usual speed of sound is a0 = b0/ρ0.

On the discontinuity we have
u = 0, utṁs − b2

0um = 0. (1.4)

Here, the wave propagating to the right is considered and the quantity ṁs is positive. With allowance for
u = 0 the second relation shows that the velocity of a weak shock wave with respect to the mass is equal to
ṁs = b0.

In addition, it is necessary to specify the law of the piston motion when m = 0, namely, u(0, t) = up(t).
The latter function will be assumed to be analytic. Thus, we have the typical characteristic-boundary-value
problem for Eq. (1.3), which could be solved for a series of special functions b0(m) by constructing the
Riemann function. However, in what follows we will use the method of expansion in the Taylor series
in terms of the characteristic variable which makes it possible explicitly to solve the ordinary differential
equations for the coefficients and investigate convergence for large x.

2. METHOD OF SOLVING

It is convenient to go over to the variables

τ = t − μ , μ = ts(m) =

m∫

0

dm
b0

.

The function ts(m) is inverse to the function ms(t). Let τ = 0 be a characteristic along which the shock
wave moves. Then on this characteristic we have

u = 0, uμ = 0, uμμ , . . . (2.1)

It is clear that uμ = 0 is the approximate momentum conservation law (1.4). Similarly, the energy
conservation law (the last of relations (1.2)) must also be satisfied.

When μ = 0 the condition on the piston is u = up(τ).
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In these variables we have

(
√

b0 uτ)μ =
1

2
√

b0

(
b0uμ

)
μ . (2.2)

When τ = 0 with allowance for (2.1) from Eq. (2.2) there follows an integral on the characteristic

v1 = u(0, μ)τ =
C1√

b0
. (2.3)

This determines jump in velocity on the shock wave for any b0(m). As b0 → 0, the velocity v1 → ∞.
Using (2.3), we will seek the solution in the form of a series

u =
∞

∑
n=1

τn

n!
u(n)τ (0, μ).

Differentiating (2.2) n − 1 times with respect to τ , we obtain

(
√

b0u(n)τ )μ =
1

2
√

b0

(
b0u(n−1)

τ ,μ
)

μ .

In particular, jump in the acceleration is equal to

a1 = uττ =
1√
b0

(
C2 +

μ∫

0

1

2
√

b0
(b0v′)′ dμ

)
.

For power functions ρ0 ∼ x−ω

a1 =
1√
b0

(
C2 +

C3√
x

)

etc.
For large x

v ≈ u̇p(τ)
√

b0(0)√
b0(μ)

.

Thus, the boundary condition on the piston are restored as x → ∞ with multiplying by the known func-
tion μ .

We note that the next approximation is not considered here. In this approximation a small addition to the
shock wave velocity D = a0 +v1 (γ +1)/4 is taken into account. This addition leads to decay in jump in the
velocity: v1 ∼ 1/

√
t [1, 10].

This correction is actually based on the approximation of the exact solution of the gas dynamics equations
with a weak discontinuity: v = 2(x/t − a0)/(γ + 1) for constant a0 regardless for gravitation. The problem
is sharply complicated on the variable background and, obviously, so far it has not been studied.

The applicability of the linear approximation is determined by the inequality a0 ≫ v or, taking the equi-
librium equation into account, by the inequality

p3
0 ≫ const ρ0.

In this case the inequalities 1 < ω ≤ 3/2 must be satisfied for ρ0 ∼ x−ω x → ∞. The nonlinear theory
must be used for the greater ω . Moreover, this is necessary for exponential distributions of the type ρ0 ∼
exp(−kx). This is usually accepted in literature concerning the atmosphere acoustics by virtue of b′0/b0 =
const.
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However, there are exact nonlinear solutions (see, e.g., [5, 6]) in which asymptotics (2.3) are fulfilled.
In particular, for g = 0, constant p0, and the solution with separation of variables x = v(ξ )t, where ξ = x0,
as ξ → ∞, the following relations hold

ρ0 ∼ ξ−4, a0 ∼ ξ 2, v ∼ ξ

when the shock wave goes to infinity in finite time.
We note that for any arbitrary b0(μ) equation (2.2) has solutions in the form of a polynomial of a given

degree in terms of τ .

3. A NONLINEAR PROBLEM

We can give another very simple example of the solution of nonlinear equations (1.1) with the same
asymptotics at infinity. Let a piston move with a constant acceleration A initiating the solid-body gas flow

x =
At2

2
+ w(m), p =

f (m)

wγ
m

= (A + g)(m0 − m).

The momentum and energy conservation conditions (1.2) give ts = C/(m0 − m), where C = const and
the shock wave velocity

D =

(
γ + 1

2
A + γg

)
t.

We note that, as A → 0, the velocity D → γgt.
From continuity of the law of motion there follows

x0 =

(
γ + 1

2
A + γg

)
C2

2(m0 − m)2 .

In this case the initial density ρ0 = 1/x0
m ∼ x−3/2. Thus, the same asymptotic law (2.3) v2

1a0ρ0 ∼ 1 must
be satisfied on the shock wave.

4. THREE-DIMENSIONAL PROBLEMS

The above method can be generalized to include three-dimensional problems.
The vector equations of adiabatic flow of a perfect gas written in the Lagrangian form in the presence of

a homogeneous gravity field g = (0, 0, −g) have the form:

ρ0(ξ )xi,tt + ∣xξ ∣ξ α
i pα − ρ0(ξ )gi = 0,

p∣xξ ∣γ = f (ξ ), (∣xξ ∣ξ α
i )α ≡ 0,

(4.1)

where xi = xi(ξ α , t) the law of motion in a Cartesian coordinate system, xi(ξ , 0) = ξ i are the Lagrangian
coordinates, ∣xξ ∣ is the determinant of the matrix (∂xi/∂ξ α), and (ξ α

i ) is the inverse matrix, i, α = 1, 2, 3.
An equilibrium background gives

p′0(ξ 3) =−ρ0(ξ 3)g.

Linearization of (4.1)

xi = ξ i +ui(ξ , t), p = p0 +q(ξ , t), f (ξ ) = f0

leads to the equations
q =−γ p0∇iu

i, a2
0 = γ p0/ρ0,

ui,tt − a2
0∇k∇iu

k + g(δ 3
i (γ − 1)∇kuk + ∇iu

3) = 0.
(4.2)
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The characteristics τ = t − ϕ(ξ ) = const are determined by the general solution of the following Hamil-
tonian system (family of bicharacteristics) with the Hamiltonian H = 0

2H = ∣p∣2 − 1

a2
0(ξ 3)

, pi = ∇iϕ ,

which has the form:

dξ i

ds
= pi,

d pσ

ds
= 0, σ = 1, 2,

d p3

ds
=−a′0(ξ 3)

a3
0

,

and the relation
dϕ
ds

= pi
dξ i

ds
after elimination of the parameter s and two arbitrary constants.

As a result, we obtain

ϕ =

ξ 3∫

0

dζ

a0
(
1 − a2

0(C
2
1 + C2

2)
)1/2

+ C0(Cσ ) + Cσ ξ σ ,

∂ϕ
∂Cσ

= 0.

In addition, we can determine the Lagrangian coordinates of the family of bicharacteristics ψσ = ξ σ −
Cσ s:

s =

ξ 3∫

0

a0dζ(
1 − a2

0(C
2
1 + C2

2)
)1/2

.

For the power-functions ρ0 ∼ (ξ 3)−ω , when the speed of sound is proportional to a0 ∼
√

ξ 3, the inte-
grals can be evaluated. In this case we can even assume the heat-conduction law is fulfilled for the initial
temperature T0 which is proportional to a2

0 = γRT0.
In what follows, we will use the coordinates τ , ξ α , the normal to the characteristic is n = a0∇ϕ , and the

tangential velocity is vtan. Dot denotes the derivative with respect to τ . Then equations (4.2) take the form:

v̇i
tan + a2

0(∇i(∇kϕ u̇k) + ∇iϕ∇ku̇k − ∇i∇kuk)

+ gi(γ − 1))∇kϕ u̇k + gk∇iϕ u̇k − gi(γ − 1)∇kuk − gk∇iu
k = 0.

(4.3)

On the characteristic τ = 0 the displacement vector is ui = 0 and also, by virtue of vtan = 0 the total
velocity vector is u̇i = nivn.

If we use the derivative d/ds = ∇iϕ∇i, then equation (4.3) projected to the normal gives the linear
equation

dvn

ds
+

1
2

(
Δϕ − γg∇3ϕ ∣∇ϕ ∣2)vn = 0.

Its integral has the form:

vn = Q(ψσ )exp

(
− 1

2

s∫

0

(Δϕ − γg∇3ϕ ∣∇ϕ ∣2)ds

)
. (4.4)
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This relation is a generalization of the integral (2.3).
The projection of Eq. (4.3) on the direction tangential to the discontinuity leads to the following equation

for the tangential velocity

v̇i
tan +

(
a2

0∇ j
vn

a0
+ gj(γ − 1)

vn

a0

)
(δ i j − nin j) = 0,

which can readily be integrated using the integral (4.4).
A weak perturbation of the characteristics of flow with plane waves makes it possible to simplify the

expression for the function ϕ = ϕ0(ξ 3) + χ(ψσ ) and investigate the arising features of the solution in
more detail.

It is clear that for increasing speed of sound ahead of the shock wave accelerated as a whole even a weak
distortion of its initial shape, for example, sinusoidal, will lead to the advanced growth of “tongues” and the
formation of trailing dips. This can also be accompanied by formation of caustics related to appearance of
enveloping curves and subsequent intersection of characteristics.

The solution can similarly be constructed for any static field g(xi) which must satisfied the equilibrium
conditions g ⋅ curl g = 0. In this case it is necessary to take into account the term ρ0uk∇kgi in the disturbed
equations of motion (4.2).

Summary. The presence of universal asymptotics of the behavior of accelerated shock waves, namely,
production of the square of jump in the velocity, the initial speed of sound, and the density remain constant
is demonstrated referring for both simple examples of exact solutions of adiabatic flow of a perfect gas with
decreasing initial density and also within the frameworks of the acoustic approximation for one- and three-
dimensional flows.

The study was carried out with the partial support of the Russian Foundation for Basic Research (projects
Nos. 14-01-00056 and 14-01-00361).
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