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MOTION OF FLUIDS WITH VERY LITTLE VISCOSITY. *

By L. Prandtl.

In classic hydrodynamics the motion of nonviscous fluids is

chiefly discussed. For the motion of viscous fluids, we have

the differential equation whose evaluation has been well confirind

by physical observations. As for solutions of this differential

equation, we have, aside from unidimensional problems like those

given by Lord Rayleigh (Proceedings of the London Mathematical “

Society, 11 page 57 = Papers I page 474 ff.), only the ones in

which the inertia of the fluid is disregarded or plays no impor-

tant role. The bidimensional and tridimensional problems, taking

viscosity and ii~ertia into account, still await solution. This

is probably due to the troublesome properties of the differential

equation. In the IiVectorSymbolicslf of Gibbs,** this reads

P@+vo Av~+A(V+p)=k A2V (1)

in which v is the velocity; p, the density; V, a function

of the power; p, pressure; k, viscosity constant. There is

also the continuity equation

........ ., div v = O.—,. ,.., ,,... .,

* lllJeberFlussigkeitsbev~ebmng bei sehr kleiner Reibung. l’
This paper was read before the Third International Congress of
Mathematicians at Heidelberg in 1904. From ‘fVierAbhandlungen
zur Hydrodynmik und Aerodynarllik,llpp. 1-8, G~ttingen, 1927.

** aob scalar product,
differentiator (A =,i ~ +ajx# +v~c~.product , A Hamilton

I. .
r
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for incompressible fluids,

From the differential
..

sufficiently slow and also

in contrast with the other

.

which alone will be here considered.

equation, it is easy to infer that, for

slowly changing motions, the factor p,

terms, can be as small as desired, so

that the effect of the inertia can here be disregarded with suffi-

cient approximation.” Conversely, with sufficiently rapid motion,

the quadratic term v @ A v (change of velocity due to Change of

location) is large enough to let the viscosity effect appear quit?

subordinate. The latter almost always happens in cases of fluid

motion occurring in technology. It is therefore logical simply to

use here the equation for non-viscous fluids. It is known, how–

ever, that the solutions of this equation generally agree very

poorly with experience. I will recall only the Dir,&’chletsphere,

which, according to the theory, should move without friction.

I have now set myself the task to investigate systematically

the laws of motion of a fluid whose viscosity is assumed to be

very small. The viscosity is supposed to be so small that it can

be disregarded wherever there are no great velocity differences

nor accumulative effects. This plan has proved to be very fruit-

ful , in that, on the one hand, it produces mathanatical formulas,

which enable a solution of the problans and, on the other hand,

the agreement with observations promises to be very satisfactory.

To mention one instance now: when, for e~mple, in the steady itio-

tion around a sphere, there is a transition from the motion with

viscosity to the limit of nonviscosity, then something quite dif-
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ferent from the Dirichlet motion is produced. The latter is then

only an i-nitialcondition, which is soon disturbed by the effect

of an ever-so-small viscosity.

I will now take up the individual problems. The force on the

unit area, due to the viscosity, is

K = kA2 V (2)

If the vortex is represented by w = ~ rot v, then K = -2 k rotw,

according to a well-known vector analytical transformation, taking

into consideration that div v = O. From this it follows directly

that, for w = O, also K = O, that is, that however great the

viscosity, a vortexless flow is possible. If, however, this is

not obtained in certain cases, it is due to the fact that turbu-”

lent fluid from the boundary is injected into the vortexless flow.

With a periodic or cyclic motion, the effect of viscosity,

even when it is very small, can accumulate with time. For perma-
.

nence, therefore, the work of K, that is, the line integral

f K o d s along every streamline with cyclic motions, must be

zero for a full cycle.

‘E

~KOds=(V, +p, )-( V,+pl).

A general ’formula for the distribution of the vortex can be

derived from this with -theaid of the Helmholtz vortex laws for

bidimensional rnotionswhich have a flow function Y (cf. ‘fEncy-

klopadie der mathematischen Wissenschaftenjlt Vol. IV, 14, 7).
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With steady flow we obtain*

_gf=w2+r?+(L+P1 )

2k\vods”

With closed streamlines this becomes zero. Hence we obtain the

simple result that, within a region of closed streamlines, the

vortex assumes a constant value. For axially symmetrical motions

with the

lines is

K= 4 kc

The

flow in meridian planes, the vortex for closed stream-

proportional to the rad.i.usw = cr. This gives a force

in the direction of the axis.

most important aspect of the problem is the behavior of

the fluid on the surface of the solid body. Sufficient account

can be taken of the physical phenomena in the boundary layer be-

tween the fluid and the solid body by assuming that the fluid ad-

heres to the surface and that, therefore, the velocity is either

zero or equal to the velocity of the body. If, however, the

viscosity is very slight and the path of the flow along the suw

face is not too long, then the velocity will have its normal value

in immediate proximity to the surface. In the thin transition

layer, the great velocity differences will then produce noticea-

ble effects in spite of the small viscosity constants.

This problem can be handled best by systanatic omissions in

the general differential equation. If k is taken as small in

*According to Helmholtz, the vortex of a particle is permanently
proportional to ‘itslength in the direction of the vortex axis.
Hence we have, with steady even flow on each streamline
(v = const.), w constant, consequently w = fv . Herewith
“ /Kods=2kj rotwods=2k ff(~)jrotvods=

=2kf~($)/vods.
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the second order, then the thickness of the transition layer will

be small in the first order, like the normal components of the,.

velocity. The lateral pressure differenc~ can be disregarded, as

likewise any curvature of the streamlines. The pressure distri-

bution will be impressed on the transition layer by the free fluid.

For the problem which has thus fa,rbeen discussed, we obtain

in the steady condition (X-direction tangential, Y-direction nor–
.

‘real, * and v the corresponding velocity components) the diffe~

ential equation”

If, as usual, dp/dx is given throughout, as also the course of

u for the initial cross section, then every numerical problem of

this kind can be numerically solved, by obtaining the correspond-

ing ~u/3x by squaring every u. Thus we can always make prog-

ress in the X–direction wit”nthe aid of one of the well-known

approximation methods (Cf. Kutta, ‘iZeitschrift f!u?Math. und

Physik, llVol. 46, p.435). One difficulty, however, consists in

the various singularities developed on the solid surface. The

simplest case of the conditions h.mrcconsidered is when the water

flows along a flat thin plate. Here a reduction of the variables

is possible and we can write u = f(-l=). By the numerical so-
\Jx/

lution of the resulting differential equation, we obtain for the
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drag the formula
,.

.:

R=l.1 ... b~’”kP Z Uo3

(b width, Z length of plate, U. velocity of undisturbed water

opposite plate). Figure 1 shows the course of u.

The most important practical result of these investigations

is that, in certain cases, the flow separates from the surface

at a point entirely determined by external conditions (Fig. 2).

A fluid layer, which is set in rotation by the friction on the

wall, is thus forced into ”the free fluid and, in accomplishing a

complete transformation of the flew, plays the same role as the
...

Helmholz separation layers. A change in the viscosity constants

k simply changes the thickness of the turbulent layer (propor–
.——

tional to the quantity
1

~)
pu /’ everything else remaining un-

changed. It is therefore possible to pass to the limit k = O

and still retain the same flow figure.

As shown by closer consideration, the necessary condition

for the separation of the flow is that there should be a pressure

increase along the surface in the uirection of the flow. The

necessary magnitude of this pressure increase in definite cases

can be determined only by the numerical evaluation of the problem

which is yet to be undertaken. AS a plausible reason for the

separation of the,flo,w,it may be stated that, with a pressure
,,

increase, the free fluid, its kinetic energy is partially convert-

ed into potential energy. The transition layers, however, have

lost a large part of their kinetic energy and no longer possess
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enough energy to penetrate the region of higher pressure. They are

therefore deflected laterally.‘.!,,.–.,

Ac@rding to the preceding, the treatment of a given flow

process is resolved into two components mutually related to one

another. On the one hand, we have the free fluid, which can be

treated as nonviscous according to the Helmholtz vortex laws,

while, on the other hand, we ‘havethe transition layers on the

solid boundaries, whose motion is determined by the free fluid,

but which, in their-turn, impart their characteristic impress to

“the free flow by the emission of turbulent layers.

I have attempted, in a few cases,”to illustrate the process

more clearly by diagrams of the streamlines, though no claim is

made to quantitative accuracy. In so far as the flow is vortex-

free, one can, in drawing, take advantage of the circumstance,

that the streamlines forfia quadratic system of curves with the

lines of constant potential.

Figures 3-4 show, in two stages, the beginning of the flow

around a wall projecting into the current. The vortex-free ini-

tial flow is rapidly transformed by a spiral separating layer.

The vortex continually advances, leaving still water behind the

finally stationary separating layer.

Figures 5–6 illustrate the analogous process with a cylinder.

The fluid layers set in rotation by the friction are plainly ind-

icated. Here also the separating layers extend into infinity.

All these separating layers are labile. If a slight sinoidal
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disturbance is present, motions develop as shown in Figures 7-8.

It is clearly seen how separate vortices are developed by the mu–

tual interference of the flows. The vortex layer is rolled up in–

side these vortices, as shown in Figure 9. The lines of this

figure are not streamlines, but such as were

colored liquid.

I will now briefly describe experiments

obtained by using a

which I undertook

for comparison with the theory. The experimental apparatus (Fig.

10) consists of a tank 1.5 m (nearly 5 feet) long with an inter-

mediate bottom. The water is set in motion by a paddle wheel

and, after passing through the deflecting apparatus a and four

sieves b, enters the upper channel comparatively free from vor–

tices, the object to be tested being introduced at c. Fine

scales of micaceous iron ore are suspended in the water. These

scales indicate the nature of the flow, especially as regprds the

vortices, by the peculiarities of their reflection due to their

orientation.

The accompanying photographs were obtained in this manner,

the flow being from left to right. Nos. 1-4 show the flow past

a wall projecting into the current. The separating or boundary

layer, which passes off from the edge, is apparent. In No. 1 it

is very small;,in No. 2, concealed by strong disturbances; in No,
,.

3, the vortex spreads over the whole picture; in No. 4, the pep

manent condition is shown. A disturbance is also evident above

the wall. Since a higher pressure prevails in the corner, due
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to theoobstruction of the water flow, even here the flow sepa–

ra”tes frem””’thewall after awhile ,(Cf. Figs. 1-.4). The various

striae visible in the vortex-free portion of the flow (especially

in Nos. 1-2) are ~Lue to the fact that, at the inception of the

flow, the liquid was not entirely quiet. Nos. >6 show the flow

around a curved obsta”cleor, from another viewpoint, throug’na

continuously narrowing and then widening channel.. No. 5 was taken

shortly after the inception of the flow. One boundary layer has

developed into a spiral, while the other ‘haselongated and broken

up into very regular vortices. On the convex side, near the

right end, t’nebegiiming of the separation can be seen. No. 6

.1
[

shows the permanent condition in which the flow begins to sepa-

,/
rate about at the riarrowest cross section.

fiTos.7–10 show the flow around a cylind-rical obstacle. No.

I 7 shows the beginning of the separation; Nos. 8-9, subsequent

stages. Between ”the two vortices there is a line of water which

belonged to the transition layer before the beginning of the sep-

aratio-n. No. 10 shows the permanent condition. The wake of tur–

bulent water behind the cylinder swings back and forth, whence

the momentary unsymmetrical appearance. The cylinder has a ‘slot

along one of its generatri.ces. If this is,placed as shown in

Nos. .11-12 a,ndwater is drawn out through a tube, the transition

layer on one si:.ecan be intercepted. When this is missing, its

effect, the separation, is eliminated. In No. 11, which correqxzck,
,

in point of time, to No. 9, there is seen only one vortex and the
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