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Preface

The most exciting and significant episode of scientific progress is the 
development of thermodynamics and electrodynamics in the 19th century 
and early 20th century. The nature of heat and temperature was recognized, 
the conservation of energy was discovered, and the realization that mass 
and energy are equivalent provided a new fuel, – and unlimited power.

Much of this occurred in unison with the rapid technological advance 
provided by the steam engine, the electric motor, internal combustion 
engines, refrigeration and the rectification processes of the chemical 
industry. The availability of cheap power and cheap fuel has had its impact 
on society: Populations grew, the standard of living increased, the environ-
ment became clean, traffic became easy, and life expectancy was raised. 
Knowledge fairly exploded. The western countries, where all this happened, 
gained in power and influence, and western culture – scientific culture – 
spread across the globe, and is still spreading. 

At the same time, thermodynamics recognized the stochastic and 
probabilistic aspect of natural processes.  It turned out that the doctrine of 
energy and entropy rules the world; the first ingredient – energy – is 
deterministic, as it were, and the second – entropy – favours randomness. 
Both tendencies compete, and they find the precarious balance needed for 
stability and change alike.

Philosophy, – traditional philosophy – could not keep up with the grand 

words and subjective thinking – in the conventional style –, and scientific 
culture, which uses mathematics and achieves tangible results.

Indeed, the concepts of the scientific culture are most precisely expressed 
mathematically, and that circumstance makes them accessible to only a 
minority: Those who do not shy away from mathematics. The fact has 
forced me into a two-tiered presentation. One tier is narrative and largely 
devoid of formulae, the other one is mathematical and mostly relegated to 
Inserts. And while I do not recommend to skip over the inserts, I do believe 
that that is possible – at least for a first reading. In that way a person may  

ficance. The word came up about two cultures: One, which is mostly loose 
expansion of knowledge. It gave up and let itself be pushed into insigni-

acquire a quick appreciation of the exciting concepts and the colourful 
personages to whom we owe our prosperity and – in all probability – our 
lives.

Berlin,  Ingo Müller 
July 2006 
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1    Temperature 

Temperature – also temperament in the early days – measures hot and cold 
and the word is, of course, Latin in origin: temperare - to mix. It was mostly 
used when liquids are mixed which cannot afterwards be separated, like 
wine and water. The passive voice is employed – the ‘‘-tur” of the present 
tense, third person singular – which indicates that some liquid is being 
mixed with another one. 

For Hippokrates (460–370 B.C.), the eminent, half legendary Greek physi-
cian, proper mixing was important: An imbalance of the bodily fluids 
blood, phlegm, and black and yellow bile was supposed to lead to disease 
which made the body unusually hot or cold or dry or moist.

Klaudios Galenos (133–200 A.C.), vulgarly Galen, – another illustrious 
Greek physician, admirer of Hippokrates and polygraph on medical  
matters – took up the idea and elaborated on it. He assumed an influence of 
the climate on the mix of body fluids which would then determine the 
character, or temperament (sic), of a person. Thus body and soul of the 
inhabitants of the cold and wet north were wild and savage, while those of 
the people in the hot and dry south were meek and flaccid. And it was only 
in the well-mixed – temperate – zone that people lived with superior 
properties in regard to good judgement and intellect,1 the Greeks naturally 
and, perhaps, the Romans. 

Galen mixed equal amounts if ice and boiling water, which he considered 
the coldest and hottest bodies available. He called the mixture neutral,2 and 
installed four degrees of cold below that neutral point, and four degrees of 
hot above it. That rough scale of nine degrees survived the dark age of 
science under the care of Arabian physicians, and it re-emerged in Europe 
during the time of the Renaissance. 

book ‘‘De logistica medica”, he presented an elaborate table of body 
temperatures of people in relation to the latitude under which they live, cf. 
Fig. 1.1. Dwellers of the tropics were warm to the fourth degree while the 
                                                     
1 Galen: ‘‘Daß die Vermögen der Seele eine Folge der Mischungen des Körpers sind.” [That 

the faculties of the soul follow from the composition of the body] Abhandlungen zur 

2 It is not clear whether Galen mixed equal amounts by mass or volume; he does not say. In 
the first case his neutral temperature is 10°C in the latter it is 14°C; neither one is of any 
obvious relevance to medicine. 

Thus in the year 1578, when Johannis Hasler from Berne published his 

(1977).
Geschichte der Medizin und Naturwissenschaften. Heft 21. Kraus Reprint Liechtenstein 
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eskimos were cold to the fourth degree. Persons between latitudes 40° and 
50°, where Hasler lived, were neither hot nor cold; they were given the 
neutral temperature zero. 

One must admit that the idea has a certain plausibility and, indeed,  the 
nine degrees of temperature fit in neatly with the 90 degrees of latitude 
between the equator and the pole. However, it was all quite wrong: All 
healthy human beings have the same body temperature, irrespective of 
where they live. That fact became soon established after the invention of the 

Fig . 1.1.  Hasler’s table of body temperatures in relation to latitude 

The instrument was developed in the early part of the 17th century. The 
development is painstakingly researched and well-described – as much as it 
can be done – by W.E. Knowles Middleton in his book on the history of the 
thermometer.3 Another excellent review may be found in a booklet by 
Ya.A. Smorodinsky.4 It is not clear who invented the instrument. Middleton 
complains that questions of priority are loaded with embarrassment for the 
historian of science…, and he indicates that the answers are often biased by 
nationalistic instincts.

                                                     
3 W.E. Knowles Middleton: ‘‘The History of the Thermometer and its Use in Meteorology”.

The Johns Hopkins Press, Baltimore, Maryland (1966). 
Hasler table of body temperatures, cf. Fig.1.1, is the frontispiece of that book. 

4 Ya.A. Smorodinsky: “Temperature”. MIR Publishers, Moscow (1984). 

thermometer.
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So also in the case of the thermometer: According to Middleton there 
was some inconclusive bickering about priority across the Alps, between 
England and Italy. One thing is certain though: The eminent scientist 
Galileo Galilei (1564–1642) categorically claimed the priority for himself. 
And his pupil, the Venetian diplomat Gianfrancesco Sagredo accepted that 
claim after at first being unaware of it. Sagredo experimented with the 
thermometer and on May 9th, 1613 he wrote to the master 5:

The instrument for measuring heat, invented by your excellent self …[has 
shown me] various marvellous things, as, for example, that in winter the 
air may be colder than ice or snow; … 

Another quaint observation on well-water is communicated by Sagredo 
to Galilei on February 7th, 1615, cf. Fig. 1.26. It is clear what Sagredo 
means: If you bring water up in summer from a deep well  and you stick 
your hand into it, it feels cool, while, if you do that in wintertime, the water 
feels warm. 

                                                           in Firenze 
                                                           Venezia, 7 febbraio 1615 
                                                           Molto Ill.re S.r Ecc.mo

                                                           … Con questi istrumenti ho chiaramente veduto,
                                                           esser molto più freda l’aqua de’ nostri pozzi il
                                                          verno che l’estate; e per me credo che l’istesso
                                                          avenga delle fontane vive et luochi soteranei, 
                                                          anchorchè il senso nostro giudichi diversamente. 

                                                          Et per fine li baccio la mano 

                                                         In Venetia, a 7 Febraro 1615
                                                         Di V.S. Ecc.ma

                                                         Tutto suo Il Sag. 

Fig. 1.2.  Galileo Galilei. A cut from a letter of Sagredo to Galilei with the remarkable 
sentence: I have clearly seen that well-water is colder in winter than in summer …, although 

Misconceptions due to the subjective feeling of hot and cold were slowly 
eliminated during the course of the 17th century. A serious obstacle was 
that no two thermometers were quite alike so that, even when there were 

                                                     
5  Middleton. loc.cit.  p. 7. 
6 “Le Opere di Galileo Galilei”, Vol. XII, Firenze, Tipografia di G. Barbera (1902) p.139. 

The letter, and other letters by Sagredo to Galilei are replete with flattering, even syco-
phantic remarks which the older man seems to have appreciated. Part of that may be 
attributed, perhaps, to the etiquette of the time. But, in fact, it may generally be observed – 
even in our time – that, the more eminent a scientist already is, the more he demands 
praise; and a diplomat knows that.

our senses tell differently 

GIOVANFRANCESCO SAGREDO a GALILEO 
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scales on them, it was difficult to communicate objective information from 
one place to another.

Scales were just as likely to run upwards as downwards at that time. 
Middleton7 lists the scale on a surviving thermometer built by John Patrick 
in or around the year 1700; it runs downward with increasing heat from 90° 

              90°  Extream Cold                55°  Cold Air                  15°  Sultry 
              85°  Great Frost                    45°  Temperate Air           5°  Very Hott
              75°  Hard Frost                     35°  Warm Air                  0°  Extream Hott 
              65°  Frost                              25°  Hott

Fix-points were needed to make readings on different thermometers com-
parable. From the beginning, melting ice played a certain role – either in 
water or in a water-salt-solution – and boiling water, of course. But alter-
natives were also proposed: 

the temperature of melting butter, 
            the temperature in the cellar of the Paris observatory, 
            the temperature in the armpit of a healthy man. 

The surviving Celsius scale uses melting ice and boiling water, and one 
hundred equal steps in-between. However, since Anders Celsius (1701–
1744) wished to avoid negative numbers, he set the boiling water to 0°C 
and melting ice to 100°C, – for a pressure of 1atm. Thus he too counted 
downwards. That order was reversed after Celsius’s death, and it is in that 
inverted form that we now know the Celsius scale, or centigrade scale.

Gabriel Daniel Fahrenheit (1686–1736) somehow thought that three fix-
points were better than two. He picked 

a freezing mixture of water and sea-salt (0°F),
melting ice in water alone (32°F),
human body temperature (96°F). 

Later he adjusted that scale slightly, so as to have boiling water at 212°F,  
exactly 180 degrees above melting ice. One cannot help thinking that 180° 
is a neat number, at least when the degrees are degrees of arc. However 
Middleton, who describes the development of the Fahrenheit scale in some 
detail, does not mention that analogy so that it is probably fortuitous. 
Anyway, after the readjustment, the body temperature came to 98.6°F. That 
is where the body temperature stands today in those countries, where the 
Fahrenheit scale is still in use, notably in the United States of America. 

From the above it is easy to calculate the transition formula between the 
Celsius and the Fahrenheit scales: C = 5/9(F – 32). 

                                                     
7 Middleton: loc.cit. p. 61. 

to 0°, thus maintaining remnants of Galen’s scale of 9 degrees, perhaps. 
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There were numerous other scales, advertised at different times, in 
different places, and by different people. It was not uncommon in the 18th 
and early 19th century to place the thermometric tube in front of a wide 
board with several different scales, – up to eighteen of them. Middleton8

exhibits a list of scales shown on a thermometer of 1841: 

Old Florentine             Delisle                Amontons 
                   New Florentine           Fahrenheit           Newton 
                   Hales                           Réaumur             Société Royale 
                   Fowler                         Bellani                De la Hire 
                   Paris                             Christin              Edinburg 
                   H. M.Poleni                 Michaelly           Cruquius 

All of these scales were arbitrary and entirely subjective but, of course, 
perfectly usable, if only people could have agreed to use one of them, – 
which they could not. 

A new objective aspect appeared in the field with the idea that there 
might be a lowest temperature, an absolute minimum. By the mid-
nineteenth century, two hundred years of experimental research on ideal 
gases had jelled into the result that the pressure p and the volume V of gases 
were linear functions of the Celsius temperature (say), such that 

m is the mass of the gas.9 Therefore, upon lowering the temperature to 
t = – 273.15°C at constant p, the volume had to decrease and eventually 
vanish, and surely further cooling was then absurd. At first people were 
unimpressed and unconvinced of the minimal temperature. After all, even 
then they suspected that all gases turn into liquids and solids at low tempe-
ratures, and the argument did not apply to either. 

However, in the 19th century it was slowly – painfully slowly – 
recognized that matter consisted of atoms and molecules, and that 
temperature was a measure for the mean kinetic energy of those particles. 
This notion afforded an understanding of the minimal temperature, because 
                                                     
8  Middleton: loc.cit. p. 66.
9  In much of the 19th century literature this equation is called the law of Mariotte and Gay-

Lussac.  Nowadays we call it the thermal equation of state for an ideal gas. The pioneers 
of the equation were Robert Boyle (1627–1691), Edmé Mariotte (1620–1684), Guillaume 
Amontons (1663–1705), Jacques Alexandre César Charles (1746–1823), and Joseph Louis 

courses. Therefore I skip over its motivation and derivation. I only emphasize that the 
value 273.15 is the same for all gases. That value was established by Gay-Lussac when 
he measured the relative volume expansion by heating a gas of 0°C by 1°C. [The value 
273.15 is the modern one; in fact it is 273.15 0.02. Gay-Lussac and others at the time 
were up to 5% off.] [The factor k/µ is also modern. k is the Boltzmann constant and µ is 
the molecular mass. Both are quite anachronistic in the present context. However, I wish 

(273.15 C )kpV m t
µ

Gay-Lussac (1778–1850). Their work is now a favourite subject of high-school physics 

to avoid the ideal gas constant and the molar mass in this book.] 
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when temperature dropped, so did the kinetic energy of the particles – of 
gases, liquids, and solids – and finally, when all were at rest, there was no 
way to lower the temperature further.

Therefore William Thomson (1824–1907) (Lord Kelvin since 1892) 
suggested – in 1848 – to call the lowest temperature absolute zero, and to 
move upward from that point by the steps or degrees of Celsius. This new 
scale became known as the absolute scale or Kelvin scale, on which melting 
ice and boiling water at 1atm have the temperature values 273.15°K and 
373.15°K respectively. K stands for Kelvin. It became common practice to 
denote temperature values on the Kelvin scale by T, so that we have

T = 273.15
C

t
°K .

Kelvin’s absolute scale was quickly adopted and it is now used by 
scientists all over the world. However, the scale has subtly changed since its 

melting ice and boiling water were abolished as fix-points. They were 
replaced by a single fix-point: 

Ttr = 273.16°K      for the triple point of water. 

The triple point of water occurs when ice, liquid water and water vapour 
can coexist; its pressure is ptr = 6.1mbar, and its temperature is ttr = 0.01°C 
on the Celsius scale. The modern degree is defined by choosing 1°K as 
Ttr/273.16. This unit step on the Kelvin scale was internationally agreed on 
in 1954 so as to coincide with the familiar 1°C. The 13th International 
Conference on Measures and Weights of 1967/68 even robbed temperature 
of its little decorative adornment ‘‘°” for degree. Ever since then we speak 
and write of temperature values prosaically as so many ‘‘K” instead of  
‘‘degrees K”, or ‘‘°K”.10

The lowest temperatures reached in laboratories are a few µK – a few 
millionth of one Kelvin –, the highest may be 10MK – ten million Kelvin –, 
and we believe that the temperature in the centre of some stars are as high 
as  100 million K, cf. Chaps. 6 and 7. 

For the early researchers there was no need to define temperature. They 
knew, or thought they knew, what temperature was when they stuck their 
thermometer into well-water, or into the armpit of a healthy man. They 
were unaware of the implicit assumption, – or considered it unimportant, or 
self-evident – that the temperature of the thermometric substance, gas or 
mercury, or alcohol, was equal to the temperature of the measured object. 
                                                     
10 Temperature measurements at extremely low  temperatures are still a problem. The 

interested reader is referred to the publication ‘‘Die SI-Basiseinheiten. Definition, 
Entwicklung, Realisierung.’’ [The SI basic units. Definition, development and realization] 
Physikalisch Technische Bundesanstalt, Braunschweig & Berlin (1997) p. 31–35. 

introduction. In 1954, by international agreement the temperatures of 
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This in fact is the defining property of temperature: That the temperature 
field is continuous at the surface of the thermometer; hence temperature is 
measurable. Axiomatists call this the zeroth law of thermodynamics 
because, by the time when they recognized the need for a definition of 
temperature, the first and second laws were already firmly labelled. 



2   Energy 

The word energy is a technical term invented by Thomas Young (1773–
1829) in 1807. Its origin is the Greek word which means efficacy
or effective force. Young used it as a convenient abbreviation for the sum of 
kinetic energy and gravitational potential energy of a mass and the elastic 
energy of a spring to which the mass may be attached. That sum is 
conserved by Newton’s laws and Hooke’s law of elasticity, although the 
individual contributions might change.1 The term energy was not fully 
accepted until the second half of the 19th century when it was extrapolated 
away from mechanics to include the internal energy of thermodynamics and 
the electro-magnetic energy. The first law of thermodynamics states that the 
total sum is conserved: the sum of mechanical, thermodynamic, electro-
magnetic, and nuclear energies. We shall proceed to describe the difficult 
birth of that idea.

Eventually – in the early 20th century – energy was recognized as having 
mass, or being mass, in accord with Einstein’s formula E = mc2, where c is 
the speed of light. 

Caloric Theory 

In the early days of thermodynamics nobody spoke of energy; it was either 
heat or force. And nobody really knew what heat was. Francis Bacon 
(1561–1626) mentions heat in his book “Novum Organum” and – true to his 
conviction that the laws of science should be gleaned from a mass of 
specific observations – he tabulated sources of heat such as: flame, 
lightning, summer, will-o’-the-wisp, and aromatic herbs which produce the 
feeling of warmth when digested.2

A little later Pierre Gassendi (1592–1655), a convinced atomist, saw heat 
and cold as distinct species of matter. The atoms of cold he considered as 
tetrahedral, and when they penetrated a liquid that liquid would solidify, – 
somehow.

                                                     
1 The observation that mechanical energy is conserved is usually attributed to Gottfried 

Wilhelm Leibniz (1646–1716), who pronounced it as a law in 1693. 
2 Francis Bacon: “Novum Organum’’ (1620). 
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An important step away from such interesting notions was done by 
Joseph Black (1728–1799). Black melted ice by gently heating it and 
noticed that the temperature did not change. Thus he came to distinguish the 
quantity of heat and its intensity, of which the latter was measured by 
temperature. The former – absorbed by the ice in the process of melting – 
he called latent heat, a term that has survived to this day. 

The next step – unfortunately a step in the wrong direction – came from 
Antoine Laurent Lavoisier (1743–1794), the pre-eminent chemist of the 
18th century, sometimes called the father of modern chemistry. He insisted 
on accurate measurement and therefore people say that he did for chemistry 
what Galilei had done for physics one and a half century before. The true 
nature of heat, however, was beyond Lavoisier’s powers of imagination and 
so he listed heat – along with light – among the elements,3 and considered it 
a fluid which he called the caloric. Asimov4 writes that … it was partly 
because of his [Lavoisier’s] great influence that the caloric theory … 
remained in existence in the minds of chemists for a half century. The idea 
was that caloric would be liberated when chips were taken off a metal in a 
lathe (say) and thus the material became hot. 

Benjamin Thompson (1753–1814),  Graf von Rumford 

Benjamin Thompson, later Graf von Rumford – ennobled by the Bavarian 
elector Karl Theodor – was first to seriously question the caloric theory. 
Thompson was born in Woburn, Massachusetts to poor parents, just like 
Benjamin Franklin (1706–1790), the other famous American scientist of the 
18th century; their birthplaces are only two miles apart. Both, although 
congenial as scientists, subscribed to different political views. Indeed, 
Thompson supported the British in the war of independence; he spied for 
them and even led a loyalist regiment, – a Tory regiment for American 
patriots – the King’s American Dragoons.5

Perforce, after the colonials had won their independence, Thompson left 
America and, by his intelligence and his captivating demeanour, he became 
a man of the world, welcome in courts and scientific circles. He proved to 
be an inventor of everything that needed inventing: a modern kitchen – 
complete with sink, overhead cupboards and trash slot –, a drip coffee pot, 

                                                     
3  A.L. Lavoisier: “Elementary Treatise on Chemistry” (1789). 
4 I. Asimov: “Biographical Encyclopedia of Science and Technology’’.- Pan Reference 

Books, London (1975).
5 Kenneth Roberts: ‘‘Oliver Wiswell.” Fawcett Publications, Greenwich, Connecticut. 

(1940).
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and the damper for chimneys.6 Also he was a gifted organizer of anything 
that needed to be organized:

The distribution of a cheap, nourishing and filling soup – the Rumford 
soup7 – for the poor people of Munich, 
the transplanting of fully grown trees into the English garden of the 
elector of Bavaria,
and a factory for military uniforms staffed by the beggars from the 
streets of Munich.

The grateful elector made him a count: Graf von Rumford, see Fig. 2.1. 
Rumford was a town in Massachusetts, where Thompson had lived; later it 
was renamed Concord – now in New Hampshire; it was a hotbed of the 
American revolution. Needless to say that the elector knew neither Rumford 
nor Concord. Actually, one cannot help feeling that the two of them, the 
elector and Thompson, may have had a good laugh together: The elector, 
who had no jurisdiction over Rumford county and Thompson, – the new 
Graf von Rumford – who could not show his face there without running the 
risk of being tarred and feathered and made to ride a fence. 

Fig. 2.1.  Lavoisier and Thompson (Graf Rumford), both married to the same woman, – at 
different times

Graf Rumford was put in charge of boring cannon barrels for the elector. 
He noticed that blunt drills liberated more caloric than sharp-edged ones, 
although no chips appeared. By letting the blunt drill grind away for some 
length of time he could liberate more caloric than was known to be needed 
to melt the whole barrel. Thus he came to the only possible conclusion that 
the caloric theory was bunk and that
                                                     
6 According to Varick Vanardy: ‘‘Gen. Benjamin Thompson, Count Rumford: Tinker, 

Tailer, Soldier, Spy.” http://www.rumford.com.
7  A variant of that soup was handed out in German prisons until well into the 20th century. 

It was then known as ‘‘Rumfutsch’’. According to Ernst von Salomon: ‘‘Der Fagebogen”

[The Questionaire] Rowohlt Verlag Hamburg (1951). 
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 …it was inconceivable to think anything else than that heat was just the 
same as what was supplied to the metal as continually as heat was appearing 
in it namely: motion.8

Considering the jargon of the time that was a direct hit. Even fifty years 
later Mayer could not express the 1st law more clearly than by saying: 
motion is converted to heat, – and Mayer did still shy away from saying: 
Heat is motion.

Rumford even made an attempt to give an idea of what was later called 
the mechanical equivalent of heat. His drill was operated by the work of 
two horses – of which one would have been enough – turning a capstan-bar, 
and Rumford notes that the heating of the barrel by the drill 

equals that of nine big wax candles. 

Actually, he became more concrete than that when he said that the total 
weight of ice-water that could be heated to 180°F in 2 hours and 30 minutes 
amounted to 26.58 pounds.9  Joule fifty years later10 used that measurement 
to calculate Rumford’s equivalent of heat to 1034 foot-pounds.11 For the  
calculation Joule adopted Watt’s measurement of one horsepower, namely 
33000 foot-pounds per minute.

It is probably too much to suppose that Rumford thought about 
conservation of energy, but he did say this: 

One would obtain more heat [than from the drill], if one burned the fodder 

suspected those amounts of heat to be the same. 

Rumford through his arrogance and the general unpleasantness of his 
character – so the American author Asimov12 – eventually outwore his 
welcome in Bavaria. He went to England where he was admitted into the 
Royal Society. He founded the Royal Institution, an institute which may be
regarded as the prototypical postgraduate school. Rumford engaged 
Thomas Young and Humphry Davy as lecturers, who both became eminent 
scientists in their own time. Jointly with Davy, Rumford continued his 

                                                     
8 Rumford: “An inquiry concerning the source of the heat which is excited by friction”.

Philosophical Transactions. Vol. XVIII, p. 286.
9  Rumford: loc.cit. p. 283.

10 J.P. Joule: “On the mechanical equivalent of heat”. Philosophical Transaction. (1850) p. 

61ff.
11 This means that a weight of 1 pound dropped from a height of 1034 feet would be able to 

heat 1 pound of water by 1°F. [Joule’s best value in 1850 is 772 foot-pounds, see below.]
12 I. Asimov: ‘‘Biographies….” loc.cit.

Americans do not like their countryman Graf Rumford because of his involvement in the 
war of independence on the side of the loyalists. They scorn him and revile him, and 
largely ignore him. This is punishment for a person who fought on the wrong side – the 
side that lost. We must realize though that the American revolutionary war was as much a 
civil war as it was a war against the British rule; and civil wars have a way of arousing 
strong feelings and long-lasting hatred.

of the horses. Thus he gave the impression, perhaps, that he may have 
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experiments on heat: He carefully weighted water before and after freezing 
and found the weight unchanged, although it had given off heat in the 
process. Therefore he concluded that the caloric, if it existed, was 
imponderable. This observation should have disqualified the caloric, but it 
did not, not for another 40 year. 

After England, Rumford went to Paris where, posthumously,  he crossed 
the path of Lavoisier, because he married the chemist’s widow. Asimov 
writes

The marriage was unhappy. After four years they separated and Rumford 
was so ungallant as to hint that she was so hard to get along with that 
Lavoisier was lucky to have been guillotined13. However, it is quite 
obvious that Rumford was no daisy  himself.

Rumford’s insight into the nature of heat was largely ignored and the 
caloric theory of heat prevailed until the 1840s. At that time, however, in 
the short span of less than a decade three men independently – as far as one 
can tell14 – came up with the first law of thermodynamics in one way or 
other. Basically this was the recognition that the gravitational potential 
energy of a mass at some height, or the kinetic energy of a moving mass, 
may be converted into heat by letting it hit the ground. The three men who 
realized that fact in the 1840s were Mayer, Joule and Helmholtz. All three 
of them are usually credited with the discovery. And although all three 
devote part of their works to the discussion of the weightless caloric – 
actually to its refutation – it is clear that that theory had run its course. Says 
Mayer in his usual florid style: Let’s declare it, the great truth. There are 
no immaterial  materials.

Robert Julius Mayer (1814–1878) 

Mayer was first and he went further than either of his competitors, because 
he felt that energy generally was conserved. He included tidal waves in his 
considerations and conceived of falling meteors as a possible source of 
solar heat- and light-radiation. Nor did he stop at chemical energy, not even 
chemical energy connected with life functions. 

Mayer was born and lived most of his life in Heilbronn, a town in the 
then kingdom of Württemberg. Württemberg was one of the several dozen 
independent states within the loose German federation, whose rulers 
                                                     
13 Lavoisier was executed on May 8, 1794 because of his involvement in tax collection under 

the ancien régime. On the eve of his execution he wrote a letter to his wife. The chemist 
was being philosophical: “It is to be expected ” the letter reads ‘‘that the events in which I 
am involved will spare me the inconvenience of old age.”

14 This is what is usually said. It is not entirely true, though. To be sure, it is likely that Joule 
and Helmholtz were unaware of Mayer’s ideas, but Helmholtz was fully aware of Joule’s 
measurements, he cites them, see below. 
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suppressed all activity to promote German unity. Unity, however, was 
vociferously clamoured for by the idealistic students in their fraternities; 
therefore fraternities were declared illegal. But in Tübingen, where Mayer 
studied medicine, he and some friends were indiscreet enough to found a 
new fraternity. He was arrested for that – and for attending a ball indecently 
dressed – and relegated from the university for one year. 

Mayer made good use of the enforced inactivity by continuing his 
medical education in Munich and Paris and then took hire as a ship’s 
physician – a Scheeps Heelmeester – on a Dutch merchantman for a round-
trip to Java. This left him a lot of free time since, in his words, on the high 
seas people tend to be healthy. He learned about two important phenomena 
which he lists in his diaries: 

The navigator told him that during a storm the ocean water becomes 
warmer,15 and
while bleeding patients he observed that in the tropics venous blood is 
similar in colour to arterial blood. 

The first observation could be interpreted as motion of the water waves 
being converted to heat and the second seemed to imply that the des-
oxidization of blood is slower when less heat must be produced to maintain 
the body temperature. 

The flash of insight, a kind of ecstatic vision, came to Mayer when his 
ship rode at anchor off Surabaja taking on board a consignment of sugar. 
Henceforth he was a changed man, a fanatic in the effort of spreading his 
gospel. And he hurried back home in order to let the world know about his 
discovery 16.

The gospel, however, left something to be desired. At least nobody 
wanted to hear it. Right after his return from Java Mayer rushed out a paper: 
“Über die quantitative and qualitative Bestimmung der Kräfte.”17 Actually 
there was nothing quantitative in the paper and, moreover, it was totally and 
completely obscure. There was hapless talk in hapless mathematical and 
geometrical language which could not possibly mean anything to anybody. 
The only saving grace is the sentence: Motion is converted to heat, which 
Rumford had said 40 years before. The paper ends characteristically in one 
of the hyperbolic statements which are so typical for Mayer’s style: In stars 
the unsolvable task of explaining the continuous creation of force, i.e. the 

                                                     
15 This observation is also mentioned by J.P. Joule: ‘‘On the mechanical equivalent of 

16 Later, in 1848, Mayer was involved in a political squabble and he was ridiculed publicly 
as having travelled as far as East India without setting his foot on land. This, however, 
seems to be untrue, if Mayer’s diary is to be believed. He did leave the ship for a short 
excursion; cf. H. Schmolz, H. Weckbach: “Robert Mayer, sein Leben und Werk in 
Dokumenten’’. Veröffentlichungen des Archivs der Stadt Heilbronn. Bd. 12. Verlag H. 
Konrad (1964) p. 86.

17 “On the quantitative and qualitative determination of forces’’.

heat . Philosophical Transaction (1850) p. 61 ff. ’’
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differentiation of  0  to MC – MC, is solved by nature; the fruit of this is the 
most marvellous phenomenon of the material world, the eternal source of 
light. And in unshared enthusiasm Mayer finishes the paper with the 
hopeful words 

                                  Fortsetzung folgt = to be continued. 

Well, Poggendorff,  to whose “Annalen der Physik and Chemie” Mayer 
had sent the paper on June 16th 1841, was unimpressed. Certainly and 
understandably he did not want to encourage the author. Despite several 
urgent reminders by Mayer – the first one on July 3rd 1841 (!) – 
Poggendorff never acknowledged receipt, nor did he publish the paper.18

He must have thought of Mayer as of some queer physician in Heilbronn 
with an unrequited love of physics. 

Mayer had started a practice in Heilbronn, and in May 1841 he was 
appointed town surgeon  which gained him a regular salary of 150 florin. 
Later he changed to Stadtarzt, at the same salary, and in that capacity he 
had to treat the poor, – free of charge – and also the lower employees of the 
town, like the prison ward or the night watchman.19

Mayer’s problem in physics was that he did not know mechanics. He 
took private instruction from his friend Carl Baur who was a professor of 
mathematics at the Technical High-School Stuttgart, but Mayer never 
graduated to the knowledge that the gravitational potential energy mgH of a 
mass m at height H is converted to the kinetic energy 2

2

m when the mass 

falls and acquires the velocity ; specifically the factor ½ remained a 
mystery for him. To be sure, he never used the word energy in the above 
sense: gravitational potential energy was falling force for him and kinetic 
energy was life force.20

All he knew was, that motion, or the life force of motion could be 
converted into heat and he even came up with a reasonable number: the 
mechanical equivalent of heat, cf. Insert 2.1. 

365 m
1  heat 1 gram at height

1130 Parisian feet
.

                                                     
18 The manuscript did survive and, when Mayer’s work was eventually recognized, the paper 

was published in journals and books on the history of science, e.g. P. Buck (ed): 
“Robert Mayer – Dokumente zur Begriffsbildung des Mechanischen  Äquivalents der 
Wärme’’. [Robert Mayer – documents on the emergence of concepts concerning the 

Salzdetfurth (1980) Bd. 1, p. 20–26. 
19 H. Schmolz, H.  Weckbach: “Robert Mayer ...” loc.cit p. 66, p. 78.
20 The life force must not be confused with the vis viva of the vitalists. In German the kinetic 

energy was called lebendige Kraft at that time, while the vis viva was called Lebenskraft.
In English the distinction is not so clear and sometimes not strictly maintained, although 
usually the context clarifies the meaning. 

mechanical equivalent of heat] Reprinta historica didactica. Verlag B. Franzbecker, Bad 
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Mayer’s calculation of the mechanical equivalent of heat

Mayer knew – or thought he knew – that the specific heats of air are 
gK

cal
267.0 and

gK

cal

421.1

267.0   at constant pressure and volume respectively. To heat 1 cm3 air at a 

density of 1.3 10-3g/cm3 by 1°C it should therefore take 

0.347 10–3 cal at fixed pressure, and 
0.244 10–3 cal at fixed volume. 

At constant pressure the volume expands. The difference in heat is 1.03 10-4cal and 
that difference can lift a 76 cm tube of mercury of mass 1033g which exerts a 

pressure of 1 atm. At 1°C the lift amounts to 1

274
cm according to Mariotte’s law, 

which nowadays we call the thermal equation of state of ideal gases, like air. Thus 
now it is a simple problem of  the rule of three:

                              1033 g at 1/274cm corresponds to 1.03 10-4cal

It follows that H = 365 m and so Mayer wrote: 

                                           1° heat = 1 g at 365 m height 

Note that Mayer did not measure anything. He took his specific heat from some 
French experimentalists whom he quotes as Delaroche and Bérard. And the ratio of 
specific heats he took from Dulong. Both numbers are slightly off and therefore 
Mayer’s mechanical equivalent of heat was low.

Insert 2.1

In words: The fall of a weight from a height of ca. 365 m corresponds to 
the heating of the same weight of water from 0°C to 1°C. Later, with 
reference to Joule’s better measurements, he changed to 425 m or 1308 
Parisian feet. The old value – but not its calculation – is included in 
Mayer’s second paper, see Fig. 2.2, which otherwise is not much clearer 
than the first one. Anyway that paper established Mayer’s priority when 
Justus von Liebig (1803–1873) published it in his “Annalen der Chemie 
und Pharmacie”. To be sure, Mayer did not give Liebig much of a choice; 
his accompanying letter would have flattered any hard-nosed editor into 
acceptance, cf. Fig. 2.3. Those readers who have a command of German 
may learn from the letter how editors should be approached. 

There is a peculiar type of reasoning in the paper. Mayer, rather than just 
postulate the conversion of motion to heat and make it plausible, attempts to 
prove his discovery from some perceived theorem of logical cause or from 
an assumed axiom causa aequat effectum. On another occasion, the 
conservation of energy – force for Mayer – is summarized in the slogan 

Ex nihilo nil fit. Nil fit ad nihilum.

                                    1 g at     H = ?    corresponds to 1cal.
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Fig. 2.2.  Robert Julius Mayer. Cut from the title page of his first published paper 

Fig. 2.3. Cut from Mayer’s letter accompanying the paper submitted to Liebig 

We have to make allowance, however, for Mayer’s almost complete 
isolation. Occasionally he sought scientific advice from physics professors, 
but then he was fobbed off with the demand to support his theory by 
experiments and, in one case, he was sent home with the information that 
the area of science was already so big that an extension was undesirable.21

So he was thrown back to his family and a few friends for scientific 
monologues. They understood nothing and naturally they thought that their 
husband and friend was more than a little crazy. The pressure on Mayer 
mounted when his priority claim was ignored by Joule, and Helmholtz, and 
by a lesser man – a Dr. Otto Seyffer – who ridiculed Mayer’s ideas in an 
article in the daily press.22 Two of his children died and Mayer came close 
                                                     
21 Reported by Mayer in a letter to his friend W. Griesinger on June 14th 1844. Mayer’s 

correspondence with some of his friends is included in the collection of his works. 
Reprinta historica didactica. loc cit. Bd. 1, p. 121. 

22 “Augsburger Allgemeine Zeitung” from May 21st, 1849. 
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to being executed as a spy by some republican radicals who – in the course 
of the revolution of 1848/49 – briefly won the upper hand in parts of 
Württemberg. In 1850 all this led to an attempted suicide when Mayer 
jumped from the third floor of his house into the yard 9 meters below. He 
survived but was permanently slightly crippled.

Mayer’s relatives sought the professional help of an alienist who was a 
friend of the family. However, the man was also young, and new in his 
practice, and he needed the money. Therefore he had no intention to let 
Mayer go anytime soon. He put him behind bars and for good measure kept 
him in a straightjacket. Eventually, after 13 months of this, Mayer 
succeeded to escape and he reached home by foot in his nightgown. After 
that he was indeed a trifle neurotic, patients stayed away from him and the 
street urchins would taunt him: There he goes, the dotty Mayer.

However, my former critical remarks on Mayer’s papers must not give 
the impression that Mayer was anything less than a very original scientist. 
And despite the evidence of the papers mentioned above, he could write
well, if he did not force himself to be excessively brief, – and if he did not 
attempt to use mathematics. The style of his brochure “Die organische 
Bewegung in ihrem Zusammenhang mit dem Stoffwechsel”23, published in 
1845 by a small Heilbronn printing shop, is still idiosyncratic, but it is clear. 
Among the subjects which Mayer takes up in that extensive memoir, I 
mention a few in order to show the scope of his purpose: 

Mayer overcomes Carnot and Clapeyron and paves the way for 
Clausius when he speaks of the heat engine and says … the heat 
absorbed by the vapour is always bigger than the heat released during 
condensation. Their difference is the useful work.
He explains in detail how he calculated the mechanical equivalent of 
heat, cf. Insert 2.1. That argument was too brief in his 1842 paper to be 
understood and appreciated. The calculation is a solid piece of 
thermodynamics – now very elementary – and it had nothing to do with 
horses stirring paper pulp in cauldrons, as folklore has it. To be sure, 
those horses are mentioned in the article, and some rough 
measurements of the temperature of the pulp, but these were far from 
good enough to calculate the mechanical equivalent of heat. 
Incidentally, in this context Mayer mentions Rumford; therefore he 
knew about Rumford’s experience with boring cannon.
He also reports that a cannon barrel which shoots a ball becomes less 
hot than if the powder alone is ignited in the barrel. Mayer says that the 
fact is common knowledge. Well, maybe it was at the time. Anyway, the 
observation makes sense: Part of the chemical energy of the powder is 

                                                     
23 [Organic motion and metabolism] Verlag der C. Drechslerschen Buchhandlung, Heilbronn 

(1845).
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converted into the kinetic energy of the ball, if there is a ball. Otherwise 
all goes into heat. 
Mayer extrapolates that observation to the metabolism in animals,  and 
men. The heat liberated by the chemical process of digestion, or of 
internal combustion of food, can partly be converted into work, he says, 
whereupon the body becomes colder. In order to support this idea he 
cites an observation that was published in the “Journal de Chimie 
médicale, VIII Année, Février”, where the author – a man by the name 
of Douville – measured the temperature of 

              a negro lazy and inactive in the cabin   37° 
              ditto            ditto            in the sun      40.20° 
              ditto           active           in the sun      39.75°. 

Pursuing the idea further, Mayer says that a man sawing wood freezes 
in the arm which moves the saw. Also a blacksmith who heats a piece 
of iron to red-heat with three strokes will be cold in the arm that wields 
the hammer. He says that he has observed that the busy parts of the 
body sweat less during continual hard work than the inactive ones. For 
this latter observation he cites biblical proof. Namely when God says to 
Adam: In the sweat of your brow you shall eat bread. Mayer seems to 
thinks that Adam will henceforth work with his hands and feet, which 
will therefore sweat less than the head which is involved but little, or 
not at all.
In the same memoir Mayer comes out strongly against the vis viva,
the hypothetical force postulated by physiologists of the time – even 
Liebig – to explain organic processes, or rather to set them aside as 
unexplainable.
The heat of the earth – put in evidence by warm springs and 
volcanoes – is explained by Mayer as the equivalent of the kinetic 
energy with which the constituent masses crashed together at the time 
when the earth was formed. In a rough-and-ready calculation he 
estimates the original temperature to have been 27600°C, enough for 
the earth to have been liquid, or actually gaseous.

We could continue the list of Mayer’s thoughts on mechanics, 
astronomy, biology, and physiology by dozens of more item. Maybe they 
are not all correct, but they are all original. Like the theory of the heat of the 
earth, or  when he thinks that the solar energy stems from the meteors 
which fall into the sun. Sometimes he capitulates, like when he wonders 
why planets have orbits with rather small ex-centricities. He suspects that 
this might be explainable by his ideas on the conversion of motion into heat 
but cannot do it. Calculations of tidal forces were far beyond his 
mathematical ability. 

Most of the brochure of 1845 is written in a matter-of-fact style, but at 
the very end Mayer’s propensity for hyperbole breaks through again. Thus 



20      2  Energy 

the work ends with the sentence: …may the phenomena of life be compared 
to a wonderful music full of melodious sounds and touching dissonances; 
only in the concert of all instruments lies harmony and only in harmony lies 
life.

For all that, however, Mayer never knew what the nature of heat was. In 
his brochure “Bemerkungen über das mechanische Äquivalent der 
Wärme”24 in 1851 he says that ... the connection between heat and motion is 
one of quantity rather than quality and he tends to assume that … motion 
must stop in order to become heat. Here he was wrong and he could have 
known it. Indeed, the fledgling mechanical theory of heat existed already 
and in a short time – in the hands of Maxwell – it should rise to its first 
peak. By that theory, the kinetic energy of motion of a body was just re-
distributed among its atoms when it seemed to disappear; and heat was how 
that re-distributed motion was felt. Helmholtz, about whom Mayer 
complains for not having given his work proper credit, explains the relation 
between heat and atomic motion very well. 

Mayer in some way was burned out by that time, he missed the further 
development of what he had helped to start, although he lived until 1878, 
one year before Maxwell died. Ironically he did receive some recognition 
after he had stopped working seriously. John Tyndall (1820–1893), a well-
regarded physicist and prolific science author,25 supported Mayer in his 
priority quarrel with Joule, and Mayer received the Copley medal from the 
Royal Society of London. In 1858 Liebig called Mayer the father of the 
greatest discovery of the century and in 1859 Mayer received an honorary 
doctorate from his old alma mater in Tübingen. 

The chamber of commerce of Heilbronn elected Mayer to honorary 
membership, and the king of Württemberg …whose pleasure it is to reward 
great achievements26 made Mayer a knight of the order of the Württemberg 
crown. Mayer could now call himself  “von Mayer”. 

Yet, Mayer is largely forgotten, but not in his hometown Heilbronn. The 
people in the town archive look after his memory with loving care.27 His 
bronze statue is displayed in a prominent spot of the town, and the 
monument carries the somewhat pompous quatrain 

                                                     
24 [Remarks on the mechanical equivalent of heat] Verlag von Johann Ulrich Landherr, 

Heilbronn (1851) Bd. 1, p. 169.
25 Tyndall is best known for his work on light scattering. It was he who explained the blue 

colour of the sky, but he also wrote a book on thermodynamics entitled “Heat as a mode of 
motion” which appeared in 1863. 

26 So Mayer in an autobiographical note. Reprinta historica didactica. loc.cit. Bd. 1, p. 8.
27 When I visited the archive, I had to park my car precariously. A policeman promptly 

showed up, but, as soon as he heard that I was interested in Mayer he promised to watch 
over my car: “Take as long as you like, sir.”
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                             Es bleiben erhalten des Weltalls Gewalten 
                            Die Form nur verweht, das Wesen besteht. 

James Prescott Joule (1818–1889) 

Joule was the son of a rich brewer who was tolerant enough of the scientific 
interests of his son to furnish him with a home-laboratory. Joule is best 
known for the discovery of the Joule heating of a current that runs through 
a wire. That heat is proportional to the square of the current. In the course 
of those studies Joule conceived the idea that there might be a relation 
between the heating of the current and the mechanical power needed to turn 
the generator. 

And indeed he established that relation and came up with a mechanical
value of heat which he expresses in the words28

The amount of heat which is capable of raising [the temperature of] one 
pound of water by  1 degree on  the Fahrenheit scale, is equal and may be 
converted into a mechanical force which can lift 838 pounds to a  vertical 
height of 1 foot.29

Joule’s memoir is full of tables with carefully recorded observations. He 
describes his experiments painstakingly, discusses possible sources of 
experimental error, and attempts to compensate for estimated losses. In that 
sense his paper has set standards, although to this day thermal and, in 
particular, caloric measurements are notoriously difficult, time-consuming 
and inaccurate to boot.

And indeed, in later experiments – reported in a similarly exemplary 
fashion in the article “On the temperature changes by expansion and 
compression of air”30 – Joule obtains the values 820, 814, 795, and 760 
instead of the 838 pounds cited in his article of 1843. And there were other 
values from other experiments so that in 1845 Joule proposed a mean value 
of 817 pounds31 as the most likely one. In the letter to the editors of the 
Philosophical Transactions he says: 

                                                     
28 J.P. Joule: “On the heating effects of magneto-electricity and on the mechanical value of 

heat.”  Philosophical Magazine, Series III, Vol. 23 (1843) p. 263ff, 347ff, 435ff.
29 The paper was read to the Section of Mathematical and Physical Sciences  of the 

British Association, Convention in Cork on August 21st, 1843.
30 J.P. Joule: Philosophical Magazine, Series III, Vol. 26 (1845), p. 369 ff.
31 J.P. Joule: “On the existence of an equivalence relation between heat and the ordinary 

forms of mechanical power’’. Letter to the editors of the Philosophical Magazine and 
Journal. Philosophical Magazine. Series III, Vol. 27 (1845), p. 205 ff. 

    Wo Bewegung entsteht, Wärme vergeht 
                                 Wo Bewegung verschwindet, Wärme sich findet 
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Joule criticizes Carnot’s and Clapeyron’s

                                                    He says: Since I hold the view that
                                                    only the creator has the power to destruct, 
                                                    I agree with … Faraday, that any theory that 
                                                    leads to the destruction of force is necessarily
                                                    false.32

Fig. 2.4.  James Prescott Joule. A pious version of the first law 

Each one of your readers who is lucky enough to live in the romantic areas 
of Wales or Scotland could indubitably confirm my experiments, if he 
measured the temperature of a waterfall on top and at the bottom. If my 
results are correct, the fall must create 1° heat for a fall of 817 feet height; 
and the temperature of the Niagara will therefore be raised 1/5 of a degree 
by the fall of 160 feet. 

Asimov33 writes that Joule in fact made that experiment at the waterfall 
himself during his honeymoon when he and his wife visited a scenic water-
fall.

In 1850, after many more experiments, Joule came up with 772 which is 
a really good value, see below.34

We have already seen that Joule knew Rumford’s work and, in fact, that 
he tried to calculate the mechanical equivalent of heat from Rumford’s 
observation. This came out too high – 1034 foot-pounds – but it was close 
enough to Joule’s spectrum of values that he could say that Rumford’s 
result confirms our conclusions satisfactorily.35

In the same postscript Joule says that he observed that water pressed 
through narrow tubes heats up, and that gave him yet another value, – 770 
foot-pounds. And he expresses his believe in the conservation of energy by 
saying: I am convinced that the mighty forces of nature are indestructible 
by virtue of the Creator’s: F I A T!

To this day the conservation of energy is an assumption – well-
documented, to be sure, but still an assumption. But like Mayer, Joule feels 
that he needs to prove the law. And since he cannot do that, he comes up 
with strange formulations: We may a priori assume that a complete 
destruction of force is supposedly impossible, since it is obviously absurd, 

                                                     
32 J.P. Joule: “Temperature changes by expansion and compression of air.” Philosophical 

Magazine Series III, 26 (1845) p. 369 ff.
33 I. Asimov: “Biographies….” loc.cit.
34 J.P. Joule (1850) loc.cit.
35 Post Scriptum to Joule’s memoir of 1843. loc.cit. 

                                                    analysis of the steam engine, see Chap. 3 
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1 calorie = 4.18 Joule. 

Yes, indeed, Joule is the modern unit of energy! It is equal to 1 kgm2/s2.
Joule gets the honour, because he was most accurate for the time and he 
backed up his figure with a large variety of careful measurements.36

Actually, the calorie went also out as a unit when the SI units were 
introduced,37 and nowadays all energies are measured in Joule, be they 
mechanical, thermal, chemical, electric, magnetic, or nuclear. This was a 
great relief  indeed for everybody concerned.

A good case can be made that the first law of thermodynamics, the law of 
conservation of energy, was the greatest discovery of the 19th century. And 
how was it received? We have already described how Mayer had to grovel 
in order to have his paper accepted for publication, and Joule fared no 
better. Asimov writes38

His [Joule’s] original statement of his discovery was rejected by several 
learned journals as well as by the Royal Society and he was forced to 
present it as a public lecture in Manchester and then get his speech 
published in full by a reluctant Manchester newspaper editor for whom 
Joule’s brother worked as a music critic. 

                                                     
36 Of course, 418 m is not Mayer’s and Joule’s 425 m. The difference lies in the gravitational 

acceleration 9.81 m/s2, because Mayer’s grams and Joule’s pounds were weights, not 
masses. We have to correct for that.

37 Système International d’Unites. It was introduced by international agreement in 1960.
38 I. Asimov: “Biographies” loc.cit.

The lecture was given on April, 28th  1847 in the St. Ann’s  Church Reading-Room in 
Manchester. It was published by the Manchester Courier on May 5th and May 12th.

that the properties, with which God has endowed matter, could be 
destructed.

The attentive reader will have noticed that after Mayer had adjusted his heat-
equivalent to Joule’s better measurements – as mentioned before – he had 

425 m
1  heat 1 gram at height

1308  Parisian feet
.

Let us see how Mayer came up with those numbers: If 1308 feet is multiplied by 
5/9 to convert from °F to °C we obtain 727 feet, – considerably lower than any of 
Joule’s numbers. But then we must realize that an English foot is 30.5 cm while 
the Parisian one was 32.5 cm. Thus Joule’s value, as quoted by Mayer, was indeed 
772 English foot-pounds as stated before. 

Of course, foot-pounds are out nowadays. The older ones among the readers 
may remember their university days, when they learned the mechanical 
equivalent of heat in the form: 
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Fortunately for him, the young, up-and-coming scientist William 
Thomson – later Lord Kelvin (1824–1907) – heard Joule speak and 
recognized the quality of his research which he continued to advertise 
successfully. In due course the two men became friends and collaborators. 

Joule was eventually able to measure 0.005°F reliably and the two 
scientists – Joule and Kelvin – used such accurate measurements to show 
that the temperature drops very slightly when a gas is allowed to expand 
into vacuum. This is now known as the Joule-Thomson effect – or the 
Joule-Kelvin effect – and it is due to the fact that the molecules of the gas 
upon expansion must run uphill in the potential energy landscape that is 
formed by the molecular attraction.39 This cooling effect proved to be 
important for the effort to reach lower and lower temperatures and both 
James Dewar (1842–1923) and Karl von Linde (1842–1934) made use of it 
in their efforts to liquefy gases and vapours, see below, Chap. 6. 

You cannot be an intelligent man and spend your lifetime measuring 
temperature and heat without forming an idea what heat is. Rumford had 
already speculated that heat was motion and Joule says:40 I hold to the 
theory which considers heat as a motion of the particles of matter and he 
quotes John Locke (1632–1704) who had said it all one and a half century 
earlier 41

Heat is the very brisk agitation of the insensible parts of the object, which 
produces in us that sensation, from whence we denominate the object hot; 
so what in our sensation is heat, in the object is nothing but motion. 

Largely due to Kelvin’s propaganda, Joule’s work was widely recognized 
and appreciated. In 1866 he was awarded the Copley medal of the Royal 
Society, which Mayer also received, albeit 5 years after Joule. Toward the 
end of his life Joule’s brewery did not go well and he suffered some 
economic hardship. But he was saved by Queen Victoria who granted him a 
pension.

Hermann Ludwig Ferdinand (von) Helmholtz (1821–1894)42

For centuries people had tried to construct a perpetuum mobile by arranging 
masses – and possibly springs – in the gravitational field, so that they would 

                                                     
39

close to condensation. That Joule and Kelvin could detect it in air at room temperature 

40 J.P. Joule: “Heating during the electrolysis of water.” Memoirs of the literary and 
Philosophical Society of Manchester. Series II, Vol. 7 (1864) p. 67.

41 J.P. Joule: (1850) loc.cit.
42 Helmholtz was ennobled by Kaiser Wilhelm I in 1883. In 1891 he became a real privy 

councillor with the right to be addressed as Your excellency. Such were the rewards for 
successful scientists in 19th century Europe.

This cooling effect is absent in a truely ideal gas, but quite noticeable in a vapour, i.e. a gas 

he made the expansion experiment earlier. 
does them credit as very careful experimenter. Gay-Lussac had missed the cooling when 
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turn a wheel (say) and still come back to the original position in order to 
begin a new cycle. These attempts had always failed and people came to the 
conclusion that a perpetuum mobile was impossible. Therefore as early as 
1775 the Paris Academy decided not to review new propositions anymore. 
The conservation of mechanical energy – kinetic energy, gravitational 
potential energy, and elastic energy was firmly believed in, no matter how 
complex the arrangement of masses and springs and wheels was, cf. 
Fig. 2.5. This could not be proved, of course, since not all possible 
arrangements could be tried, nor could the equations of motion be solved 
for complex arrangements. 

Fig. 2.5.  Design of a perpetuum mobile by Ulrich von Cranach, 1664 

A perpetuum mobile was a proposition of mechanics. To be sure, 
friction and inelastic collisions were recognized as counterproductive, 
because they absorb work and annihilate kinetic energy, – both produce 
heat. Helmholtz conceived the idea that 

…what has been called … heat is firstly the … life force [kinetic energy] 
of the thermal motion [of the atoms] and secondly the elastic forces 
between the atoms. The first is what was hitherto called free heat and the 
second is the latent heat. 

So far that idea had been expressed before – more or less clearly – but 
now came Helmholtz’s stroke of insight: The bouncing of the atoms and the 
attractions between them just made a mechanical system more complex 
than any macroscopic system had ever been.43 But the impossibility of a  

                                                     
43 And some of those machines were complicated, see Fig. 2.5. 
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perpetuum mobile should still prevail. Just like energy was conserved in a 
complex macroscopic arrangement without friction and inelastic collisions, 
so energy is still conserved – even with friction and inelastic collisions – if 
the motion of the atoms, and the potential energy of their interaction forces,  
is taken into account. Friction and inelastic collisions only serve to
redistribute the energy from its macroscopic embodiment to a microscopic 
one. And on the microscopic scale there is no friction, nor do inelastic 
collisions occur between elementary particles.

The idea was set forth by Helmholtz in 1847 in his first work on 
thermodynamics “Über die Erhaltung der Kraft”44 which he read to the 
Physical Society in Berlin.  Note that thus all three of the early protagonists 
of the first law of thermodynamics used the word force rather than energy. 
Helmholtz’s work begins with the sentence: We start from the assumption 
that it be impossible – by any combination of natural forces – to create life 
force [kinetic energy]  continually from nothing. 

While Helmholtz may have been unaware at first of Mayer’s work, he 
did know Joule’s measurements of the mechanical equivalent of heat. He 
cites them. When his work was reprinted in 1882,45 Helmholtz added an 
appendix in which he says that he learned of Joule’s work only just before 
sending his paper to the printer. On Mayer he says in the same appendix 
that his style was so metaphysical that his works had to be re-invented after 
the thing was put in motion elsewhere, probably meaning by himself, 
Helmholtz. One thing is true though: Mayer, and to some extent even Joule 
hemmed and hawed and procrastinated over heat and force; they adduced 
the theorem of logical cause and the commands of the Creator. Helmholtz’s 
work on the other hand is crystal clear, at least by comparison.

We have previously reviewed Mayer’s and Joule’s frustrating attempts to 
publish their works. Helmholtz fared no better. His paper was dismissed by 
Poggendorff as mere philosophy.46 Therefore Helmholtz had to publish the 
work privately as a brochure, see Fig. 2.6. 

Helmholtz was not much younger than the other two men, and yet he 
was a man of the new age. While the others had reached the limit of 
their capacities – and ambitions – with the discovery of the first law, 
Helmholtz was keen enough and knew enough mathematics to exploit the 
new field.

                                                     
44 [On the conservation of force].
45 H. Helmholtz: “Über die Erhaltung der Kraft” [On the conservation of force] 

Wissenschaftliche Abhandlungen, Bd.  I (1882).
46 According to C. Kirsten, K. Zeisler (eds.): “Dokumente der Wissenschaftsgeschichte”

[Documents of the history of science]  Akademie Verlag, Berlin (1982) p. 6. 
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Fig. 2.6.  Title page of Helmholtz’ brochure. [The dedication to “dear Olga” was scratched 
out before printing.47]

Thus Helmholtz put numbers to Mayer’s speculation about the source of 
energy of solar radiation. First of all he dismissed the idea that the energy 
comes from the impact of meteors. Rather he assumes that the sun contracts 
so that its potential energy drops and is converted into heat which is then 
radiated off. Taking it for granted that the solar energy output is constant 
throughout the process – and therefore equal to the current value which is 

26 W – Helmholtz calculates that the sun must have filled the entire 
orbit of the earth only 25 million years ago, cf. Insert 2.2. The earth would 
therefore have to be younger than that. Geologists complained; they insisted 
that the earth had to be much older than a billion years in order to 
accommodate the perceived geological evolutionary processes, and they 
were right. It is true that Helmholtz’s calculations were faultless, but he 
could not have known the true source of energy of the sun, which is not 
gravitational but nuclear. 

Helmholtz, on his mother’s side a descendant of William Penn, the 
founder of Pennsylvania, studied medicine and for a while he served as a 
surgeon in the Prussian army. When he entered academic life it was as a 
professor of physiology in Königsberg, where he did important work on the 
functions of the eye and the ear. Without having a formal education in 
mathematics Helmholtz was an accomplished mathematician, see Fig. 2.7. 
He worked on Riemannian geometry, and students of fluid mechanics know 
the Helmholtz vortex theorems which are non-trivial consequences of the 
momentum balance, – certainly non-trivial for the time. Late in his life he 

German standardizing laboratory.48

                                                     
47 Olga von Velten (1826–1859) became Helmholtz’s first wife in 1849.
48 Now: Physikalisch Technische Bundesanstalt. 

3.6·10

became the first president of the Physikalisch-Technische Reichsanstalt, the 
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                                         Helmholtz was yet another physician turned scientists. 
                 He studied the working of the eye and the ear and 

                                        formulated the “Helmholtz vortex theorems”, 
                                         mathematically non-trivial results for his time. 

                                        Lenard 49  says: … that Helmholtz, who had no formal 
                                        mathematical education was able to do this, shows the 
                                         absolute uselessness of the extensive mathematical
                                        instruction in our universities, where the students are
                                        tortured with the most outlandish ideas, … when only a 
                                        few are capable of getting results with mathematics,
                                        and those few do not even need this endless torment. 50

Fig. 2.7.  Hermann Ludwig Ferdinand von Helmholtz. Also a quote from Lenard, much 
appreciated by students of  thermodynamics                                 

Despite the insight which Helmholtz had into the nature of heat and 
despite the mathematical acumen which he exhibited in other fields, he did 
not succeed to write the first law of thermodynamics in a mathematical 
form, – not at the early stage of his professional career. The last important 
step was still missing; it concerned the concept of the internal energy and 
its relation to heat and work. That step was left for Clausius to do and it 
occurred in close connection with the formulation of the second law of 
thermodynamics. The cardinal point of that development was the search for 
the optimal efficiency of heat engines. We shall consider this in Chap. 3.

Helmholtz’s hypothesis on the origin of the solar energy

Although Helmholtz’s hypothesis on the gravitational origin of the solar energy is 
often mentioned when his work is discussed, I have not succeeded to find the 
argument; it is not included in the 2500 pages of his collected works.51 Given this – 
and given the time – one must assume that the calculation was a rough-and-ready 
estimation rather than a serious contribution to stellar physics. I proceed to present 
the argument in the form which I believe may be close to  what Helmholtz did. 

The gravitational potential energy of an outer  spherical shell of radius r and
mass dMr in the field of an inner shell of radius s and mass dMs is equal to 

because

rs
dEdM dM dM dMpotrs rsr s r s

E = G , = G = F
pot 2r dr r

− − −

                                                     
49 P. Lenard: “Große Naturforscher’’. J.F. Lehmann Verlag München (1941). 
50 And yet, in 1921, when M. Planck edited two of Helmholtz’s later papers on 

thermodynamics, he complained about the shear unbelievable number of calculational 
errors in Helmholtz’s papers. So, maybe Helmholtz might have profited, after all, from 
some formal mathematical education.

51 H. Helmholtz: “Wissenschaftliche Abhandlungen.” Vol. I (1882), Vol. II (1883), Vol III 
(1895).
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is the gravitational force on the outer shell. G is the gravitational constant. 
Therefore the potential energy of the outer shell in the field of all shells with s < r
is equal to

d

and the potential energy of the whole star is

d
2

1

2

1
d

0

2

22

nintegratiopartialby0

.

Thus Epot is determined by MR and R but also by the mass distribution Mr within the 
star. I believe that Helmholtz may have considered as homogeneous, equal to 

3
4 / 3 Rπ

. In that case the calculation is very easy and one obtains 

2

3

5

M
E Gpot R

. We calculate this value with G = 6.67·10-11

3

2

m

kg s for the solar

mass M = 2·10
30

kg and for the two cases when the sun has its present radius R = 

0.7·10
9
m and when it has the radius R = 150·10

9
m of the earth’s orbit. The 

difference is Epot = 22.76 ·10
40

J and, if we suppose that this energy is radiated off 

at the present rate, see above, we obtain t = 20·10
6

years for the time needed for 

We shall recalculate Epot  under a less sweeping assumption in Insert 7.6. 

Insert 2.2 

Helmholtz remained active until the last years of his life, and he took full 
advantage of what Clausius was to do. Later on – in Chap. 5 – we shall 
mention his concept of the free energy – Helmholtz free energy in English 
speaking countries – in connection with chemical reactions.

Electro-magnetic Energy 

It was not easy for a person to be a conscientious physicist in the mid-
nineteenth century. He had to grapple with the ether or, actually, with up to 
four types of ether, one each for the transmission of gravitation, magnetism, 
electricity and light. The ether – or ethers – did not seem to affect the 
motion of planets,52 so that matter moved through the ether without any 

                                                     
52 Actually Isaac Newton (1642–1727) conceived of a viscous interaction between the ether 

and the moon, and that idea led him to study shear flows in fluids. Thus he discovered 
Newton’s law of friction by which the shear stress in the fluid and the shear rate are 
proportional, with the viscosity as the factor of proportionality. Fluids that satisfy this law 

MR

R

R

the contraction. That is indeed close to the time given by Helmholtz. 
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interaction, as if it were a vacuum. And yet, the ether could transmit 
gravitational forces. Its rest frame was supposed to define absolute space.

The luminiferous ether – also assumed to be at rest in absolute space – 
carried light and that created its own problem. Indeed, light is a transversal 
wave and was known to propagate with the speed c = 3·105

s

km . One had to 

assume that the ether transmitted vibrations as a wave, like an elastic body. 
For the speed of propagation to be as big as it was, the theory of elasticity 
required a nearly rigid body. Therefore physicists had to be thinking of 
something like a rigid vacuum. Asimov remarks in his customary 
flamboyant style that generations of mathematicians … managed to cover 
the general inconceivability of a rigid vacuum with a glistening layer of 
fast-talking plausibility.53

And then there was electricity and magnetism, both exerting forces on 
charges, currents, and magnets and that seemed to call for two more types 
of ether. Michael Faraday (1791–1867) and James Clerk Maxwell (1831–
1879) were, it seems, not unaffected by such thoughts. Maxwell developed 
elaborate analogies between electro-magnetic phenomena and vortices in 
incompressible fluids moving through a medium. It is true that Maxwell 
always emphasized that he was thinking of analogies – rather than reality –  
when he set up his equations in terms of convergences in the medium, and 
of vortices. However, Maxwell’s visualizations were incidental and 
Heinrich Rudolf Hertz (1857–1894), recognizing the fact, is on record as 
having said laconically that the theory of Maxwell is the system of Maxwell 
equations, cf. Fig. 2.8. Kelvin was among those who would have preferred 
something more concrete: a clear relation to a mechanical model.

Maxwell’s equations, cf. Fig. 2.8, relate four vector fields54

B –  magnetic flux density E – electric field
D – dielectric displacement H – magnetic field. 

J is the electric current and q is the electric charge density. With all these 
fields, the Maxwell equations are strongly underdetermined. But then there 
are two additional relations, the so-called ether relations, which close the 
system, if q and J are known. The ether relations connect D to E and
H to B. They read 

D = 0 E and      H  = µ0 B  , 

where 0 = 8.85·10
-12

Vcm

As
 and  µ0 = 12.5·10

-7

Acm

Vs
 are constants called the 

vacuum di-electricity and the vacuum permeability, respectively. 

                                                                                                                          
– and there are many of them – are called Newtonian to this day. However, Newton could 
not detect any viscous effect between the ether and the moon. 

53

54 Vectors are denoted by boldface letters, or by their Cartesian components. If the latter 
notation is used in formulae, summation over repeated indices is implied. 

 I. Asimov: “The rigid vacuum” in ‘‘Asimov on physics” Avon Books, New York (1976).
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In the vacuum there is neither current nor charge but the fields are there, 
and they propagate as waves. Indeed, if we apply the curl-operator to the 
first and third Maxwell equation and make use of the ether relations, we 
obtain

2 2 2 2

2 2

0 0 0 0

1 1
0 and 0

i i i i

j j j j

E E B B

t x x t x xε µ ε µ

which are the well-known wave equations of mathematical physics. The 
speed of propagation is

00

1 which happens to be equal to c, the speed of 

light. (!!)
Thus Maxwell was able to relate electro-magnetic wave propagation to 

light. He says: The speed of the transversal waves in our hypothetical 
medium … is so exactly equal to the speed of light … that it is difficult to 
refuse the conclusion that light consists of the wave motion of the medium 
that is also the agent of electric and magnetic phenomena.55
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Fig. 2.8.  James Clerk Maxwell. Main system of Maxwell equations 

As a result, the magnetic and electric ether were cancelled out. What 
remained was the luminiferous ether – the rigid vacuum – and, perhaps, 
Newton’s ether that transmits gravitation. Actually Einstein threw out the 
luminiferous ether in 1905 as we shall see later, cf. Chap. 7. The gravi-
tational ether is still an embarrassment to physicists today. Nobody believes 
that it exists, but neither have gravitational waves convincingly been 

                                                     
55 Retranslated by myself from Giulio Peruzzi: ‘‘Maxwell, der Begründer der 

Elektrodynamik” [Maxwell. The founder of electrodynamics] Spektrum der 
Wissenschaften, German edition of Scientific American. Biografie 2 (2000). 
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discovered – to the best of my knowledge – nor the particles that could 
replace them, the hypothetical gravitons.56

This is all quite interesting but it distract us from the main subject in this 
chapter, which is energy or, here, electro-magnetic energy. The Maxwell 
equations of Fig. 2.8, combined with the ether relations, imply – as a 
corollary – four equations which may be interpreted as equations of balance 
of electro-magnetic momentum and energy, viz.
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56 You can still always make a learned physicist, who is happily expounding the properties of 

black holes, come to a full stop by asking a simple question. Nothing can escape from a 
black hole, not even light, which is why it is black. So, you must ask innocently: But the 
gravitons do come out,  don´t they?

The right-hand sides of the equations of balance represent – to within 
sign – the density of the Lorentz force of an electro-magnetic fields on 
charges and currents and the power density of the Lorentz force on a current 
respectively. If the current consists of a single moving charge e, the Lorentz 
force becomes )( d

d BE x
te  and the power equals .d

d Ex
te

The trace of the pressure tensor is 3p, where p is the electro-magnetic 
pressure. Hence inspection of the balance equations shows that we have

 electro-magnetic pressure = 1/3

important in Boltzmann’s investigation of radiation
phenomena, cf. Chap. 7.

That the Lorentz force on charged matter and its power should appear in 
an easily derived corollary – of balance type – of the Maxwell equations 
places electro-magnetic energy firmly among the multifarious incarnations 
of energy which altogether are conserved. Maxwell says: When I speak of 
the energy of the field, I wish to be understood literally. All energy is 
identical to mechanical energy, irrespective of whether it appears in the 
form of motion or as elasticity or any other form.

 electro-magnetic energy density.

This relation  was  to  become
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Maxwell’s theory of electro-magnetism was created in three papers57

between 1856 and 1865 and later summarized and extended in two books,58

the latter of which appeared posthumously.
The practical impact of Faraday and Maxwell was enormous, although 

not immediate, and it was twofold: Telecommunication and energy trans-
mission. It is true that electro-magnetic telecommunication by wire
preceded Maxwell’s work. But, of course, wireless transmission was firmly 
based on it after Hertz sent the first radio-signal – short for radio-
telegraphic signal – from one side of his laboratory to the other one in 1888. 
Perhaps even more important is the electric generator which was invented 
by Faraday in 1831 when he rotated a copper disk in a magnetic field, thus 
inducing a continuous electric current. The reversal of the process could 
produce – with the appropriate design – rotational motion of a shaft from 
the current fed into an electric motor.

Generator and electric motor would eventually make it feasible to 
concentrate steam power generation in some central plant in a city or the 
countryside, rather than have each consumer set up his own steam engine. 
But that took time and the electrification of industry and transport – and 
households – was not complete until well into the 20th century.

Faraday, however, was fully aware of the potential of his invention. 
There is a story about this, probably apocryphal: In 1844, when Faraday 
was presented to Queen Victoria, she is supposed to have asked him what 
one might do with his inventions. In a hundred years you can tax them said 
Faraday.

The scientific impact of Maxwell’s equations was equally great, although 
also delayed. When the equations were closely studied – by H.A. Lorentz 
and A. Einstein – it turned out that the main set, shown in Fig. 2.8, is 
invariant under any space-time transformation whatsoever, while the ether 
relations are invariant only under Lorentz transformations, see below.

The true nature of the Maxwell equations as conservation laws of charge 
and magnetic flux was identified even later by Gustav Adolf Feodor 
Wilhelm Mie (1868–1957).59 Mie put Lorentz’s and Einstein’s trans-
formation rules into an elegant four-dimensional form. This crowning 
achievement in electro-magnetism is reviewed by Claus Hugo Hermann 

                                                     
57 J.C. Maxwell: “On Faraday’s lines of force.” Transactions of the Cambridge Philosophical 

Society, X (1856). 
    J.C. Maxwell: “On physical lines of force” Parts I and II, Philosophical Magazine XXI 

(1861), parts III and IV,  Philosophical Magazine  (1862).
    J.C. Maxwell: “A dynamical theory of the electro-magnetic field” Royal Society 

Transactions CLV (1864).
58 J.C. Maxwell: “Treatise on electricity and magnetism” (1873).
    J.C. Maxwell: “An elementary treatise on electricity” William Garnett (ed.)  (1881).
59 G. Mie: “Grundlagen einer Theorie der Materie” [Foundations of a theory of matter] 

Annalen der Physik 37, pp. 511-534; 39, pp. 1-40; 40, pp. 1–66 (1912). 
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Weyl (1885–1955)60 and I shall give the briefest possible summary, cf. 
Insert 2.3. This will help us to appreciate the eventual recognition of energy 
as mass, or of mass as energy. 

Transformation properties of electro-magnetic fields 

The most appropriate formulation of electro-magnetism is four-dimensional so that 
xA (A = 0,1,2,3) equals (t,x1,x2,x3) where t is time and xi are Cartesian spatial 
coordinates of an event. If we introduce the electro-magnetic field tensor and the 
charge density vector as
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is called charge-current potential. For that reason D and H  are also known as 
charge potential and current potential, respectively, as well as by the earlier 
conventional names dielectric displacement and magnetic field.

Upon inspection the underlined equations are the general Maxwell equations of 
Fig. 2.8 which are thus recognized as conservation laws of magnetic flux and 
charge61 respectively. If AB are covariant components and AB contravariant ones, as 
indicated by the customary position of the indices, we have for any arbitrary space-
time transformation x A = x A(xB)
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and therefore the general Maxwell equations retain their forms in all frames. 

                                                     
60 H. Weyl: “Raum-Zeit-Materie” [Space-time-matter] Springer, Heidelberg (1921) English 

translation: Dover Publications, New York (1950).
61 For the integral form of these equations of balance the reader might consult I. Müller: 

“Thermodynamics” Pitman, Boston, London (1985) Chap. 9. Another  instructive account 
of Mie’s and Weyl’s treatment of electrodynamics and relativity may be found in the 
memoir by C.A. Truesdell and R. Toupin: “The classical field theories” Handbuch der 
Physik III/1 Springer. Heidelberg (1960). pp. 660–700 and 736–744. 
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In particular the transformation rules of E and B read 

1
and

2

A B A B
x x x x

E B
i AB i ijk ABt x x x

i j k

ϕ ε ϕ

This defines the components Ei  and Bi  in all frames. Similarly Di  and Hi  can be 
calculated from Di and Hi.

Once the transformation laws of E, B, D, H are known, we may ask for the 

transformations that leave the ether relations D = 0 E and H = µ0 B  invariant. It 

turns out that these are Lorentz transformations, see below. 

Insert 2.3 

Albert Einstein (1879–1955) 

Mayer’s haphazard collection of forces – fall force, motion, tensile force, 
heat, magnetism, electricity, and force of chemical separation, three of them 
imponderables, cf. Fig. 2.9 – were now confirmed, actually within Mayer’s 
lifetime as different types of energy: potential, kinetic, elastic, internal, 
electro-magnetic, and chemical respectively. And energy as a whole was 
recognized as being conserved, when one type changed into another one. 
This was a great step of unification, and to a new generation of physicists 
energy became a familiar concept, like mass, or momentum, which were 
already well-established conserved quantities of old. In some way all types 
of energy had to be considered imponderable, because a compressed spring 
(say) did not seem to weigh more than a relaxed one. 

But then it turned out – through the work of Einstein – that energy E and
mass m were the same; or rather they were two quantities strictly related to 
each other by the equation

E = m c2 ,

where c is the speed of light. Thus, if energy is mass, and since mass has 
weight, now it turned out that all energies were ponderable.

Indeed, if a body has potential energy or kinetic energy, it is only because 
its mass is bigger at a height, or when it moves. A compressed spring 
weighs more than a relaxed one. And, if a body is hot, it is also heavier than 
if it were cold, because its particles have a bigger speed in the mean. If two 
atoms are bound together chemically – so that their potential energy is 
smaller than when they are apart – they have a smaller mass. 
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Fig. 2.9.  Mayer’s collection of forces

To be sure, the factor of proportionality c2 between E and m is so big, and 
the energy differences are so small, that the mass- and weight-changes in all 
mentioned cases are too small to be detected. However, this is not so when 
nuclear forces are involved. Thus the nuclear force between protons and 
neutrons in a He4  nucleus – an -particle – is so strong, and the binding 
energy is so large, that there is an appreciable mass defect: Namely, the 
masses of two protons and two neutrons are 2·1.67239·10–27g and 
2·1.67470·10–27 g respectively and the mass of the -particle which they 
form is 6.64373·10–27 g; consequently there is a mass defect of 0.76% and 
that is quite noticeable.

The introduction of a “luminiferous ether” will
                                                  prove to be superfluous inasmuch as the view 
                                                  here to be developed will not require an 
                                                 “absolute stationary space” provided with special
                                                  properties, nor assign a velocity-vector to a point 
                                                  of the empty space in which electromagnetic
                                                  processes take place.62

Fig. 2.10.  Albert Einstein. Dismissal of the ether 

                                                     
62 A. Einstein: “Zur Elektrodynamik bewegter Körper” [On the electrodynamics of moving 

bodies] Annalen der Physik 17 (1905) Translation of 1923 in: “The principle of relativity, 
a collection of original memoirs of the special and general relativity” W. Perrett, G.B. 
Jeffrey (eds.) Dover Publications. Introductory remarks.
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It is true though, that this phenomenon had not yet been noticed in the 
year 1905, when Einstein presented his paper on what we now call Special
Relativity.63 That paper must concern us at this point, because it establishes 
the relation between energy and mass, which was later used to explain the 
mass defect, after that phenomenon had been detected. The formula E = mc2

came up in the paper at the very end, almost as an afterthought, and 
certainly not at all with the fanfare which it deserves for being the most 
important equation of physics, as which we now recognize it. Actually, the 
main issue of Einstein’s paper was not mass or energy at all, but ether and 
absolute space. We have to digress in order to explain. 

Lorentz Transformation 

At that time, the beginning of the 20th century, the universe was supposed 
to be filled with ether – the luminiferous ether – through which light 
travelled with the speed c. The ether was supposed to be at rest in absolute
space, and all bodies moved through the ether without disturbing its state of 
rest; so also the earth and the sun. The question arose whether the speed of 
the earth through the ether – the absolute speed, as it were – could be 
measured, and that was the question asked by Albert Abraham Michelson 
(1852–1931), first alone and then in collaboration with Edward Williams 
Morley (1838–1923). They sent out a light ray to a mirror at the distance L
and measured the time interval before it returned. If the earth, and the light 
source, and the mirror moved with speed V through the ether, the biggest 
time interval should have been64

.
1
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Vc

L

Vc
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t

In the experiment, however, the interval was found to be 
c

L2 , irrespective 

of the direction of the ray, just as if the earth were at rest with the ether 
which, of course, was unlikely to such a degree that the possibility was not 
seriously considered.65 So, the experiment showed that the speed of light is 
independent of the motion of the source. 

                                                     
63 A. Einstein: “Zur Elektrodynamik …” loc. cit. 
64 The time interval should have depended on the angle between the light ray and the 

velocity of the earth. The biggest interval would occur, if that angle were zero.
65 The actual details of Michelson’s measurement are ingenious and cumbersome, because it 

is not easy to measure t. For details the reader may consult Michelson’s papers which, 
incidentally, earned him the Nobel prize of physics in 1907.
A.A. Michelson: “The relative motion of the earth and the luminiferous ether.” American 
Journal of Science 22 (1881), p. 122. 
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Among the attempts of an explanation there was one that turned out to be 
heuristically important: George Francis FitzGerald (1851–1901) suggested, 
in 1890, or so, that distances in the direction of the ether wind – the 
onrushing ether – should be shortened so as to offset the discrepancy 
between the expected and the measured results of Michelson’s experiments. 
Hendrik Anton Lorentz (1853–1928) made the same assumption  in 1895.66

Lorentz expounds on it by speculating about the influence of the ether on 
the action between two molecules or atoms [so that] there cannot fail to be 
a change of dimension as well.67

Einstein does not mention Michelson, but he accepts his experimental 
result when he speaks about the unsuccessful attempts to discover any 
motion of the earth relatively to the “light medium”.68 And he does not 
attempt to explain Michelson’s failure by speculating about the ether; he 
simply proceeds to identify the transformation of spatial and time 
coordinates, that is required for two frames K and K  in uniform relative 
translation, if the speed of light equals c in both. The problem is somewhat 
simplified – but not oversimplified – by the assumption that the frames have 
parallel axes and that their relative motion, with speed V, is along the x-axis.
For that case Einstein obtains 
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This is the Lorentz transformation, so called, because Lorentz69 derived it 
from the requirement that the Maxwell equations of electro-magnetism 

                                                                                                                          
A.A. Michelson, E.W. Morley: “Influence of motion of the medium on the velocity of 
light” American Journal of Science 31 (1886), p. 377.

66 H.A. Lorentz: “Versuch einer Theorie der elektrischen und optischen Erscheinungen in 
bewegten Körpern” [Attempt of a theory of electrical and optical phenomena in moving 
bodies.] Leiden 1895 §§89–92. Translation of 1923 in: “The principle of relativity, ...”
under the title “Michelson’s interference experiment” Dover Publications. loc.cit.
Lorentz acknowledges FitzGerald’s priority grudgingly by saying: As FitzGerald kindly 
tells me, he has for a long time dealt with his hypothesis in his lectures.  The then 
hypothetical phenomenon became known as the FitzGerald contraction, but is more often 
called the Lorentz contraction.

67 I believe that Lorentz fools himself here. Indeed in Michelson’s experiments the rod 
carrying the light source and the mirror were of brass and stone in different experiments;  
it seems quite inconceivable that the ether would have affected both materials in the same 
manner.

68 A. Einstein: “Zur Elektrodynamik...” loc.cit. 
69 H.A. Lorentz: “Electro-magnetic phenomena in a system moving with any velocity less 

than light.” English version of Proceedings of the Academy of Sciences of Amsterdam, 6 
(1904). Reprinted in: “The principle of relativity, …” Dover Publications. loc. cit. 
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should have the same form in all uniformly translated frames. Einstein does 
not mention Lorentz except in a later reprinting of his papers, where he says 
in a footnote: The memoir by Lorentz was not at this time known to the 
author [i.e. Einstein]. 70

                                                     
70 I have never been able to see Einstein’s papers in the Annalen der Physik, because 

whenever I looked for them – in the libraries of several countries – they were stolen; cut 
out, or torn out, the ultimate accolade! But then, the papers have been reprinted many 
times and some re-printings carry footnotes by Einstein, so also the Dover publication 
cited above. That is a good thing, because some of the footnotes are quite illuminating.

For 1V
c  the Lorentz transformation becomes the Galilei transfor-

mation of classical mechanics. But generally, for higher velocities, it differs 
from the Galilei transformation subtly, and in a manner difficult to grasp in-
tuitively. Let us consider this:

A sphere of radius R at rest in frame K  with the centre in the origin has the surface 
x 1

2 + x 2
2 + x 3

2 = R2. According to the Lorentz transformation that sphere, seen 
from the frame K, has the surface of an ellipsoid with a contracted axis in the 
direction of the motion, viz.

.
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Conversely a sphere at rest in K is given by x1
2 + x2

2 + x3
2 = R2, but viewed from 

frame K  it appears as the ellipsoid 
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Thus,  according  to  Einstein,  no  frame  of  absolute  rest  exists;  it  is  the 
relative  motion  of  the  frames that  is  responsible  for  the  contractions.  No 
ether is mentioned and no suggestive explanation is offered. This is cold comfort 
for people who understand and argue intuitively. Einstein presents reason, pure and 
undiluted, a mathematical deduction from a convincing observation, that is all, – no 
speculation.

What happens with time intervals is even more counter-intuitive: Let there be two 
events at some fixed point with x 1 which are apart in time by t  in frame K . By 
the  Lorentz   transformation   the  interval  is  equal  to ttt

c
V

2
2

1

1 .

Thus the observer in K will see the time interval lengthened, a phenomenon that is 
known as time dilatation. The phenomenon is often discussed in scientific 
feuilletons as giving rise to the twin paradox: Twin 1 remains at home – at a fixed 
place x 1 – while twin 2 goes on a long trip with high speed along the x1-axis and
then returns, again with high speed. His heart beat is lengthened by the time 
dilatation and  therefore  his  metabolism  is  slowed  down,  so  that  after  his 
return he is still a young man, while his brother,  twin 1, has aged. That obser-
vation is amazing, and strange, but not paradoxical yet. The paradox appears when  
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Eleven years later, in 1916, Einstein would declare himself not entirely 
satisfied with the arid reasoning exhibited in his work on special relativity. 
At the beginning of his memoir on general relativity he says:72 In classical 
mechanics, and no less in special relativity, there is an inherent episte-
mological defect which was, perhaps for the first time, clearly pointed out 
by Ernst Mach. It is not enough to state that uniformly moving frames – 
inertial frames – are special; we should like to know what makes them so, 
irrespective of whether they are related by Galilei- or Lorentz-transfor-
mations. Einstein explains that he sees distant masses and the motion of 
frames with respect to those as the seat of the causes for the phenomena 
occurring in frames. Thus  non-inertial frames feel gravitational forces from 
the distant masses, while inertial frames feel no effect at all, – and that 
defines them. 

E = m c
2

Maxwell’s ether relations are invariant under Lorentz transformations,73

while the general set of Maxwell equations in Fig. 2.8 is generally invariant, 
against all analytic transformations, see above. Einstein felt that there was a 
problem, because Newton’s equation – the basis of mechanics – are Galilei-
invariant. He says somewhat awkwardly: 74 … the laws of electrodynamics 
… should be valid for all frames of reference for which the equations of 
mechanics hold good. We will raise this conjecture the purport of which 
will hereafter be called “Principle of Relativity”  to the status of a postulate. 
Since electrodynamics was trustworthy – not least because of Michelson’s 

                                                     
71 I have been told that the twins will turn out to be equally old after their reunion when the 

inevitable periods of acceleration at the beginning, middle and end of the trip are taken 
into account. And, of course, that acceleration is only suffered by the twin who really
travels. Accelerations are the subject of the general theory of relativity, and we shall not 
go into this any further.

72 A. Einstein: “Die Grundlage der allgemeinen Relativitätstheorie” Annalen der Physik 49 
(1916). English translation: “The foundation of the general theory of relativity” in: “The 
principle of relativity, …” Dover Publications. loc. cit.

73 The invariance of the speed of light in Lorentz frames is, of course, a corollary of the 
invariance of the ether relations.

74 A. Einstein: “Zur Elektrodynamik ...” loc.cit. 

we realize that both twins are in relative motion. Thus twin 2 remains firmly at 
some point x1 and considers his brother as travelling – relative to him. The interval 

between heart beats of twin 2 is therefore ttt
c
V

2

2

1  in his frame K, 

so that he has aged, while twin 1 is still young after the return. That is a genuine 
paradox, if there ever was one.71
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experiment – mechanics had to be modified so as to become Lorentz 
invariant. The question was: How?

Mechanics and electrodynamics are largely separate, of course, but they 
do have points of contact, like when a moving charge e is accelerated by an 
electro-magnetic force Fi in an electric field Ei and a magnetic flux density 
Bi. This force is called the Lorentz force and we have 

or
j j

i i ijk k i i ijk k

dx dx
F e E B F e E B

dt dt
ε ε

in frame K and K  respectively. Thus Newton’s equations in K and K
should read 

2 2

1 1

2 2
or

i i

d x d x
m F m F

dt dt
,

and one should follow from the other one by a Lorentz transformation. It 
turned out that this requirement could not be satisfied, not even with 
different masses m and m  as indicated in the equations. If, for simplicity, 

the charge is at rest in K  – so that its velocity in K equals )0,0,( 1

dt

dx – it is 

possible to show, cf. Insert 2.4, that the Lorentz transformation from K  to 
K gives 
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That result led Einstein to postulate a longitudinal mass for the x1-
direction and a transverse mass for the other two directions.75

The distinction between two masses – a transversal and a longitudinal 
one – can be avoided. Indeed, both equations – the one for x1(t) and those 
for x2(t),  x3(t) – may be combined in one as 

1

2

21
1 ( )
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i
dx

dtc

dxd m
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rest mass m  by 
21 1

2
1 ( )

.
dx

dt
c

m
m  That formal simplification of the new 

equation of motion – which amounts to a momentum balance – was 

                                                     
75 The notions of transverse and longitudinal mass had already been introduced by Lorentz in 

his paper: “Electro-magnetic phenomena …” (1904) loc.cit. which Einstein later said he 
had been unaware of, see above. 

so that there is only one velocity-dependent mass m which is related to the 
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suggested by Planck. Says Einstein in a later footnote:76 The definition of 
force here given [in his 1905 paper] is not advantageous, as was first shown 
by M. Planck. It is more to the point to define force in such a way that the 
laws of momentum and energy assume the simplest form.

Transverse and longitudinal masses

The invariance of the Maxwell equations implies, of course, the invariance of the 
speed of light as a corollary, but it implies more: Namely the transformation laws 
for the electric field components, cf. Insert 2.3 
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On the other hand, if a mass is momentarily at rest in K , – that is the simple case 
under consideration – its accelerations in K  and K are dictated by the Lorentz 
transformation and it is a simple matter to calculate the relation. It reads 
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Insertion into Newton’s law 
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so that the inertial mass is different in the direction of the relative motion of the 
frames and perpendicular to that direction. Einstein speaks of transverse and 
longitudinal masses. One can avoid this unfamiliar concept when one rephrases 
Newton’s law from

“mass·acceleration = force” to “rate of change of momentum = force.”

Insert 2.4 

                                                     
76 In A. Einstein: “The principle of relativity, ...” Dover Publications. loc.cit. 
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So what about the law of energy? Multiplication of the 1-component of 

the momentum balance by
dt

dx
1 provides an expression for the power of the 

force on the moving mass, viz.

dt

dx
F

dt

dmc
1

1

2

,

and, since the power is known to produce a rate of change of energy in 
mechanics, we must interpret mc2 as energy 
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Of course, the first term of the approximate formula is huge compared to 
the second one, but it is also constant, so that we obtain the familiar energy 
balance of classical mechanics: The rate of change of the kinetic energy 

2

2
)( 1

dt

dxm  equals the power of the force. 

Special relativity – the theory of frames of reference related by the 
Lorentz transformation – says nothing about mass and potential energy
except by implication: Indeed, if a body has a big mass because it moves 
fast, that movement may be due to a fall from a great height. And if mass, 
or energy is conserved, the body must have had the big mass before it fell, 
simply by resting in a high place.77 Considerations like these have led to an 

2

kinetic energy; for example to the binding energy in nuclei which manifests 
itself in the mass defect.

Annus Mirabilis 

The year 2005 – when I write this – has been declared the Einstein year by
physicists all over the world in order to celebrate the centenary of the annus
mirabilis when Einstein published three salient papers, of which we have 
just discussed one. The other two concern thermodynamics as well, and 
they will be discussed below, cf. Chaps. 7 and 9.

It is quite unusual that the anniversary of a scientific achievement like 
this should be celebrated in this manner. Occasions of such type are more 
common for the feats of politicians, or generals or, perhaps, football players 
and sports coaches. But now it is upon us, the annus mirabilis. In Germany, 
where Einstein was born and where he spent some of his productive years, – 
not 1905 though! – the centennial is taken seriously to the extent that most 
public buildings in Berlin carry words of wisdom from Einstein. On the 

                                                     
77 Einstein’s general relativity – the theory of accelerated frames and gravitation – makes 

such arguments explicit.

extrapolation of the formula E = mc  to all types of energy other than 
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chancellery it says in huge bright red letters: The state must serve the 
people, not people the state. And buses, trains, trams and moving vans carry 
the slogan: If you wish to have a happy life, set yourself a destination.

It is true that some of these maxims are somewhat trite, but Einstein was
capable of pregnant wise-cracks, like when he discarded the probabilistic 
aspects of quantum mechanics by saying God does not throw dice. Or when 
he expressed doubt about Heisenberg’s uncertainty principle: Our Lord may 
be subtle, but He is not malicious. Incidentally, on both occasions Einstein 
was wrong, at least according to current wisdom. He was indubitably right, 
however, when he advised physicists that their theories should be as simple 
as possible, but not simpler. 

Despite the present-day fanfare, the fact is that Einstein could not get a 
professorship until four years after the annus mirabilis – and not because he 
was not trying! It was eight years before a special position was created for 
him at the Kaiser Wilhelm Institute in Berlin – at the instigation of Max 
Planck. In 1916 Einstein published his paper78 on General Relativity – as 
opposed to Special Relativity – and that is perhaps his greatest achievement. 
Einstein became world-famous in 1919 when his prediction, made in 
1911,79 about light rays being deflected by gravitational fields was 
confirmed by an observation during a solar eclipse.

Einstein anticipated the loss of his position and the impending 
banishment from Germany by not returning from a trip to the United States 
when Hitler came to power in 1933. From then on he lived and taught in 
Princeton until his death.

The above-mentioned mass-defect occurs not only in the fusion of light 
elements but also in the fission of heavy ones like uranium. And in 1939 
Otto Hahn (1879–1968) and Lise Meitner (1878–1968) reported that they 
had achieved fission. The collateral conditions were such that a chain 
reaction of fission could conceivably occur, and that provided the feasibility 
for nuclear explosions.

The possibility of a chain reaction had been conceived by Leo Szilard 
(1898–1964), an admirer of the science fiction stories by H.G. Wells (1866–
1946),80 in one of which the term atomic bomb is first used.81 Szilard, 
himself an able physicist, knew of Hahn’s and Meitner’s work, and he 
feared that Germany might develop and use a fission bomb in the 
impending second world war. He convinced Einstein – then an absolute 
legend as a scientist and a public figure – to sign a letter to President 
                                                     
78 A. Einstein: “Die Grundlagen der allgemeinen Relativitätstheorie” [On the foundation of 

the general theory of relativity] Annalen der Physik 49, (1916).
79 A. Einstein: “Über den Einfluß der Schwerkraft auf die Ausbreitung des Lichtes” [On the 

influence of gravitation on the properties of light]. Annalen der Physik 35, (1911).
80 Herbert George Wells (1866–1946) was a scientific visionary and social prophet, best 

known for his classic short story: “The time machine” first published in 1895.
81 According to I. Asimov: “The finger of God.” In: “The sun shines bright.” Avon Books 

(1981).
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Roosevelt, in which an American crash program for the development of the 
bomb was recommended. The letter succeeded and on December 6th, 
1941 – the eve of the Japanese attack on Pearl Harbour – President 
Roosevelt signed Project Manhattan into existence. 

As is was, German scientists never worked more than half-heartedly on a 
fission bomb, and the Manhattan project was successfully concluded too 
late,  shortly after Germany’s capitulation. But there was still Japan, and 
two bombs were available, incongruously called thin man and fat boy. So 
they were dropped on Hiroshima and Nagasaki on August 6th and August 
9th, 1945 when 300.000 civilians died.

Unlike other scientists who lent their support to scientific warfare, 
Szilard, and Einstein, and the physicists of the Manhattan project – among 
them Compton, Fermi, and Bohr – are largely excused, or even praised for 
their commitment. One might say that the theory of relativity asserts itself 
here in one of its more popular versions: Everything is relative, or else: It is 
imperative to be on the winning side.

Maybe, however, it is fair to say that a fair number of the scientists, who 
had promoted the bomb project, had second thoughts afterwards, and 
campaigned for the decommissioning of the atomic arsenal. Among them 
were Einstein, Fermi, and Bohr. The politicians brushed their initiative 
aside and, when Bohr would not give up, Winston Churchill (1874–1956) 
threatened to put him in jail.82

After the second world war nuclear fission was employed as an energy 
source in power plants, and now a growing proportion of the human 
demand for energy is covered in this way.83 The mass defect inherent in 
fusion of light elements has been utilized in the hydrogen bomb – so far not 
used in war. Despite energetic – and vastly expensive – research in the 
field, controlled fusion for the conversion of nuclear energy into useful
power could not so far be realized. The problem is that enormous 
temperatures must be reached before the charged nuclei can overcome their 
repulsive electric forces so as to be able to fuse.84 The centre of the sun is 
the only place in our planetary system where such temperatures are 
available and, indeed, nuclear fusion is the process that supplies the energy 
of the sun, cf. Chap. 7. 

In the 1990’s two physicists from Provo, Utah, USA claimed to have 
achieved fusion – on their laboratory table and at room temperature – by 
somehow overcoming the repulsion catalytically, as it were, inside metals. 

                                                     
82 According to I. Asimov: “Biographies …” loc. cit. p. 614. 
83 Except in those unfortunate countries with a virulent green, or environmentalist party, 

which, more often than not, is also anti-nuclear.
84 Actually, the difficulty is not so much to reach the high temperatures, but it is difficult to 

contain the hot gas. All conventional container walls would melt and, in fact vaporize. 
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Although extremely unlikely, this is conceivable in a general way.85 In the 
event, however, it turned out to be an error, or a fake. Anyway, the cold-
fusion-experiment could not be repeated. Actually, however, before the  
bubble burst, several laboratories worldwide jumped on the bandwagon and 
reported having seen cold fusion as well. Among ordinary non-nuclear 
physicists there was some furtive malicious gloating over the simplicity of 
the process, because for years they had seen the funding of their own 
projects refused, while a near infinite amount of money was poured into 
ineffective fusion research, – hot fusion naturally. Their world turned grey 
again after the truth emerged. But controlled fusion seems still a long way 
off.

                                                     
85 It is true that chemical reactions can sometimes be catalysed by contact with a metal, but 

the energy barriers to be overcome in such cases are much, much smaller than the nuclear 
ones.



3 Entropy

It may seem strange that the entropy – which is one of the most subtle 
concepts of theoretical physics, or natural philosophy – first emerged in the 
context of an engineering proposition. Namely the question of how to 
improve the efficiency of heat engines. We shall see how that came about. 

Actually the entropy has never shed its hybrid position between physics 
and engineering: The students of mechanical engineering keep a 
(temperature-entropy)-diagram among their files, which they are taught to 
use for the lay-out of power plants and jet nozzles. The chemical engineers 
are familiar with the entropy of mixing which they use to construct phase 
diagrams, and all physicists know that nature strikes a compromise between 
entropy and energy when it drives the sap into the tree-tops by osmosis. 

Heat Engines 

It was Denis Papin (1647–1712) – a student of Christaan Huygens (1629–
1695) – who first condensed water and lifted a weight by doing so.1 Papin 
owned a long brass tube of diameter 5cm. Some water at the bottom was 
evaporated, and thus lifted a piston, which was then fixed by a bolt. After-
wards the tube was taken from the fire, the vapor condensed and a Torricelli 
vacuum formed inside, i.e. a low pressure equal to the vapor pressure 
appropriate to the extant temperature. When the bolt was removed, the air 
pressure drove the piston downward and was thus able to lift a weight of 
sixty pounds. This in a nutshell is the manner in which the motive power of 
steam works: by creating a vacuum through condensation.

                                                     
1  We shall not enter into speculations about whether and how Hero of Alexandria – in the 

first century A.D. – employed steam power in the automatic working of doors and statues, 
which priests used to impose on gullible worshippers, cf. I. Asimov: ‘‘Biographies…” 
loc.cit. p. 38. 

Denis Papin knew the properties of saturated vapor well, so that he also knew that 
water under pressures beyond 1atm boils at a higher temperature than 100°C. He 
made use of this phenomenon in a pressure cooker: In a closed vessel some tough 
meat is heated in water. The accumulating steam raises the pressure and thus the 
boiling point of water, so that the meat finds itself immersed in water as hot as 
150°C (say). Thus it becomes sufficiently cooked in a short time. Papin was invited 
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However, Papin’s brass tube was not a steam engine yet; it did only one 
stroke at a time. Proper steam engines were developed later when a pressing 
need arose in England in the early 18th century. England was suffering a 
kind of energy crisis: The country was deforested and what trees remained 
were needed for the navy and could not be used for fuel.3 At the same time 
the output from the coal mines was in decline, and threatened to cease 
altogether, because of difficulties with drainage at the depth where the pits 
had arrived. That situation provided a strong incentive for inventors, and so 
the steam engine came just in time. It was developed by the engineer 
Thomas Savery (1650–1715) and by Thomas Newcomen (1663–1729), a 
clever and skilful blacksmith. The machine was at first exclusively used to 
pump water from mines, so that coal could be brought up from a greater 
depth, previously inaccessible. Therefore it may not have mattered so much, 
that a good part of the coal was used to heat the boiler of the engine. Indeed 
Newcomen’s engine was quite wasteful of fuel.4

In due time, however, the steam engine was employed by the iron 
industry to power bellows, and hammers for crushing the ore. Thus coal  
became a commodity to be paid for by the owners of the iron works, and 
therefore the efficiency of the engine had to be improved. 

The Newcomen machine worked by injection of cold water into the 
cylinder, cf. Fig. 3.1. Thus the steam was condensed and a good vacuum 
was developed, which pulled down the piston in a powerful stroke. 
Afterwards new steam from the boiler pushed the piston back up, before  
water was injected again, etc.

James Watt (1736–1819) recognized the reason for the wastefulness of 
the process: A good part of the precious new hot steam condensed while 
reheating cylinder and piston, which had just been cooled by the injected 
water. Watt improved the machine by inventing a separate cooler, or 
condenser, into which the steam was pushed before condensation. The 
condensed water was then pumped back into the boiler. Watt also intro-
duced other improvements, like

                                                     
2 According to I. Asimov: ‘‘Biographies…” loc.cit. p. 204.
3 According to I. Asimov: ibidem p. 145.
4 Yet the machines were successful. By 1775 sixty of them had been erected in Cornwall 

alone and there were about one hundred in the Tyne basin. According to R.J. Law: ‘‘The 
Steam Engine”. A Science Museum booklet. Her Majesty’s Stationary Office, London 
(1965) p. 10. 

keeping the cylinder wall warm by heating it with the incoming steam, 

introducing an ingenious system of valves so that the piston could work 
in both the down-stroke and the up-stroke,

to demonstrate his digester for the Royal Society of London and he cooked an 
impressive meal for King Charles II.2 
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Fig. 3.1. The Newcomen engine 

  closing the steam valve before the end of the stroke; it is true that 
this provided less work per cycle, but it was an efficient measure 
nevertheless, because still less steam was consumed. 

Above all, however, Watt has made the steam engine into more than a 
pump. He converted the up- and down-movement of the piston into the 
rotation of a wheel in his famous rotative engine with a sun-and-planet 
transmission gear. This extended the efficacy of the engine greatly, because 
it could now be used to drive lathes, drills, spinning wheels and looms, – 
then ships and locomotives. Thus Watt’s machine became the motor of the 
industrial revolution.

James Watt was born in Glasgow. He received an abbreviated education 
as an instrument maker in London, whereupon he became a laboratory 

of the Newcomen machine which had broken down, and  was thus able to 
attract the attention of Joseph Black, the discoverer of the latent heat, see 
above. Black became Watt’s first mentor and financier, and he introduced 
him to an industrialist, Dr. John Roebuck, with whom Watt went into a  

3

2

3

1 , partnership, – one third for Watt. Later the 
3

2  share was taken over by 

Matthew Boulton, and the two partners started a successful business selling 
steam engines. Law writes 5 … the customer paid for all the materials and 
found the labour for erection. The firm sent drawings and an erector. They 
also supplied important parts like the valves and the valve gear… As 

                                                     
5 R.J. Law: ‘‘The Steam Engine” loc.cit. p. 13. 

assistant at the University of Glasgow. He repaired and improved a model 
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payment, they claimed one third of the saving in coal over the old
[Newcomen] engines.

Fig. 3.2.  Watt’s steam engine 

This was enough to make Watt a rich man, because, indeed, Watt’s 
engine was three to four times more efficient than Newcomen’s.6 Watt 
retired in 1800. He was famous by then, and much honoured for his life’s 
work. Thus he was elected to membership of the Royal Society of London 
and he received an honorary doctorate from the University of Glasgow 
where he had previously served in the lowly position of a laboratory 
assistant.

Liquid water and steam are particularly well-suited for the conversion of 
heat into work, because the heat absorbed and emitted – by boiler and 
cooler respectively – is exchanged isobarically. And a large portion of those 
isobars are also isotherms, because they lie in the two-phase region of wet 
steam, where boiling liquid and saturated vapour coexist. This makes the 
process somewhat similar to a Carnot process, which has maximum effi-
ciency, see below. 

                                                     
6  Actually, the efficiencies were all quite low: In Newcomen’s case about 2% and 5–7% in 

Watt’s case. A modern power station reaches between 45% and 50%. The engineers have 
done a good job indeed over the past 200 years. 
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                                                                   In 1783 he tested a strong horse and
                                                                   decided that it could raise a 150- 
                                                                   pound weight nearly four feet in a 
                                                                   second. He therefore defined a 
                                                                   ‘‘horsepower” as 550 foot-pounds per 
                                                                   second. This unit of power is still 
                                                                   used, particularly for automobiles. 
                                                                   However, the unit of power in 
                                                                   the metric system is called 1 Watt, in
                                                                   honour of the Scottish engineer. One 
                                                                   horsepower equals 746 Watt.

Fig. 3.3. James Watt. A quote from Asimov 7

Heat can also be converted into work by an air engine or, more generally, 
a gas engine. Figure 3.4 shows the prototypical Joule process
schematically, where an adiabatic compressor furnishes hot air which is 
then further heated by isobarically absorbing the heat Q+. Afterwards the  
gas cools by adiabatic expansion in the working cylinder which pushes it 
into a heat exchanger, where it gives off the heat Q- isobarically. In its 
alternation between adiabatic and isobaric steps the process is much like the 
process in the steam engine. However, in the Joule process the isobars are 
in no way similar to isotherms, since no phase transition occurs. 

Fig. 3.4. The Joule process and a (pressure,volume)-diagram of the Joule process in an ideal 

None of the engineers who invented or improved the steam engine – or 
the air engine – was in any way distracted by any soul-searching about the 
nature of heat, or whether or not there was a caloric. They proved that heat 
could produce work by doing it, – and doing it better and better as time 
went on. 

The efficiency of the engines climbed up slowly but surely through many 
ingenious improvement and in the 1820s it had arrived at 18%. At that time 
                                                     
7 I. Asimov: ‘‘Biographies…” loc.cit. p. 187. 

gas
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Sadi Carnot, a physicist educated at the École Polytechnique in Paris, posed 
himself the question, how far this improvement could possibly go and he 
attempted to find an answer. 

Nicolas Léonard Sadi Carnot (1796–1832) 

Sadi Carnot was named after the 13th century Persian poet Saadi Musharif 
ed Din who was en vogue in the France of the directorate. His father Lazare 
Carnot was one of the directors, and later he became one of Napoléon’s 
loyal and efficient generals. The father was also an accomplished mathe-
matician who published a book on mechanical machines in 1803: ‘‘Funda-
mental principles on equilibrium and movement.” In that book Lazare 
Carnot strongly supported the view that a perpetuum mobile was
impossible.

By hereditary taint, perhaps, the son picked up the question whether the 
possible improvements [of heat engines] might have an assignable limit.

And, in 1824, Sadi Carnot published a book in which he addressed the 

problem: ‘‘Réflexions sur la puissance motrice du feu et sur les machines 

propres à déveloper cette puissance”8 Everything seemed conceivable at the 

time:

The process in which heating and cooling occurred at constant 
pressures might be improved by letting the heat exchange occur at 
constant volumes or constant temperatures, and 
perhaps working agents like sulphur or mercury might have an 
advantage over water. 

Carnot came to correct conclusions concerning both propositions. About 
the first one he says: 

The best manner to employ a heat engine, whose working agent assumes 
temperatures between TLow and THigh in the process, is the engine – which we 
now call a Carnot engine – which exchanges heat only at those 
temperatures.

Because, so Carnot, [that process is] …le plus avantageux possible, car il 
ne s’est fait aucun rétablissment inutile d´équilibre dans la calorique.9

                                                     
8  S. Carnot: [Reflections on the motive power of fire and on machines fitted to develop that 

power] à Paris chez Bachelier, Libraire. Quai des Augustin, No. 55 (1824). English 
translation by R.H. Thurston: ‘‘Reflections on the motive power of fire by Sadi Carnot and 
other papers on the second low of thermodynamics by É. Clapeyron and R. Clausius.” 
E. Mendoza (ed.) Dover Publ. New York (1960). pp. 1–59.

9  S. Carnot: ‘‘Réflexions…” loc.cit. p. 35. 
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The argument goes like this: Carnot plausibly postulates that a machine 
is optimal when the temperature of the working agent is always 
homogeneous and, if it changes in time, that change must be connected with 
a change in volume.10 Other changes in temperature are useless, and even 
detrimental. It is clear that the steam engine does not satisfy that optimality 
condition, since the cold feed-water from the condenser enters the hot 
boiler, so that a rétablissement inutile must occur. Actually Carnot shows a 
lot of insight and ingenuity here, because in a lengthy footnote he proposes 
to preheat the feed-water by condensing a part of the vapour after partial 
expansion and at a temperature intermediate between boiler and the 
principal condenser.11 This kind of feed-water preheating – actually in 
several steps – is done routinely in modern power stations; it is known as 
Carnotization of the steam engine process. To be sure, in order to be 
practical, the procedure requires expansion in a turbine, not in a steam 
cylinder, but the principle was recognized by Carnot. 

Concerning Carnot’s second proposition, – the one on the potential 
advantage of using an agent other than water – he comes to the conclusion 
that

When a Carnot engine is used, all agents  provide the same work. 
In Carnot’s words: La puissance motrice de la chaleur est indépendente 
des agens mis en oeuvre pour la réaliser ; sa quantité est fixée uniquement 
par les temperatures entre lesquels se fait en dernier résultat le transport 
du calorique.12

This statement is proved by letting two Carnot engines – with different 
agents, but the same heat exchanges, and in the same temperature range – 
work against each other, one as a heat engine and one as a refrigerator, or 
heat pump. If one engine requires more work than the other one produces, 
we should be able to create motive power without consumption either of 
caloric or of any other agent whatever. Such a creation is entirely contrary 
to ideas now accepted, to the laws of mechanics and of sound physics. It is 
inadmissible. It would be perpetual motion.13

It was his insight into the working of heat engines that permitted Carnot 
to come to these conclusions. For the above arguments it was quite 
irrelevant, whether he knew what heat was, – and he didn’t! Indeed, Carnot 
believed in the caloric theory of heat and he thought that the caloric 
entering the boiler came out of the cooler unchanged in amount. Therefore 
it was natural for Carnot to draw an analogy between the motive power of 
heat and that of a waterfall, – une chute d’eau, see Fig. 3.5. 

                                                     
10 S. Carnot: ibidem p. 23.
11 S. Carnot: ibidem p. 26.
12 S. Carnot: ibidem p. 38.
13 S. Carnot: ibidem p. 21. 
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                                                 … on peut comparer avec assez de justesse la
                                                 puissance motrice de la chaleur à celle d´une 
                                                 chute d´eau : toutes deux ont un maximum que 
                                                 l´on ne peut pas dépasser, quelle que soit d´une
                                                 part la machine employée à recevoir l´action
                                                 de l´eau, et quelle que soit de l´autre la substance
                                                 employée à recevoir l´action de la chaleur.
                                                 La puissance motrice d´une chute d´eau dépend
                                                 de sa hauteur et de la quantité du liquide;
                                                 la puissance motrice de la chaleur dépend aussi de
                                                 la quantité de calorique employé, et de ce
                                                 … que nous appellerons en effet la hauteur 
                                                 de sa chute, c´est-à-dire de la différence
                                                 de température…

Fig. 3.5.  Sadi Carnot. His reflections about the fall of heat14

This misconception, and the false information, which Carnot had about 
the specific heat of gases, and the latent heat of water vapour, invalidates 
much of the second half of his paper.15 He tied himself into knots over the 
specific heats of gases, which he thinks he can prove to be logarithmic 
functions of the density when in reality they are constants, independent of 
both density and temperature. 

However, Carnot did ask the right questions. Thus he was interested to 
know how the location of the temperature range of the Carnot engine 
affected the efficiency. He states that a given fall of the caloric [a given 
temperature difference] produces more motive power at inferior than at 
superior temperatures.16 This is true, but unfortunately Carnot invalidates 
the statement in his marginal analysis,17 where he proves that – for tempe-
rature-independent specific heats – the efficiency is independent of the 
temperature range. The whole argument is a mess. 

The best concrete result, which Carnot reached, concerned a Carnot 

engine working in the infinitesimal temperature range dt at t. In his notation 

the efficiency e is given by e = F (t)dt, where F (t) is a universal function, 

sometimes called the Carnot function. Carnot could not determine that 

function. Thus, although he proved that the efficiency of a Carnot engine is 

maximal, he did not know the value of the maximum, – not even for an 

infinitesimal cycle. The Carnot function, however, partly because of its 

universal character, provided a strong stimulus for further research on the 

                                                     
14 S. Carnot: ‘‘Réflexions…”  loc.cit. p. 28.
15 Carnot refers repeatedly to the experimental results of MM. Delaroche and Bérard, who 

thought that they had measured the specific heat of air to be dependent on pressure. We 
recall that Mayer was led to a wrong value of the mechanical equivalent of heat by 
measurements of the same two men, see Chap. 2.

16 S. Carnot: ‘‘Réflexions…”  loc.cit.  p. 72.
17 S. Carnot: ibidem pp. 73–78. 
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subject. Both Clapeyron and Kelvin  recognized the need to know the 

values of that function, but were frustrated in their attempts to either 

measure or calculate it, cf. Inserts 3.1, 3.2. The problem was left open for 

Clausius to solve – twenty five years after Carnot. 

It seems likely that Carnot, before publication of his work, did have 
second thoughts about the validity of his ‘‘Reflections”, particularly about 
the caloric theory. E. Mendoza who has had access to Carnot’s manuscript, 
quotes Carnot’s original summary, where Carnot concludes: The funda-
mental law that we have proposed … seems to us to have been placed 
beyond doubt.18 In the published version this triumphant sentence is 
replaced by the more thoughtful one: The fundamental law that we have 
proposed seems to us to require … new verification. It is based upon the  
theory of heat as it is understood today … [whose] foundation does not 
appear to be of unquestionable solidity. 

As it was, however, his book which he tried to sell for 3 francs, found no 
readers and Carnot would have been entirely forgotten, perhaps, were it not 
for Clapeyron, like Carnot a former student of the École Polytechnique. 

Benoît Pierre Émile Clapeyron (1799–1864) 

Mendoza20 writes that the list of men associated with the early period of the 
École Polytechnique in Paris – founded in 1794 as a school for army 
engineers – reads like the author index of a book on mathematical physics. 
Among the first instructors were Lagrange, Fourier, Laplace,  Berthollet, 
Ampère, Malus, and Dulong; among former students who stayed on as 
instructors were Cauchy, Arago, Désormes, Coriolis, Poisson, Gay-Lussac, 
Petit, and Lamé; other students included Fresnel, Biot, Sadi Carnot, and 
Clapeyron.  Maybe Clapeyron is not the most eminent one among these 
men, but his contribution was competent and he is remembered for it.

                                                     
18 E. Mendoza: Footnote to Carnot’s ‘‘Reflections”: Dover (1960) loc.cit p. 46.
19 E. Mendoza (ed.): Appendix to Carnot’s ‘‘Reflections”: Selection from the posthumous 

manuscripts of Carnot: Dover (1960) loc.cit. p. 60.
20 E. Mendoza : Introduction to Carnot’s ‘‘Reflections” Dover loc.cit. p. ix. 

Carnot died in 1832 at the age of 36 years in a cholera epidemic. He left 
behind unpublished notes, in which he shows himself sceptical of the 
caloric theory,19 and where he speculates  on the conversion of heat into 
work, on the conservation of motion, and on the impossibility to 
produce work by cooling a heat bath without transmitting heat to a reservoir 
of lower temperature. Had he lived longer, it seems likely that he might 

,have anticipated Clausius s work by nearly 30 years. 
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Clapeyron’s work21 is a big step forward from Carnot in clarity, but it 
marks time with respect to the caloric theory. An interesting feature of the 
work is the introduction of the graphical representation of reversible 
thermodynamic processes in a (pressure,volume)-diagram, such that the 
work of the process equals the area below its graph. This is a method of 
visualization which is still used today, see Fig. 3.4 above. Apart from that, 
Clapeyron’s analysis is also perfect. I believe that his paper could have 
become a classic, if only the physics had not been below par. 

However, even so,  for some arguments involving heat, it does not matter 
whether heat is caloric or motion. Thus Clapeyron was able to establish a 
valid relationship between the slope of the vapour pressure curve p(t) and 
the latent heat, or heat of evaporation R(t), see Insert 3.1. That relation 
contains the Carnot function F (t) and it makes it possible to find the values 
of that function, if only R(t) and p(t) are measured. Extensive measurements 
of that type were published by Regnault22 in 1847, but that did not help 
Clapeyron in 1834, of course. His results remain indeterminate, because as 
he says …unfortunately there are no experiments which allow us to 
determine the values of that function [the Carnot function] at all values of 
the temperature.

The Clausius-Clapeyron equation 

Clapeyron considered a Carnot process of wet steam. That process consists of 
horizontal isobars and steep adiabates. The isobars are also isotherms, since the 
vapour pressure depends only on temperature: p = p(t). If the process is 
infinitesimal – with the temperature difference dt, and the evaporation of the mass 
fraction dx of liquid water on the isothermal branch – we have 

R dx  – for the heat absorbed, and 

t

p

d

d dt [(V  – V )dx ] – for the work done. 

Fig. 3.6. (p,V)-diagram of infinitesimal Carnot process in wet steam 

R is the latent heat of evaporation  and dp is the height of the small cycle, cf. 
Fig. 3.6.

                                                     
21 E. Clapeyron: ‘‘Mémoire sur la puissance motrice de la chaleur”  Journal de l´École 

Polytechnique. Vol XIV (1834) pp. 153–190. Translations: (English) ‘‘Memoir on the 
motive power of heat.” Scientific Memoirs Vol. 1 (1837) pp. 347–376. (German) ‘‘Über 
die bewegende Kraft der Wärme.” Annalen der Physik und Chemie Vol 135 (1843).

22 H.V. Regnault: ‘‘Relations des expériences …pour déterminer les principales lois et les 
données numériques qui entrent dans le calcul des machines à vapeur.” Mémoires de 
l’Académie des Sciences de l´Institut de France , Paris, Vol. 21 (1847) pp. 1–748. 
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V  and V  are the volumes of the boiling water and of the saturated vapour of which 
the wet steam is composed.

The ratio of the two quantities is the efficiency e. And by Carnot’s results it is 
equal to e = F (t)dt, see above. Therefore we have 

d
' ( )

d '' '

p R
F t

t V V

.

Thus Carnot’s universal function could be calculated from measurements of R, of 

t

p

d

d , – the slope of the vapour pressure curve – and of the vapour volume V , all at 

temperature t.  Kelvin attempted such calculations, see below. 

Clausius found later – in 1850, cf. Insert 3.3 – that F (t) equals 
T

1 , where T is the 

absolute temperature, and therefore the relation

)''(d

d

VVT
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T

p

is called the Clausius-Clapeyron relation. Nowadays it is used to calculate the latent 
heat R of a new refrigerant (say) from the vapour pressure curve; the latter is easier 
to measure than R.

Insert 3.1 

William Thomson (1824–1907), Lord Kelvin since 1892 

Kelvin has accompanied the development of thermodynamics for more than 
half a century, starting from his graduation in 1845. He went to Paris after 
graduation to work and study under Regnault, the careful and influential 
experimenter, whom we have already mentioned. Later Kelvin encouraged 
and supported Joule, and together the two men discovered the Joule-
Thomson effect in real gases, see Chaps. 2 and 6. Kelvin suggested  the 
absolute temperature scale that bears his name, and he was a forerunner of 
the second law with the idea that there is a continuous degradation, or 
dissipation of energy into heat. However, Kelvin missed out himself on the 
paradigmatic changes23 in thermodynamics. To be sure, when they 
occurred, he was often the first, or one of the first, to interpret and rephrase 
them, and apply them. Therefore a history of thermodynamics is incomplete 
without a prominent place for Kelvin. Perhaps his greatest achievement is  
that he suggested the possibility of convective equilibrium, see Chap. 7,  

                                                     
23 This term has been made popular by Thomas S. Kuhn in his book: ‘‘The structure of 

scientific revolutions.” The University of Chicago Press, Chicago and London. Third 
edition (1996). 
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which goes a long way to determine the structure of stars and the conditions 
in the lower atmosphere of the earth. Another original result of his is the 
Thomson formula for super-saturation in the processes of boiling and 
condensation on account of surface energy. However, here I choose to 
highlight Kelvin’s capacity for original thought by a proposition he made 
for an absolute temperature scale, – an alternative to the Kelvin scale which 
we all know; see Insert 3.2. The proposition is intimately linked to the 
Carnot function F (t) which Kelvin attempted to calculate from Regnault’s 
data. The new scale would have been logarithmic, and absolute zero would 
have been pushed to - , a fact that gives the  proposition its charm. 

Kelvin’s alternative absolute temperature scale 

We recall the Carnot function F (t), a universal function of the temperature t, which 

neither Carnot nor Clapeyron had been able to determine. After Regnault’s data 

were published, Kelvin used them to calculate F (t) for 230 values of t between 0°C 

and 230°C.24 He proposed to rescale the temperature, and to introduce (t) such that 

the Carnot efficiency F (t)dt for a small fall dt of caloric would be equal to cd ,

where c is a constant, independent of t or . Kelvin found that feature appealing. He 

says: This [scale] may justly be termed an absolute scale. By integration (t) results 

as
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Had Kelvin been able to fit an analytic function to Regnault’s data, and to his 

calculations of F (t), he would have found a hyperbola 
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and his new scale would have been logarithmic: 
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(0) and c need to be determined by assigning -values to two fix-points, e.g. 

melting ice and boiling water.

However, not even the 230 values, which Kelvin possessed, were good enough 

to suggest the hyperbola in a convincing manner.

Therefore Kelvin had to wait for Clausius to determine F (t) in 1850, cf. 

Insert 3.3. When Kelvin’s papers were reprinted in 1882, he added a note in which 

indeed he proposes the logarithmic temperature scale. 

                                                     
24 W. Thomson: ‘‘On the absolute thermometric scale founded on Carnot’s theory of the 

motive power of heat, and calculated from Regnault’s observations.” Philosophical 
Magazine, Vol. 33 (1848) pp. 313–317. 
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Compared to this daring proposition Kelvin’s previous introduction of the 
absolute scale KtT

C

t
)273()(  seems straightforward, and rather plain. As it 

was, however, the logarithmic scale was never seriously considered, not even by 
Kelvin.

One might think that nobody really wanted the temperature scale on a 

30°C and +50°C the function (t) is nearly linear. And also, for t – 273°C the 

rescaled temperature tends to , which is not a bad value for the absolute 

minimum of temperature. One could almost wish that Kelvin’s proposition had 

been accepted. That would make it easier to explain to students why the minimum 

temperature cannot be reached. 

Insert 3.2 

Rudolf Julius Emmanuel Clausius (1822–1888) 

By 1850 the efforts of Rumford, Mayer, Joule and Helmholtz had finally 
succeeded to create an overwhelming feeling that something was wrong 
with the idea that heat passes from boiler to cooler unchanged in amount:
Some of the heat, in the passage, ought to be converted to work. But how to 
implement that new knowledge? Kelvin despaired: 25 If we abandon 
[Carnot’s] principle we meet with innumerable other difficulties … and an 
entire reconstruction of the theory of heat [is needed]. 

Clausius was less pessimistic: 26 I believe we should not be daunted 

by these difficulties. … [and] then, too, I do not think the difficulties are so 

serious as Thomson [Kelvin] does. And indeed, it took Clausius 

surprisingly slight touches in surprisingly few spots of Carnot’s and 

Clapeyron’s works to come up with an expression for the Carnot function 

F (t) which determines the efficiency e of a Carnot cycle between t and 

t+dt. We recall that Carnot had proved e=F (t)dt. And Clausius was the 

first person to argue convincingly that
TtC

otF 1

273

1)(  holds, cf. 

Insert 3.3.

                                                     
25 W. Thomson: ‘‘An account of Carnot’s theory of the motive power of heat.”  Transactions 

of the Royal Society of Edinburgh 16 (1849). pp. 5412–574.
26 R. Clausius: ‘‘Über die bewegende Kraft der Wärme und die Gesetze, welche sich daraus 

für die Wärme selbst ableiten lassen.” Annalen der Physik und Chemie 155 (1850). 
pp. 368–397. Translation by W.F. Magie: ‘‘On the motive power of heat, and on the laws 
which can be deduced from it for the theory of heat.” Dover (1960). Loc.cit. pp. 109–152. 

thermometer to look like a slide rule. Yet, in the meteorological range between 
–
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Clausius’s derivation of the internal energy 
and the calculation of the Carnot function 

When a body absorbs the heat dQ it changes the temperature by dt and the volume 

by dV, as dictated by the heat capacity Cv and the latent heat 27 so that we have 

                                            dQ = Cv(t,V) dt + (t,V) dV.

Truesdell, who had the knack of a pregnant expression, calls this equation the 

doctrine of the latent and specific heat.28 Applied to an infinitesimal Carnot process 

abcd this reads, cf. Fig. 3.7: 

ab (dV,dt=0)               d Qab   =  Cv (t,V)            dt  + (t,V)           dV

bc ( V,dt)                  d Qbc    = - Cv(t,V+dV) dt + (t,V+dV) V

cd (d V,dt=0)              d Qcd   =     Cv(t-dt,V+ V)dt  - (t-dt,V+ V)d V

da ( V,dt)                   d Qda  = Cv(t,V)            dt  - (t,V) V

All framed quantities are zero, since the process is composed of isotherms and 
adiabates. Thus with a little calculation – expanding the coefficients – Clausius 
arrived at formulae for 

                                                      heat exchanged:  d Qab+dQcd = ( )dtdV

                                                      heat absorbed:    d Qab = dV

                                                      work done: dp dV = 
t

p dV dt.

The work was calculated as the area of the parallelogram. 

By the first law the heat exchanged equals the work done: Hence

V

C

t

V  = 
t

p
or

V

C

t

p
V

)(
= 0 

which may be considered as the integrability condition of the differential form 

dU = Cv dt +(  – p) dV or dU = d Q – p dV.

Thus Clausius arrived at the notion of the state function internal energy U,
generally a function of t and V. Clausius assumed – correctly – that in an ideal gas
U depends only on t. Therefore = p holds and the efficiency e of the Carnot 
process is 

                                                     
27 In modern thermodynamics the term latent heat is reserved as a generic expression for the 

heat of a phase transition – like heat of melting, or heat of evaporation –, but this was not 
so in the 19th century.

28 C. Truesdell: ‘‘The tragicomical History of Thermodynamics 1822–1854”. Springer 
Verlag New York (1980) [The specific heat is the heat capacity per mass.]. 

Fig. 3.7. (p,V)-diagram of an infinitesimally small Carnot cycle in a gas. 
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C273

1

absorbedheat

donework

and the universal Carnot function F (t) is now calculated once and for all:

1 1
'( )

273 C
F t

t T

.

[It is true that Clausius in 1850 calculated the work done only for an ideal gas. The 
above generalization to an arbitrary fluid came in 1854.29]

Insert 3.3 

A change of U is either due to heat exchanged or work done, or both: 

dU = dQ – pdV.

With this relation the first law of thermodynamics finally left the 
compass of verbiage – like heat is motion or heat is equivalent to work, or 
impossibility of the perpetuum mobile, etc. – and was cast into a 

                                                     
29 R. Clausius: ‘‘Über eine veränderte Form des zweiten Hauptsatzes der mechanischen 

Wärmetheorie”. Annalen der Physik und Chemie 169 (1854). English translation: ‘‘On a 
modified form of the second fundamental theorem in the mechanical theory of heat.” 
Philosophical Magazine (4) 12, (1856).

30 It was Kelvin who, in 1851, has proposed the name energy for U: W. Thomson: ‘‘On the 
dynamical theory of heat, with numerical results deduced from Mr. Joule’s equivalent of a 
thermal unit, and M. Regnault’s observations on steam.” Transactions of the Royal 
Society of Edinburgh 20 (1851). p. 475. 
Clausius concurred: … in the sequel I shall call U  the energy. It is quite surprising that 
Clausius let himself be preceded by Kelvin in this matter, because Clausius himself was an 
inveterate name-fixer. He invented the virial for something or other in his theory of real 
gases, see Chap. 6, and he proposed the ergal as a word for the potential energy, which 
seemed too long for his taste. And, of course, he invented the word entropy, see below.

Notation and mode of reasoning of Clausius is nearly identical to that of 
Clapeyron with the one difference, – an essential difference indeed – that 
the total heat exchange of an infinitesimal Carnot cycle is not zero; rather it 
is equal to the work. Thus the heat Q is not a state function anymore, i.e. a 
function of t and V (say). To be sure, there is a state function, but it is not Q.
Clausius denotes it by U, cf. Insert 3.3, and he calls U the sum of the free 
heat and of the heat consumed in doing internal work, meaning the sum of 
the kinetic energies of all molecules and of the potential energy of the 
intermolecular forces. 30  Nowadays we say that U is the internal energy in
order to distinguish it from the kinetic energy of the flow of a fluid and 
from the potential energy of the fluid in a gravitational field. 
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mathematical equation, albeit for the special case of  reversible processes 
and for a closed system, i.e. a body of fixed mass. 

Clausius reasonably – and correctly – assumes that U is independent of V
in an ideal gas and a linear function of t, so that the specific heats are 
constant. Because, he says: …we are naturally led to take the view that the 
mutual attraction of the particles… no longer acts in gases, so that U does 
not feel how far apart the particles are, or how big the volume is. For an 
ideal gas we may write31

U(T,V) = U(TR) + m )(
R

k TTz ,

where TR is a reference temperature, usually chosen as 298K. The factor z
has the value 3/2,

5/2, and 3 for one-, two-, or more-atomic gases respectively.
Actually Clausius could have proved his view – at least as far as it relates 

to the V-independence of U – from Gay-Lussac’s experiment, mentioned in 
Chap. 2, on the adiabatic expansion of an ideal gas into an empty volume, 
where U must be unchanged after the process, and the temperature is 
observed to be unchanged, although the density does change, of course. As 
it is, Clausius mentions the (p,V,t)-relation of Mariotte and Gay-Lussac on 
every second page, but he seems to be unaware of Gay-Lussac’s expansion 
experiment, or he does not recognize its significance. 

High

Low

T

T
e 1 ,

so that even the maximal efficiency is smaller than one, unless TLow = 0 
holds of course, which, however, is clearly impractical. 

                                                     
31 This is a modern version which, once again, is somewhat anachronistic. Clausius was 

concerned with air and he used the poor value of the specific heat – given by Delaroche 
and Bérard – which had already haunted the works of Carnot and Mayer. 
To do full justice to the specific heats, even of ideal gases, one could write a book all by 
itself. But that would be a different book from the present one.

32 R. Clausius: (1854) loc.cit. 

In his paper of 1850, which we are discussing, Clausius deals with ideal 
gases and saturated vapour. Having determined the universal Carnot func-
tion, he is able to write the Clausius-Clapeyron equation, cf. Insert 3.1. Also 
he can obtain the adiabatic (p,V,t)-relation in an ideal gas, whose prototype 
is pV  = const, – well-known to all students of thermodynamics – where

= Cp/Cv is the ratio of specific heats. Later, in 1854,32 Clausius applies this 
knowledge to calculate the efficiency e of a Carnot cycle of an ideal gas in 
any range of temperature, no matter how big; certainly not infinitesimal. He 
obtains, cf. Insert 3.4 
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Efficiency of a Carnot cycle of a monatomic ideal gas 

We refer to Fig. 3.8 which shows a graphical representation of a Carnot cycle 
between temperatures THigh and TLow. For a monatomic ideal gas we have for the 
work and the heat exchanged on the four branches 

Fig. 3.8 Graph of a Carnot process
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The last equation results from the observation that 
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Insert 3.4 

With all this – by Clausius’s work of 1850 – thermodynamics acquired a 
distinctly modern appearance. His assumptions were quickly confirmed by 
experimenters,33 or by reference to older experiments, which Clausius had 
either not known, or not used. Nowadays a large part of a modern course on 
thermodynamics is based on that paper by Clausius: the part that deals with 
ideal gases, and a large portion of the part on wet steam.

For Clausius, however, that was only the beginning. He proceeded
 with two more papers34,35 in which he took five important steps forward: 

                                                     
33 W. Thomson, J.P. Joule: ‘‘On the thermal effects of fluids in motion.” Philosophical 

Transactions of the Royal Society of London 143 (1853).
34 R. Clausius: (1854) loc.cit.
35 R. Clausius: ‘‘Über verschiedene für die Anwendungen bequeme Formen der 

Hauptgleichungen der mechanischen Wärmetheorie”. Poggendorff’s Annalen der Physik 
125 (1865). English translation by R.B. Lindsay:  On different forms of the fundamental 
equations  of  the  mechanical  theory  of  heat  and  their  convenience  for application .  In:

 ‘‘The Second Law of Thermodynamics.” J. Kestin (ed.), Stroudsburgh (Pa), Dowden 
Hutchinson and Ross (1976). 
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Among the people, whom we are discussing in this book, Clausius was 
the first one who lived and worked entirely in the place that was to become 
the natural habitat of the scientist: The autonomous university with tenured 
professors,37 often as public or civil servants. With Clausius the time of 
doctor-brewer-soldier-spy had come to an end, at least in thermodynamics. 
General and compulsory education had begun and universities sprang up to 
satisfy the need for higher education and they had to be staffed.  Thus one 
killed two birds with one stone: When a professor was no good as a 
scientist, he could at least teach and thus earn part of his keep. On the other 
hand, if  he was good, the teaching duties left him enough time to do 
research.38 Clausius belonged to the latter category. He was a professor in 
Zürich and Bonn, and his achievements are considerable: He helped to 
create the kinetic theory of ideal and real gases and, of course, he was the 
discoverer of entropy and the second law. His work on the kinetic theory 
was largely eclipsed by the progress made in that field by Maxwell in 
England and Boltzmann in Vienna. And in his work on thermodynamics he 
had to fight off numerous objections and claims of priority by other people, 
who had thought, or said, or written something similar at about the same 
time. By and large Clausius was successful in those disputes. Brush calls 
Clausius one of the outstanding physicists of the nineteenth century.39

                                                     
36 Reversible processes are those – in the present context of single fluids – in which 

temperature and pressure are always homogeneous, i.e. spatially constant, throughout the 
process, and therefore equal to temperature and pressure at the boundary. If that process 
runs backwards in time, the heat absorbed is reversed (sic) into heat emitted, or vice versa. 
A hallmark of the reversible process is the expression -pdV for the work dW. That
expression for dW is not valid for an irreversible process, which may exhibit turbulence, 
shear stresses and temperature gradients inside the cylinder of an engine (say) during 
expansion or compression. Irreversibility usually results from rapid heating and working. 

37 Tenure was intended to protect freedom of thought as much as to guarantee financial 
security.

38 The system worked fairly well for one hundred years before it was undermined by job-
seekers or frustrated managers, who failed in their industrial career. They are without 
scientific ability or interest, and spend their time attending committee meetings, 
reformulating curricula, and tending their gardens.

39 Stephen G. Brush: ‘‘Kinetic Theory” Vol I. Pergamon Press, Oxford (1965). 

away from infinitesimal Carnot cycles  away from ideal gases  
away from Carnot cycles altogether,  away from cycles of whatever 

type, and  away from reversible processes.  In the end he came up with the 
concept of entropy and the properties of entropy, and that is his greatest 
achievement. We shall presently review his progress. 

36
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Second Law of Thermodynamics 

Clausius keeps his criticism of Carnot mild when he says that … Carnot
has formed a peculiar opinion [of the transformation of heat in a cycle]. He 
sets out to correct that opinion, starting from an axiom which has become 
known as the second law of thermodynamics:

Heat cannot pass by itself from a colder  to a warmer body. 

This statement, suggestive though it is, has often been criticized as 
vague. And indeed, Clausius himself did not feel entirely satisfied with it. 
Or else he would not have tried to make the sentence more rigorous in a 
page-long comment, which, however, only succeeds in removing whatever 
suggestiveness the original statement may have had.40 We need not go 
deeper into this because, after all, in the end there will be an unequivocal 
mathematical statement of the second law.

The technique of exploitation of the axiom makes use of Carnot’s idea of 
letting two reversible Carnot machines compete, – one a heat engine and the 
other one a heat pump, or refrigerator, cf. Fig. 3.9; the pump becomes an 
engine when it is reversed and vice versa; and the heats exchanged are 
changing sign upon reversal. Both machines work in the temperature range 
between TLow and THigh and one produces the work which the other one 
consumes, cf. Fig. 3.9. Thus Clausius concludes that both machines must 
exchange the same amounts of heat at both temperatures, lest heat flow 
from cold to hot, which is forbidden by the axiom. So the efficiencies of 
both machines are equal, – if they work as heat engines. And, since nothing 
is said about the working agents in them, the efficiency must be universal. 
So far this is all much like Carnot’s argument.

Fig. 3.9. Clausius’s competing reversible Carnot engines 

                                                     
40 E.g. see  R. Clausius: ‘‘Die mechanische Wärmetheorie” [The mechanical theory of heat] 

(3.ed.) Vieweg Verlag, Braunschweig (1887)  p. 34. 
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But then, unlike Carnot, Clausius knew that the work WO of the heat 
engine is the difference between Qboiler and |Qcooler| so that the efficiency of 
any engine, – not necessarily a reversible Carnot engine – is given by 

                            1

QW coolerO

e
Q Qboiler boiler

.

Low

cooler

High

boiler

T

Q

T

Q
  . 

It is clear from this equation that it is not the heat that passes through a 
Carnot engine unchanged in amount; rather it is Q/T , the entropy.

Clausius sees two types of transformations going on in the heat engine: 
The conversion of heat into work, and the passage of heat of high 
temperature to that of low temperature. Therefore in 186541 he proposes to 

call
T

Q  the entropy, … after the Greek word  = transformation, or 

change and he denotes it by S. He says that he has intentionally chosen the 
word to be similar to energy, because he feels that the two quantities … are
closely related in their physical meaning. Well, maybe they appeared so to 
Clausius. However, it seems very much the question, in what way two 
quantities with different dimensions can be close.

The last equation shows that |Qcooler| cannot be zero, except for the 
impractical case TLow = 0. Thus even for the optimal engine – the Carnot 
engine – there must be a cooler. Far from getting more work than the heat 
supplied to the boiler, we now see that we cannot even get that much: The 
boiler heat cannot all be converted into work. Therefore we cannot gain 
work by just cooling a single heat reservoir, like the sea. Students of 
thermodynamics like to express the situation by saying, rather flippantly: 

1st  law: You cannot win. 
2nd law: You cannot even break even.

All of this still refers to cycles, or actually Carnot cycles. In Insert 3.5 we 
show in the shortest possible manner, how Clausius extrapolated these 
results to arbitrary cycles, and how he was able to consolidate the notion of 
entropy as a state function S(T,V), whose significance is not restricted to 
cycles. The final result is the mathematical expression of the second law 

                                                     
41 R. Clausius: (1865) loc.cit. 

Qcooler could conceivably be zero; at least, if it were, that would  not  contradict
 the first law, which only forbids WO to be bigger than Qboiler. However, if the
 engine is a reversible Carnot engine with its universal efficiency, that 
efficiency is equal to that of an ideal gas – see above – so that we must have
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and it is an inequality: For a process from (TB,VB)  to (TE, VE)  the entropy 
growth cannot be smaller than the sum of heats exchanged divided by the 
temperature, where they are exchanged: 

   S(TE,VE) – S(TB,VB)
E

B
T

Qd
   [equality holds for reversible processes]. 

Since Qcooler< 0, the relation 

may be writ ten  as 0

QQ Q Q
co o lerb o iler b o iler co o ler

T T T T
L o w L o wH ig h H ig h

.

In order to extrapolate this relation away from Carnot cycles to arbitrary cycles, 
Clausius decomposed such an arbitrary cycle into Carnot cycles with infinitesimal 
isothermal steps, cf. Fig.3.10. On those steps the heat dQ is exchanged such that 
dS=dQ/T is passing from the warm side to the cold one. Summation – or integration 
– thus leads to the equation 

d
d 0

Q
S

T

Hence follows for an open reversible process – not a cycle – between the points B
and E

( , ) ( , )

E

E E B B

B

dQ
S T V S T V

T
,

where S(TE,VE) – S(TB,VB) is independent of the path from B to E, so that the entropy 
function S(T,V) is a state function. After the internal energy U(T,V) this is the 
second state function discovered by Clausius. 

Fig. 3.10. Smooth cycle decomposed into narrow Carnot cycles 

It remains to learn how this relation is affected by irreversibility. For that 
purpose Clausius reverted to the two competing Carnot engines, – one driving the 
other one. But now, one of them, the heat engine, was supposed to work 
irreversibly. In that case the process in the heat engine cannot be represented by a 

Clausius’ s  derivation of the second law 
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graph in a (p,V)-diagram, and therefore we show it schematically in Fig. 3.11. It 
turns out that the system of two engines contradicts Clausius’s axiom, if the heat 
pump absorbs more heat at the low temperature than the heat engine delivers there. 
And now the reverse case cannot be excluded, because the engine changes its heat 
exchanges when it is made to work as a pump. Therefore for the irreversible heat 
engine we have

Q Q
b o iler co o ler

T T
L o wH ig h

It follows that the efficiency of the irreversible engine is lower than that of the 
reversible engine, and a fortiori – by the same sequence of arguments as before – 
that in an arbitrary irreversible process between points B and E we have

( , ) ( , )

E dQ
S T V S T V

E E B B
TB

 .

The two relations for the change of entropy – one for the reversible and the other 
for the irreversible process – may be combined in a single alternative, as we have 
done in the main text..

Fig. 3.11. Two competing Carnot engines with an irreversible heat engine 

Insert 3.5 

Exploitation of the Second Law 

An important corollary of the second law concerns a reversible process 
between B and E, when those two point are infinitesimally close. In that 
case we have

T

Q
S

d
d

and when we eliminate dQ between that relation and the first law in the 
form dQ = (dU + pdV), we obtain

dS =
T

1
(dU + pdV).

0 ,
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This equation is called the Gibbs equation.42 Its importance can hardly be 
overestimated; it saves time and money and it is literally worth billions to 
the chemical industry, because it reduces drastically the number of 
measurements, which must be made in order to determine the internal 
energy U = U(T,V) as a function of T and V.

 Let us consider this: 
Both the thermal equation of statep=p(T,V) and the caloric equation of 

state U = U(T,V) are needed explicitly for the calculation of nearly all 
thermodynamic processes, and they must be measured. Now, it is easy – at 
least in principle – to determine the thermal equation, because p, T, and V
are all measurable quantities and they need only be put down in tables, or 
diagrams, or – in modern times – on CD’s.  But that is not so with the 
caloric equation, because U is not measurable. U(T,V) must be calculated 
from caloric measurements of the heat capacities CV (T,V) and Cp(T,V). Such 
measurements are difficult and time-consuming, – hence expensive – and 
they are unreliable to boot. And this is where the Gibbs equation helps. It 
helps to reduce – drastically – the number of caloric measurements needed,  
cf. Insert 3.6 and Insert 3.7. 

Calculating U(T,V) from measurements of heat capacities

The heat capacities CV  and Cp  are defined by the equation dQ = CdT. Thus they 
determine the temperature change of a mass for a given application of heat dQ at 
either constant V or p. In this way CV and Cp can be measured. By dQ = dU + p dV , 
and since we do know that U is a function of T and V – we just do not know the 
form of that function – we may write 

a n d o r
V p

V V T V

U U U V
C C p

T T V T

a n d .
p V

V

V T

p

C CU U
C p

VT V

T

                   . 

Having measured CV(T,V) and Cp(T,V) and p(T,V) we may thus calculate U(T,V) by 
integration to within an additive constant. 

The integrability condition implied by the Gibbs equation provides 

T

p
Tp

V

U .

Hence follows that the V-dependence of U , hence Cp, need not be measured: It 
may be calculated from the thermal equation of state. Moreover, differentiation 
with respect to T  provides the equation

                                                     
42 Actually the equation was first written and exploited by Clausius, but Gibbs extended it to 

mixtures, see Chap. 5; the extension became known as Gibbs’s fundamental equation and, 
as  time went by, that name was also used for the special case of a single body. 
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2

2

V

T V

C p
T

V T

,

so that the V-dependence of CV  is also determined by p(T,V). Therefore the only 
caloric measurements needed are those of CV as a function of T  for one volume, V0

(say). The number of caloric measurements is therefore considerably reduced, and 
that is a direct result of the Gibbs equation and the second law. 

Insert 3.6 

calculate the entropy S(T,V), or S(T,p) – by integration of the Gibbs 
equation – to within an additive constant. Thus for an ideal gas of mass m
we obtain 

( , ) ( , ) ( 1) ln ln
R R

R R

k T k p
S T p S T p m z

T pµ µ .

Therefore the entropy of an ideal gas grows with lnT and lnV: The 
isothermal expansion of a gas increases its entropy. 

Clausius-Clapeyron equation revisited 

If the Gibbs equation is applied to the reversible evaporation of a liquid under 
constant pressure – and temperature – it may be written in the form 

(U-TS+pV)  =  (U-TS+pV)  , 

U-TS+pV, called free enthalpy or Gibbs free energy, is continuous across the 

interface between liquid and vapour, along with T and p. Therefore the vapour 

pressure must be a function of temperature only. We have p=p(T) and the 

derivative of that function is given by the Clausius-Clapeyron equation, cf. 

Insert 3.1. When we realize that the heat of evaporation equals  R=T(S -S ),  we 

may write the Clausius-Clapeyron equation in the form

T

p
Tp

VV

UU

d

d ,

which is clearly – for steam – the analogue to the integrability condition of 
Insert. 3.6. The relation permits us to dispense with measurements of the latent heat 
of steam and to replace them with the much easier (p,T)-measurements.

Insert 3.7 

                                                     
43 Such an attitude is not uncommon in other branches of physics as well. Thus in mechanics 

there is a school of thought that considers Newton’s  law F = m a as the definition of the 
force rather than a physical law between measurable quantities. 

There is a school of thermodynamicists – the axiomatists – who thrive on formal 
arguments, and who would never let considerations of measurability enter their 
thoughts.43 One can hear members of that school say, that the temperature T is 

Once we know the thermal and caloric equations of state we may

 where, once again,  and  characterize liquid and vapour. Thus the combination 
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now come to another important corollary, namely that the entropy in an 
adiabatic process, – where dQ = 0 holds –, cannot decrease. It grows until 
it reaches a maximum. We know from experience that, when we leave 
an adiabatic system alone, it tends to a state of homogeneity – the 
equilibrium, – in which all driving forces for heat conduction and expansion 
have run down.44 That is the state of maximum entropy.

And so Clausius could summarize his work in the triumphant slogan: 45

Die Energie der Welt ist constant. 
Die Entropie der Welt strebt einem Maximum zu. 

Die Welt [the universe] was chosen in this statement as being the ultimate 
thermodynamic system, which presumably is not subject to heating and 
working, so that dU = 0 holds, as well as dS > 0. 

So the world has a purpose, or a destination, the heat death, see Fig. 3.12, 
not an attractive end! 

                                                    It is often said that the world goes in a circle …such
                                          that the same states are always reproduced. Therefore 
                                          the world could exist forever. The second law 
                                          contradicts this idea most resolutely … The entropy
                                          tends to a maximum. The more closely that maximum 
                                          is approached, the less cause for change exists. And
                                          when the maximum is reached, no further changes can
                                          occur; the world is then in a dead stagnant state. 

Fig. 3.12. Rudolf Clausius and his contemplation of the heat death 

                                                     
44 See Chap. 5 for a formal proof and for an explanation of what exactly homogeneity means.
45 R. Clausius: (1865) loc.cit. p. 400. 

defined as VS
U )( . That interpretation of the Gibbs equation ignores the fact that we 

should never know anything about either U or S, let alone U=U(S,V), unless we had 
determined them first by measurements of p,V,T, and CV(T,V0) in the manner 
described above.

Actually, the measurability of T is a consequence of its continuity at a diathermic 
wall, i.e. a wall permeable for heat. That continuity is the real defining property of 
temperature, and it gives temperature its central role in thermodynamics. 

The chief witness of the formal interpretation of temperature is Gibbs, 
unfortunately, the illustrious pioneer of thermodynamics of mixtures. He, however, 
for all his acumen, was an inveterate theoretician, and I believe that he never made 
a single thermodynamic measurement in his whole life. We shall come back to this 
discussion in the context of chemical potentials, cf. Chap. 5, which have a lot in 
common with temperature. 

Continuing our discussion of the consequences of the second law, we
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Terroristic Nimbus of Entropy and Second Law 

Concerning the heat death modern science does not seem to have made up 
its mind entirely. Asimov46 writes: 

Though the laws of thermodynamics stand as firmly as ever, cosmologists 
…[show] a certain willingness to suspend judgement on the matter of heat 
death.

At his time, however, Clausius’s predictions were much discussed. The 
teleological character of the entropy aroused quite some interest, not only 
among physicists, but also among philosophers, historians, sociologists and 
economists. The gamut of  reactions ranged from uneasiness about the bleak 
prospect to pessimism confirmed. Let us hear about three of the more 
colourful opinions: 

The physicist Josef Loschmidt (1821–1895)47 deplored 

… the terroristic nimbus of the second law …, which lets it appear as a 
destructive principle of all life in the universe. 48

Oswald Spengler (1880–1936), the historian and philosopher of history 
devotes a paragraph of his book ‘‘The Decline of the West” 49  to entropy. 
He thinks that … the entropy firmly belongs to the multifarious symbols of 
decline, and in the growth of entropy toward the heat death he sees the 

The end of the world as the completion of an inevitable evolution – that is 

And the historian Henry Adams (1838–1918) – an apostle of human 
degeneracy, and the author of a meta-thermodynamics of history – com-
mented on entropy for the benefit of the ordinary, non-educated historian. 
He says:

…. this merely means that the ash-heap becomes ever bigger. 

                                                     
46 I. Asimov: ‘‘Biographies” loc.cit. p. 364.
47  J. Loschmidt: ‘‘Über den Zustand des Wärmegleichgewichts eines Systems von Körpern 

mit Rücksicht auf die Schwerkraft.” [On the state of the equilibrium of heat of a system of 
bodies in regard to gravitation.] Sitzungsberichte der Akademie der Wissenschaften in 
Wien, Abteilung 2, 73: pp. 128–142, 366–372 (1876), 75: pp. 287–298, (1877), 76: 
pp. 205–209, (1878).

48 If the author of this book had had his way in the discussion with the publisher, this citation 
of Loschmidt would have been either the title or the subtitle  of the book. But, alas, we all 
have to yield to the idiosyncrasies of our real-time terrorists, – and to the show of paranoia 
by our opinionators.

49 O. Spengler: ‘‘Der Untergang des Abendlandes: Kapitel VI. Faustische und Apollinische 
Naturerkenntnis. § 14: Die Entropie und der Mythos der Götterdämmerung.”  Beck’sche 
Verlagsbuchhandlung. München (1919) pp. 601–607. 

the twilight of the gods. Thus the doctrine of entropy is the last, irreligious 

scientific equivalent of the twilight of the gods of Germanic mythology:

version of the myth.
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Well, maybe it does. But then, Adams was an inveterate pessimist, to the 
extent even that he looked upon optimism as a sure symptom of idiocy.50

The entropy and its properties have not ceased to stimulate original 
thought throughout science to this day: 

biologists calculate the entropy increase in the diversification of 
species,
economists use entropy for estimating the distribution of goods,51

ecologists talk about the dissipation of resources in terms of entropy, 
sociologists ascribe an entropy of mixing to the integration of ethnic 
groups and a heat of mixing to their tendency to segregate.52

It is true that there is the danger of a lack of intellectual thoroughness in 
such extrapolations. Each one ought to be examined properly for mere 
shallow analogies. 

Modern Version of Zero
th

, First and Second Laws 

Even though the historical development of thermodynamics makes inter-
esting reading, it does not provide a full understanding of some of the 
subtleties in the field. Thus the early researchers invariably do not make it 

body. Nor do they state clearly that the T and the p occurring in their 
equations, or inequalities, are the homogeneous temperature and the homo-
geneous pressure on the surface which may or may not be equal to those in 
the interior of the body; they are equal in equilibrium or in reversible 
processes, i.e. slow processes, but not otherwise.

The kinetic energy of the flow field inside the body is never mentioned 
by either Carnot or Clausius although, of course, its conversion into heat 
was paramount in the minds of Mayer, Joule and Helmholtz. 

All this had to be cleaned up and incorporated into a systematic theory. 
That was a somewhat thankless task, taken on by scientists like Duhem, and

                                                     
50 According to S.G. Brush: ‘‘The Temperature of History. Phases of Science and Culture in 

the Nineteenth century.”  Burt Franklin & Co. New York (1978).
51 N. Georgescu-Roegen: ‘‘The Entropy Law and the Economic Process.” Harvard 

University Press, Cambridge, Mass (1971).
52 I. Müller, W. Weiss: ‘‘Entropy and Energy – A Universal Competition, Chap. 20: Socio-

thermodynamics.” Springer, Heidelberg, (2005).
A simplified version of socio-thermodynamics is presented at the end of Chap. 5. 

clear that the heat dQ and the work dW  are applied to the surface of the 
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Jaumann 53  and Lohr.54,55 These people recognized the first and second laws 
for what they are: Balance equations, or conservation laws on a par – for-
mally – with the balance equations of mass and momentum.

Generically an equation of balance for some quantity dVρψΨ in a 

volume  V , whose surface V – with the outer normal ni – moves with the 
velocity ui, has the form 

dd))((d
d

d
.

 is the mass density and  is the specific value of  , such that is the 

density of .56
i

integral, ( i – ui)ni is the convective flux of  through the surface 

element dA and ini is the non-convective flux. is the source density of ;

it vanishes for conservation laws.

For mass, momentum, energy, and entropy the generic quantities in the 
equation of balance have values that may be read off from Table 3.1. 

tli is called the stress tensor, whose leading term is the pressure –p li ; that 
is the only term in tli, if viscous stresses are ignored. Ekin is the kinetic energy 
of the flow field and qi is the heat flux. Mass, momentum and energy are 
conserved, so that their source-densities vanish.57 Note that the internal 
energy is not conserved, because it may be converted into kinetic energy. 
The entropy source is assumed non-negative which represents the growth 
property of entropy. 

                                                     
53 G. Jaumann: ‘‘Geschlossenes System physikalischer und chemischer Differentialgesetze” 

[Closed system of physical and chemical differential laws] Sitzungsbericht Akademie der 
Wissenschaften Wien, 12 (IIa) (1911).

54 E. Lohr: ‘‘Entropie und geschlossenes Gleichungssystem” [Entropy and closed system] 
Denkschrift der Akademie der Wissenschaften, 93 (1926).

55 While Lohr is largely forgotten, Gustav Jaumann (1863–1924) lives on in the memory of 
mechanicians as the author of the Jaumann derivative, a ‘‘co-rotational” time derivative, 
i.e. the rate of change of some quantity –  like density or velocity – as seen by an observer 
locally  moving and rotating with the body; that derivative plays an important role in 
rheology and in theories of plasticity. Jaumann was a student of Ernst Mach and carried 
Mach’s prejudice against atoms far into the 20th century, thus making himself an outsider 
of any serious scientific circle. He died in a mountaineering accident.

56 It has become customary in thermodynamics to denote global quantities – those referring 
to the whole body – by capital letters, and specific quantities – referred to the mass – by 
the corresponding minuscules.

57 We ignore gravitation and radiation. See, however, Chap. 7, where radiation is treated. 
Gravitation changes thermodynamic in some subtle and, indeed, interesting ways, since 
the pressure field cannot be homogeneous in equilibrium, – neither on V, nor in V.
However, here is not the place to treat gravitational effects, because we do not wish to 
encumber our arguments. Let is suffice to say that in gases and vapours the gravitational 
effects are usually so small as to be negligible.

V

 The velocity of the body, a fluid (say), is . In the surface  



Table 3.1. Canonical notation for specific values of mass, momentum, energy and entropy 
and their fluxes and sources 

In order to clarify the special status of Clausius’s first law, the equation 
for dU, we first observe that viscous forces did not enter Clausius’s mind in 
connection with the first law. Also he considered closed systems, whose 
surfaces move with the velocity of the body on the surface so that no 
convective flux appears. Therefore Clausius would have written the 
equation of balance of energy in the form 

t

EU
kin

d

)(d

V

ii
AnqQ d   is the heating, and 

AnpW

V

ii
d  is the working of pressure.

The balance of internal energy should then have the form 

int

d

d
WQ

t

U
 where V

x
pW

V l

l
dint  is the internal working.

becomes59

                                                     
58 This form of the entropy flux is nearly universally accepted, although the kinetic theory of 

gases furnishes a different form; the difference is small and we ignore it for the time 
being. See, however, Chap. 4.

59 Note that 
d

ddd .

i

mass m 1 0 0 
momentum Pl l –tli 0

energy U + Ekin u+1/2

2 –tli +qi
0

internal energy 
U

u qi

entropy S s
T
qi 58 0
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Q W , where

If we assume that the pressure is homogeneous on V,  the first  equation 
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t

V
pQ

t

EU
kin

d

d

d

)(d ;

and if we assume that the pressure is homogeneous throughout V, the 
second equation becomes

t

V
pQ

t

U

d

d

d

d .

By comparison it follows that, for a homogeneous pressure p in V, there 
is no change of kinetic energy of the flow field which, of course, is 
reasonable. Indeed, according to the momentum balance, there is no 
acceleration in this case. Thus now, under all these restrictive assumptions – 

and with QtQ dd  – we have obtained the Clausius form of the first law.
All these assumptions were tacitly made by Clausius, and his 

forerunners, and the majority of his followers to this very day. Indeed, 
among students thermodynamics has acquired the reputation of a difficult 
subject just because of the many tacit assumptions. The difficulty is not 
inherent in the field, however; it is due to sloppy teaching.

According to Table 3.1, the entropy balance contains a non-negative 
source density and a non-convective flux which is assumed to be given by 

T

q
i , so that we may write 

0d
d

d

V

ii
A

T

nq

t

S
.

This inequality is known as the Clausius-Duhem inequality. If T is homo-
geneous on V, we may write 

AnqQ
T

Q

t

S

V

ii
dwhere,0

d

d

and that is – again with Q dt = dQ  – the form obtained by Clausius. He  

considered only this case. If T is not homogeneous on V , the natural 
extension of his inequality was conceived by Pierre Maurice Marie Duhem 
(1861–1916).

Duhem was professor of theoretical physics in Bordeaux. He worked successfully 
in thermodynamics at the time when Gibbs was still unknown in Europe. However, 
he is also known as a philosopher of science, who expressed the view that the laws 
of physics are but symbolic constructions, neither true nor wrong representations of 
reality. He advocated metaphysical hypotheses for a provisional understanding of 
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is continuous at a diathermic wall, i.e. a wall permeable to heat. The 
Clausius-Duhem inequality on the other hand implies that the normal 

component of 
T

q
i is also continuous, provided that no entropy is produced in 

the wall. Therefore T must also be continuous. In this manner the zeroth law, 
cf. Chap. 1, may be said to represent a corollary of the Clausius-Duhem 
inequality. Its continuity is the defining property of temperature, and by 
virtue of the continuity, the temperature is measurable by contact 
thermometers. That is the reason why temperature plays a privileged role 
among thermodynamic variables. We shall review this role of temperature 
in Chap. 8, cf. Insert 8.3. 

What is Entropy ?  

A physicist likes to be able to grasp his concepts plausibly and on an 
intuitive level. In that respect, however,  the entropy – for all its proven and 

recognized importance – is a disappointment. The formula  
T

Q
S

d
d  does 

not lend itself to a suggestive interpretation.
What is needed for the modern student of physics, is an interpretation in 

terms of atoms and molecules. Like with temperature: It is all very well to 
explain that temperature is defined by its continuity at a diathermic wall, 
but the ‘‘ahaa”-experience comes only after it is clear that temperature 
measures the mean kinetic energy of the molecules, – and then it comes 
immediately.

Such a molecular interpretation of entropy was missing in the work of 
Clausius. It arrived, however, with  Boltzmann, although one must admit, 
that the interpretation of entropy was considerable more subtle than that of 
temperature. Let us consider this in the next chapter. 

                                                     
60 K.R. Popper: ‘‘Objective knowledge – an evolutionary approach.” Clarendon Press, 

Oxford (1972). 

nature. Somehow Duhem’s ideas found their way from Bordeaux to Vienna, where 
they were welcomed by Ernst Mach who thought that science should concentrate 
exclusively on finding relations between observed phenomena, see Chap. 4. 
Duhem’s thoughts helped to underpin this kind of positivistic thinking in what 
became known as the Vienna circle, a niche for philosophers belly-aching about 
truth in the laws of natural science. A latter-day representative of the school was 
Karl Raimund Popper (1902–1994) – Sir Karl since 1964 – in whose writings the 
dilemma is largely reduced to the question of how, or whether, and why we know 
that the sun will rise tomorrow, after approximately 90,000 pulse beats, – or will it 
everywhere and always? Popper wrote a book about this important problem.60

The energy balance implies that the normal component of the heat flux qi
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Greek and Roman philosophers had conceived of atoms, and they 
developed the idea in more detail than we are usually led to believe. In the 
thinking of Leukippus and Demokritus in the 5th and 4th century B.C., the 
atoms of air move in all directions, and only occasionally they change their 
paths when they hit each other. To the ancients this fairly modern view 
implied a kind of determinism, which was incompatible with the idea of 
God, or gods, playing out their pranks, benevolent or otherwise. Therefore 
in later times, in the hands of Epicurus (341–270 B.C.) and Lucretius  
(95–55 B.C.), the atomistic philosophy of the “Natura Rerum” – this is the 
title of Lucretius’s long poem – adopted an anti-religious and even atheistic 
flavour, which rendered it politically and socially unacceptable. Therefore 
atomism faded away, and in the end it came to represent no more than a 
footnote in ancient philosophy. 

In the Age of Reason, by the work of Pierre Simon Marquis de Laplace 
(1749–1827), determinism came back with a vengeance in the form of 
Laplace’s demon: … an intelligent creature capable of knowing all forces 
… and all places of all things in the world, and equipped with the 
intelligence to analyse those data. Thus he can evaluate the motion of the 
greatest celestial bodies as well as of the tiniest atom; nothing is hidden for 
this demon: future and past lie open to his eyes.

And just like in antiquity, this kind of determinism was considered as 
running counter to religion. Laplace was a minister under Napoléon, to 
whom he presented a part of his voluminous “Traité de Mécanique 
Céleste.” Napoléon is supposed to have remarked that he saw no mention of 
God in the book. I had no need of that hypothesis said Laplace. When 
Lagrange1 – a colleague and frequent co-worker of Laplace – heard about 
this exchange, he exclaimed: Ah, but it is a beautiful hypothesis just the 
same. It explains so many things.

Those enlightened men of post-revolutionary France clearly had their fun 
at the expense of religion. 

                                                     
1 Joseph Louis Comte de Lagrange (1736–1813) was an eminent mechanician and 

mathematician. Napoléon made him a count to reward him for his achievements. 
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Renaissance of the Atom in Chemistry 

And yet, when the concept of atoms was firmly established – at least in 
chemistry – that was the achievement of a devout Quaker, John Dalton 
(1766–1844). Dalton proposed that, in a chemical reaction, atoms combine 
to form molecules of a compound without losing their identity. Using the 
evidence collected by others, notably by Joseph Louis Proust (1754–1826), 
Dalton was able to determine the relative atomic and molecular masses of 
many elements and compounds. Once conceived, the ideas is extremely 
simple to explain and exploit: Carbon monoxide is made from carbon and 
oxygen in the definite proportion of 3 to 4 by mass, or weight. Thus, if we 
believe that carbon monoxide molecules are made up of one atom each of 
carbon and oxygen, the oxygen atom must be 1.33 times as massive as the 
carbon atom, which is correct. 

Occasionally this type of reasoning can go wrong, however, as it did for 
Dalton with hydrogen and oxygen that form water in the proportion of 1 to 
8. Thus Dalton concluded that the oxygen atom is 8 times as massive as the 
hydrogen atom. The proper number is 16, as we all know, because water 
has two hydrogen atoms for one oxygen atom. We shall soon see how that 
error was ironed out by Gay-Lussac and Avogadro.

In 1808 Dalton published his results in a book “New System of Chemical 
Philosophy”, in which he gave relative atomic and molecular masses, most 
of them correct.

The absolute mass – in kg (say) – of the atoms could not be had in that 
way, and it took another half century before that was found. We shall come 
to this shortly. 

Dalton’s atoms were rather immediately accepted by chemists. However, 
some hard-nosed physicists waged a losing battle against the atomic hypo-
thesis that lasted all through the 19th century. 

                                                     
2 Later the reference mass was based on the oxygen atom and still later – now – on the 

carbon atom. The reasons do not concern us, and the changes of Mr are minute. 

It became common practice to denote by Mr the ratio of the mass µ of any atom or 
molecule to the mass µo of a hydrogen atom.2 And Mrg is defined as the mass of 
what is called a “mol”. If a mol contains L molecules, so that its mass is Lµ, we 
have

Mrg = Lµ        and hence L = 
o

g1
.

Therefore a mol of any element or compound has the same number of atoms or 
molecules.
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Dalton was colour-blind and he studied
                                                            that condition, which is sometimes still 
                                                            called Daltonism. 

When he was presented to King
                                                           William IV, Dalton’s Quaker ethics did not 
                                                            allow him to put on the required colourful 
                                                            court dress. His friends had to convince
                                                            him that the dress was grey before
                                                            the ceremony could go ahead.

Fig. 4.1.   John Dalton 

For ideal gases there is a kind of corollary to Dalton’s law of definite pro-
portions, and that helped to correct Dalton’s errors, e.g. the one on the 
composition of water. The chemist Gay-Lussac – pioneer of the thermal 
equation of state of ideal gases – was dealing with reactions, whose 
reactants are all gases; he found, that simple and definite proportions also 
hold for volumes. Thus one litre of hydrogen combines with one litre of 
chlorine, both at the same pressure and temperature, and give hydrogen 
chloride. Or two litres of hydrogen and one litre of oxygen combine to  
water, or three litres of hydrogen and one litre of nitrogen provide 
ammonia. These observations could most easily be understood by assuming 
that equal volumes contain equal numbers of atoms or molecules. Therefore 
the water molecule should contain two hydrogen atoms, – not one (!) – and 
ammonia should contain three. That conclusion was drawn by the chemist 
Jöns Jakob Berzelius (1779–1848) from Stockholm, and by Amadeo 
Avogadro (1776–1850), Conte di Quaregna. Avogadro was the physicist 
who is responsible for the mantra still taught to schoolchildren: 

 

Also Avogadro was first to use the words atom and molecule in the sense 
we are used to. Berzelius, on the other hand, is the chemist who introduced 
the now familiar nomenclature, like H2O for water, or NH3 for ammonia. 

So, chemistry – such as it was at those days – had been put into perfect 
shape in a short time by the use of the concept of atoms. But, alas, such is 
human nature that Dalton, who had started it all, was pretty much the only 
chemist who could not bring himself to accept Gay-Lussac’s and 
Avogadro’s and Berzelius’s reasoning and nomenclature. He stuck to his 
view that water contained only one hydrogen atom, and to a cumbersome 
notation.

Equal volumes of different gases at the same pressure and temperature contain equally many particles. 
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Elementary Kinetic Theory of Gases 

In physics it was Daniel Bernoulli (1700–1782), who first put to use the 
ancient atomistic idea of the randomly flying molecules of a gas. He 
explained the pressure of a gas on the wall of the container by the change of 
momentum of the molecules during their incessant bombardment of the 
wall. Bernoulli also related the temperature to the square of the (mean) 
speed of the molecules, and he was thus able to interpret the thermal 
equation of state of ideal gases, – the law found by Boyle, Mariotte, 
Amontons, Charles, and Gay-Lussac.

Daniel Bernoulli came from a family of illustrious mathematicians. His 
father Johann (1667–1748) started variational calculus, and his uncle Jakob 
(1654–1705) progressed significantly in the calculus of probability; he 
discovered the law of large numbers, and is the author of the Bernoulli
distribution, whose limit for large numbers is the Gauss distribution or – in 
a gas – the Maxwell distribution, which is so important in the kinetic theory 
of gases. Also Jakob solved the non-linear ordinary differential equation, 
which carries his name and which we shall encounter in Chap. 8 in the 
context of acceleration waves. Daniel’s best-remembered theorem is the 
Bernoulli equation, which states that the pressure of an incompressible fluid 
drops when the speed increases. The theorem is part of Daniel Bernoulli’s 
book on hydrodynamics – published in 1738 – in which the kinetic theory 
of gases represents Sect. 10.3 That section was largely ignored by scientists, 
and it sank into oblivion for more than a century. 

Two other pioneers of the kinetic theory of gases fared no better. They 
were John Herapath (1790–1868), an engineer and amateur scientist and 
John James Waterston (1811–1883), a military instructor in the services of 
the East India Company in Bombay. The former did a little less than what 
Bernoulli had done and the latter did a little more. Both sent their works to 
the Royal Society of London for publication in the Philosophical Trans-
actions and both found themselves rejected. Waterston received a less than 
complimentary evaluation to the effect that his work was nothing but 
nonsense.4 ,5

                                                     
3  D. Bernoulli: “Hydrodynamica, sive de vivibus et motibus  fluidorum commentarii. Sectio 

decima: De affectionibus atque motibus fluidorum elasticorum, praecique autem aëris’’. 
English translation of Sect. 10: “On the properties and motions of elastic fluids, 
particularly air”. In S. Brush: “Kinetic theory’’ Vol I, Pergamon Press, Oxford (1965). 

4  According to D. Lindley: “Boltzmann’s atom”. The Free Press, New York (2001), p. 1.
5  S.G. Brush reviews, at some length, the efforts of both scientist to publish their works in 

his comprehensive memoir: “The kind of motion we call heat, a history of the kinetic 
theory of gases in the 19th century” Vol I pp. 107–159. North Holland Publishing 
Company, Amsterdam (1976). 
Brush reports that Lord Rayleigh found Waterston’s paper in the archives of the Royal 
Society, and published it in 1893, 48 years after it was submitted. Rayleigh added an 
introduction in which he gave good advise for junior scientists by saying that
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…. highly speculative investigations, especially by an unknown author, are best 
brought before the world through some other channel than a scientific society. 

Rayleigh praises the marvellous courage of the author, i.e. Waterston, and provides some 
additional council:

A young author, who believes himself capable of great things, would usually do  
well to secure the favourable recognition of the scientific world by work whose 
scope is limited, and whose value is easily judged, before embarking on higher 
flights.

I do not know whether Lord Raleigh was serious, when he wrote these sentences, or 
whether, perhaps, he was being sarcastic.

6  J.C. Maxwell: “On the dynamical theory of gases”. Philosophical Transactions of the Royal 
Society of London 157 (1867). 

7 R. Clausius: “Über die Art der Bewegung, welche wir Wärme nennen,” Annalen der 
Physik 100, (1857) pp. 353–380. 

8 S.G. Brush: “The kind of motion we call heat.” loc.cit. 
9 A.K. Krönig: “Grundzüge einer Theorie der Gase’’. [Basic theory of gases]     Annalen der 

Physik 99 (1856), p. 315.
10 J.P. Joule: “Remarks on the heat and the constitution of elastic fluids”. Memoirs of the  

Manchester Literary and Philosophical Society. November 1851. Reprinted in 
Philosophical Magazine. Series IV, Vol. XIV (1857), p. 211. 

However, in the 1850’s the kinetic theory gained some ground. Clausius 
wrote his influential paper – later much praised by Maxwell 6 – “On the 
kind of motion we call heat” 7 which provided a clearly written and quite 
convincing kinetic interpretation  of temperature,  of the thermal equation 
of state of a gas,  of adiabatic heating upon compression,  of the liquid 
and solid state of matter in terms of molecular motion, and  of 
condensation and evaporation. Stephen Brush has chosen Clausius’s title as 
the motto and main title for his comprehensive two-volume history of the 
kinetic theory of gases.  Actually Clausius had been anticipated by August 
Karl Krönig (1822—1879),  – at least in the derivation of the equation of 
state and in the interpretation of temperature. Krönig had considered a 
strongly simplified caricature of a gas in which the particles all move with 
the same speed and in only six directions – orthogonal to the six walls of a 
rectangular box – see Insert 4.1. Even earlier, Joule had described a 
similarly simple model in 1851.  It seems that Joule was the first to show 
that the mean speed c of the molecules of a gas at temperature T is such 
that kTc 2

32
2 holds. At room temperature c  is thus of the order of 

magnitude of several hundred meters per second. That result met with 
considerable scepticism which was aired most poignantly by Christoph 
Hendrik Diederik Buys-Ballot (1817-1890), a meteorologist with a butler. 
He argued that

8

9

10
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… if he were sitting at one end of a long dining room and a butler brought 
in dinner at the other end, it would be some moments before he could 

per second … he should smell the dinner as soon as he saw it.

Clausius was able to answer that objection by arguing that the molecules of 
the fragrant dinner fumes – like all gas molecules – do not fly on straight 
lines for any great length of time. They collide with other molecules and are 
turned sideways and backwards, and those deflections lead to a zig-zag path 
of an atom, which is much longer between two given points than the 
distance of the points. Therefore, the atom needs more time between those 
points along its path than it would, if it did not collide. In making this 
argument Clausius developed the concept of the mean free path l of an atom 
or a molecule:11 If the particle is imagined to be a spherical billiard ball of 
radius r, it sweeps out a cylinder of volume l r2  between two collisions – in 
the mean – so that such a cylinder should contain just one other particle. 
Therefore, we must have l r2n 1, where n=N/V is the number density of 
particles. Hence follows the mean free path l and Clausius suspected its 
value to be a small fraction of a millimetre for a gas under normal 
conditions of p=1atm and T=298 K (say). But he could not be sure, since r
and n were unknown. Therefore his argument remained somewhat 
inconclusive.

Mean speed of molecules

We consider an ideal gas at rest in a rectangular box of volume V = LD2 with the 
number density N/V of atoms and assume that the inter-atomic forces are 
negligible. The pressure p of the gas on the walls results from the bombardment 
with gas atoms. –pD2 is the force of the right wall on the gas. By Newton’s law that 
force is equal to the rate of change of momentum of the atoms that hit the area D2.
For simplicity we assume that all atoms have the same speed c and that one sixth 
of them are flying perpendicular to each of the six walls. The change of momentum 
of a single atom of mass µ in an elastic collision with the right wall of area D2 is

equal to c2  and the collision rate on that wall is 
V

N
Dc

6

12 . Therefore the rate 

of change of momentum is 

                                                     
11 R. Clausius: “Über die mittlere Länge der Wege, welche bei Molekularbewegung  

gasförmiger Körper von den einzelnen Molekülen zurückgelegt werden, nebst einigen 
anderen Bemerkungen über die mechanische Wärmetheorie”. Annalen der Physik (2) 105 
(1858) pp. 239–258. English translation: “On the mean free path of the molecular motion 
in gaseous bodies; also other remarks on the mechanical theory of heat.’’ In S. Brush: 
“Kinetic theory.” Vol I, Pergamon Press, Oxford (1965). 

smell what he was about to eat. If atoms were flying at hundreds of meters 
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                                                This must be set equal to  –pD2  and it follows that 
2

3

1 cpV .

Fig. 4.2.  On the pressure of a gas 

Comparison with the thermal equation of state of an ideal gas provides

Tc k2

3

1

Therefore the mean kinetic energy of the atoms equals kT
2

3 .
Consider air 12 in V =1m3 and with the mass m=1.2kg, the mass of air in 1m3 at  

p = 1atm and T = 298 K: We obtain c  = 503m/s and that may be considered the 
mean speed of the air molecules. 

Insert 4.1 

So, now it became imperative to determine how many particles there are 
in a given volume of a gas in some agreed-upon reference state of pressure 
and temperature. To be sure, one mol contains L = 1g/µ0 particles but how 
big is µ0, the mass of a hydrogen atom? 

Avogadro’s observation meant that the thermal equation of state of a gas 
contains a universal constant. We may put that equation into the form pV =
NkT , where – according to Avogadro – k is a universal constant, now called 
the Boltzmann constant.13 The value of k was unknown, since N was 
unknown and not measurable. Of course, one might try to be clever and 
replace the particle number N by the mass m = Nµ of the gas. The mass can
be measured by weighing, but that does not help, because in terms of mass 
the formula reads pV = m k/µT and thus, while k/µ may now be calculated, k
and µ individually are still unknown. 

Actually, that was the dilemma of the atomic hypothesis which delayed 
its acceptance among physicists: The whole idea had too much of a 
hypothetical flavour; neither the masses of the atoms were known, nor their 
radii r, nor was it known how many there were in a given volume. It is true 
that the speeds of the particles were known, see above, but the distances and 
the distances between collisions were again unknown. 

                                                     
12 Air is made up of molecules, not atoms. Moreover, in air there are at least two types of 

molecules, nitrogen and oxygen. But this does not matter for the present consideration of 
orders of magnitude. 

13 Boltzmann had just been born when Avogadro died. At that time the universal constant 
was called the ideal gas constant, denoted by R which is k/µ0. I avoid that constant and 
trust that the reader will tolerate the anachronism, perhaps. 



86    4  Entropie as S = k ln W

One could do something about the radius, because it seemed to be a good 
assumption, that in the liquid phase, where the density liq was known, the 
particles lay close together so that liqr

3 µ had to hold, at least by order of 
magnitude. But, once again, that determines r only, if µ is known and vice 
versa. Thus the game seemed to be destined to go on and on in an vicious 
spiral: Each new thought added a new quantity which could not be 
determined unless one of the previous quantities was known. 

However, now the end of the spiral was near, because Maxwell did 
calculate the viscosity  of a gas. He obtained cl

V

N

3

1 , cf. Insert 4.3, 

and could be measured. Thus now we have 5 equations for the 5 
unknowns k, N, µ, r, l viz. 

,
pV

k
NT

,Nm liq r3 = µ, 2
1,

N
l r

V
π 1

3

N
lc

V
η µ .

It was Josef Loschmidt14 (1821–1895) who recognized that Maxwell’s 
formula for the viscosity could be used to close the argument, and he 
calculated the missing values. I have repeated Loschmidt’s calculation for 1 
litre of air at p = 1atm, T = 298K, m = 1.2 10–3kg, c = 503m/s, cf. Insert 
4.1, and with liq 103kg/m3 and = 1.8 10–5Ns/m2 – all measurable, or 
calculable, or reasonably estimable values – and have obtained 

-23J/K, N = 3.2 1022, µ = 37.8 10-27kg,   r = 3.4 10-10m, l = 0.9 10-7m.

Since air is a mixture of particles with an average relative molecular 
mass Mr = 29, the mass of the hydrogen atom comes out as µ0 = 1.3 10-27kg
and therefore the number of particles in a mol is L = 7.7 1023. That number 
is officially called the Avogadro number, although in Austria and Germany, 
where Loschmidt lived, it is also known as the Loschmidt number. None of 
these values is really good by modern standards, due to the coarseness of 
the assumptions and of the input values. Even so, the orders of magnitude 
are fine,15 and that was all physicists could do in the mid-nineteenth century. 

It was Kelvin who emphasized the enormous size of the number most 
poignantly, when he suggested to dilute a glass full of marked water 
molecules with all the water of the seven seas. Afterwards each glass of sea 
water would still contain about 100 marked molecules!

                                                     
14 J. Loschmidt: 

„

Zur Grösse der Luftmolecüle.

“

 [On the size of air molecules] Zeitschrift für 
mathematische Physik 10, (1865), p. 511. 

15 The modern value of the Avogadro constant is  L = 6.0221367 1023, so that we have 
µ0 = 1.660540 10–27kg. The proper value of the Boltzmann constant is k = 1.38044 10–23J/K.

k = 1.1 10
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James Clerk Maxwell (1831–1879) 

None of the scientists before Maxwell had recognized in his calculations 
that the atoms of a gas move with different speeds. This was not because 
they thought that the speeds were all equal. Rather they did not know how 
to account for different speeds mathematically. This changed when 
Maxwell took up the question. 

In a recent biography16 we read that there are no anecdotes to tell about 
Maxwell because he led a quiet life, devoted to his family and science. And
he died prematurely of cancer at the age of only 48 years. The interest in his 
person is based on the admiration of his scientific work. Indeed, Maxwell 
was a genius – both as a mathematician and as a physicist – who is best 
known for his formulation of the equations governing electro-magnetism, a 
theory of vast scientific and technical importance, without which modern 
life would be inconceivable, see Chap. 2 above. Boltzmann, Maxwell’s 
congenial contemporary, and occasional correspondent was so much moved 
to enthusiasm over the Maxwell equations – that is what they are called to 
this day – that he exclaimed: War es ein Gott, der diese Zeichen schrieb?17

Maxwell had put the keystone on Faraday’s collection of the phenomena of 
electro-magnetism and suggested that light were an electro-magnetic 
phenomenon, – truly a revolutionary discovery. We have discussed this in 
Chap. 2. 

However, here it is not Maxwell’s electro-magnetism that is of interest. 
Rather it is his equally profound – albeit, perhaps, less momentous – con-
tribution to the kinetic theory of gases.18 In an early work Maxwell – 
stimulated by the offer of an award in an open competition – had studied the 
rings of Saturn.19 He proved that they could not consist of flat, hollow disks. 
Such rigid disks would be broken up by tidal forces. Therefore, what 
appeared to be solid rings, had to consist of numerous small solid rocks and 
icy lumps that travel around Saturn on elliptical orbits like so many 
satellites, which have different orbital speeds. Occasionally the lumps might 
collide and thus be kicked inwards or outwards, thereby carrying their 
orbital momentum into the faster or slower adjacent ellipses. Maxwell 
became well-known by winning the competition. Also the work found him 

                                                     
16 Giulio Peruzzi: “Maxwell, der Begründer der Elektrodynamik” [Maxwell the   founder of 

electrodynamics] Spektrum der Wissenschaften, German edition of Scientific American. 
Biografie 2 (2000).

17 Was it a God who wrote these marks? This is a quotation from Goethe’s Faust.
18 Maxwell wrote several papers on the kinetic theory. Here we are concerned with the first 

one: J.C. Maxwell: “Illustrations of the dynamical theory of gases.” Philosophical 
Magazine 19 and 20, both (1860).

19 J.C. Maxwell: “On theories of the constitution of Saturn’s rings.” Proceedings of the 
Royal Society of Edinburgh IV  (1859).
J.C. Maxwell: “On the Stability of the Motion of Saturn’s Rings.” An Essay which 
obtained the Adams Prize for the year 1856, in the University of Cambridge.
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well-acquainted with the properties of swarms of particles when he turned 
his attention to gases.

i i

atoms in a gas that have velocity components in the i-direction between ci

and ci + dci, and he proved, cf. Insert 4.2, that the form of the function (ci)
in equilibrium is given by a Gaussian, whose peak lies at zero velocity and 
whose height and width is determined by temperature 

2
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c
i

cequ i
k kT

T

µ
ϕ

π µ
,         ( = 1,2,3). 

The  fraction  of atoms with velocities  between  (c1, c2, c3)  and (c1 + dc1,
dc2,  c3 + dc3) is then a function of the speed c
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Accordingly the fraction of atoms Fequ(c)dc with speeds between c and 
c + dc is given by

2 2

3

4
exp

2
2

( )
equ

c c
dc

kTk
T

F c dc
π µ

π µ
.

Thus most atoms have a small velocities and only few are moving fast. 
But small speeds are also rare, since only few velocities represent small 

speeds. The mean speed follows as .Tc k3 20

All three of these equilibrium distribution functions are often called 
Maxwell distributions, or simply Maxwellians. 

The Maxwell distribution 

Consider a gas of N atoms in the volume V which is at rest as a whole and 
possesses the internal energy U = N 3/2 kT, because the atoms have velocities 
(c1,c2,c3). The gas is in equilibrium, and therefore homogeneous with an isotropic 
distribution of atomic velocities.

Let equ(ci)dci be the fraction of atoms with the velocity component i between ci

and ci + dci,, such that equ(c1) equ(c2) equ(c3) determines the fraction of atoms with the 

                                                     
20 Actually this is the root mean square velocity. There are slight differences between c , and 

the mean speed, and the most probable speed which we ignore. 

Maxwell introduced the function (c )dc ( i = 1,2,3) for the fraction of 

c2 +

i
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velocity (c1,c2,c3). Because of isotropy that product can only depend on the speed 
2 2 2

1 2 3
c c c c . We thus have 

n(c) = equ(c1) equ(c2) equ(c3).

Logarithmic differentiation with respect to ci provides

i
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i
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n

c d

lnd1

d

lnd1  , 

such that both sides must be constants. Hence follows by integration 
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The two constants A and B may be calculated from 
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Insert 4.2 

Brush21 says that Maxwell’s derivation of the equilibrium distribution – 
replayed in Insert 4.2 – mystified his contemporaries because of its novelty 
and originality and he suggests. ... that the proof may have been simply 
copied from a book on statistics by Quételet 22 or from a review  
[of that book] by Herschel in the Edinburgh Review.23 In that review  
John Herschel, – the son of the eminent astronomer Friedrich Wilhelm 
Herschel (1738–1822) – calculates the probability of the deviation of a ball 
dropped from a height in order to hit a mark; his analysis is very similar to 

Then, still in the same paper, Maxwell proceeded to propose an 
ingenious interpretation for the friction in a gas, cf. Insert 4.3.24 That 
interpretation could have been motivated by the investigation of Saturn’s 
rings, although they are not mentioned in the paper. Newton had assumed 

in the ether for that matter – is proportional to the value of the velocity 

                                                     
21 S.G. Brush: (1976) loc.cit. p. 342.
22 A. Quételet: “La théorie des probabilités appliquées aux sciences morales et politiques”.
23 J. Herschel: Edinburgh Review 92 (1850).
24 Insert 4.3 presents a caricature of Maxwell’s argument, which I have found useful when 

explaining the mechanism of gaseous friction to students.

Maxwell’s. 

that the force needed to maintain a velocity gradient in a fluid or a gas – or 
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gradient. The factor of proportionality is the viscosity  and it is a common 
experience that the viscosity, or shear resistance of water (say), or honey 
decreases with increasing temperature. The same behaviour was expected 
for gases. 

Viscous friction in a gas, a caricature 

The mechanics of viscous friction can be appreciated from the consideration of two 
trains of equal masses M with velocities V1 and V2 passing each other on parallel 
adjacent tracks. People change the momentum of the trains by stepping from one to 
the other at the equal mass rate µ in both directions. Upon arrival in the new train, a 
person must support himself against either the forward or the backward wall in 
order to stay on his feet. Thereby he accelerates or brakes the new train, and thus 
the two trains eventually equalize their velocities. The equations of motion for the 
trains read 
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)
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(

hence
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dt
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It follows that the velocity difference of the trains decreases exponentially due to a 
“shear force” proportional to the actual value of the difference. The jumping rate µ
is the factor of proportionality; if it increases, the braking is more efficient. 

Basically the same argument was used by Maxwell to calculate the shear force 
between two gas layers moving with a y-dependent flow velocity V(y) in the x-
direction. The result reads 

y

V
cl

d

d

3

1 ,

atoms which jump between the layers, much like the passengers of the train model 
do.

Insert 4.3 

We have anticipated Maxwell’s result for the viscosity cl
V

N

3

1

above, when we reported Loschmidt’s calculation of the size of the air 
molecules. c  here is the mean speed of the atoms – at least in order of 
magnitude – and l is the mean free path which we have previously 
introduced by the equation 2

1N Vl rπ . Thus the viscosity is independent of 
the density of the gas and it grows with temperature, since the mean speed 

is proportional to T , see above. Maxwell says …this consequence of a 
mathematical theory is quite surprising and he was doubtful, because … the 

where  is the mass density and l the mean free path, c is the mean  speed  of the 
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only experiment which I know does not seem to confirm the result. In the 
event, however, the theory was right and the experiment was wrong. 
Maxwell had been too timid and Boltzmann says when he reports the  
event:25

… observations revealed only the lack of confidence of Maxwell in the 
power of his own weapons. 

It is true that the viscosity of liquids drops with growing temperature, but 
for gases this relationship is reversed. When this was confirmed by new 
experiments – by Maxwell himself – the fact provided a boost of confidence 
in the kinetic theory of gases. To be sure, the square root growth of  on 
temperature is an artifact of the simple model. In 1867 Maxwell revisited 
the argument in a more systematic manner, when he derived equations of 
transfer with collision terms, 26 see below. For that purpose he had to study 
the dynamics of a binary collision between two atoms interacting at a short 
distance r with a repulsive force of the type 1/rs 27 . It turned out that the 
temperature dependence of the viscosity is then given by Tn with n = 

2

1

1

2

s
. An infinite value of s corresponds to the billiard ball model, while 

concluded from his own experiments that  was proportional to T, which 
must have been wishful thinking, because forces of the type 1/r5 make for a 
particularly simple form of the collision term in the equations of transfer, 
see below.28

There is an element of probability in the kinetic theory, or the mechanical 
theory of heat, which was previously absent from mechanics: Indeed, when 
we say that N (ci)dci is the number of atoms with the i-component ci of
velocity, we do not expect that statement to be strictly true. Since the atoms 
are perpetually changing their velocities in frequent collisions, the number 
of atoms with ci is fluctuating and N (ci)dci is merely the mean value or 
expectation value of that number. Accordingly (ci)dci is the probability for 
a single atom to have the velocity component ci.. Assuming that the velocity 
components of an atom are independent we have that

(c1) (c2) (c3)dc1dc2dc3

is the probability of an atom to have the velocity (c1,c2,c3). So physicists had 
to learn the rules of probability calculus. For some of them there were 

                                                     
25 L. Boltzmann: “Der zweite Hauptsatz der mechanischen Wärmetheorie’’ [The second law 

of the mechanical theory of heat]. Lecture given at the Kaiserliche Akademie der 
Wissenschaften on May 29, 1886.

26 J.C. Maxwell: loc.cit. (1867).
27 Actually in reality the force has repulsive and attractive branches, see below. However, for 

a rarefied gas the simple power potential is often good enough.
28 Modern measurements give n a value of about 0.8;  for argon n is equal to 0.816. 

s=5 corresponds  to  the so-called  Maxwellian  molecules. Maxwell 
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peculiar scruples. So also for Maxwell, a deeply religious man with the 
somewhat bigoted ethics that often accompanies piety. In a letter he wrote: 

… [probability calculus], of which we usually assume that it refers only to
gambling, dicing, and betting, and should therefore be wholly immoral, is 
the only mathematics for practical people which we should be. 

The Boltzmann Factor. Equipartition 

True to that recommendation Maxwell employed probabilistic arguments 
when he returned to the kinetic theory in 1867. Indeed, probabilistic 
reasoning led him to an alternative derivation of the equilibrium  
distribution – different from the derivation indicated in Insert 4.2 above. 
The new argument concerns elastic collisions of two atoms with energies 

21
2

2
2 , which after the collision have the energies 

21
2

2
2 , .

Boltzmann was not satisfied. He acknowledges Maxwell’s arguments and 
calls them difficult to understand because of excessive brevity. Therefore he 
repeats them in his own way, and extends them. Let us consider his 
reasoning:29 Boltzmann concentrates on energy in general – rather than only 
translational kinetic energy – by considering G(E)dE, the fraction of atoms 
between E and E+dE. The transition probability P that two atoms – with E
and E1 – collide and afterwards move off with E , E 1 is obviously30

proportional to G(E) G(E1). Therefore we have 

1 1

1

, ,
( ) ( )

E E E E
P cG E G E .

The probability for the inverse transition is 31

1 1

1

, ,
( ) ( )

E E E E
P cG E G E .

In equilibrium both transition probabilities must be equal so that lnG(E)
is a summational collision invariant. Indeed, in equilibrium we have

                                                     
29 L. Boltzmann: “Studien über das Gleichgewicht der lebendigen Kraft zwischen bewegten 

materiellen Punkten.” [Studies on the equilibrium of kinetic energy between moving 
material points] Wiener Berichte 58 (1868) pp. 517–560.

30 Actually, what is obvious to one person is not always obvious to others. And so there is a 
never-ending but fruitless discussion about the validity of this multiplicative ansatz. 

31 The most difficult thing to prove in the argument is that the factors of proportionality – 
here denoted by c – are equal in both formulae. We skip that.

1 1 1 1
( ) ( ) ( ) ( ) hence ln ( ) ln ( ) ln ( ) ln ( ) .G E G E G E G E G E G E G E G E
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Since E itself is also such an invariant – because of energy conservation 
during the collision – it follows that lnGequ(E) must be a linear function of E,
i.e.

1
( ) exp( ) exp

equ

E
G E a bE

kT kT
.

The constants a and b follow from the requirement 

0 0

( )d 1   and   ( )d
equ equ

G E E EG E E kT .

Boltzmann noticed – and could prove – that the argument is largely 
independent of the nature of the energy E. Thus E may simply be equal to 

2

2
c  – as it was for Maxwell – but then it may also contain the three 

additive contributions of the rotational energy of a molecule and the 
contributions of the kinetic and elastic energy of a vibrating molecule. 
According to Boltzmann all these energies contribute the equal amount  
1/2kT – on average – to the energy U of a body. This became known as the 
equipartition theorem.

The problem was only that the theory did not jibe with experiments. To 
be sure, the specific heat cv = of a monatomic gas was 3/2kT but for a two-

atomic gas experiments showed it to be equal to 5/2kT when it should have 
been 3kT. Boltzmann decided that the rotation about the connecting axis of 
the atoms should be unaffected by collisions, thus begging the question, as 
it were, since he did not know why that should be so. And vibration did not 
seem to contribute at all. The problem remained unsolved until quantum 
mechanics solved it, cf. Chap. 7. 

If Boltzmann was not satisfied with Maxwell’s treatment, Maxwell was 
not entirely happy with Boltzmann’s improvement. Here we have an 
example for a fruitful competition between two eminent scientists. 

Maxwell acknowledges Boltzmann’s ingenious treatment [which] is, as 
far as I can see, satisfactory:32 But he says: … a problem of such primary 
importance in molecular science should be scrutinized and examined on 
every side…This is more especially necessary when the assumptions relate 
to the degree of irregularity to be expected in the motion of a system whose 
motion is not completely known. And indeed, Maxwell’s treatment does 
offer two interesting new aspects:

                                                     
32 J.C. Maxwell: “On Boltzmann’s theorem on the average distribution of energy in a system 

of material points.” Cambridge Philosophical Society’s Transactions XII (1879). 
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equilibrium distribution of molecules of the earth’s atmosphere which reads 

2

3

1
exp

22
equ

k

c gz
f

kT kTTµ

µ µ
π

 . 

The second exponential factor is also known as the barometric formula,
it determines the fall of density with height in an isothermal atmosphere. In 
the same paper Maxwell provided a new aspect of a statistical treatment, 
which foreshadows Gibbs’s canonical ensemble, see below.

So between them, Boltzmann and Maxwell derived what is now known 
as the

Boltzmann  factor : exp
E

kT
.

It represents the ratio of probabilities for states that differ in energy by  
E – in equilibrium, of course.

For practical purposes in physics, chemistry, and materials science the 
Boltzmann factor is perhaps Boltzmann’s most important contribution; it is 
more readily applicable than his statistical interpretation of entropy, 
although the latter is infinitely more profound philosophically. We proceed 
to consider this now.

Ludwig Eduard Boltzmann (1844–1906) 

For those who had reservations about probability in physics, bad times were 
looming, and they arrived with Boltzmann’s most important work.33

Maxwell and Boltzmann worked on the kinetic theory of gases at about 
the same time in a slightly different manner and they achieved largely the 
same results, – all except one! That one result, which escaped Maxwell, 
concerned entropy and its statistical or probabilistic interpretation. It 
provides a deep insight into the strategy of nature and explains 
irreversibility. That interpretation of entropy is Boltzmann’s greatest 
achievement, and it places him among the foremost scientists of all times. 

                                                     
33 L. Boltzmann: “Weitere Studien über das Wärmegleichgewicht unter Gasmolekülen”.

[Further studies about the heat equilibrium among gas molecules] Sitzungsberichte der 
Akademie der Wissenschaften Wien (II) 66 (1872) pp. 275–370.

He extends Boltzmann’s argument to particles in an external field, 
the force field of gravitation (say), and thus could come up with the 
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Boltzmann about Maxwell: 
immer höher wogt das Chaos

                                                                   der Formeln.34

Maxwell about Boltzmann: 
                                                                   ... I am much inclined to put the
                                                                   whole business in about six lines

Fig. 4.3.  James Clerk Maxwell 

Maxwell had derived equations of transfer for moments of the 
distribution function in 1867,35 and Boltzmann in 1872 formulated the 
transport equation for the distribution function itself, which carries his 
name. What emerged was the Maxwell-Boltzmann transport theory, so 
called by Brush.36 Neither Maxwell’s nor Boltzmann’s memoirs are marvels 
of clarity and systematic thought and presentation, and both privately 
criticized each other for that, cf. Fig. 4.3. Therefore we proceed to present 
the equations and results in an modern form. The knowledge of hindsight 
permits us to be brief, but still it is inevitable that we write lengthy formulae 
in the main text, which is otherwise avoided. Basic is the distribution 
function f(x,c,t) which denotes the number density of atoms at the point x
and time t which have velocity c. The Boltzmann equation is an integro-
differential equation for that function 

1 1 1
( ) sin

i

i

f f
c f f ff g d d dc

t x
σ θ θ ϕ .

The right hand side is due to collisions of atoms with velocities c and c1

which, after the collision, have velocities c  and c 1. The angle  identifies 
the plane of the binary interaction, while  is related to the angle of 
deflection of the path of an atom in the collision. ranges between 0 and 

/2. is the cross section for a ( , )-collision and g is the relative speed of 
the colliding atoms. The f s in the collision integral are the values of the 
distribution function for the velocities c , c 1 and c, c1 respectively as 

                                                     
34 …ever higher surges the chaos of  formulae.
35 J.C. Maxwell: (1867) loc.cit.
36 S.G. Brush: (1976) loc.cit. p. 422 ff.
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indicated. The form of the collision term represents the Stosszahlansatz37

which was mentioned before; it is particularly simple for Maxwellian 
molecules, because in their case g is a function of  only, rather than a 

function of  and g. The combination 11
ffff in the integrand reflects 

the difference of the probabilities for collisions

c c  1  cc 1 and cc 1  c c  1.

This must have been easy for Boltzmann, since logically it is adapted from 
the argument which he had used before for the derivation of the Boltzmann 
factor, see above.

Generic equations of transfer follow from the Boltzmann equation by 
multiplication by a function (x,c,t) and integration over c. We obtain
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This equation has the form of a balance law for the generic quantity  with 

    density            cdf ,

    flux cdfc
k

,

    intrinsic source d
k

k

c f
t x

ψ ψ
c , and 

collision source cc ddddsin))((
4

1 11111
gfff'f'

1, , and 1 stand for (x,c1,t), (x,c ,t), and (x,c 1,t).

Stress and heat flux in the kinetic theory 

In terms of the distribution function the densities of mass, momentum, and energy 
can obviously be written as

                                                     
37 That cumbersome word – even for German ears – describes a formula for the number of 

collisions which lead to a particular scattering angle by the binary interaction of atoms. 
The expression is not due to Maxwell, of course, nor to Boltzmann. As far as I can find 
out it was first used by P. and T. Ehrenfest in “Conceptual Foundations of the Statistical 
Approach in Mechanics.” Reprinted: Cornell University Press, Ithaca (1959). 
The word seems to be untranslatable, and so it has been joined to the small lexicon of 
German words in the English language like Kindergarten, Zeitgeist, Realpolitik and, 
indeed, Ansatz.
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u is the specific internal energy formed with Ci = ci – i
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3  – appropriate for a monatomic ideal gas – we obtain 38
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so that T is the mean kinetic energy of the atoms. This may be considered as the 
kinetic definition of temperature, or the kinetic temperature. 
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Comparison with the corresponding macroscopic laws, cf. Chap. 3, identifies stress 
and heat flux of a gas as 
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Thus the stress is properly called a momentum flux. 

Insert. 4.4 

For special choices of , viz. = µ, = µci, = 1/2 µc2, one obtains the 
conservation laws of mass, momentum and energy from the generic 
equation, cf. Insert 4.4. In those cases both source terms vanish. For any 
other choice of  the collision term is not generally equal to zero.  
However, there is an important choice of  for which a conclusion can be 
drawn, although the source does not vanish. That is the case when the 
production has a sign. A sharp look at the source, – in the suggestive form 
in which I have written it – will perhaps allow the attentive reader to 
identify that particular all by himself. Certainly this was no difficulty for 

                                                     
38 The additive energy constant is routinely ignored in the kinetic theory. 
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39 All this is terribly anachronistic but it belongs here. Grad proposed the moment 

approximation of the distribution function in 1949!  H. Grad: “On the kinetic theory of 
rarefied gases.” Communications of Pure and Applied Mathematics 2 (1949). 

Boltzmann. He chose = –k ln b
f , where k and b are positive constants to 

be determined. With that choice we have 

      collision source =
1

1 1 1
1

'ln ( ' ) sin d d d d
4
k f f f f f f g
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and that is obviously non-negative, since 
1

1
'ln f f

f f
 and )( 11 fff'f

always have the same sign. In equilibrium, where f is given by the 
Maxwellian distribution, both expressions vanish so that there is no source. 
Both properties suggest that

xcddln
b
ff

is a candidate for being considered as the entropy of the kinetic theory of 
gases. If k is the Boltzmann constant, S is the entropy. Indeed, if we insert 
the Maxwellian – the equilibrium distribution – we obtain

5( , ) ( , ) ln ln
2equ equ R R

R R

k T k pS T p S T p m
T pµ µ

which agrees with the entropy of a monatomic gas calculated by Clausius, 
see Chap. 3. 

Entropy flux

The interpretation of the quantity ln d
f

k f cb  as entropy density is not complete 

unless we relate its rate of change, or its flux, to heat or heating, so as to recognize 

the status of Clausius’s 2nd law T
Q

t
S

d
d  within the kinetic theory. Let us consider 

that:

If indeed ln d d
f

k f c xb  is the entropy, the non-convective entropy flux should 

be given by

ln d .fk C f ci i bΦ

We calculate that expression from the Grad 13-moment approximation39
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which is the most popular – and most rational – approximate near-equilibrium 
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– the Duhem expression for the 

entropy flux, cf. Chap. 3 – holds only, if non-linear terms are neglected. 

Insert. 4.5 

Thus Boltzmann had given a kinetic interpretation for the entropy, an 
interpretation in terms of the distribution function f and its logarithm. That 
interpretation, however, is in no way intuitively appealing or suggestive, 
and as such it does not provide the insight into the strategy of nature which 
I have promised; not yet anyway. 

In order to find a plausible interpretation, the integral for S has to be 
discretized and extrapolated in the manner described in Insert 4.6. It is the 
very nature of extrapolations that there are elements of arbitrariness in 
them; they are not just corollaries. In the present case – in the reformulation 
of the integral for S – I have emphasized the speculative nature of the extra-
polating steps by introducing them with a bold-face if.

The discretization stipulates that the element dxdc of the (x,c)-space has 
a finite number Pdxdc (say) of occupiable points (x,c) – occupiable by  
atoms – and that Pdxdc is proportional to the volume dxdc of the element with 
a quantity Y as the factor of proportionality. Thus 1/Y is the volume of the 
smallest element, i.e. a cell, which contains only one point. In this manner 
the (x,c)-space is quantized and indeed, Boltzmann’s procedure in this 
context foreshadows quantization, although at this stage it may be 
considered merely as a calculational tool rather than a physical argument. 
And it was so considered by Boltzmann when he says: … it seems needless 
to emphasize that [for this calculation] we are not concerned with a real 
physical problem. And further on: … this assumption is nothing more than 
an auxiliary tool.40

                                                     
40 L. Boltzmann (1872) loc.cit.
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If the occupancy Nxc  of all points, or cells, in dxdc is equal, Boltzmann 
obtained by a suitable choice of b viz. b = eY, cf. Insert 4.6 

!

1
ln

xc

P

xc

N

kS ,

where P is the total number of cells – of occupiable points – in the (x,c)-
space.

This is still not an easily interpretable expression, but it is close to one. 
Indeed, if we multiply the factor N! into the argument of the logarithm, we 
may write 

S = k ln W , where

!

!

xc

P

xc

N

N
W .

And that expression is interpretable, because W – by the rules of 
combinatorics – is the number of realizations, often called microstates, of 
the distribution {Nxc} of N atoms. [The combinatorial rule is relevant here, 
if the interchange of two atoms at different points (x,c) leads to different 
realizations.]

                                                                                                                          
We shall see later, cf. Chaps. 6 and 7 that it was S.N. Bose who took the cells seriously, 
and gave them a value and a physical interpretation.

Reformulation of xcddln
b
ffkS

Let there be Pdxdc occupiable points in the element dxdc and let Pdxdc

xc

atoms, cf. figure, so that we have Nxc Pdxdc = f dxdc. Then the contribution 
of dxdc to S may be written as

           
b

YNPkN
b
fkf xc

xc lnddln dd xcxc

.ln
dd xc

                                       Fig. 4.4 An element of (x,c)-space

The sum is really a sum over Pdxdc equal terms. b may be chosen arbitrarily and we 
choose b = eY, where e is the Euler number so that

Let  further  each point  in  dxdc be occupied  by the same number N of 
 = Y dxdc.
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The last step makes use of the Stirling formula lna! = alna-a, which can be applied, 
if a – here Nxc – is much larger than 1. Therefore the total entropy reads 

P
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       , 

where P is the total number of occupiable points in the (x,c)-space.

Insert 4.6 

A first extrapolation of the formula for S is that we may now drop the 
requirement that the values Nxc within the element dxdc are all equal. This 
may be a constraint appropriate to the kinetic theory of gases, – where there 
is only one value f(x,c,t) characterizing the gas in the element – but it has no 
status in the new statistical interpretation of S. In particular, it is now 
conceivable that all atoms may be found in the same cell, so that they all 
have the same position and the same velocity; in that case the entropy is 
obviously zero, since there is only one realization for that distribution.

With S = k ln W we have a beautifully simple and convincing possibility 
of interpreting the entropy, or rather of understanding why it grows: The 
idea is that each realization of the gas of N atoms is a priori considered to 
occur equally frequently, or to be equally probable. That means that the 
realization where all atoms sit in the same place and have the same velocity 
is just as probable as the realization that has the first N1 atoms sitting in one 
place (x,c) and all the remaining N – N1 atoms sitting in another place, etc. 

In the former case W is equal to 1 and in the latter it equals 
!!

!

11
NNN

N . In the 

course of the irregular thermal motion the realization is perpetually 
changing, and it is then eminently reasonable that the gas – as time goes  
on – moves to a distribution with more possible realizations and eventually 
to the distribution with most realizations, i.e. with a maximum entropy. And 
there it remains; we say that equilibrium is reached. 

So this is what I have called the strategy of nature, discovered and 
identified by Boltzmann. To be sure, it is not much of a strategy, because it 
consists of letting things happen and of permitting blind chance to take its 
course. However, S = klnW is easily the second most important formula of 
physics, next to E = mc2 – or at a par with it. It emphasizes the random 
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component inherent in thermodynamic processes and it implies – as we 
shall see later – entropic forces of considerable strength, when we attempt 
to thwart the random walk of the atoms that leads to more probable 
distributions.

However, the formula S = klnW is not only interpretable, it can also be 
extrapolated away from monatomic gases to any system of many identical 
units, like the links in a polymer chain, or solute molecules in a solution, or 
money in a population, or animals in a habitat. Therefore S = klnW with the 
appropriate W has a universal significance which reaches far beyond its 
origin in the kinetic theory of gases.

Actually S = klnW was nowhere quite written by Boltzmann in this form, 
certainly not in his paper of 187241. However, it is clear from an article of 
187742 that the relation between S and W was clear to him. In the first 
volume of Boltzmann’s book on the kinetic theory43 he revisits the 
argument of that report; it is there – on pp. 40 through 42 –, where he comes 
closest to writing S = klnW. The formula is engraved on Boltzmann’s 
tombstone, erected in the 1930’s after the full significance had been 
recognized, cf. Fig. 4.5. From the quotation in the figure we see that 
Boltzmann fully appreciated the nature of irreversibility as a trend to distri-
butions of greater probability.

Since a given system of bodies can never 
                                                   by itself pass to an equally probable state,
                                                   but only to a more probable one, … it is
                                                   impossibletoconstructa perpetuum mobile 

which periodically returns to the original
state.44

                                                     
41 L. Boltzmann: (1872) loc.cit.
42 L. Boltzmann: „Über die Beziehung zwischen dem zweiten Hauptsatze der mechanischen 

Wärmetheorie und der Wahrscheinlichkeitsrechnung respektive den Sätzen über das 
Wärmegleichgewicht“. [On the relation between the second law of the mechanical theory 
of heat and probability calculus, or the theories on the equilibrium of heat.] 
Sitzungsberichte der Wiener Akademie, Band 76, 11. Oktober 1877.

43 L. Boltzmann: “Vorlesungen über Gastheorie I und II“. [Lectures on gas theory] Verlag 
Metzger und Wittig, Leipzig (1895) and (1898).

44 L. Boltzmann: „Der zweite Hauptsatz der mechanischen Wärmetheorie“. [The second law 
of the mechanical theory of heat] Lecture given at a ceremony of the Kaiserliche 
Akademie der Wissenschaften on May, 29th, 1886. See also: E. Broda: “Ludwig 
Boltzmann. Populäre Schriften”. Verlag Vieweg Braunschweig (1979) p. 26. 

Fig. 4.5. Boltzmann’s tombstone on Vienna s central cemetery ’



Reversibility and Recurrence 103

Boltzmann’s lecture on the second law45 closes with the words: Among
what I said maybe much is untrue but I am convinced of everything. Lucky 
Boltzmann who could say that! As it was, all four bold-faced ifs on the 
forgoing pages – all seemingly essential to Boltzmann’s eventual inter-
pretation of entropy – are rejected with an emphatic not so! by modern 
physics:

Neither is Nxc equal for all (x,c) in dxdc,
nor is it true that all Nxc >> 1, 
nor does the interchange of identical atoms lead to a new realization,
nor is the arbitrary addition of N! quite so innocuous as it might seem.

And yet, S = klnW, or the statistical probabilistic interpretation stands 
more firmly than ever. The formula was so plausible that it had to be true,
irrespective of its theoretical foundation and, indeed, the formula survived – 
albeit with a different W – although its foundation was later changed consi-
derably, see Chap. 6. 

Reversibility and Recurrence 

If Clausius met with disbelief, criticism and rejection after the formulation 
of the second law, the extent of that adversity was as nothing compared 
with what Boltzmann had to endure after he had found a positive entropy 
source in the kinetic theory of gases. And it did not help that Boltzmann 
himself at the beginning thought – and said – that his interpretation was 
purely mechanical. That attitude represented a challenge for the 
mechanicians who brought forth two quite reasonable objections 

       the reversibility objection    and    the recurrence objection. 

The discussion of these objections turned out to be quite fruitful, although it 
was carried out with some acrimony – particularly the discussion of the 
recurrence objection. It was in those controversies that Boltzmann came to 
hammer out the statistical interpretation of entropy, i.e. the realization that S
equals k · lnW, which we have anticipated above. That interpretation is 
infinitely more fundamental than the formal inequality for the entropy in the 
kinetic theory which gave rise to it. 

The reversibility objection was raised by Loschmidt: If a system of atoms 
ran its course to more probable distributions and was then stopped and all 
its velocities were inverted, it should run backwards toward the less  

                                                     
45 L. Boltzmann: (1886) loc. cit. p. 46. 
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probable distributions. This had to be so, because the equations of 
mechanics are invariant under a replacement of time t by –t. Therefore 
Loschmidt thought that a motion of the system with decreasing entropy 
should occur just as often as one with increasing entropy. In his reply 
Boltzmann did not dispute, of course, the reversibility of the atomic 
motions. He tried, however, to make the objection irrelevant in a 
probabilistic sense by emphasizing the importance of initial conditions. Let 
us consider this: 

By the argument that we have used above, all realizations, or microstates 
occur equally frequently, and therefore we expect to see the distribution 
evolve in the direction in which it can be realized by more microstates, – 
irrespective of initial conditions; initial conditions are never mentioned in 
the context. This cannot be strictly so, however, because indeed 
Loschmidt’s inverted initial conditions are among the possible ones, and 
they lead to less probable distributions, i.e. those with less possible 
realizations. So, Boltzmann46 argues that, among all conceivable initial 
conditions, there are only a few that lead to less probable distributions 
among many that lead to more probable ones. Therefore, when an initial 
condition is picked at random, we nearly always pick one that leads to 
entropy growth and almost never one that lets the entropy decrease. 
Therefore the increase of entropy should occur more often than a decrease. 

Some of Boltzmann’s contemporaries were unconvinced; for them the 
argument about initial conditions was begging the question, and they 
thought that it merely rephrased the a priori assumption of equal probability 
of all microstates. However, the reasoning seems to have convinced those 
scientists who were prepared to be convinced. Gibbs was one of them. He 
phrases the conclusion succinctly by saying that an entropy decrease seems 
(!) not to be impossible but merely improbable, cf. Fig. 4.6. 

Kelvin47 had expressed the reversibility objection even before Loschmidt 
and he tried to invalidate it himself. After all, it contradicted Kelvin’s own 
conviction of the universal tendency of dissipation and energy degradation, 
which he had detected in nature. He thinks that the inversion of velocities 
can never be made exact and that therefore any prevention of degradation is 
short-lived, – all the shorter, the more atoms are involved.

                                                     
46 L. Boltzmann: „Über die Beziehung eines allgemeinen mechanischen Satzes zum zweiten 

Hauptsatz der Wärmetheorie“. [On the relation of a general mechanical theorem and the 
second law of thermodynamics] Sitzungsberichte der Akademie der Wissenschaften Wien 
(II) 75 (1877).

47 W. Thomson: „The kinetic theory of energy dissipation“ Proceedings of the Royal Society 
of Edinburgh 8 (1874) pp. 325–334.
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   … the impossibility of an uncompensated 
                                                   decrease of entropy seems to be reduced to an 
                                                   improbability.48

One of the more distinguished person who remained unconvinced for a 
long time was Planck. He must have felt that he was too distinguished to 
enter the fray himself. Planck’s assistant, Ernst Friedrich Ferdinand 
Zermelo (1871–1953), however, was eagerly snapping at Boltzmann’s 
heels.49 Neither Boltzmann nor the majority of physicists since his time 
have appreciated Zermelo’s role much; most present-day physics students 
think that he was ambitious and brash, – and not too intelligent; they are 
usually taught to think that Zermelo’s objections are easily refuted. And yet, 
Zermelo went on to become an eminent mathematician, one of the founders 
of axiomatic set theory. Therefore we may rely on his capacity for logical 
thought.50 And it ought to be recognized that his criticism moved Boltzmann 
toward a clearer formulation of the probabilistic nature of entropy and, 
perhaps, even to a better understanding of his own theory.

Zermelo had a new argument, because Jules Henri Poincaré (1854–1912) 
had proved51 that a mechanical system of atoms, which interact with forces 
that are functions of their positions, must return – or almost return – to its 

                                                     
48 J.W. Gibbs: “On the equilibrium of heterogeneous substances.” Transactions of the 

Connecticut Academy 3 (1876) p. 229.
49 To those who know the chain of command in German universities – particularly in the 

19th century – it is inconceivable that Zermelo entered into a major discussion with a 
celebrity like Boltzmann without the approval and encouragement of his mentor Planck. 
Actually Planck was notoriously slow to accept new ideas, including his own, cf. Chap. 7.

50 Later Zermelo even helped to make statistical mechanics known among physicists by 
editing a German translation of Gibbs’s “Elementary principles of statistical mechanics”,
see below. 

51 H. Poincaré: „Sur le problème des trois corps et les équations de dynamique’’ [On the   
three-body problem and the dynamical equations] Acta mathematica 13 (1890) pp.1–270. 
See also : H. Poincaré: “Le mécanisme et l’expérience’’ [Mechanics and experience] 
Revue Métaphysique Morale 1 (1893) pp. 534–537.

Fig. 4.6.  Josiah Willard Gibbs 
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initial position. Clearly therefore, the entropy which, after all, is a function 
of the atomic positions, cannot grow monotonically. This became known as 
the recurrence objection. Actually, Zermelo thought that the fault lay in 
mechanics, because he considered irreversibility to be too well established 
to be doubted. But he could not bring himself to accept any of Boltzmann’s 
probabilistic arguments.52

In the controversy Boltzmann tried at first to get away with the 
observation that it would take a long time for a recurrence to occur. 
Zermelo agreed, but declared the fact irrelevant. The publicly conducted 
discussion53,,54,,55,,56 then focussed on Boltzmann’s assertion that – at any one 
time – there were more initial conditions leading to entropy growth than to 
entropy decrease. Zermelo could not understand that assumption, and he 
ridiculed it. In fact, however, something possibly profound came out of the 

many words (!) – when he speculated that

… in the universe, which is nearly everywhere in an equilibrium, and 
therefore dead, there must be relatively small regions of the dimensions of 
our star space (call them worlds) … which, during the relatively short 
periods of eons, deviate from equilibrium and among these [there must be] 
equally many in which the probability of states increases and decreases. … 
A creature that lives in such a period of time and in such a world will 
denote the direction of time toward less probable states differently than the 
reverse direction: The former as the past, the beginning, the latter as the 
future, the end. With that convention the small regions, worlds, will 
“initially” always find themselves in an improbable state.

Thus, over all worlds the number of initial conditions for growth and 
decay of entropy may indeed be equal, although in some single world they 
are not. It seems that Boltzmann believed that the universe as a whole is 
essentially in equilibrium, but with occasional fluctuations of the size and 

                                                     
52 Ten years later Zermelo must have reconsidered this position. In 1906 he translated 

Gibbs’s memoir on statistical mechanics into German, and surely he would not have 
undertaken the task if he had still thought statistical or probabilistic arguments to be 
unimportant. Zermelo’s translation helped to make Gibbs’s statistical mechanics known in 
Europe.

53 E. Zermelo: “Über einen Satz der Dynamik und die mechanische Wärmelehre” [On a 
theorem of dynamics and the mechanical theory of heat] Annalen der Physik 57 (1896) 
pp.  485–494.

54 L. Boltzmann: “Entgegnung auf die wärmetheoretischen Betrachtungen des Hrn. E. 
Zermelo” [Reply to the considerations of Mr. E. Zermelo on the theory of heat] Annalen 
der Physik 57 (1896) pp. 773–784.

55 E. Zermelo: “Über mechanische Erklärungen irreversibler Vorgänge. Eine Antwort auf 
Hrn. Boltzmanns “Entgegnung”. [“On mechanical explanations of irreversible processes. 
A response to Mr. Boltzmann’s “reply”] Annalen der Physik 59 (1896), pp. 392–398.

56 L. Boltzmann: “Zu Hrn. Zermelos Abhandlung “Über die mechanische Erklärung 
irreversibler Vorgänge” [On Mr. Zermelo’s treatise “On the mechanical explanation of 
irreversible processes”] Annalen der Physik 59 (1896) pp. 793–801.

discussion. Boltzmann conceded the point – without ever admitting it in so 
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duration of our own big-bang-world. A fluctuation will grow away from 
equilibrium for a while and then relax back to equilibrium. In both cases the 
subjective direction of time – as seen by a creature – is toward equilibrium, 
irrespective of the fact that the growing fluctuation objectively moves away 
from equilibrium. In order to make that mind-boggling idea more plausible, 
Boltzmann57 draws an analogy to the notions of up and down on the earth: 
Men in Europe and its antipodes both think that they stand upright, while 
objectively one of them is upside down. Applied to time, however, the idea 
does not seem to have gained recognition in present-day physics; it is 
ignored – at least outside science fiction. Maybe rightly so (?). 

Boltzmann tries to anticipate criticism of his daring concept of time and 
time reversal by saying: 

Surely nobody will consider a speculation of that sort as an important 
discovery or – as the old philosophers did – as the highest aim of science. 
It is, however, the question whether it is justified to scorn it as something 
entirely futile. 

Actually we may suspect that Boltzmann was not entirely sincere when 
he made that disclaimer. Indeed, in the years to come he is on record for 
repeating his cosmological model several times. After having invented it in 
the discussion with Zermelo he repeats it, and expands on it in his book on 
the kinetic theory, and again in his general lecture at the World Fair in  
St. Louis58.

All in all, the discussion between Boltzmann and Zermelo – despite 
considerable acrimony – was conducted on a high level of sophistication 
which definitely sets it off from the more pedestrian attempts of Maxwell 
and Kelvin to come to grips with randomness and probability. Those 
attempts involved the Maxwell demon.

Maxwell Demon 

Maxwell invented the demon59 in the effort to reconcile the irreversibility in 
the trend toward a uniform temperature with the kinetic theory: … a
creature with such refined capabilities that it can follow the path of each 
atom. It guards a slide valve in a small passage between two parts of a gas 
with – initially – equal temperatures. The demon opens and closes the valve 
so that it allows fast atoms from one side to pass, and slow atoms to pass 

                                                     
57 L. Boltzmann: (1898) loc. cit. p.129.
58 L. Boltzmann: “Über die statistische Mechanik” [On statistical mechanics] Lecture given 

at a scientific meeting in connection with the World Fair in St. Louis (1904). See also: 
E. Broda (1979) loc.cit. pp. 206–224.

59 According to G. Peruzzi (2000) loc.cit. p. 93 f.  the demon was first conceived in a letter 
by Tait to Maxwell in (1867). It appeared in print in Maxwell’s “Theory of Heat”
Longmans, Green & Co. London (1871).
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from the other side. In this manner it creates a temperature difference 
without work because, indeed, the valve has very little mass. 

The Maxwell demon was – and is – much discussed, primarily, I suspect, 
because it can happily be talked about by people who do not possess the 
slightest knowledge of mathematics. In the works of Kelvin60 the notion 
reached absurd proportions: He invented … an army of intelligent Maxwell 
demons which is stationed at the interface between a cold and a hot gas and 
… equipped with clubs, molecular cricket bats, as it were. … Its mass is 
several times as big as the molecules … and the demons must not leave 
their assigned places except when necessary to execute their orders.

Enough of that! Brush61 recommends an article by Klein62 for the readers 
who want to familiarize themselves with the voluminous secondary 
literature on Maxwell’s demon. But we shall leave the subject as quickly as 
possible. It has a touch of banality. We might just as well go into some 
belly-aching over a demon that could improve our chances in a dice game.

Boltzmann and Philosophy 

There is a persistent tale that Boltzmann committed suicide in a depressed 
mood, created by discouragement and lack of recognition of his work. This 
cannot be true. To be sure, eminent people do not take kindly to criticism, 
and they become addicted to praise and may need it every hour of every 
day; but Boltzmann did get that kind of attention: He was a celebrity with 
an exceptional salary for the time and full recognition by all the people who 
counted. Even the Zermelo controversy seems to have rankled in his mind 
only slightly: In his essay “The Journey of a German Professor to Eldorado”

Boltzmann reports good-humouredly that Felix Klein tried to push him into 
writing a review article on statistical mechanics by threatening to ask 
Zermelo to do it, if Boltzmann continued to delay. 

So, no! The neurasthenic condition which darkened Boltzmann’s life, 
seems more like the depressing mood that afflicts a certain percentage of the 
human population normally and which is nowadays treated effectively with 
certain psycho-pharmaca, vulgarly known as happiness pills.

It is true though that Boltzmann did not reign supreme in the scientific 
circles in Vienna; there was also Ernst Mach (1838–1916), a physicist of 
some note in gas dynamics. Mach was a thorn in Boltzmann’s flesh, 
because he insisted that physics should be restricted to what we can see, 
hear, feel, and smell, or taste, and that excluded atoms. As late as 1897 

                                                     
60 W. Thomson: (1874) loc.cit. 
61 S.G. Brush: (1976) loc.cit. p. 597.
62 M.J. Klein: American Science 58 (1970). 
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63 and it is therefore clear that he 
had no appreciation for the kinetic theory of gases. Mach also taught 
philosophy and his classes were full of students eager to imbibe his tasty 
intellectual philosophical concoction. Boltzmann taught hard science and 
insisted that his students master a good deal of mathematics; consequently 
there were few students. That situation irritated Boltzmann, and he decided 
to teach philosophy himself. 

He brought to the task a healthy contempt of philosophers. After Mach 
had retired, Boltzmann taught Naturphilosophie in Vienna. And in his 
inaugural lecture64 he gave an account of the failure of his efforts to learn 
something about philosophy: 

So as to go to the deepest depths I picked up Hegel; but what an unclear, 
senseless torrent of words I was to find there! My bad luck conducted me 
from Hegel to Schopenhauer … and even in Kant there were many things 
that I could grasp so little that, judging by the sharpness of his mind in 
other respects, I almost suspected that he was pulling the reader’s leg, or 
even deceiving him. 

For a lecture to the philosophical society of Vienna he proposed the title: 

Proof that Schopenhauer is a stupid, ignorant philosophaster, scribbling 
nonsense and dispensing hollow verbiage that fundamentally and forever 
rots people’s brains.

When the organizers objected, he pointed out – to no avail – that he was 
merely quoting Schopenhauer, who had written these exact same words 
about Hegel. Boltzmann had to change the title to a tame one: On a Thesis 
of Schopenhauer,65 but he got his own back by explaining the controversy in 
detail to the audience: Apparently Schopenhauer wrote that sentence about 
Hegel in a fit of pique, when Hegel had failed to support him for an 
appointment to an academic position. In contrast to that Boltzmann’s 
intended title had been chosen out of an objective evaluation of 
Schopenhauer’s work, – or so he says. 

It is thus clear that Boltzmann was not an optimal choice for a teacher of 
conventional philosophy. His disdain for philosophy, that doctrine of clap-
trap and idle whim was expressed frequently, with or without provocation. 
It is a good thing, perhaps, that Boltzmann did not also apply himself to the 

                                                     
63 I recommend an excellent account of Boltzmann’s professional work and psyche by D. 

Lindley: “Boltzmann’s atom.” The Free Press, New York, London (2001). Lindley starts 
his Introduction with the apodictic quotation from Mach: “I don´t believe that atoms 
exist.”

64 L. Boltzmann: “Eine Antrittsvorlesung zur Naturphilosophie” [Inaugural lecture on natural 
philosophy] Reprinted in the journal “Zeit” December 11, 1903 See also: E. Broda: loc.cit. 

65 L. Boltzmann: “Über eine These von Schopenhauer” Lecture to the Philosophical Society 
of Vienna, given on January 21, 1905. See also: E. Broda: loc.cit.

Mach maintained that atoms did not exist,
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teaching of theology. Because indeed, his ideas in that field are again quite 
unconventional as the following paragraph shows.66

…..only a madman denies the existence of God. However, it is true that all 
our mental images of God are only inadequate anthropomorphisms, so that 
the God whom we imagine does not exist in the shape in which we 
imagine him. Therefore, if someone says that he is convinced of God’s 
existence and someone else says that he does not believe in God, maybe 
both think exactly the same… 

Boltzmann sincerely admired Darwin’s discoveries, however. Indeed, there 
is not a single public lecture in which he did not advertise Darwin’s work. 
That work represents the type of natural philosophy that appealed to 
Boltzmann. And it is true that there is some congeniality between the two 
scientists in their emphasis upon the underlying randomness of either 
thermodynamic processes or biological evolution: The vast majority of all 
mutations are detrimental to the progeny, just as the vast majority of 
collisions in a gas lead to more disorder. In contrast to a gas, however, the 
small minority of advantageous mutative events is assisted by natural
selection so that nature can create order in living organisms. Natural 
selection in this view plays the role of the infamous Maxwell demon, see 
above.67

Despite his partisanship for Darwin’s ideas Boltzmann professes to see
nothing in his convictions that runs counter to religion.68

In the last ten years of his life Boltzmann did not really do any original 
research, nor did he follow the research of others. Planck’s radiation theory 
of 1900, and Einstein’s works on photons, on E = mc2, and on the Brownian 
movement – all in 1905 – passed by him. In the end his neurasthenia
caught up with him in a summer vacation. He sent his family to the beach 
and hanged himself in the pension on the crossbar of a window. 

                                                     
66 L. Boltzmann: “Über die Frage nach der objektiven Existenz der Vorgänge in der 

unbelebten Natur” [On the question of the objective existence of events in the inanimate 
nature] Sitzungsberichte der kaiserlichen Akademie der Wissenschaften in Wien. 
Mathematisch-naturwissenschaftliche Klasse; Bd. CVI. Abt. II (1897) p. 83 ff.

67 Boltzmann does not seem to have argued like that. I read about this idea in one of 
Asimov’s scientific essays. I. Asimov: “The modern demonology” in “Asimov on 
Physics.” Avon Publishers of Bard, New York (1979).

68 Some church leaders see this differently. So also Pope Benedikt XVI. Says he in his 
inaugural speech on April 24th, 2005: ... each being is a thought of God and not  the 
product of a blind evolutionary process. The catholic church does not like random 
evolution, nor does George W. Bush, 43rd president of the United States of America, who 
advocates that intelligent design be taught in the schools of his country. 
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Kinetic Theory of Rubber 

We have already remarked that the formula S = klnW can be extrapolated 
away from monatomic gases, where it was discovered. One such extra-
polation – an important one, and a particularly plausible one – occurred in 
the 1930’s when chemists started to understand polymers and to use their 
understanding to develop a thermal equation of state for rubber. The kinetic
theory of rubber is a masterpiece of thermodynamics and statistical 
thermodynamics, and it laid the foundation for an important modern branch 
of physics and technology: Polymer science. 

At the base of the theory is the Gibbs equation, see Chap. 3. In the above 
form the term –pdV represents the work done on the gas. That term must be 
replaced by PdL for a rubber bar of length L under the uni-axial load P,
which depends on L and T, cf. Fig 4.7. Therefore the appropriate form of 
the Gibbs equation for a bar reads 

                                           TdS = dU – PdL .

The Gibbs equation obviously implies 

L

S
T

L

U
P  , 

so that we may say that the load has an energetic and entropic part. 

The integrability condition implied by the Gibbs equation reads 

T

P
TP

L

U
     and hence follows

T

P

L

S
.

Fig. 4.7.  A rubber bar in the un-stretched and stretched configurations 
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Therefore the entropic part of the load may be identified as the slope of 
the tangent of the easily measured (P,T)-curve of the bar for a fixed length 
L. The energetic part is determined from the ordinate intercept of that 
tangent, cf. Fig. 4.8. 

Tangent identifies entropic and energetic parts of force 

When the (P,T)-curve is measured for rubber it turns out to be a straight 
line through the origin of the (P,T)-diagram. Therefore in rubber 

L

S  is inde-

pendent of T, and U does not depend on L. We obtain 

L

S
TP       (for rubber) , 

a relation that is sometimes expressed by saying that rubber elasticity is 
entropic, or that the elastic force of rubber is entropy induced; energy plays 
no role in rubber elasticity.

This was first noticed by Kurt H. Meyer and Cesare Ferri 69  and they 
describe their discovery by saying: L´origine de la contraction [du
caoutchouc] se trouve dans l´orientation par la traction des chaînes 
polypréniques. A cette orientation s´opposent les mouvements thermiques 
qui provoquent finalement le retour des chaînes orientées à des positions  
désordinées (variation de l´entropie).70

                                                     
69 K.H. Meyer & C. Ferri: “Sur l´élasticité du caoutchouc”. Helvetica Chimica Acta 29,  

p. 570 (1935).
70 The cause for the contraction of rubber lies in the orientation imparted to the polymer 

chains by the traction. The orientation is opposed by the thermal motion which eventually 
causes the return of the oriented chains to disordered positions (change of entropy).

Left: (load, temperature)-curve for a generic material Right: ditto for rubber.    Fig. 4.8.
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It is clear then that we need S as a function of L, if we wish to calculate 
the thermal equation of state P(T,L) of rubber. We know that S=klnW holds 
and for the calculation of W we need a model for the chaînes desordineés, 
the unordered polymer chains. Werner Kuhn (1899–1963)72 has provided 
such a model by imagining the rubber molecules as chains of N
independently oriented links of length b with an end-to-end distance r.

where N±  links point to the right or left. Obviously for that simplified 
model  – which we use here – we must have

The pair of numbers NN ,  is called the distribution of links, and the 
number of possible realizations of this distribution is 

                                                     
71 I. Müller, W. Weiss: “Entropy and energy – a universal competition”  Springer, 

Heidelberg (2005). In Chap. 5 of that book the analogy between thermodynamic properties 
of rubber and gases is highlighted by a juxtaposition. 

72 W. Kuhn: “Über die Gestalt fadenförmiger Moleküle in Lösungen”  [On the shape of 
filiform molecules in solution] Kolloidzeitschrift 68, p. 2 (1934).

Fig. 4.9.  Model for rubber molecule and its one-dimensional caricature 

Apart from rubber, and some synthetic polymers, entropic elasticity occurs only 
in gases. Indeed, different as gases and rubber may be in appearance, 
thermodynamically those materials are virtually identical. A joker with an original 
turn of mind has once commented on this similarity by saying that rubbers are the 
ideal gases among the solids.71

Fig. 4.9 shows such a molecule and also its one-dimensional caricature, 

1(2
hence .

(
°°

r 

°°
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! !
1 ! 1 !
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N N
W

N N N r N r

Nb Nb

.

Thus W and Smol = klnW, the entropy of a molecule, are functions of the 
end-to-end distance r. That function may be simplified by use of the Stirling 
formula and by an expansion of the logarithm, viz.

           lna! = alna-a  and      ln
2

1
1

2

r r r

Nb Nb Nb
 . 

The former is true for large values of a, and we apply it to N as well as to 
.N  The approximation of the logarithm is good for 1

Nb

r , i.e. for a 

strong degree of folding of the molecular chain. We obtain 

2
1

ln 2
2

mol

r
S Nk

Nb
,

so that the entropy of the molecule is maximal when its end-to-end distance 
is small. 

notion of entropy and its growth property, more – perhaps – than the 
understanding of gases. Let us consider: 

any other one during the course of the thermal motion. This means in 
particular that the fully stretched-out microstate shown in Fig. 4.10 occurs 
just as frequently as the partially folded microstate of the figure with the 
end-to-end distance r < Nb. This means also, however, that a folded 
distribution NN ,  with r < Nb occurs more frequently than the fully 
stretched distribution 0,N , because the former can be realized by more 
microstates, while the latter has only one realization.

°

°°

°

r

r=Nb

Fig. 4.10.  Fully stretched and folded realizations of the chain molecule 

The basic a priori axiom is: Equal probability of all realizations or  

The understanding of the rubber molecule does a lot for grasping the 

microstates.Thus each and every microstate occurs just as frequently as 
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Therefore, if the chain molecule starts out straight – with W = 1, i.e. 
Smol = 0 – the thermal motion will very quickly mess it up, and kick the 
molecule into a distribution with many microstates and eventually – with 
overwhelming probability – into the distribution with most microstates, 
which we call equilibrium. In equilibrium we therefore have N+ = N-=

1/2 so 
that r is zero. During that process the entropy Smol grows from zero to 

!!

!

22

ln
NN

Nk . Thus the entropy growth is the result of a random walk of the 

chain between its microstates.
Of course, we can prevent this growth. If we wish to maintain the straight 

microstate, – or any r in the interval 0 < r < Nb – we need only give the 
molecule a tug at the ends each time when the thermal motion kicks it. And, 
if the thermal motion kicks the molecule 1012 times per second – a reason-
able number – we may apply a constant force at the ends. That is the nature 
of entropic forces and of entropic elasticity. And that is the nature of the 
force needed to keep a rubber molecule extended. If r << Nb, the entropy is 
linear in r2, see above, and the force is proportional to r with the factor of 
proportionality linear in T, the temperature: The more vigorous the thermal 
motion is, the bigger is the entropic force. Mechanicians like to speak of the 
entropic spring; its hallmark is an elastic modulus proportional to T.

It is often said that the value of the entropy of a distribution is a measure 
for the disorder in the arrangement of its particles. This interpretation is 
most easily understood for the rubber molecule. Indeed, the stretched out, 
orderly distribution of Fig. 4.10 has zero entropy, because it can only be 
realized in one single manner. The disordered, folded distribution has 
positive entropy. And the most disorderly distribution with very many 
possible realizations has the maximum value of entropy. Therefore the 
growth of entropy toward equilibrium involves a growth of disorder.

A rubber bar consists of a network of rubber molecules all with different 
length vectors ( 1, 2, 3) and different lengths 2

3

2

2

2

1

r , as shown in 

Fig. 4.7. Thus the entropies in the un-stretched and stretched states are 
given, respectively, by 

Having said this I like to stress that order and disorder are not well-defined 
physical concepts. To be sure, in the present context the notions jibe with our 
intuition, but they do not always do that. Thus a cubic lattice in an alloy – judged 
well-ordered on intuitive grounds – has a higher entropy than the more disorderly 
monoclinic lattice. For that reason the cubic phase is often the high-temperature 
phase, because for higher temperature the entropy becomes more important in the 
free energy, cf. Chap. 5. This apparent violation of the equivalence of entropy and 
disorder can be explained, but the explanation does not employ the notion of 
crystallographic order or disorder.
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32132100
),,( dddzSS

mol
and

321321
),,( dddzSS

mol
,

where z0( 1, 2, 3)d 1d 2d 3 and z( 1, 2, 3)d 1d 2d 3 are the numbers of 
distance vectors in the interval d 1d 2d 3 at 1, 2, 3.

The determination of the functions z0( 1, 2, 3) and z( 1, 2, 3) is again due 
to Kuhn in 1936.73 For the argument he ingeniously employed the inversion 
of Smol = klnW : He assumed the number z0( 1, 2, 3)d 1d 2d 3 to be 
proportional to the number W = exp{Smol/k} of realizations of chains with 

2

3

2

2

2

1

r  and obtained

2 2 2

1 2 3

0 1 2 3 3 2
2

( , , ) exp
2

2

n
z

Nb
Nb

θ θ θθ θ θ
π

,

where n is the total number of chains. As for the number z( 1, 2, 3)d 1d 2d 3

Kuhn assumed that 

1 2 3 0 1 2 3

1
( , , ) , ,z zθ θ θ θ λθ λθ

λ

holds, so that the components of the length vectors are deformed exactly as 
the edges of the (incompressible) rubber bar, whose deformation in the 
direction of the force is given by L = L0.

Thus Kuhn obtained

2

0

1 2 3

2 2
S S nk λ

λ
   and

2

0

1nkT
P

L
λ

λ
.

The latter formula represents the thermal equation of state of a rubber bar 
which gives the load as a function of the temperature Tand the stretch 
 = L/Lo. The (P, )-relation is obviously non-linear. 

74 and the field of 
non-linear elasticity. Its derivation provides a deep insight into the 

                                                     
73 W. Kuhn: “Beziehungen zwischen Molekülgröße, statistischer Molekülgestalt und 

elastischen Eigenschaften hochpolymerer Stoffe” [Relations between molecular size, 

p. 258 (1936).
74 Modern representations of the field may be found in the monograph by P.J. Flory: 

“Principles of Polymer Chemistry.” Cornell University Press, Ithaca (1953). The book has 
gone through many editions and re-printings in later years.

This formula marks the beginning of polymer science

statistical molecular shape and elastic properties of high polymers] Kolloidzeitschrift 76, 
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thermodynamic mechanism of polymer elasticity. That is its lasting 
significance, although as a quantitative description of rubber it is less than 
perfect, particularly for bi-axial loading.75

Gibbs’s Statistical Mechanics 

Our students are mildly bored when we use ideal gases to explain the power 
of statistical arguments. And indeed, the development of the atomic or 
statistical theory of gases in equilibrium is inextricably entwined with old, 
old conjectures, observations, and measurements of ideal gas properties. 
Thus the thermal equation of state p = p(v,T) for ideal gases was known 
before Daniel Bernoulli explained the phenomenon of pressure in terms of 
moving atoms, cf. Insert 4.1. And Bernoulli’s argument implied, that the 
internal energy of an ideal gas depends on T only, which was – much later – 
conjectured by Clausius and experimentally confirmed by Joule and Kelvin. 
In a manner of speaking everything about gases was known to the  
students – one way or another – before its molecular interpretation was 
discovered;  hence the boredom.

This is not so for rubber! In that case statistical arguments have given us 
a thermal equation of state P = P(L,T) that had not been known before. So, 
in my experience this is the point where the students perk up – those of 
them who are capable of such a reaction – and they demand a da capo: Let 
us maximize entropy, they might say, given by

!
ln with

!
xc

xc

N
S k W W

N
 , 

and calculate the thermal equations of state of a liquid (say), or of a metal! 
This is not a bad proposition but, alas, it is impractical and we cannot 
satisfy this reasonable request. Let us consider: 

In a liquid the N atoms  = 1,2,… N interact, – each one with all others. 

Therefore there is a kinetic and a potential energy. The latter is the sum 

over all pair-potentials (| x – x |). We have 

2

1 , 1

1

2 2

N Nµ
U c | x x |−α α βα α β

 , 

or, in terms of Nxc

                                                     
75 For a discussion of rubber elasticity in some detail and a discussion of the limitations of 

the Kinetic Theory of Rubber the reader is referred to the booklet “Rubber and Rubber 
Balloons – Paradigms of Thermodynamics” by I. Müller and P. Strehlow, Springer 
Lecture Notes in Physics, Springer, Heidelberg (2005). 
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Thus, when we maximize S under the constraints of fixed N and U, the 
equilibrium distribution Nxc

equ must be determined from the system76

2 1
ln (| |)

2 2

equ equ

xc x c

x c

µ
k N c N x xα β

with as many equations as there are cells in (x,c)-space. These equations 
cannot be solved analytically for Nxc

equ. Therefore we cannot calculate 
equilibrium values for U and S; so we are stymied right at the beginning.

Nor did Gibbs solve the problem with statistical mechanics. However, he 

expressing U and S in terms of a single function, the partition function. To 
be sure, the partition function cannot be calculated either in terms of the 

in trivial cases like the gas and the rubber – but it may sometimes be 
approximated.

Gibbs’s statistical thermodynamics represents a daring and ingenious 
extrapolation of Boltzmann’s ideas. Boltzmann and Maxwell had always 
applied probabilistic arguments to systems of identical elements: atoms in a 
gas, or dipoles in paramagnetic fluids or – one might add – links in a rubber 
chain. Gibbs proposed a giant step away from this by suggesting that 

for some purposes, however, it is desirable to take a broader view … We 
may imagine a great number of systems of the same nature, but differing 
in the configurations and velocities which they have at a given instant, and 
differing not merely infinitesimally, but it may be so as to embrace every 
conceivable combination of configurations and velocities.77

The great number of systems was called an ensemble by Gibbs. He 
introduced different kinds of ensembles:

An ensemble of systems with the same energy, now called 
microcanonical.
An ensemble of systems with the same volume and temperature which, 
on account of its unique importance in the theory of statistical 
equilibrium, I have ventured to call canonical.78

                                                     
76 For gases the energy constraint is linear in N

xc
, because |)(| xx is absent, which 

makes things easy. 
77 J.W. Gibbs: “Elementary principles in statistical mechanics – developed with especial 

reference to the rational foundation of thermodynamics.” Yale University Press (1902). 
This memoir is available as a Dover booklet, first published in 1960. My page numbers 
refer to the Dover publication.

78 J.W. Gibbs: Ibidem p. XI.

shifted the difficulty from the beginning of the argument to the end by 

thermodynamic variables, like the volume Vand the temperature T – except 

 0 =  
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a grand ensemble ... composed of h petits ensembles79 appropriate for 
mixtures of h constituents.

How does the ensemble-idea help? In order to see that let us concentrate on 
the canonical ensemble – of total energy and total entropy – of  liquids, 

they have the same temperature. Among the imagined liquids let there be 

....
1

in the state x1…cN with energy )...
1

(
N

cxU such that

.....
1...

1

...
1

N
cx

N
cx

N
c

The summation extends over all and all velocities.
In a big step of extrapolation away from Boltzmann’s entropy of a gas,

Gibbs writes the entropy of the ensemble as

1

1

...

...

!
ln with

!
N

N

x c

x c

k W W
ν
ν

such that it represents the number of realizations of the distribution 
....

1

.

In order to find the equilibrium distribution ....
1

he maximizes , cf.
Insert 4.7. Thus he was able to calculate the mean energy U = /  and the 
mean entropy S = / of a single liquid as 

2 ln
and ( ln )

P
U kT S k T P

T T

1

1

...

( ... )
both in terms of  the partition function with

N

N

x c

U x c
P P

kT

Canonical ensemble 

What interests us are the thermal and caloric equations of state of a single liquid of 
N atoms in a volume V with energy

Instead we consider an ensemble of such liquids with a fixed total energy .

Among the liquids let there be 
....

1

in the state x1…cN such that – ignoring the 

interaction between the liquids – we have 

                                                     
79 J.W. Gibbs: Ibidem p. 190. 

2
1

,

1
( ... ) (| |)

2 2N xc xc x c
xc xc x c

µ
U x c N c N N x x .

)U (x v

exp .

each in a volume V, with particle number N, and all in thermal contact, so that 
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The entropy  of the ensemble is calculated as

1
1

!
ln with

!......
N

N

k W W
x cx c

ν
ν

.

Summation and product extend over all positions and all velocities. The 

equilibrium distribution ....1
is the one that maximizes under the constraints of 

constant and , namely the canonical distribution

1
1

1
1

exp( ( ... ))
.... exp( ( ... ))
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.N

N
N

N

U x c
x c U x c

x c

β
ν ν

β

Hence follows for the energy and the equilibrium entropy of the ensemble 

ln
and ln ,

P
k Pν ν β

β ν

1

where exp( ( ... )) is the partition function.1...
N

P U x cNx c
β is the Lagrange 

multiplier that takes care of the energy constraint. 

By equipartition the energy of each atom must be equal to 2
3 and that helps 

us to identify as 1 , because we have

2 2
1

1 1

3 1
...

2 2 2 .... ....
N

N N

µ µequ c c Nkin x c x c
ν ν

β

Thus the mean energy and entropy of a single liquid is

2 1

1

( ... )ln
 with exp

...

( ln ) hence the free energy :

ln .

N

N

U x cP
U kT P
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S k T P F U TS
T

F kT P

ν

ν

Insert 4.7 
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Thus Gibbs arrived at a final result, after a fashion, even though it is 
quite impossible for liquids – and most other non-trivial systems – to 
evaluate the sum in the partition function and obtain P(V,T) explicitly. 

However, the problem is reduced to the evaluation of a multiple sum. In 
that form it represents a challenge for mathematicians, and one may think of 
making intelligent approximations. In fact

For liquids J.E. Mayer and M.G. Mayer developed a cumbersome but 
effective cluster method to approximate the thermal equation of state of 
a real gas80

Lars Onsager was able to evaluate the partition function exactly for the 
Ising model of a ferromagnet, although I believe that the success was 
restricted to a two-dimensional case, 
Recently Oliver Kaster81 has approximated the partition function of a 
shape memory alloy and was able to simulate the austenitic 
martensitic phase transition that is typical for such alloys.

So Gibbs’s idea proved to be quite useful. Conceptually, however, there are 
problems: We may very well conceive of ensembles, of course. But in 
actual fact we have a single liquid – never an ensemble. So, how do we 
argue in order to get the ensemble out of our minds and concentrate on the 
single liquid? The conventional idea is that the ensemble does no more than 
provide the individual liquids with a temperature. From that thought it is a 
simple conceptual step to forget the ensemble entirely, and replace it by a 
heat bath for the one and only liquid in our laboratory.

Gibbs did not address such lingering misgivings nor do most books on 
statistical mechanics.82 A notable exception is Schrödinger in a written 
account of thoughtful seminars.83 Says he: 

….here the identical systems are mental copies of the one system under 
consideration – of the one macroscopic device that is actually erected on 
our laboratory table. Now what on earth could it mean, physically, to 
distribute a given amount of energy over these mental copies? The idea 
is in my view, that you can, of course, imagine that you really had copies
of your system, that they really were in “weak interaction” with each 
other, but isolated from the rest of the world. Fixing your attention on one  

                                                     
80 J.E. Mayer, M.G. Mayer: “Statistical Mechanics.” John Wiley & Sons, New York (1940) 

Chap. 13.
81 O. Kastner: “Zweidimensionale molekular-dynamische Untersuchung des Austenit 

Martensit Phasenübergangs in Formgedächtnislegierungen.” [Two-dimensional molecular 
dynamics of the austenite martensite phase transition in shape memory alloys] 
Dissertation TU Berlin, Shaker Verlag (2003).

82 In modern books on the subject it is not uncommon to have the partition function appear 
on the first half-page, and the rest of the book is given to its evaluation in special cases. 
That is what is known as the deductive approach, or understanding by doing.

83 E. Schrödinger: “Statistical thermodynamics. A course of seminar lectures.” Cambridge at 
the University Press (1948).
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of them, you find it in a peculiar kind of “heat bath” which consists of the 
 – 1 others. 

2 2
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 , 

Another question which Gibbs took in his stride – without much ado –
concerns the mean value over the ensemble: What is the significance of that 
mean value for the single liquid under consideration? The answer is given 

by the ergodic hypothesis. This implies that the number ....
1

calculated
for the ensemble of v liquids is also the frequency of the state x1....cN in a 
single liquid, if that liquid is observed v times at sufficiently large intervals. 
The hypothesis is often expressed by saying

ensemble average = expectation value for single liquid86

so that the average over the imagined ensemble is immediately relevant for 
the one and only system under consideration. Obviously, the prescription 
for the calculation of the time average – or expectation value – can only be 
relevant for equilibria. 

In the wording of arguments and in the formulae I have so far 
concentrated on liquids. This was for definiteness and suggestiveness only. 
Statistical mechanics of other bodies follows the same lines. One of the 
more amazing applications87 is a single hydrogen atom, a proton with one 
electron which may occupy 2n2 orbits (n = 1,2,…) with energies                                                     

84 J.C. Maxwell: (1879) loc.cit. 
85 This paper of 1879 thus contains Maxwell’s third derivation of the Maxwell distribution. 

We have reviewed the other two derivations above. 
Maxwell’s third derivation is now a popular exercise for physics students, because it 
provides them with the opportunity to acquaint themselves with volumes and surface areas 
of spheres in many dimensions.

86 A trivial illustration is this: Suppose that on an aerial photo of a city you identify the 
fraction of cars which drive with 50 km/h. Next, consider that you drive a car yourself for 
some long time randomly through the city and register the fraction of seconds that your 
speed is 50 km/h. The ergodic hypothesis implies that the two fractions are equal. 
Mathematicians have tried to prove the ergodic hypothesis and their efforts have led to a 
branch of set theory, the ergodic theory. That theory, however, offers little to the physicist.

87 I found this simple problem in the book by J.D. Fast: “Entropie. Die Bedeutung des 
Entropiebegriffs und seine Anwendung in Wissenschaft und Technik.” [Entropy. The 

The only treatment of a proper and realistic ensemble, known to me, is due 
to Maxwell in his paper “On Boltzmann’s theorem on the average 
distribution of energy in a system of material points” 84 Maxwell considers a 
gas of v N atoms and – in imagination – he splits it into v gases of N atoms.
Then he proceeds to determine the distribution85

which is the canonical distribution for the case. For N=1 – one single atom –  
Maxwell thus recovers the Maxwell distribution, which he had derived 
originally in two different manners, see above. Maxwell is acknowledged 
by Gibbs – along with Clausius and Boltzmann – as one of the principal 
founders of statistical mechanics.

.
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according to Bohr’s model of atomic structure.88 In the jargon developed in 
statistical mechanics we place the atom in a heat bath of temperature T and
form its partition function 

2

1
2 exp

n

n

E
P n

kT
 . 

Hence follows the entropy and the free energy of the atom

2 2
ln 2 exp and ln 2 exp

1 1

E En n
S k T n F kT n

n n
T kT kT

 . 

For any normal earthly temperature only the first term with n = 1 
contributes appreciably to the sum so that we have

S = kln2    and F = –kTln2.

The 2 in these equations represents the two possibilities in which the 
electron may realize the energy zero: spin up and spin down.

Writing this I am reminded of an exchange between two eminent thermo-
dynamicists at a conference, which I attended as a young man. One, a Nobel 
prize winner – call him P – emphatically opposed the other one – let him be 
called T – for having applied statistical mechanics to a single atom. The 
discussion culminated in this dialogue: 

           P: Your application is not permissible and, if you had read my
                book carefully, you would know it. 
           T: I read your book more carefully than you wrote it, and … 

The rest of the answer was lost in an outbreak of hilarity in the audience. 

Other Extrapolations. Information

The interpretations of entropy as a number of realizations of a distribution 
and as a measure of order and disorder have led to extrapolations of the 
concept to fields other than gases. We have already discussed the case of 
rubber properties and we shall later discuss the power of the entropy of

                                                                                                                          
meaning of the concept of entropy and its application in science and technology] Philips’s 
Technische Bibliothek (1960). Also available in Dutch, English, French, and Spanish. 

88 The energy of the ground state is set equal to zero. e and µ are the electric charge and mass 
of the electron respectively; h = 6.625  10–34 Js is the Planck constant, and 0 is the vacuum 
di-electricity.
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mixing in mixtures. Both applications belong to main-stream thermo-
dynamics. However, there are also fairly esoteric extrapolations, popular 
among physicists affecting sensitivity for the unusual – and there are many 
of those. 

Sometimes such arguments come along as challenges, like when it is 
pointed out that a great piece of literature – usually Hamlet, or Faust, no 
less (!) – is obviously highly ordered in comparison to a random distribution 
of its words, or letters. It should therefore have a small entropy, and so 
Shakespeare, or Goethe must have defeated the universal tendency of 
entropy to increase. In this case the challenge is: How did the poets do that, 
and where is the inevitable overall increase of entropy to offset the decrease 
effected by the dramas? No serious answer is available! 

And then, there is information theory, invented in 1948 by Claude 
Elwood Shannon (1916–2001). Shannon89 put a number on a message 
which somehow represents its informational value, cf. Insert 4.8. The 
expression for the calculation of the number can look – under certain 

P

xc

xc
N

N

!

!  .

And so Shannon called his number the entropy of the message. There is a 
story about this which is reported by Denbigh90:

When Shannon had invented his quantity and consulted von Neumann on what 
to call it, von Neumann replied: Call it entropy. It is already in use under that 
name and besides, it will give you a great edge in debates because nobody 
knows what entropy is anyway.

No doubt Shannon and von Neumann thought that this was a funny joke, 
but it is not, – it merely exposes Shannon and von Neumann as intellectual 
snobs. Indeed, it may sound philistine, but a scientist must be clear, – as 
clear as he can be –, and avoid wanton obfuscation at all cost. And if von 
Neumann had a problem with entropy, he had no right to compound that 
problem for others – students and teachers alike – by suggesting that 
entropy had anything to do with information.

Shannon’s information

If a message consists of a single “sign” a which naturally occurs with the 
probability p(a), Shannon calls its information value – or simply information –

bit.
)(

1
log

2

ap
Inf

                                                     
89 C.E. Shannon: “A mathematical theory of communication.” Bell Systems Technology 

Journal 27, (1948), pp. 379–423, 623–657.
90 K. Denbigh: “How subjective is entropy?”. In: “Maxwell’s demon, entropy, information, 

computing.” H.S. Leff, A.F. Rex (eds.) Rrinceton University Press (1990) pp. 109–115.

circumstances – like Boltzmann’s entropy S = klnW with W
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The smaller the probability of the “sign” the more information we gain by receiving 
it.

1 bit is the unit of information; it stands for binary indissoluble information unit.
The name stems from simple cases when the message a has the probability (1

/2)
n so

that it can be identified by n successive alternatives, binary decisions, with the 
probability 1/2 each.

An example occurs when we draw a card from a stack of 32 with {7, 8, 9, 10, 
knave, queen, king, ace}. We may then give out messages about our card like this: 
“black” p = 1/2 , or “spades” p = 1/4 , or “spades unnumbered” p = 1/8 , or “spades 
with queen or king” p = 1/16 , or “queen of spades” p = 1/32 . The corresponding 
informations come out as 1 bit for “black” through 5 bit for “queen of spades”.
They are higher for the less probable “sign” and, when the “sign” is least probable, 
as the queen of spades is, the information is complete, i.e. the card is fully 
identified. The predilection for the dual logarithm is due to the fact that we want 
integers as information for this simple case, – or Shannon did. 

The logarithm itself is chosen so that information is additive, when a message 
consists of several (independent) signs a1,a2,…,an (say) with probability p(a1)
p(a2)…p(an ). In that case we have 

2

1

1
log bit
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n
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Inf
p a

,

and if the sign ai occurs Ni times in the message – with 
1

n

N N
i

i

– we obviously 

obtain
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1

1
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ii

Inf N
p a

.

This is the expression called entropy by Shannon.
If the probability p(ai) of sign ai is equal to the relative frequency Ni/N of its 

occurrence – as may perhaps happen in very long messages – we obtain 

2 2

1

1

!
log  bit    or    log  bit

!

n

i

i n

i

i

i

N N
Inf N Inf  

N
N

 ,

where the Stirling formula has been used for the last step. Thus the analogy to 
Boltzmann’s entropy is complete to within a multiplicative constant. 

If we wish, we can now assign an entropy to the message which Shakespeare sent 
us when he wrote Hamlet: We look up the probability of each letter ai of the 
English alphabet, count how often they occur in Hamlet and calculate Inf.  People 
do that and we may suppose that they know why.

Insert 4.8 
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For level-headed physicists entropy – or order and disorder – is nothing 
by itself. It has to be seen and discussed in conjunction with temperature 
and heat, and energy and work. And, if there is to be an extrapolation of 
entropy to a foreign field, it must be accompanied by the appropriate 
extrapolations of temperature and heat and work. Lacking this, such an 
extrapolation is merely at the level of the following graffito, which is 
supposed to illustrate the progress of western culture to more and more 
disorder, i.e. higher entropy: 

Hamlet:  to be or not to be 

                                            Sartre:   to do is to be 
     Sinatra: do be do be do be do 

Ingenious as this joke may be, it provides no more than amusement. 

Camus: to be is to do
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It is fairly seldom that we find resources in the form in which we need 
them, which is as pure substances or, at least, strongly enriched in the 
desired substance. The best known example is water: While there is some 
sweet water available on the earth, salt water is predominant, and that 
cannot be drunk, nor can it be used in our machines for cooling (say), 
or washing. Similarly, natural gas and mineral oil must be refined before 
use, and ore must be smelted down in the smelting furnace. Smelting was, 
of course, known to the ancients – although it was not always done 
efficiently – and so was distillation of sea water which provided both, sweet 
water and pure salt in one step, the former after re-condensation. Actually, 
in ancient times there was perhaps less scarcity of sweet water than today, 
but – just like today – there was a large demand for hard liquor that had to 
be distilled from wine, or from other fermented fruit or vegetable juices.

The ancient distillers did a good enough job since time immemorial, but 
still their processes of separation and enrichment were haphazard and not 
optimal, since the relevant thermodynamic laws were not known.

The same was largely true for chemical reactions, when two constituents 
combine to form a third one (say), or when the constituents of a compound 
have to be separated. Sometimes heating is needed to stimulate the reaction 
and on other occasions the reaction occurs spontaneously or even ex-
plosively. The chemists – or alchemists – of early modern times knew a lot 
about this, but nothing systematic, because chemical thermodynamics – and 
chemical kinetics –  did not yet exist.

Nowadays it is an idle question which is more important, the thermo-
dynamics of energy conversion or chemical thermodynamics. Both are 
essential for the survival of an ever growing humanity, and both mutually 
support each other, since power stations need fuel and refineries need 
power. Certainly, however, chemical thermodynamics – the thermodyna-
mics of mixtures, solutions and alloys – came late and it emerged in bits 
and pieces throughout the last quarter of the 19th century, although Gibbs 
had  formulated the comprehensive theory in one great memoir as early as 
1876 through 1878. 
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Josiah Willard Gibbs (1839–1903) 

century was as far from the beaten track as Russia.1 As a postdoctoral 
fellow Gibbs had had a six year period of study in France and Germany, 
before he became a professor of mathematical physics at Yale University, 
where he stayed all his life. His masterpiece “On the equilibrium of 
heterogeneous substances” was published in the “Transactions of the 
Connecticut Academy of Sciences”2 by reluctant editors, who knew nothing 
of thermodynamics and who may have been put off by the size of the 
manuscript – 316 pages! The paper carries Clausius’s triumphant slogan 
about the energy and entropy of the universe as a motto in the heading, see 
Chap. 3, but it extends Clausius’s work quite considerably. 

The publication was not entirely ignored. In fact, in 1880 the American 
Academy of Arts and Sciences in Boston awarded Gibbs the Rumford 
medal – a legacy of the long-dead Graf Rumford. However, Gibbs remained 
largely unknown where it mattered at the time, in Europe. 

Friedrich Wilhelm Ostwald (1853–1932), one of the founders of physical 
chemistry, explains the initial neglect of Gibbs’s work: Only partly, he says, 
is this due to the small circulation of the Connecticut Transactions; indeed, 
he has identified what he calls an intrinsic handicap of the work: … the
form of the paper by its abstract style and its difficult representation 

Gibbs wrote overlong sentences, because he strove for maximal generality 
and total un-ambiguity, and that effort proved to be counterproductive to 
clarity of style. However, it is also true that the concepts in the theory of 
mixtures, with which Gibbs had to deal, are somewhat further removed 
from everyday experience – and bred-in perspicuity – than those occurring 
in single liquids and gases.

anticipated much of the work of European researchers of the previous 
decades, and that he had in fact gone far beyond their results in some cases. 
Ostwald encourages researchers to study Gibbs’s work because … apart
from the vast number of fruitful results which the work has already 
provided, there are still hidden treasures. Gibbs revised Ostwald’s 
translation but … lacked the time to make annotations, whereas the 
translator [Ostwald] lacked the courage.3

                                                     
1 I. Asimov: “Biographies …” loc.cit.
2 J.W. Gibbs: Vol III, part 1 (1876), part 2 (1878).
3 So Ostwald in the foreword of his translation: “Thermodynamische Studien von J. Willard 

Gibbs” [Thermodynamic studies by J. Willard Gibbs] Verlag W. Engelmann, Leipzig 
(1892).

Gibbs led a quiet, secluded life in the United States, which during the 19th

Ostwald translated Gibbs’s work into German in 1892, and in 1899  

demands a higher than usual attentiveness of the reader. And it is true that 

le Chatelier translated it into French. Then it turned out that Gibbs had 
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Those translations made Gibbs known. His work came to be universally 
recognized, and in 1901 he received the Copley medal of the Royal Society 
of London. In 1950 – nearly fifty years after his death – he was elected a 
member of the Hall of Fame for Great Americans. 

The greatest achievement, perhaps, of Gibbs is the discovery of the  
chemical potentials of the constituents of a mixture. The chemical potential 

mixture in much the same way as temperature is representative for the 
presence of heat. I shall explain as we go along. 

While evolution has provided us, the human race, with a good sensitivity 
for temperature, it has done less well with chemical potentials. To be sure, 
our senses of smell and taste can discern foreign admixtures to air or water, 
but such observations are at a low level of distinctness. Therefore the 
thermodynamic laws of mixtures have to be learned intellectually – rather
than intuitively – and Gibbs taught us how this is best done.

Because of that it seems impossible to explain Gibbs’s work – and to do 
it justice – without going into some technicalities. Nor is it possible to 
relegate all the more technical points into Inserts. Therefore I am afraid that 
parts of this chapter may read more like pages out of a textbook than I 
should have liked. 

Entropy of Mixing. Gibbs Paradox 

Chemical thermodynamics deals with mixtures – or solutions, or alloys – 
and the first person in modern times who laid down the laws of mixing, was 
John Dalton again, the re-discoverer of the atom, see Chap. 4. Dalton’s law, 
as we now understand it, has two parts.

The first one is valid for all mixtures, or solutions, and it states that, in 
equilibrium, the pressure p of the mixture and the densities of mass, energy 
and entropy of the mixture are sums of the respective partial quantities 
appropriate for the constituents. If we have  constituents, indexed by  = 
1,2,… , we may thus write  

,

1

),(

1

pT , ),(

1

pTuu , ),(

1

pTss .

The second part of Dalton’s law refers to ideal gases: If we are looking at 

a mixture of ideal gases, the partial quantities , u , and s  depend on T and 

on only their own p , and, moreover, the dependence is the same as in a 

single gas, i.e. cf. Chap. 3 

of a constituent is representative for the presence of that constituent in the 
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A typical mixing process is indicated in Fig. 5.1, where single
constituents under the pressure p and at temperature T are allowed to mix 
after the opening of the connecting valves. When the mixing is complete, 
the volume, internal energy and entropy of the mixture may be different 
from their values before mixing. We write 

1

Mix
VVV ,

1

Mix
UUU ,

1

Mix
SSS

and thus we identify the volume, internal energy and entropy of mixing.

(bottom). Note that the volume may have changed during the mixing process 

For ideal gas mixtures VMix  and UMix are both zero and SMix comes out as 

1

ln
N

N
NkS

Mix
,

where N  is the number of atoms of gas  and 
1

.  By 

Avogadro’s law – and, of course, by the thermal equation of state 

k
p T

αµρ  – the numbers N  are independent of the nature of the gases.

Therefore the entropy of mixing is the same, irrespective of the gases that 
are being mixed. This is an observation due to Gibbs and the Gibbs
paradox4 is closely related to it: If the same gas fills all volumes at the 
beginning, the situation before and after opening of the valves is the same 
one, and yet the entropies should differ, since the entropy of mixing does 

                                                     
4 J.W. Gibbs: loc.cit. pp. 227–229.

Fig. 5.1.  Pure constituents at T, p before mixing (top). Homogeneous mixture at T, p
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not depend on the nature of the gases, but only on their number of atoms or 
molecules.

The Gibbs paradox persists to this day. The simplicity of the argument 
makes it mind-boggling. Most physicists think that the paradox is resolved 
by quantum thermodynamics, but it is not! Not, that is, as it has been 
described above, namely as a proposition on the equations of state of a 
mixture and its constituents as formulated by Dalton’s law.5

Gibbs himself attempted to resolve the paradox by discussing the 
possibility of un-mixing different gases, and the impossibility of such an 
un-mixing process in the case of a single gas. It is in this context that Gibbs 
pronounced his often-quoted dictum: … the impossibility of an uncompen-
sated decrease of entropy seems to be reduced to an improbability, see 
Fig. 4.6. Gibbs also suggested to imagine mixing of different gases which 
are more and more alike and declared it noteworthy that the entropy of 
mixing was independent of the degree of similarity of the gases. None of 
this really helps with the paradox, as far as I can see, although it provided 
later scientists with a specious argument. Thus Arnold Alfred Sommerfeld 
(1868–1951) 6 pointed out that gases are inherently distinct and that there is 
no way to make them gradually more and more similar. Then Sommerfeld 
quickly left the subject, giving the impression that he had said something 
relevant to the Gibbs paradox which, however, is not so, – or not in any way 
that I can see.

Homogeneity of Gibbs Free Energy for a Single Body 

So far, when we have discussed the trend toward equilibrium, or the 
increase of disorder, or the impending heat death, we might have imagined 
that equilibrium is a homogeneous state in all variables. The truth is, 
however, that indeed, temperature T and pressure p7 are homogeneous in 
equilibrium, but the mass density is not, or not necessarily. What is
homogeneous are the fields of temperature, pressure and specific Gibbs free  

                                                     
5 The easiest way to deal with a paradox is to maintain that it does not exist, or does not exist 

anymore. The Gibbs paradox is particularly prone to that kind of solution, because it so 
happens that a superficially similar phenomenon occurs in statistical thermodynamics. That 
statistical paradox was based on an incorrect way of counting realizations of a distribution, 
and it has indeed been resolved by quantum statistics of an ideal gas, cf. Chap. 6. It is easy 
to confuse the two phenomena. 

6 A. Sommerfeld: „Vorlesungen über theoretische Physik, Bd. V, Thermodynamik und 
Statistik“ [Lectures on theoretical physics, Vol. V. Thermodynamics and Statistics] 
Dietrich’sche Verlagsbuchhandlung, Wiesbaden, 1952 p. 76. 

7 Pressure is only homogeneous in equilibrium in the absence of gravitation. 
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energy u – Ts + pv.8 The specific Gibbs free energy is usually abbreviated 
by the letter g and it is also known as the chemical potential,9 although that 
name is perhaps not quite appropriate in a single body. 

We proceed to show briefly how, and why, this unlikely combination – at 
first sight – of u,s,v with T and p comes to play a central role in 
thermodynamics: We know that the entropy S of a closed body with an 
impermeable and adiabatic surface at rest tends to a maximum, which is 
reached in equilibrium. The interior of the body may at first be in an 
arbitrary state of non-equilibrium with turbulent flow (say) and large 
gradients of temperature and pressure. While the body approaches equi-
librium, its mass m and energy U + Ekin are constant, because of the 
properties of the surface. In order to find necessary conditions for equi-
librium we must therefore maximize S under the constraints of constant m
and U + Ekin. If we take care of the constraints by Lagrange multipliers m

and E , we have to find the conditions for a maximum of

d)(dd
2

2

1 .

The specific values s and u of entropy and internal energy are assumed to 
satisfy the Gibbs equation locally:10

d d dT s u p v or, equivalently d( ) d( )  dT s u  gρ ρ ρ− .

Since u is a function of T and , the variables in the expression to be 
maximized are the values of the fields T(x), l(x), and (x) at each point x.
By differentiation we obtain the necessary conditions for thermodynamic
equilibrium in the form 

l  = 0,         and 

0

0

:
equationGibbs

 the withhence

m

E

Tg

T

1

      .

Therefore in thermodynamic equilibrium the body is at rest throughout V,
and T and g = u – Ts + pv are homogeneous. This is what we have set out 
to show. The homogeneity of the pressure p follows from the momentum 

                                                     
8 = 1/  is the specific volume. 
9  On the European continent g is also called the specific free enthalpy.

10 This assumption is known as the principle of local equilibrium since – as we recall – the 
Gibbs equation holds for reversible processes, i.e. a succession of equilibria. Gibbs accepts 
this principle remarking that it requires the changes of type and state of mass elements to 
be small. 

v
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balance because, when the motion has stopped, the condition of mechanical

i

p

x

One might be tempted to think that, since u, s, and v – and hence g – are 
all functions of T and p, the homogeneity of g should be a corollary of the 
homogeneity of T and p, – and therefore not very exciting. But this is not 
necessarily so, since g(T,p) may be a different function in different parts of 
the body. Thus one part may be a liquid, with g (T,p), and another part may 
be a vapour with g  (T,p). Both phases have the same temperature, pressure 
and specific Gibbs free energy in equilibrium, but very different values of u, 
s, and v, i.e., in particular, very different densities. And since the values of 
g (T,p) and g  (T,p) are equal, there is a relation between p and T in phase 
equilibrium: That relation determines the vapour pressure in phase equili-
brium as a function of temperature; it may be called the thermal equation of 
state of the saturated vapour or the boiling liquid. 

Gibbs Phase Rule 

A very similar argument provides the equilibrium conditions for a mixture. 
To be sure, in a mixture the local Gibbs equation cannot read

Td( s) = d( u) – gd ,

as it does in a single body, because s and u may generally depend on the 
densities  of  all constituents rather than only on . Accordingly, one may 
write

1

d ;

the g ’s may be thought of as partial Gibbs free energies, but Gibbs called 

them potentials and nowadays they are called chemical potentials.11 Ob-

viously they are functions of T and  (  = 1,2… ). Let us consider their 

equilibrium properties.

Thermodynamic equilibrium means – as in the previous section – a maxi-
mum of S,  now under the constraints 

d  ( = 1,2… ),   and 2

1

d
2

kin

V

U E u V

ν
α

α
α

ρρ

in a volume with an adiabatic impermeable surface at rest.

                                                     
11 The canonical symbol for the chemical potential of constituent , introduced by Gibbs, is 

µ . I choose g  instead, since µ  already denotes the molecular mass. Moreover, the 

symbol g  emphasizes the fact that the chemical potential g  is the specific Gibbs free 

energy of constituent in a mixture.

equilibrium reads

Td( s) = d( u) – g

 = 0.
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As before we take care of the constraints by Lagrange multipliers 
and E and obtain as necessary conditions for thermodynamic equilibrium 

 = 0,    and
E

T

1
,    and

m
Tg .

Thus in thermodynamic equilibrium all constituents are at rest, and T , 

and all g  ( = 1,2,… ) are homogeneous throughout V. The pressure p is

in one phase, liquid (say), the homogeneity of T and g means that all 

densities  are homogeneous. However, if there are f spatially separated 

phases, indexed by h = 1,2…f, the homogeneity of g  implies 

)1,...2,1(),,...2,1(),(),( fhvTgTg
ffhh

so that the chemical potentials of all constituents have equal values in all 
phases. This condition is known as the Gibbs phase rule.

Since the pressure p is also equal in all phases, so that p = p(T, h) holds 
for all h, the Gibbs phase rule provides (f-1) conditions on f ( – 1) + 2  
variables. That leaves us with F = – f + 2 independent variables, or 
degrees of freedom in equilibrium.12 In particular, in a single body the 
coexistence of three phases determines T and p uniquely, so that there can 
only be a triple point in a (p,T)-diagram. Or, two phases in a single body 
can coexist along a line in the (p,T)-diagram, e.g. the vapour pressure curve, 
see above, Inserts 3.1 and 3.7. Further examples will follow below. 

Law of Mass Action 

If a single-phase body within the impermeable adiabatic surface at rest is 

already at rest itself and homogeneous in all fields T and , the Gibbs 

equation may be written – upon multiplication by V – as

1

d d dT S U g m

ν

α α
α

.

While such a body is in mechanical and thermodynamic equilibrium, it 
may not be in equilibrium chemically. In chemical reactions, with the 
stoichiometric coefficients a, the masses m  can change in time according 
to the mass balance equations13

                                                     
12 Sometimes this corollary of the Gibbs phase rule is itself known by that name.
13 Often, or usually, there are several reactions proceeding at the same time; they are labelled 

here by the index a, (a = 1,2…n). n is the number of independent reactions. There is some 
arbitrariness in the choice of independent reactions, be we shall not go into that.

also homogeneous; as before, this is a condition of mechanical equilibrium.

And once again – just like in the previous section – if the body in V is all 

e
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so that the extents Ra of the reactions determine the masses of all 
constituents during the process. And in equilibrium the masses m  assume 
the values that maximize S under the constraint of constant U. We use a 
Lagrange multiplier and maximize S- EU, which is a function of T and Ra.
Thus we obtain necessary conditions of chemical equilibrium, viz. 
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λ γ µ   hence 0

1

a

g , (a = 1,2…n). 

The framed relation is called the law of mass action. It provides as many 
relations on the equilibrium values of m as there are independent reactions. 

                                      Gibbs’s fundamental equation 

In a body with homogeneous fields of T and  the local Gibbs equation 

1

d)(d)(dT  holds in all points and, if we consider slow 

changes of volume V – reversible ones, so that the homogeneity is not disturbed –, 
we obtain by multiplication by V

1

dd)

1

(dd .

In  a  closed  body,  where  dm = 0,  ( = 1,2... )  holds,  we  should  have 
TdS = dU + pdV and this requirement identifies p so that we may write 

1

g
p

Tsu and hence
1

dddd .

Alternatively for the whole homogeneous body we have 

1

mgG hence
1

dddd .

The first one of these relations is called the Gibbs-Duhem relation and the 
underlined differential forms are two versions of the Gibbs fundamental equation;
they accommodate all changes in a homogeneous body, including those of volume 
and of all masses m . However, the last two equations imply 

1

ddd ,
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so that g (T,p,m ) can only depend on such combinations of m  that are invariant 

under multiplication of the body by any factor; they may depend on the 

concentrations /c for instance, or on the mol fractions NNX / .

If we know all chemical potentials g (T,p,m ) as functions of all variables, we 

may use the Gibbs-Duhem relation to determine the Gibbs free energy  

G(T,p,m ) of the mixture and hence, by differentiation, S(T,p,m ), V(T,p,m ),

and finally U(T,p,m ).

The integrability conditions implied by Gibbs’s fundamental equation viz.

m

g

m

g
,

m

S

T

g
,

m

V

p

g

help in the determination of the chemical potentials g (T,p,m ).

Insert 5.1

Semi-Permeable Membranes 

The above framed relations, – the Gibbs phase rule, and the law of mass 

action – are given in a somewhat synthetic form, because they are expressed 

in terms of the chemical potentials g . What we may want, however, are 

predictions about the masses m  in chemical equilibrium, or the mass 

densities
h
 of the constituents in phase equilibrium. For that purpose it is 

obviously necessary to know the functional form of g (T,p,m ). In general 

there is no other way to determine these functions than to measure them. 

So, how can chemical potentials be measured? 

An important, though often impractical, conceptual tool of thermodyna- 
mics of mixtures is the semi-permeable membrane. This  is a wall 
that lets particles of some constituents pass, while it is impermeable for 
others. One may ask what is continuous at the wall, and one may be 

tempted to answer, perhaps, that it is the partial densities  of those 

constituents that can pass, or their partial pressures p . However, we know 

already that the answer is different: In general it is neither of the two; rather 

it is the chemical potentials g (T,p,m ).

This knowledge gives us the possibility – in principle – to measure the 

chemical potentials: Let a wall be permeable for only one constituent 

(say). Then we can imagine a situation in which we have that constituent in 

pure form on side I of the wall at a pressure p
I
, while there is an arbitrary 

mixture – including  – on side II under the pressure p
II
. We thus have in 

thermodynamic equilibrium 

g  (T,p
I
)= g (T,p

II
,m

II
) . 
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The Gibbs free energy g  (T,p
I
) = u (T,p

I
) Ts (T,p

I
) + p  (T,p

I
) of the 

single, or pure constituent  can be calculated – to within a linear function 

of T – because u (T,p), and s (T,p), and  (T,p) can be measured and 

calculated, the former two to within an additive constant each, see Chap. 

3.14 Thus a value of g (T,p,m ) can be determined for one given ( +2)-tupel

(T,p
II
,m

II
). Changing these variable we may – in a laborious process indeed 

– experimentally determine the whole function g (T,p,m ).

In real life this is impossible for two reasons: First of all, measurements 

like these would be extremely time-consuming, and expensive to the degree 

of total impracticality. Secondly, in reality we do not have semi-permeable 

walls for all substances and all types of mixtures or solutions. Indeed, we 

have them for precious few only.

But still, imagining that we had semi-permeable membranes for every 

substance and every mixture, we can conceive of a hypothetical definition

of the chemical potential g as the quantity that is continuous at a -

permeable membrane. In that sense the kinship of chemical potentials and 

temperature is put in evidence: Temperature measures how hot a body is 

and the chemical potential g  measures how much of constituent  is in the 

body. Both measurements are made from outside, by contact. 

On Definition and Measurement of Chemical Potentials 

However, Gibbs’s definition of chemical potentials has nothing to do with 
semi-permeable membranes. He writes15

Definition. – Let us suppose that an infinitely small mass of a substance is 
added to a homogeneous mass, while entropy and volume are unchanged; 
then the quotient of the increase of energy and the increase of mass is the 
potential of this substance for the mass under consideration. 

Obviously this definition is read off from the fundamental equation

1

dddd

and Gibbs blithely ignores the fact that the increase of energy is unknown 

before we have calculated it from the knowledge of the chemical potentials 

g (T,p,m ).

                                                     
14 All it takes for that is (p,V,T)-measurements and measurements of cv(T,v

0
) for one v

0
.

15 J.W. Gibbs: loc.cit. p. 149. 

–

This is the same type of logical somersault, which also defines temperature as 

VS
U )( , and which ignores the fact that U(S,V) is unknown before we  

v

v
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Having said this and having seen that the implementation of semi-
permeable membranes – although logically sound – is strongly hypothetical, 
we are left with the problem of how to determine the chemical potentials. 
There is no easy answer and no pat solution; rather there is a thorny process 
of guessing and patching and extrapolating away from ideal gas mixtures.

Indeed, for ideal gases we know everything from Dalton’s law, see 
above. In particular we know the Gibbs free energy explicitly as

The last term represents the entropy of mixing, see above. By the 
fundamental equation we thus obtain the prototype of all chemical 
potentials, viz.

XT
k

pTg
m

G
mpTg ln),(),,( ,

where g (T,p) is the specific Gibbs free energy of the single ideal gas  at T

and p; X = N /N is the mol fraction of constituent . So, in this special case 

of ideal gases we may indeed use the Gibbs definition, because we do know 

the functional form of G(T,p,m ), which generally, we do not know.

And yet, this specific form has become the prototypical expression for 

chemical potentials, considered applicable sometimes even for solutions 

and alloys. To be sure, in those cases g (T,p) are the Gibbs free energies of 

the single liquids or solids, respectively, rather than of the single gases. 

Originally that extrapolation was a wild guess, made by van’t Hoff and born 

out of frustration, perhaps. When the guess turned out to give reasonable 

results occasionally, – often for dilute solutions – the expression was 

admitted, and nowadays, if valid, it is said to define an ideal mixture; such a 

mixture may be gaseous, liquid, or solid. 

But, even when our mixture, or solution, or alloy is not ideal, the ideal-

gas-expression still serves as a reference: The departure from ideality is 

)ln(),(),,( ,         or 

have calculated it from measurements that involve temperature measurements. I 
have done my best to discredit this procedure before, cf. Chap. 3. 

represented by correction factors  or  and we write
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The former is primarily used for liquid solutions, because the activity

coefficient (T,p,m ), if it is different from 1, represents the deviation from 

an ideal solution. The latter expression is mostly used for vapours, because 

the fugacity coefficient (T,p,m ), if it is different from 1, represents the 

deviation of the vapour from a mixture of ideal gases; p (T) is the vapour 

pressure of the single constituent .

We shall not go further into this matter. Suffice it to say that an army of 

chemical engineers are busy determining activity coefficients and fugacity 

coefficients, and they lay down their results in books of tables. Their tools 

are varied. They use semi-permeable membranes whenever they exist, 

otherwise they use temperature measurements of incipient boiling and 

condensation, and occasionally they use the integrability conditions for the 

chemical potentials, mentioned in Insert 5.1. Their task is important, but 

their life is hard. It is worlds removed from the lofty positions of the 

theoreticians who think that they have understood thermodynamics when 

they have understood the properties of monatomic  gases.16

Osmosis

Although good semi-permeable membranes are rare, there are some 
efficient ones, for water particularly. Wilhelm Pfeffer (1845–1920), a 
botanist, experimented with them. He invented the Pfeffer tube which is 
sealed with a water-permeable membrane 17 at one end and stuck – with that 
end – into a water reservoir, cf. Fig. 5.2. The water level will then be equal 
in tube and reservoir. Afterwards some salt is dissolved in the water of the 
tube; the membrane is impermeable for the sodium ion Na+ and the chloride 
Cl- into which the salt dissociates upon solution. One observes that the 
solution in the tube rises, because water pushes its way into the tube in a 
process called osmosis.18 For reasonable data, viz. 

                                                     
16 These practical people have their own pride in their work though, and rightly so: They like 

to ridicule the theoreticians as suffering from argonitis.
17 A ferro cyan copper membrane.
18 The Greek word osmos means to push.
19 The Pfeffer tube is nowadays a popular show piece in high-school laboratories. The 

solution does usually not reach its full height during the lab session. 

   2  litre  reservoir,  1 cm2  tube diameter,  1 g salt, T = 298 K, p =1 atm 

the solution in the tube rises to a height of nearly 10 m (!).19



140      5 Chemical Potentials

Fig. 5.2.  Pfeffer tube 

After equilibrium is established, the membrane has to support a 
considerable pressure difference, the osmotic pressure P = pII – pI.

Pfeffer reported his experiments in 1877, just in the middle of the two-
year-period when Gibbs published the two parts of his great paper. Had 
Pfeffer known Gibbs’s work, he could have written a formula for the 
calculation of  the pressure pII on top of the membrane, namely 

gWater(T,pI) = gWater(T,pII,mNa+,mCl-,mWater

II)

and, of course, he would have had to know the functions gWater in order 
to calculate pII  or, in fact, to calculate the osmotic pressure P = pII – pI.

As it was, Pfeffer did no calculations at all, nor did he present any 
formulae. However, he knew how to measure the osmotic pressure and he 
noticed that – given the mass of the solute – the pressure decreased with the 
size of the dissolved molecules. Being a botanist he dissolved organic 
macro-molecules, like proteins, and he was thus the first person to make 
some reasonably reliable measurements on the size of giant molecules.20

It is not by accident that it was a botanist who concerned himself with 
semi-permeable membranes. Plants and animals make extensive use of 

cell boundaries, and life would be impossible without them.
Thus the roots of trees lie in the ground water and their surface 

membranes are permeable for the water. The water can therefore dilute the 
nutritious sap inside the roots and, at the same time, push it upwards 
through the ducts that lead from the roots to the tree tops. It has been 
estimated that in a tree this osmotic effect can overcome a height difference 
of 100 m.

In animals and humans the cell boundaries are also permeable for water 
and the osmotic pressure across the membranes of blood cells amounts to 
7.7 bar (!). Therefore the cells would burst, if we injected a patient with 
pure water. The fluid in the drips fixed to hospital beds is a salt solution – 
8.8g per litre water – which balances the osmotic pressure in the cell by 
exerting itself a counter-pressure of 7.7 bar. The solution is known as the 
physiological salt solution; physicians say that it is isotonic to the contents 
of the cell. 
                                                     
20 I. Asimov: “Biographies....” loc.cit p. 441. 

osmotic phenomena in order to transport substances, often water, through 
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Dilute solutions are analogous to ideal gases in some respect. At least 
that was the hypothesis made by Jacobus Henricus van’t Hoff (1852–1911), 
a chemist of note and physical chemist, who was the first Nobel prize 
winner in chemistry in 1901. Van’t Hoff assumed that the molecules of 
 – 1 solutes move freely in a solution much in the same way as gas 

molecules move through empty space. Thus the osmotic pressure of a 
solution on a semi-permeable membrane – permeable for the solvent  – 
should be given by 

1

1

T
k

P ,

as van’t Hoff’s law.
Van’t Hoff’s suggestion met with heavy disapproval among more 

partly – by Gibbs. Indeed the continuity of the chemical potential of the 
solvent  across the semi-permeable membrane, and the assumption of an 
ideal solution reads, according to Gibbs, see above 

ln),(),( .

If the single solvent is incompressible, with  as density, g (T,p) is a 

linear function of p with 
1
/  as coefficient, and if the solution is dilute, we 

have

1

1

ln
SN

N
X ,

where SN  is the number of solvent molecules in the solution. Thus one 

obtains for the osmotic pressure 
1

1

T
k

S

IpIIpP .

The ratio of  and 
S
, the density of the solvent in the solution, is very 

nearly equal to 1 in a dilute solution, so that van’t Hoff’s law emerges from 

Gibbs’s thermodynamics, at least approximately.

Having said this, I must qualify: One can easily become over-enthusiastic 
ascribing discoveries to Gibbs. It is true that Gibbs had the general rule 
about the continuity of the chemical potential. Also he had the form of the 
chemical potential in a mixture of ideal gases. But he did not conceive of 
ideal mixtures other than mixtures of ideal gases so that he could not get as 
far as van’t Hoff’s law for dilute solutions. 

published it in 1886 and, of course, he had been anticipated – at least 

as if it were the pressure of a mixture of ideal gases. That relation is known 

conservative chemists; but then he produced experimental evidence and it 
turned out that the law was sometimes true. Van’t Hoff 
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                                 Entropy of mixing in a solution 

We have seen that the specific term ln
k

T X
νµ comes from the entropy of mixing 

of ideal gases, namely 

1

ln

N

N
Nk

Mix
S .

But then the entropy has a molecular interpretation, see Chap. 4, and we may 

consider SMix in the present case as klnW, where W is the increase in the number of 

realizations during the mixing process. Assuming a homogeneous distribution {Nx}

of particles at position x in V after mixing, and homogeneous distributions {Nx } in 

V  before mixing we have 

! !
ln ln

! 1 !

N N
S k

Mix
Nx N

x V xx V

αν
αα

α

,  with   and 
XV

N

x
N ,

where X is the factor of proportionality between the number of positions in V and V
itself.21 It follows by use of the Stirling formula that we have 

1

lnln

V

V
Nk

Mix
S .

V/V  is equal to N/N  in gases but not necessarily in liquids, unless the particles of 

all constituents are equal in size. With this proviso Boltzmann’s interpretation of 

entropy supports the entropy of mixing of ideal mixtures.

Insert 5.2

Van’t Hoff’s extrapolation of ideal gas properties to solutions must have 
seemed a wild guess to himself and his contemporaries, and it seemed quite 
properly to be a dubious assumption to the chemical establishment. But it 
was also a lucky guess and the question is why? The answer, or at least a 
good motivation, can be found in Boltzmann’s molecular interpretation of 
entropy, cf. Insert 5.2. 

Raoult’s Law 

Francois Marie Raoult (1830–1901) was one of the founders of physical 
chemistry. He observed experimentally that – in liquid-vapour phase 
equilibrium of a mixture – the partial pressure of a vapour constituent is 

                                                     
21 Recall this kind of quantization in Boltzmann’s arguments, see above. Since X drops out at 

the end, the argument may be considered as a calculational auxiliary.

α

α
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proportional to the mol fraction of that constituent in the solution. 

Obviously, if this is true, we must have 22

p  = X  p (T) , 

where p (T) is the saturation vapour pressure of the single constituent .

Therefore carbonated mineral water – water with CO2 in solution – is 

kept in the bottle under CO2-pressure; upon opening the bottle we hear the 

hiss when the gas escapes and we see the CO2-bubbles that are released by 

the water under the lowered CO2-pressure.

If the vapour is an ideal gas mixture under the pressure p, we have 

p  =X p and thus we obtain Raoult’s law 

X p = X p  (T)       ( =1,2… ) . 

Raoult found this law in 1886 and he was lucky indeed to find it at all, 

because there are few solutions which satisfy this law. The exploitation of 

Gibbs’s phase rule for two phases, viz. 

g (T,p,m ) = g (T,p,m )

reveals the conditions under which the law is valid:
the solution must be ideal,23

the liquid constituents must be incompressible, 
the vapour must be a mixture of ideal gases,
the vapour densities must be much smaller than liquid densities.

However, when Raoult’s law is valid and when it is applied to a binary 
system, the  two equations allow the calculation of X1 and X1  –  hence 
X2  = 1-X1  and X2 = 1 – X1  – as functions of p, when T is prescribed. Usually 
these functions are plotted inversely as p(X1 ;T) and p(X1 ;T). The analytic 
form of Raoult’s law then reads 

'))()(()(
1212

XTpTpTpp  and 
2

1

2

( )

1( )

( )

1 1 "
p T

p T

p T
p

X

and the graphs are shown in Fig. 5.3left. That figure represents the prototype 
of all (p,X1)-phase-pressure-diagrams with separate boiling and 
condensation lines and the two-phase-region in-between. The diagram is 
drawn for the case that constituent 1 is the high-boiling liquid and 
constituent 2 is the low-boiler: As single liquids they boil at high and low 
temperatures respectively. 

                                                     
22 As on some occasions before we characterize the liquid by a prime and the vapour by a 

double-prime.
23 CO2 dissolved in water does not form an ideal solution. Therefore the above discussion of 

mineral water must be taken with a grain of salt.
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Fig. 5.3. Left: Phase-pressure-diagram. Right: Phase-diagram 

If the equations are solved for T – at fixed p –, we obtain the curves 

T(X1 ;p) and T(X1 ;p), which may be plotted in the (T,X1)-phase-diagram,

albeit not in analytic form, since the vapour pressure functions p (T) are not 

known analytically. Fig. 5.3right shows a (T,X1)-phase-diagram qualitatively

Diagrams of this type are important tools for the chemical engineer and 

for the metallurgist, because they provide them with the knowledge needed 

for enriching solutions or alloys in one of their constituents, or even to 

separate the constituents.24 Let us consider this: 

We start at point I in Fig. 5.3right with a feed-stock solution of mol 

fraction X1

I
 – as it was found or provided – and at low temperature, where 

the liquid prevails. Then we increase T until the boiling line is reached. The 

vapour that is formed there has the mol fraction X1

II
, i.e. it is enriched in 

constituent 2. Consequently the boiling liquid grows richer in constituent 1. 

At the new composition the solution needs to be hotter for boiling and at the 

higher temperature the new vapour is not quite so rich in constituent 2 as 

the old one, but still richer than X2

I
 = 1 – X1

I
. When the process of 

evaporation continues, the state of the remaining solution moves upwards 

along the boiling line and the state of the vapour moves upwards along the 

condensation line until X1

I
 is reached in the vapour, and the solution is all 

used up. Further heating will only make the vapour hotter at constant X1.

The clever chemical engineer interrupts the process at an intermediate 
point and comes away with a 2-rich vapour and a 1-rich liquid. Both may 
serve his purpose.

If we wish to separate both constituents completely, the feed-stock 
solution must be fed into a rectifying column consisting of many levels of 
                                                     
24 Metallurgists are dealing with alloys, and solid-melt equilibria. The thermodynamics of 

solutions and alloys is nearly identical despite the different appearances of those 
substances. To be sure, neither melts nor solids are much affected by pressure and 
therefore metallurgists prefer the (T,X1)-diagram over the (p,X1)-diagram.

 p
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boiling liquid, cf. Fig. 5.4.25 The vapour rising from the feed level is led 
through the liquid solution on top and there it condenses partially, primarily 
of course the high-boiling constituent. After passing through several – or 
many – such levels, the vapour arrives at the top, where it contains 
essentially only the low-boiling constituent. That vapour is condensed in a 
cooler which it leaves as a virtually pure liquid constituent, the distillate. 
Similarly the liquid solution, enriched in the high-boiling constituent by the 
partial vapour condensation, overflows the rim of its level and drops into 
the solution of the next lower level, enriching it in the high-boiling 
constituent beyond the degree of enrichment that was the result of the 
evaporation. After several such steps the liquid at the bottom level becomes 
nearly pure in the high-boiling constituent and is led out. In the stationary 
process the liquid at each level is boiling at the temperature appropriate to 
its composition.
                                                     
25

constituents as pure as possible. The process in a rectifying column is also called 
suggestively distillation by reverse circulation.

Fig. 5.4.  Schematic view of a rectifying column 

 In the jargon of chemical engineering to rectify means to purify, or to separate into 
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Rectifying columns are up to 30m high, 5m in diameter and may contain 
30 levels. Unfortunately the method does not work well for complex multi-
constituent solutions like mineral oil. For such solutions one has to be 
content with obtaining certain fractions like benzine, petroleum, or heavy 
benzine, etc. which are not pure substances, but pure enough for efficient 
use in automobiles (say). 

The rectifying column represented in Fig. 5.4 and similar modern designs 
are developments of engineers working in the chemical industry and trying 
hard to optimise the process for output and energy consumption. The pro-
cess itself of rectification by distillation, however, is age-old. So old in fact, 
that no inventor can be identified. To be sure, whoever the inventor was, he 
was not concerned with mineral oil. Rather he worked in order to satisfy the 
pressing need – of himself and others – for high percentage hard liquor,
such as brandy, whiskey, gin, rum, grappa and the likes. This requires 
separation of alcohol from water by boiling fermented fruit juices or grain 
mash, and then condensing it. The process was –  and is – carried on in 
distilleries, vulgarly known as stills.

Alternatives of the Growth of Entropy 

and ” 26 and in that section Gibbs explains what happens to a body when its 
surface is not adiabatic and at rest. We proceed to discuss that point. 

We know from Clausius that the entropy of a body with an adiabatic 
surface V grows, and if the body reaches an equilibrium, the entropy is 
maximal. That is the case, for instance, when the adiabatic surface is at rest, 
so that the energy U + Ekin is constant. The question arises, however, what 
happens when the surface is not adiabatic, or when it is not at rest, or both. 
The easy answer is, that in such cases generally equilibrium will not be 
approached.

However, that is too pat for an answer. There are special boundary 
conditions – other than adiabaticity and rest – for which equilibrium can be 
approached and some of them may be characterized as follows: 

Homogeneous and constant temperature To on V and body at rest there, 
adiabatic boundary V and homogeneous and constant pressure there,
homogeneous and constant temperatures To and pressure po on V.

We refer to Chap. 4 and recall the equations of balance of energy and 
entropy

                                                     
26 J.W. Gibbs: loc.cit. p. 144. 

One of the sections in Gibbs’s memoir is entitle: “On the quantities ,
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This means that 

U + Ekin – ToS   minimum for To constant and at rest, 
S   maximum for an adiabatic surface, 
U + Ekin ToS + poV   minimum for To constant and po constant. 

The first and last conditions are alternatives of the growth of entropy, 
appropriate for the stipulated conditions. The validity of these trends toward 
equilibrium is independent of how far the body is away from equilibrium; 
indeed, initially the process in V may be characterized by turbulent flow 
fields and strong gradients of temperature and pressure. At the end, 
however, when equilibrium is near, we know that Ekin is negligible and the 
fields of temperature and pressure are very nearly homogeneous, apart from 
being constant. That is the situation considered by Gibbs.

Indeed, Gibbs uses a method akin to the method of virtual displacement
known in mechanics. The kinetic energy never occurs and temperature and 
pressure are always equal to their boundary values. Therefore he concludes: 

Free energy F = U – TS is minimal in equilibrium compared to its 
values in other states with the same T and V.
Entropy S is maximal in equilibrium compared to its values in other 
states with the same p and enthalpy H = U + pV.
Gibbs free energy G = U – TS + pV is minimal in equilibrium 
compared to its values in other states with the same T and p.

Free energy, enthalpy and Gibbs free energy are the quantities ,  and 
in Gibbs’s work. He does not name these quantities apart from calling 
and force functions under the appropriate conditions of constant (T,V) and 
(T,p) respectively. I have introduced the now common names and chosen 

                                                     
27 The working term is simplified here, because we do not account for viscous stresses. 

 – 



148      5 Chemical Potentials

the symbols F, H, and G which are most often used in the modern 
literature.28

The question is, of course, what it is that can change when T and p are 
already equal to the constant boundary values. One possibility is that the 
masses m  of a chemically reacting mixture can change and at constant T
and p they will change so as to minimize G; see above, where we have 
derived the law of mass action. Another possibility is that different phases 
in a body can readjust themselves – at constant T and V – so as to minimize 
F and to make the chemical potentials homogeneous. 

Entropy and Energy in Competition 

The knowledge, that the free energy 

F = energy – T · entropy

tends to a minimum as equilibrium is approached, is more than the result of 
some formal rearrangement of equations and inequalities. Indeed, the know-
ledge provides a deep insight into the driving forces of nature. Obviously, a 
decrease of energy and an increase of entropy are both conducive to making 
the free energy small. If T is small, such that the entropic part of F is 
negligible, the free energy tends to a minimum because the energy does. 
And, if T is large, so that the entropic part of F dominates, the free energy 
becomes minimal, because entropy tends to a maximum. Those are the 
extremes; at intermediate temperatures it is neither energy that reaches a 
minimum, nor entropy that reaches a maximum. Both quantities have to 
compromise and the result of the compromise is the minimum of the free 
energy.

The Pfeffer tube provides an instructive example for that situation, cf. 
Fig. 5.2. The energy – gravitational potential energy in this case – tends to 
adjust the levels of liquid in tube and reservoir to be equal; that is the 
situation where the energy is minimal. The entropy, on the other hand, tends 
to pull all the water from the reservoir into the tube, because that means 
maximal entropy of mixing of water and salt. Neither energy nor entropy 
succeed; they compromise and as a result some water remains in the 
reservoir, – less for a higher temperature.

The phenomenon is also interesting for another aspect: Obviously it is 
essentially the water that pays the cost, as it were, because its potential 

                                                     
28 It is not uncommon though to see the free energy be denoted by , as in Gibbs´ work; 

others prefer the letter A for available free energy. The letter H for  enthalpy stands for 
heat content which is the literal translation of the Greek word enthalpos: en inside + 
thalos heat. This is a good name, since the enthalpy comes closest among all 
thermodynamic quantities to what the layman calls heat. The G for the Gibbs free energy 
is, of course, in honour of Gibbs himself.
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energy rises considerably; and it is the salt that profits because its entropy 
increases with the larger volume of the solution in the tube. We conclude 
that nature does not allow the constituents of a mixture to be selfish: The 
system as a whole profits by decreasing its free energy.

Even closer to home is the case of our atmosphere: The potential energy 
of the air–molecules would be best served, if all of them lay at rest on the 
surface; but the entropy would be best off, if all molecules were spread 
evenly throughout infinite space. The compromise of minimal free energy 
in this case provides earth with a thin layer of thin air. If the earth were 
hotter, like the planet mercury, that atmosphere would have left us, and if it 
were smaller, like mars, the atmosphere would be even thinner.29

Considerations like these help to create an intuitive feeling for the signi-
ficance of Gibbs’s force functions.

Phase Diagrams

Let the Gibbs free energy G of a binary mixture with a fixed mass m = 

m1 + m2 at some fixed values of T and p be represented – as a function of  

m1 – by the convex graph of Fig. 5.5left. It follows from the relations of 

Insert 5.1 that the graph begins and ends at g2(T,p) and g1(T,p) respectively 

as indicated in the figure. Moreover, if we draw the tangent at some point 

G(T,p,m1*), the intercepts of that tangent with the vertical lines m1 =0 and 

m1 = m represent the chemical potentials g2(T,p,m2*) and g1(T,p,m1*),

respectively, cf. figure. 

Now, let there be two such graphs, corresponding to two phases  and 

(say). These are shown in Fig. 5.5right for a (T,p)-pair for which they 

intersect. If the two phases are to be in phase equilibrium, the Gibbs phase 

rule requires that the chemical potentials g  and  g  ( = 1,2) be equal. 

That requirement provides an easy graphical method for the determination 

of m1  and m1  in phase equilibrium: Indeed, m1  and m1  are the abscissae 

of the point of contact of the common tangent of the graphs G  and G , see 

Fig. 5.5right.

For fixed p and changing T the common tangent shifts, since the end 
points g2(T,p) and g1(T,p) of both phases change in their own ways. At high 
temperatures the Gibbs free energy G  of the vapour phase is everywhere 
below G  so that the body minimizes its Gibbs free energy by being in the 
vapour phase. Similarly, at low temperature we have G < G , irrespective 
of the value of m1 and the liquid phase prevails, since it has the smaller 
Gibbs free energy. More interesting is the case where G  and G  intersect so 
that two phases can coexist with the masses  m1  and m1  corresponding to 
                                                     
29 These and other examples have been worked out by Müller and Weiss in a recent book. I. 

Müller, W. Weiss: “Entropy and energy – a universal competition.” Springer, Heidelberg 
(2005).
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the end point of the common tangent. For m1 <m1< m1  the Gibbs free 
energy has values on that tangent, because those values are lower than the 
values of either phase.

Fig. 5.5. Left:  Gibbs free energy and chemical potentials. Right: Common tangent for phase 
equilibrium

All this is described – not in an optimal fashion – by Gibbs, who has a 
large chapter on “Geometric visualization”.30 After Gibbs it has become 
common practice to project the common tangents for different temperatures 
onto the corresponding isotherms in a (T,m1)-diagram, or a (T,X1)-diagram.
The end points of those projections are then connected and form boiling and 
condensation curves like those of  Fig. 5.3right.

The convex graphs of Fig. 5.5 are appropriate for ideal solutions, or ideal 
alloys, where SMix is the only non-zero mixing quantity. When, on the other 
hand, UMix and VMix are non-zero, they combine in the Gibbs free energy to 
HMix = UMix + pVMix, the heat of mixing. The heat of mixing can be both 
positive and negative. It is due to the fact that unequal next neighbours 
among molecules are respectively either unfavourable or favourable 
energetically. In the latter case the mixing process must be accompanied by 
cooling, if the temperature is to be maintained. The former case requires 
heating lest the mixture cool off during mixing; that case is the interesting 
one, because the Gibbs free energy can become non-convex, if the heat of 
mixing is big enough.

It makes sense to consider the special case that only the liquid phase is 
affected by the heat of mixing, while the vapour – whose molecules are far 
apart – is ideal. In such a case we have Gibbs free energies G  and G  of the 
type shown in Fig. 5.6left. That figure corresponds to a fixed pair of pressure 

                                                     
30 J.W. Gibbs: loc.cit. pp. 172–187. 
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and temperature and obviously there is the possibility now for two common 
tangents. When the temperature drops, the graph G  comes down with 
respect to G  and there is the limiting case when the two tangents grow 
together and a three-phase-equilibrium exists between two liquids and a 
vapour. At still lower temperatures a common tangent can connect the 
convex branches of the liquid graph so that two liquids coexist, solutions a
and b, which are 2-rich and 1-rich respectively and which do not mix: There 
is a miscibility gap in the liquid phase.

Fig. 5.6. Left: Gibbs free energies of vapour and liquid. Right: Phase diagram with a 
miscibility gap 

The phase diagram is constructed as before by projecting the common 
tangents into a (T,m1)-diagram onto the appropriate isotherm. When the 
end-points of the projections are connected we obtain a diagram of the type 
shown in Fig. 5.6right. The point denoted by E is called the eutectic point. For 
alloys the eutectic composition has the lowest melting point and that is what 
eutectic means in Greek: eutektos = easy melting.

In solutions the existence of the miscibility gap helps to separate the 
constituents and since one solution is invariably lighter than the other one, it 
floats on top and may be scooped off – like the fat from the milk. 

Gibbs did not draw phase diagrams, but he did know the theory. Thus the 
three-phase equilibrium at the eutectic point in a binary solution allows F = 
2 – 3 + 2 = 1 degree of freedom, see above. This means that the eutectic 
points form a line in a three-dimensional (p,T,X1)-diagram.

Phase diagrams of the type shown in Figs. 5.5 and 5.6 – and more 
complex ones – for solutions and alloys are being measured and refined to 
this day. The first person to make this part of Gibbs’s work explicit, and 
draw conclusions from it, was Hendrik Willem Bakhuis Roozeboom (1854–
1907). He learned about Gibbs from van der Waals and made many 
experiments to confirm the phase rule. The modern physics and chemistry 
of alloys started with his work. 
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Law of Mass Action for Ideal Mixtures 

We recall the law of mass action as derived by Gibbs and combine it with 
the form of the chemical potentials valid for ideal solutions. Thus we obtain 
the law of mass action for an ideal solution 

),(

exp

1

1

kT

pTg

X

a

a

The right-hand side is independent of composition and it is therefore 

The left-hand side – when written out – is the quotient of mol fractions of 
resultants and reactants with the appropriate exponents. It is customary to 
consider the stoichiometric coefficients of the resultants as positive, and 
those of the reactants as negative. Also the most negative one among the 
stoichiometric coefficients is often set equal to –1.31  Thus for the reaction

1 1

2 22 2
or 0C O CO C O CO

the law of mass action has the form – with K(T,p) as the chemical 
constant –

,XXX),p,T(K
XX

X

COOC

OC

CO
1where

2

2

so that a decrease of the mol fraction 
2

O
X will increase the output of CO.

Early chemists like Torbern Olof Bergman (1735–1784) or Claude Louis 
Comte de Berthollet (1748–1822)32 were somewhat confused about mass
action (sic), i.e. the shift of the chemical equilibrium upon the addition of 
mass of a constituent to a mixture. Bergman had conceived of affinities
between substances, such that substance A reacted with B but not with C, if 

                                                     
31 There is a certain arbitrariness here. The convention mentioned in the text is not 

universally accepted. Some people prefer to set the smallest absolute value among the a

equal to 1, thus avoiding fractional coefficients. Both conventions – and still others – are 
perfectly good, but they must not be mixed. And before we use tables – for chemical 
constants, or heats of reaction (say) – we must know which one of the conventions was 
employed in the compilation of the table.

32 Berthollet was yet another scientist ennobled and made a senator by Napoléon, who 
generally knew how to create loyal followers. In the case of Berthollet, however, he made 
a mistake, because the chemist later voted for the deposition of the emperor. That gained 
him a peerage under the returning Bourbons, cf. I. Asimov: “Biographies….” loc.cit. 

a

Of course, there are n such constants, one each for every independent reaction. 

(a 1,2...n)

often called the chemical constant K  , alt hough it depends on T and p.
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the affinity between A and B was great, while the affinity between A and C
was small. Bergman prepared tables of affinities that were much used at his 
time. But then Berthollet observed that A and C would react after all, if only 
C was present in sufficiently great quantity. Thus we see how the somewhat 
strange name of mass action came about. Berthollet wrote a book about his 
findings,33 in which he showed deep insight into the nature of chemical 
reactions, but did not quite arrive at the proper form of the law of mass 
action.

The correct formulation of the law came in a paper by Cato Maximilian 
Guldberg (1836–1902) and Peter Waage, both professors of chemistry at 
the university of Christiania – now Oslo – in Norway, and brothers in law. 
The paper was written in Norwegian and remained unnoticed by most 
chemists. Even the French translation in 1867 did not help and it was only 
the German translation in 1879 that made the work known. So for once, 
Gibbs lost his priority for the law of mass action; he whose memoir made so 
many other people lose their priority in subsequent years.

The argument of Guldberg and Waage is extremely simple: They argued 
very sensibly that a reaction can occur only, when the molecules of all 
reactants meet at one point in the numbers required by the stoichiometric 
equation. They considered – again plausibly – the probability for a molecule 
of reactant to be at a certain point as being proportional to X . Therefore 
the probability for the forward reaction  reactant  resultant should be 
given by

1

,XCP

where - is the number of reactants and C  is a factor of proportionality. 
Accordingly the probability for the backward reaction resultant  reactant 
should be

1

,XCP

In equilibrium both probabilities ought to be equal and so Guldberg and 
Waage came to the condition of chemical equilibrium in the form 

1

.

The nature of the right-hand side – and its dependence on T and p – could 
not be determined in this simple manner. The law is truly a law of mass
action and not, as it were, of pressure action, or temperature action.

And so, although Gibbs was anticipated by Guldberg and Waage with 
respect to mass action, his discovery went beyond that of the Norwegians, 
because he knew the structure of the right hand side, viz. of Ka(T,p):
                                                     
33 C.L. Berthollet: “Essay de statique chimique” (1803). 
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We have argued before that g (T,p) can be determined by (p,V,T)-
measurements and by measurements of heat capacities CV(T,Vo) for one V0.
Actually we showed that such measurements leave us with unknown 
additive constants in U and S. Therefore Ka(T,p) contains a linear function 
of T of the type 
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Measurements of the heat of reaction had already been made by Lavoisier. 
And Germain Henri Hess (1802–1850) measured enough of them to 
pronounce Hess’s rule in 1840 which states that the heats of reaction in 
successive reactions must be added. This rule helped to determine values 
for reactions which are difficult to investigate directly. After Gibbs’s work 
the Hess rule became a corollary of that work. 

with unknown coefficients, the specific heat of reaction a
Rh  and a

Rs , the 
specific entropy of reaction. 

It is worth mentioning, perhaps, that those constants do nowhere play a role in 
thermodynamics, except when it comes to chemical reactions. Indeed, when a 
constituent vanishes or emerges, then energy and entropy of the constituent vanish 
and emerge along with the mass, and that includes the additive constant terms in 
energy and entropy.

The heat of reaction a, viz. a
Rh  can be measured by measuring how much 

heating or cooling the reaction requires, if temperature and pressure are to 
be maintained. And after a

Rh has been obtained in that way, the entropy 
a
Rs  of reaction results from a quantitative analysis of the reaction 

products. A systematic experimental campaign was needed for that and that 
was not Gibbs’s thing.

Anyway, Gibbs had done enough. And we have not even considered his 
contribution to the thermodynamics of solids, where elastic stresses take over the 
role of the single pressure in fluids in determining the working term in the first law. 
Nor have we considered Gibbs’s work on thermodynamic stability or the large 
second part of his memoir which is entitled “Theory of Capillarity”, where Gibbs 
deals with surface effects and treats droplets, bubbles and inclusions. These are all 
important contributions to thermodynamics, but they represent collateral tributaries 
in the history of the field rather than the main stream. 
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Heats of reaction are usually measured in calorimetric bombs, i.e. strong 
chambers, capable of enduring high pressures at constant volume. Pierre 
Eugène Marcelin Berthelot (1827–1907) measured hundreds of heats of 
reaction, while Hans Peter Jörgen Thomsen (1826–1909) measured 
thousands of them. So we may assume that heats of reaction were available 
to chemists at large. This is not to say, however, that the significance of the 
quantity was universally recognized. Berthelot in particular was confused 
about the role of heats of reaction. He considered them the sole driving 
force for a reaction, such that only exothermic 34 reactions – those with a 
negative u35 – could proceed spontaneously. The idea is plausible and, 
indeed, it is very often true. When it is not true, it is because the entropy of 
reaction interferes: Its growth s during the reaction may be so big that – at 
the prevailing temperature – it may offset a positive value u and still allow 
the necessary decrease f of free energy.

A well-known example is the reaction

H2 + I2  2 HI

which is endothermic with
mol

kJ25 and yet – at about 450 °C –

hydrogen iodide makes up 4/5 of all molecules in equilibrium. Indeed, the 
tables provide the value 

mol

J166 , so that the entropy moves upwards 

by the formation of HI, while the free energy moves downwards. That is the 
desired direction for both of them. So, how can H2 and I2 survive at all, 
albeit in the small proportion of 20%? The answer lies in the T- and p-

dependent part of and . We shall consider a similar situation below 
when we deal with the ammonia synthesis. 

It was Helmholtz who pointed out Berthelot’s misunderstanding about 
the decisive role of the heat of reaction in 188236 and – we know it, but he 
did not – he had been anticipated by Gibbs. Most scientists, however, 
learned about the delicate balance between u and s from Helmholtz and 
that is why the free energy F = U – T·S is known as the Helmholtz free 
energy in English speaking countries. 

Le Châtelier (1850–1936), the most eminent chemist at the turn of the 
century, did not indulge in speculation. He simply reported what he had 
observed when, in 1888, he pronounced the principle of least constraint or
simply le Châtelier’s principle: Every change of one of the factors of an 
equilibrium [e.g. pressure or temperature] brings about a rearrangement of 

                                                     
34 It was Berthelot who coined the words endothermic and exothermic.
35 In a calorimetric bomb the reactions proceed at constant volume. Therefore the heat of 

reaction is equal to u; for a reaction that happens at constant pressure the heat of reaction 
is h = u + p v, because some of the energy change is converted into work.

36 H. Helmholtz; “Die Thermodynamik chemischer Vorgänge” [Thermodynamics of 
chemical processes] Sitzungsberichte der preussischen Akademie der Wissenschaften. 
Berlin (1882 ). 
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the system – actually of its constituents – in such a direction as to decrease 
the original change. For instance: An endothermic reaction – one with a 
positive heat of reaction – proceeds further at increased temperature, so that 
the temperature in the end does not rise quite as far as it would have done 
without the reaction. Similarly: A volume-increasing reaction is helped 
along by a pressure decrease, so that the eventual pressure drop is smaller 
than without the reaction.

Le Châtelier, when he translated Gibbs’s work into French in 1899, must 
have had mixed emotions when he saw that his principle had been proved 

consolation: Gibbs’s proof was valid only for ideal gas mixtures, whereas le 
Châtelier’s statement claims general validity.

Ostwald, the German translator of Gibbs, had said that he undertook the 
task because he believed in hidden treasures in Gibbs’s work. He was right, 
and le Châtelier and later Haber and Bergius were chemists who uncovered 
and lifted the treasures. Of course, Roozeboom had been another one, see 
above.

Fritz Haber (1868–1934) 

Fritz Haber was a chemist who knew Gibbs’s work well enough to make 
3 2

of the air. The overall stoichiometric formula reads 

33

2

23

1

2
NHNH

and the heat and entropy of reaction are37

kJ J

mol molK
30.8 and 59.5

R R
h s∆ ∆ .

Thus at normal temperature TR and pressure pR the energy, or enthalpy, 
drops and it is therefore conducive to the formation of ammonia. The 
entropy drops also and that fact is bad for ammonia. But the energetic term 

dominates, since 
mol

kJ1.13  holds, so that the Gibbs free 

energy favours ammonia, and that is what counts, or it should be; see 
Fig. 5.7 which shows Gibbs free energies as a function of the extent of 
reaction. For the reference state TR = 298 K and pR = 1atm the minimum of 
G lies very close to 100% ammonia.

                                                     
37 Chemists – at least the an-organic types – like to use molar quantities a  which are 

related to the mass-specific quantities a by Maa , where 
mol

g
is

the molar mass and
o

r
M  is the relative molecular mass.  

by Gibbs ten years before he himself stated it. However, there was a 

use of it in the production of ammonia NH from the nitrogen N

.
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Fig. 5.7.  Gibbs free energies for the ammonia synthesis as functions of the extent of reaction 

And yet, nothing happens when hydrogen and nitrogen are mixed. No 
ammonia is formed and the mixture is perfectly stable, or rather meta-
stable, since the strong chemical bonds between the atoms in H2 and N2

must first be severed or weakened before ammonia can be formed.
For that purpose Haber used perforated iron sheets whose surface 

catalyses the dissociations H2  2H and N2  2N at high temperature, say 

value of  so that the minimum of the Gibbs free energy lies on the side 
of hydrogen and nitrogen, cf. Fig 5.7, and once again, nothing happens. But 
then Haber knew what to do: The stoichiometric equation shows that the 
reaction, if it proceeds all the way, cuts the number of molecules by half 
and, since all constituents are ideal gases, the volume is halved as well. 
Therefore, by le Châtelier’s principle and Gibbs’s formulae, a high pressure 
should assist the reaction. Haber put the mixture under 200 atm and 
achieved a good output of ammonia,38 cf. Fig. 5.7. 

Ammonia can easily be converted into nitrates which the world craves 
for the production of fertilizers and explosives. Before Haber the main 
source of nitrates were the guano fields on the west coast of South America, 
over which Chile, Peru and Bolivia fought the guano war.  Chile won and 
Bolivia lost her access to the sea.

The Haber-Bosch synthesis was developed in 1908, just in time for the 
first world war. It was clear that in case of war Germany would be cut off 
from guano imports by a British naval blockade and therefore a huge 
ammonia plant was built in Saxony. Its output supplied the German army 
throughout the four years of war easily. The country ran out of men and 
food and morale, but never of explosives. Haber received the Nobel prize in 

                                                     
38 The process is known as the Haber-Bosch synthesis after Haber, of course, and Karl Bosch 

(1874–1940), who suggested a good strong material for the pressure vessel. The apparatus 
is exhibited on the campus of the University of Karlsruhe, where it rusts away on an 
unkempt lot.

500°C. Unfortunately,  such a high temperature emphasizes the negative 
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1918 and, after the war he was made director of the Kaiser Wilhelm 
Institute for physical chemistry.39

Haber’s patriotism led him to propagate and direct the use of chlorine 
and mustard gas as a means of warfare on the western front. Chlorine was 
first. On April 22, 1915 it was used at Ypres against Canadian troops. The 
troops fled and the result was an unprecedented five-mile gap in the front. 
The strategic effect, however, was nil, since the German general staff had 
not really believed that the project would work, and was not prepared for an 
offensive.40

Only a little later Haber became a tragic figure. He was Jewish and, when 
Hitler came to power, he was stripped of all posts and driven into exile. He 
was not alone in that, of course, but while others were made welcome in 
Britain by an international initiative of scientists led by Ernest Rutherford, 
Haber was not, because of his poison gas activity. He left for Italy but died 
en route.

                                                  Haber continued in what he saw as his patriotic
                                                  duty after the disastrous war. He attempted to
                                                  isolate gold from sea water in the hope to help 
                                                  Germany repay the huge war indemnity 
                                                  demanded under the Versailles peace treaty. 
                                                  In this effort Haber failed. However, he could
                                                  have saved himself the effort because in the end
                                                  the indemnity was never paid.

Fig. 5.8.  Fritz Haber

The impact of chemistry on war and warfare confirmed itself in the 
second world war. That war was largely fought by mobile troops with 

was the supply of fuel. Germany has no natural mineral oil but a lot of 
coal, – both brown coal and pit coal. And again, just in time, it became 
possible to convert both types of coal into benzine. That was the invention 

                                                     
39 It is a sign of the schizophrenia of German politics between the two world wars that the 

Kaiser Wilhelm Institute retained its name in the time of the Weimar republic and during 
the national-socialist rule, although the monarchy was thoroughly discredited. It took 
another world war to shake the name loose. The institute was renamed Max Planck 
Institute in 1946, cf. M. Planck: “Physikalische Abhandlungen und Vortraege” [Papers 
and lectures on physics] Vieweg, Braunschweig (1958). Foreword by M.von Laue. 

40 According to I. Asimov: “Biographies.” loc.cit 

mechanized transport, and by tanks and airplanes, and the biggest logistical problem 
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of Friedrich Karl Rudolf Bergius (1884–1949),41 who had studied catalytic 
high-pressure chemistry under Nernst and Haber. He developed the Bergin
process to combine coal and hydrogen at high pressure and high 
temperature. Huge hydrogenation plants were built in Germany to supply 
the Wehrmacht, the German armed forces. Strangely enough the Allied 
Bomber Command overlooked the strategic importance of these vulnerable 
plants – 54 of them – until well into 1944. Then they were bombed and 
destroyed in May 1944.42

Fuel became very scarce indeed after that, and soon the vehicles of the 
German army were converted for the use of wood-gas, a comparatively 
low-tech application of mass action: Wood was burned with an insufficient air 
supply in a barrel-shaped furnace – that was loaded into the trunk –,  and 
the resulting carbon monoxide was fed into the motor. I remember from my 
childhood that, half-way up even moderate hills, the drivers had to stop and 
stoke before they could proceed. Obviously this would not do for airplanes. 

Socio-thermodynamics

On several occasions in previous chapters I have hinted at the usefulness of 
thermodynamic concepts in remote areas, i.e. fields that have little or 
nothing to do with thermodynamics at first sight. Those hints would be 
wanton remarks unless I corroborated them somehow, in order to acquaint 
the reader with the spirit of extrapolation away from thermodynamics 
proper. To be sure, most such subjects belong more to the future of 
thermodynamics rather than to its history. They are struggling to be taken 
seriously, and to obtain admission into the field. But anyway, let us 
consider the non-trivial proposition which has been called socio-
thermodynamics. It extends the concepts described above for the 
construction of phase diagrams in binary solutions to a mixed population of 
hawks and doves with a choice of different contest strategies.

We let ourselves be motivated by an often discussed model of game 
theory43 for a mixed population of hawks and doves who compete for the 

                                                     
41 Bergius shared the 1931 Nobel prize with Karl Bosch, Haber’s colleague and assistant in 

the Haber-Bosch synthesis of ammonia.
42 According to A. Galland: “Die Ersten und die Letzten, die Jagdflieger im Zweiten 

Weltkrieg.” [The first and the last, fighter pilots in World War II] Verlag Schneekluth, 
Augsburg (1953).

 Adolf Galland was himself a highly decorated fighter pilot before he was given an office 
job; he became the last inspector of the Luftwaffe in the war and then the first inspector of 
the after-war Luftwaffe in 1956.

43

P.D. Straffin: “Game Theory and Strategy.” New Mathematical Library. The 
 J. Maynard-Smith, G.R. Price: “The logic of animal conflict.” Nature 246 (1973).

Mathematical Association of America 36 (1993). 
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same resource, whose value, or price, is denoted by . Prices are out of 
control for the birds, but they must be taken into account by them. Indeed, 
in their competition the birds may assume different strategies A or B which 
we define as follows.

Strategy A 

If two hawks meet over the resource, they fight until one is injured. The winner 
gains the value , while the loser, being injured, needs time for healing his wounds. 
Let that time be such that the hawk must buy 2 resources, worth 2  to feed himself 
during convalescence. Two doves do not fight. They merely engage in a symbolic 
conflict, posturing and threatening, but not actually fighting. One of them will 
eventually win the resource – always with the value – but on average both lose 
time such that after every dove-dove encounter they need to catch up by buying 
part of a resource, worth 0.2 . If a hawk meets a dove, the dove walks away, while 
the hawk wins the resource; there is no injury, nor is any time lost.

Assuming that winning and losing the fights or the posturing game is 
equally probable, we conclude that the elementary expectation values for 
the gain per encounter are given by the arithmetic mean values of the gains 
in winning and losing, i.e. 

eA

HH = 0.5 (  – 2 )  = - 0.5 
eA

HD = 
              eA

DH = 0 
eA

DD = 0.5 – 0.2  = 0.3 

for the four possible encounters HH, HD, DH, and DD. 
Note that both, the fighting of the hawks and the posturing of the doves, 

are irrational acts, or luxuries. Indeed both species would do better, if they 
cut down in these activities, or abandoned them altogether. Also the 
meekness of the doves confronted with a hawk may be regarded as 
overcautious. Such observations have let to the formulation of strategy B. 

Strategy B 

The hawks adjust the severity of the fighting – and thus the gravity of the injury – 
to the prevailing price . If the price of the resource is higher than 1, they fight less, 
so that the time of convalescence in case of a defeat is shorter and the value to be 
bought during convalescence is reduced from 2  to 2 (1-0.2(  – 1)). Likewise the 

                                                                                                                          
The issue in these presentations is the proof that a mixed population of two species may be 
evolutionarily stable, if the species follow the proper contest strategy. In the present 
account of socio-thermodynamics the objective is different: No evolution is allowed but 
two different strategies may be chosen which both depend on the price of the contested 
resource.
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doves adjust the duration of the posturing, so that the payment for lost time is 
reduced from 0.2  to 0.2  (1 – 0.3( – 1)). But that is not all: To be sure, in strategy 
B the doves will still not fight when they find themselves competing with a hawk, 
but they will try to grab the resource and run. Let them be successful 4 out of 10 
times. However, if unsuccessful, they risk injury from the enraged hawk and may 
need a period of convalescence at the cost 2  (1 + 0.5(  – 1)).

Thus the elementary expectation values for gains under strategy B may 
be written as

eB

HH = 0.5( – 2 (1 – 0.2(  – 1)))        = (0.2  – 0.7)
eB

HD = 0.6
eB

DH = 0.4  – 0.6·2  (1 + 0.5(  – 1))   = –(0.6  + 0.2)
eB

DD

ei

H = zH ei

HH + (1 – zH) ei

HD      and ei

D = zH ei

DH + (1 – zH) ei

DD

in terms of the elementary expectation values. And the gain expectations ei

for strategy i per bird and per encounter reads

                                                     
44 Such a constraint could be avoided, if we allowed non-linear penalty reductions which, for 

simplicity, we do not. 

 = 0.5  – 0.2  (1 – 0.3(  – 1))     = (0.06  + 0.24)  .

Socio-thermodynamics

The assignment of numbers is always a problem in game theory. Here the 
numbers have been chosen so as to fit a conceivable idea of the behaviour 
of the species. Let us consider this: 

The grab-and-run policy is clearly not a wise one for the doves, because they get 
punished for it. So, why do they adopt that policy? We may explain that by 
assuming, that doves are no wiser than people, who start a war with the expectation 
of a quick gain and then meet disaster. This has happened often enough in history.

Note that for  >1 the intra-species penalties for either fighting or posturing become 
smaller, because we have assumed that these activities are reduced when their 
execution becomes more expensive. However, the interspecies penalty – the injury 
of the doves – increases, because the hawks will exert more violence against the 
impertinent doves when the stolen resource is more valuable.

 = 1 is a reference price in which both strategies coincide, except for the grab-and-
run feature of strategy B. Penalties for either fighting or posturing should never turn 
into rewards for whatever permissible value of . This condition imposes a 
constraint on the permissible values of : 0< <4.33.44

Now, let zH and zD = 1 – zH be the fractions of hawks and doves, and let all 
hawks and doves either employ strategy A or B. Therefore the gain 
expectations ei

H  and ei

D (i = A,B) of a hawk and a dove per encounter with 
another bird may be written as 
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ei = zH ei

H + (1 – zH) ei

D or  explicitly

   ei = zH

2 (ei

HH + ei

DD – ei

HD – ei

DH) + zH (ei

HD + ei

DH – 2 ei

DD) + ei

DD.

Specifically we have

eA= –1,2   zH

2 + 0.4  zH + 0.3 
eB = 0.86 ( – 1) zH

2 – (0.72 + 0.08)  zH + (0.06 + 0.24) .

The graphs of these functions are parabolae which – for some values of 
– are plotted in Fig. 5.9.a–e. 

Fig. 5.9. Expectation values as functions of zH for some values of the price .

The interpretation of those graphs is contingent on the reasonable 
assumption that the population chooses the strategy that provides the 
maximal gain expectation. Obviously for = 0.6 and = 1 that strategy is 
strategy A. At that price level the hawks and doves will therefore all choose 
strategy A irrespective of the hawk fraction zH in the population.

For higher price levels the situation is more subtle, because the graph 
max[eA, eB] is not concave. This provides the possibility of concavification, 
cf. Fig. 5.9.c–e. There are intervals of zH where the concave envelope of  
max[eA, eB] lies higher than that graph itself. The population then has the 
possibility to increase the expected gain by un-mixing; it segregates into

Concavification. Strategy diagram 
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homogeneous colonies with hawk fractions corresponding to the end-points 
of the concavifying straight lines, which are dashed in the figures. In 
Figs. 5.9c,d the adopted strategies are A and B and the species are mixed in 
the colony with strategy A, whereas the colony with strategy B is pure-dove 
or pure-hawk, depending on whether the extant overall hawk fraction lies 
below the left, or right tangent respectively. For > 3.505 the concave 
envelope connects the end-points of the parabolae eB so that hawks and 
doves are fully segregated in two colonies, both employing strategy B. 

Mutatis mutandis all this is strongly reminiscent of the considerations of 
phase diagrams of solutions or alloys with a miscibility gap, see above at 
Fig. 5.6. To be sure, there we minimized Gibbs free energies whereas here 
we maximize gain. Accordingly in solutions we convexify the graph 
max[G ,G ] whereas her we concavify the graph max[eA, eB], but those are  
superficial differences. And just as we constructed phase diagrams before, 
we may now construct a strategy diagram by projecting the concavifying 
lines unto the appropriate horizontal line in a (price, hawk fraction)-dia-
gram, cf. Fig. 5.9f. We recognize four regions in that diagram.

I:   Full integration of species employing strategy A. 
II: Colony of pure doves with strategy B and integrated colony of   
hawks and doves with strategy A. Partial segregation. 
III: Colony of pure hawks with strategy B and integrated colony with 
strategy A. Partial segregation. 
IV: Colonies of pure doves and pure hawks. Full segregation. 

The curves separating the regions II and III from region I can easily be 
calculated:

 = 20 zH

2 + 1        and  = 6 zH

2 – 12 zH + 7 

respectively. Those two curves intersect in the eutectic point E, so called in 
analogy to thermodynamics.

Although the analogy between our sociological model and thermo-
dynamics of solutions is fairly striking, there are differences. In particular, 
the present strategy diagram lacks the lateral regions, denoted by a and b in 
Fig. 5.6. This is due to the fact that we have not accounted for an entropy of 
mixing in the present case. For socio-thermodynamics in full – including 
the entropy of mixing – I refer to my recent article “Socio-thermodynamics 
– integration and segregation in a population.” 45 In that paper the analogy is 
fully developed, including first and second laws of socio-thermodynamics, 
and with the proper interpretations of working and heating etc.46

                                                     
45

46 The simplified presentation given above follows a paper by J. Kalisch, I. Müller: 
“Strategic and evolutionary equilibria in a population of hawks and doves.” Rendiconti del 
Circolo Matematico in Palermo, Serie II, Supplemento 78 (2006), pp. 163–171.

 I. Müller: Continuum Mechanics and Thermodynamics 14 (2002) pp. 389--404. 

 Socio-thermodynamics
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The upshot of the present investigation is that, if integration of species – 
or, perhaps, ethnic groups – is desired and segregation is to be avoided, 
political leaders should provide for low prices, if they can. In good times 
integration is no problem, but in bad times segregation is likely to occur. 
We all know that. But here is a mathematical representation of the fact 
with – conceivably – the possibility for a quantification of parameters. 

The analogy of segregation in a population and the miscibility gap in 
solutions and alloys has been noticed before by Jürgen Mimkes, a metal-
lurgist.47 His approach is more phenomenological than mine, without a 
model from game theory. Mimkes has studied the integration and segrega-
tion of protestants and catholics in Northern Ireland, and he came to 
interesting conclusions about mixed marriages.

It is interesting to note that socio-thermodynamics is only accessible to 
chemical engineers and metallurgists. These are the only people who know 
phase diagrams and their usefulness. It cannot be expected, in our society, 
that sociologists will appreciate the potential of these ideas. They have 
never seen a phase diagram in their lives.

                                                                                                                          
That paper also includes evolutionary processes, which make the hawk fraction change so 
that the population may eventually reach the evolutionarily stable strategy appropriate to 
the price level .

47

Analysis 43 (1995). 
 J. Mimkes: “Binary alloys as a model for a multicultural society.” Journal of Thermal 



6   Third Law of Thermodynamics 

In cold bodies the atoms find potential energy barriers difficult to surmount,
because the thermal motion is weak. That is the reason for liquefaction and 
solidification when the intermolecular van der Waals forces overwhelm the 
free-flying gas atoms. If the temperature tends to zero, no barriers – 
however small – can be overcome so that a body must assume the state of 
lowest energy. No other state can be realized and therefore the entropy must 
be zero. That is what the third law of thermodynamics says. 

On the other hand cold bodies have slow atoms and slow atoms have 
large de Broglie wave lengths so that the quantum mechanical wave 
character may create macroscopic effects. This is the reason for gas-
degeneracy which is, however, often disguised by the van der Waals forces.

In particular, in cold mixtures even the smallest malus for the formation 
of unequal next neighbours prevents the existence of such unequal pairs and 
should lead to un-mixing. This is in fact observed in a cold mixture of 
liquid He3 and He4. In the process of un-mixing the mixture sheds its 
entropy of mixing. Obviously it must do so, if the entropy is to vanish. 

Let us consider low-temperature phenomena in this chapter and let us 
record the history of low-temperature thermodynamics and, in particular, of 
the science of cryogenics, whose objective it is to reach low temperatures. 
The field is currently an active field of  research and lower and lower 
temperatures are being reached.

Capitulation of Entropy 

It may happen – actually it happens more often than not – that a chemical 
reaction is constrained. This means that, at a given pressure p, the reactants 
persist at temperatures where, according to the law of mass action, they 
should long have been converted into resultants; the Gibbs free energy g is 
lower for the resultants than for the reactants, and yet the resultants do nor 
form. We may say that the mixture of reactants is under-cooled, or over-
heated depending on the case. As we have understood on the occasion of 
the ammonia synthesis, the phenomenon is due to energetic barriers which 
must be overcome – or bypassed – before the reaction can occur. The 
bypass may be achieved by an appropriate catalyst. 
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An analogous behaviour occurs in phase transitions,1 mostly in solids: It 
may happen that there exist different crystalline lattice structures in the 
same substance, one stable and one meta-stable, i.e. as good as stable or, 
anyway, persisting nearly indefinitely. Hermann Walter Nernst (1864–
1941) studied such cases, particularly for low and lowest temperatures.

Take tin for example. Tin, or pewter, as white tin is a perfectly good 
metal at room temperature – with a tetragonal lattice structure – popular for 
tin plates, pewter cups, organ pipes, or toy soldiers.2 Kept at 13.2°C and 
1atm, white tin crumbles into the unattractive cubic grey tin in a few hours. 
However, if it is not given the time, white tin is meta-stable below 13.2°C 
and may persist virtually forever.3

It is for a pressure of 1atm that the phase equilibrium occurs at 13.2°C. 

At other pressures that temperature is different and we denote it by Tw g(p);

its value is known for all p. At that temperature g = gw – gg vanishes, and 

below we have gw > gg, so that grey tin is the stable phase. g may be 

considered as the frustrated driving force for the transition and it is 

sometimes called the affinity of the transition. It depends on T and p and has

two parts 

g(T,p) = h(T,p) – T· s(T,p),

an energetic and an entropic one. 
h(T,p) is the latent heat of the transition and s(T,p) is the entropy 

change.4 For any given p the latent heat h(T,p) can be measured as a 
function of T by encouraging the transition catalytically, e.g. by doping
white tin with a small amount of grey tin. And s(T,p) may be calculated by 
integration of cp(T,p)/T of both variants, white and grey, between T = 0, – or 
as low as possible – and the extant T. Thus we have 
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1 From the point of view of thermodynamics phase transitions are much like chemical 

reactions, although the phenomena differ in appearance. One might go so far as to say that 
phase transitions are chemical reactions of a particularly simple type.

2 In ancient times tin was much in demand because, alloyed to copper, it provided bronze, 
the relatively hard material used for weapons, tools, and beads and baubles in the bronze 
age (sic).

3 Not so, however, when it coexists with previously formed traces of grey tin. If that is the 
case, tin appliances are affected by the tin disease at low temperature. A church may lose 
its organ pipes in a short time, and that loss did in fact occur during a cold winter night in 
St. Petersburg in the 19th century. 

4 Note that the heat and entropy of transition depend on T and p, if the transition occurs in 

the under-cooled range. If it occurs at the equilibrium point, both quantities depend only 

on one variable, since T = Tw g(p) holds at that point. 
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would even be true, if the specific heats cp(T,p) were constant for T  0. In 

already ample evidence that all specific heats tend to zero polynomially, 

with T 0, e.g. as (a·T
3
) for non-conductors, or as (a·T

3
+b·T) for

conductors. Given this observation, the integrals in s(T,p) themselves tend 

to zero, and the curly bracket reduces to sw(0,p) – sg(0,p). This difference 

may be related to the heat of transition h(Tw g(p)) at the equilibrium point, 

because in phase equilibrium we have g(Tw g(p)) = 0, or 

or
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From some measurements Nernst convinced himself that this express- 
ion – which after all is equal to s(T,p) for T 0 – is zero, irrespective of 
the pressure p, and for all transitions.5 So he came to pronounce his law or 
theorem which we may express by saying that the entropies of different 
phases of a crystalline body become equal for T 0, irrespective of the 
lattice structure. Moreover, they are independent of the pressure p. 

This became known as the third law of thermodynamics.
We recall Berthelot, who had assumed the affinity to be given by the heat 

of transition. And we recall Helmholtz, who had insisted that the 
contribution of the entropy of the transition must not be neglected. 
Helmholtz was right, of course, but the third law provides a low-
temperature niche for Berthelot: Not only does T· s(T,p) go to zero, s(T,p)
itself goes to zero. The entropy capitulates to low temperature and gives up 
its efficacy to influence reactions and transitions. 

Inaccessibility of Absolute Zero 

In 1912 Nernst pointed out that absolute zero could not be reached because 
of the third law.6 Indeed, since s(T,p) tends to the same value for T 0
irrespective of pressure, the graphs for different p’s must look qualitatively 

                                                     
5 W. Nernst: “Über die Berechnung chemischer Gleichgewichte aus thermodynamischen 

Messungen” [On calculations of chemical equilibria from thermodynamic measurements] 
Königliche Gesellschaft der Wissenschaften Göttingen 1,   (1906).

6 W. Nernst: “Thermodynamik und spezifische Wärme” [Thermodynamics and specific 
heat]. Berichte der königlichen preußischen Akademie der Wissenschaften (1912). 

Inspection shows that for T  0 the affinity tends to the latent heat. This 

reality, in Nernst’s time – between the 19th and the 20th century – there was 
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like those of Fig. 6.1.a. Therefore the usual manner for decreasing 
temperature, – namely isothermal compression followed by reversible 
adiabatic expansion – indeed decreases the temperature, but never to zero,
since the graphs become ever closer for T 0.

Fig. 6.1. (a) Isothermal compression ( ) and adiabatic expansion ( ) (b) Equilibrium 

Having presented that argument, Nernst summarizes the three laws of 
thermodynamics thus:7

This accumulation of negatives appealed to Nernst and it has appealed to 
physicists ever since. 

Diamond and Graphite 

One of the more unlikely cases of coexisting phases occurs in solid carbon 
and they are known as graphite and diamond. Both are crystalline in 
different ways: Graphite consists of plane layers of benzene rings tightly 
bound –  inside the layer – in a hexagonal tessellation. And each layer is 

                                                     
7  W. Nernst: “Die theoretischen und experimentellen Grundlagen des neuen Wärmesatzes.”

[Theoretical and experimental basis for the new heat theorem] Verlag W. Knapp, Halle 
(1917), p. 77. 

pressure for the transition graphite diamond

It is impossible to build an engine that  produces heat or  work from 
nothing.
It  is  impossible to  build an engine that produces work from nothing 
else than the heat of the environment.
It  is  impossible to take  all  heat  from a body. 
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loosely bound to the neighbouring ones. If one rubs graphite against a sheet 
of paper (say), the uppermost layers are scraped off and leave a mark on the 
paper. That is why graphite can be used for writing. Hence the name: 
graphos = to write in Greek. The lead inside our pencils consists of graphite 
mixed with clay. It has the gloss of lead. 

And then there is diamond, the hardest material of all; it cannot be 
scratched or ground except by use of other diamonds and it is unaffected by 
most chemicals. The Greek word was “adamas” = untameable and that is 
where, after some distortion, the name diamond comes from. In diamonds 
the carbon atoms sit in the centre of tetrahedra and are quite tightly bound, 
although not as tightly as the in-plane atoms in the graphite layers. At 
normal pressure and temperature graphite is stable and diamond is meta-
stable.

All this, of course, was unknown until modern times and, naturally, since 
diamond was rare and beautiful, and therefore valuable, it was of much 
interest to chemists and alchemists alike. To investigate its properties, 
however, it needed a rich patron. Cosimo III, Grand Duke of Tuscany – true 
to the Medici tradition of patronizing the arts and sciences – provided a 
good-size sample for scientific investigation. For security he entrusted it to 
a group of three scientists who could not – try as they might – affect it in 
any way. Eventually they brought a burning glass to bear, in order to heat
the stone. It developed a halo and then – it was gone! Naturally the report 
was met with some scepticism,8 but nobody was much tempted to repeat the 
experiment until Lavoisier did so 80 years later. Lavoisier, living up to his 
reputation, controlled his experimental conditions by using a closed jar. He 
found that, after the diamond had been burned, the air inside the jar 
contained an appropriate amount of carbon di-oxide and so he could 
conclude that diamond is pure carbon.

After the inevitable sceptics had been convinced, there arose a strong 
desire to reverse the process and make diamond from graphite. Since 

g(T,p) = gdia(T,p)-ggraph(T,p) is the affinity of the process and since 

v)( holds, we have

)0,(),(

0

Diamond is a lot denser than graphite –3.5g/cm3 as compared to 2g/cm3 – and 
therefore we have v < 0 so that g(T,p) decreases with increasing p. For 
phase equilibrium g(T,p) must vanish and thus we obtain an equation for 
the requisite p as a function of T

                                                     
8 According to I. Asimov: “The unlikely twins” in: “The tragedy of the moon” Dell 

Publishing Co. New York (1972). 

v( , )  .
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0

By the third law g(T,0) is known – without any unknown constants – 
from measurements of the latent heat of the transition for p = 0 and from 
measurements of the specific heats cp(T,0) of both phases starting at T = 0, 
or as low as possible. Also v(T,p) is known for all T as a function of 
pressure. Of course, it takes a protracted experimental campaign to measure 
all these values, but the end might justify the means: For every fixed 
temperature we obtain the pressure that should convert graphite into 
diamond. Fig. 6.1.b shows the graph.9

Inspection of the graph shows that, at room temperature, it should take 
approximately 15 kbar to obtain diamond, if indeed the transition occurred 
in equilibrium. However, in both directions the transition is hampered by 
energetic barriers: In the interesting direction the planar benzene 
configuration must first be destroyed before diamond can be formed, and in 
the other direction the tetragonal diamond structure must be weakened 
before diamond turns to graphite. For  both it needs high temperature and 
therefore the equilibrium graph of Fig. 6.1.b is really relevant only in the 
upper part. When diamonds were eventually synthesized in 1955, by 
scientists of the General Electric Company in the USA, it occurred at 2800 
K and at a pressure of about 100 kbar.10

There had been several false alarms before that time. But the reported 
results turned out to be either fakes or hoaxes. It is believed that the chemist 

1893 – he presented a diamond which he believed he had created in his 
laboratory. Certainly he could never repeat the feat.

Hermann Walter Nernst (1864–1941) 

It is difficult to say much in praise of Nernst which was not already said 
better by Nernst himself, cf. Fig. 6.2. He was a bon-vivant, as much as that 
is possible for a hard-working professor, operator and administrator. He 
hunted in the stylised European manner, was a connoisseur of wine and 
women, an early gentleman automobilist and, quite generally, a person 
endowed with a healthy self-regard. That by itself is one way to get ahead 
in the world and Nernst was good at that.

                                                     
9 J. Wilks: “Der dritte Hauptsatz der Thermodynamik” [The third law of thermodynamics] 

Vieweg, Braunschweig (1963) 
10 Or 700 tons per square inch in the cute American units. 

v( , ) ( ,0) .

Henri Moisseau had been hoodwinked by one of his assistants when – in 
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Nernst reassures us concerning the
                                                                      emergence of further thermodynamic 
                                                                      laws: 

                                                                     The 1st law had three discoverers: 
                                                                      Mayer, Joule and Helmholtz. 

                                                                      The 2nd law had two discoverers: 
                                                                      Carnot and Clausius. 

                                                                      The 3rd law has only one discoverer,
                                                                      namely himself: Nernst. 

                                                                      The 4th law … (?) 

Fig. 6.2.  Hermann Walter Nernst 

He had obtained the patent for an essentially useless electric lamp – the 
Nernst pin – which nevertheless, to Edison’s amazement,11,12  he sold to 
industry for a million marks, a very sizable amount of money indeed at the 
time. Nernst suggested to Röntgen that he should patent X-rays so as to 
make money, an idea that had never occurred to Röntgen; nor was he 
tempted.

Nernst’s law, or theorem stood on uncertain grounds at first. It is now 
recognized that, at the beginning,13 it was a daring proposition with little or 
no evidence to back it up.14 To be sure, the theorem was not presented 
cautiously, but rather with some fanfare. A somewhat irrelevant differential 
equation was solved and one solution was preferred arbitrarily over all 
others, because a priori that seemed to Nernst to be the easiest solution.15

However, at the end, just like with his pin, Nernst was lucky. Others 
collected the evidence, which he had failed to present. By and large, 
Nernst’s proposition was confirmed through painstaking work lasting many  
years. To be sure, amorphous solids had to be excluded somewhere along 
the way, but that was a secondary qualification, perhaps. 

Despite Nernst’s proud statement, cf. Fig. 6.2, about being the sole dis-
coverer of the third law, there were really two discoverers. Indeed, Planck 
strengthened the law on the grounds of statistical thermodynamics by 
demanding that the entropy of all crystalline bodies tend to zero for T 0.

                                                     
11 Thomas Alva Edison (1847–1931), the greatest inventor of all times, owned 1300 patents 

at the end of his career, among them one for the electric light bulb. He held a poor opinion 
of the practical skills of professors like Nernst. 

12 I. Asimov: “Biographies …” loc.cit.
13 W. Nernst: “Über die Berechnung ....” loc.cit.  (1906).
14 See: A. Hermann (ed.): “Deutsche Nobelpreisträger” [German winners of the Nobel prize]  

Heinz Moos Verlag, München (1969) p. 131–132.
15 Ibidem, p. 132. 
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This is the modern version of the law and it is amply confirmed in experi-
ments by comparing the entropies calculated from measurements of specific 
heats with the known value of entropy in the ideal gas phase of a substance, 
see below. 

Planck’s form of the third law goes far beyond Nernst’s, because it is not 
restricted to chemical reactions, or phase transitions. It allows us to 
calculate the absolute value of the entropy of any single body. The 
handbooks used by physicists and chemists provide these values as parts of 
their tables of constitutive properties. 

Note that this is more than the chemists need, because in their formulae it 
is only the entropy of reaction that is needed, that is to say a combination of 
the entropy constants of the reactants and resultants, see Chap. 5. 

Liquefying Gases 

It is not easy to lower temperatures and the creation of lower and lower 
temperatures is in itself a fascinating chapter in the history of 
thermodynamics which we shall now proceed to consider. The chapter is 
not closed, because low-temperature physics is at present an active field of 
research. Currently the world record for the lowest temperature in the 
universe16 stands at 1.5 µK, which was reached at the University of 
Bayreuth in the early 1990’s. Naturally the cold spot was maintained only 
for some hours. Such a value was, of course, far below the scope of the 
pioneers in the 19th century who set themselves the task of liquefying the 
gases available to them and then, perhaps, reach the solid phase.

The easiest manner to cool a gas is by bringing it in contact with a cold 
body and let a heat exchange take place. But that requires the cold body to 
begin with, and such a body may not be available. No gas – apart from 
water vapour – could be liquefied in this manner in the temperate zones of 
Europe where most of the research was done.

Since liquids occupy only a small portion of the volume of gases at the 
same pressure, it stands to reason that a high pressure may be conducive to 
liquefaction, just as a low temperature is. Both together should be even  

                                                     
16 The universe, through its background radiation, imparts a temperature of 3K to bodies that 

are not otherwise heated or cooled. 

This is just like with energy: Chemists need only the heat of reaction, but Einstein’s 
formula E = mc2 furnishes the absolute value of energy for all reacting constituents 
in terms of their mass. This, however, is not useful knowledge for the chemist. 
Indeed, the mass defect of chemical compounds is too small to be measured by 
weighing (say). Yet, in summary it may be said that the first decade of the 20th 
century furnished both: the theoretical possibility for the determination of the 
absolute values of energy and entropy. 
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better. That idea occurred to Michael Faraday – a pioneer of both electro-
magnetism and cryogenics, the physics of low-temperature-generation – in 
1823. He combined high pressure and low temperature in an ingenious 
manner by using a glass tube formed like a boomerang, cf. Fig. 6.3. Some 
manganese di-oxide with hydrochloric acid was placed at one end. The tube 
was then sealed and gentle heating liberated the gas chlorine which mixed 
with the air of the tube and, of course, raised the pressure. The other end 
was put into ice water and it turned out that chlorine condensed at that end 
and formed a puddle at 0°C and high pressure.

Fig. 6.3. Michael Faraday (1791–1867) Liquefaction of chlorine 

When the pressure is slowly released, some of the liquid chlorine 
evaporates and, if this is done adiabatically, the heat of evaporation comes 
in part from the liquid, which therefore cools. In this manner Faraday was 
able to determine the boiling point of chlorine at 1atm as being –34.5°C. A 
further decrease of pressure will cool the liquid chlorine beyond that point, 
provided of course, that any is left.

Other scientists joined the campaign for low temperatures, notably 
Charles Saint Ange Thilorier (1771–1833), a chemist, who liquefied carbon 
dioxide in a strong metallic boomerang under high pressures and then 
lowered the pressure – hence, by evaporation, the temperature – far enough 
to make it solid. When enough solid was accumulated to experiment with, it 
turned out that carbon dioxide at 1atm goes immediately from the solid 
phase into vapour and vice-versa – at –78.5°C – in a process called 
sublimation, or de-sublimation respectively. That makes solid carbon di-
oxide popular as dry ice. It cools an article without soaking it upon melting; 
after all, it does not melt, it sublimates. 
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Thilorier invented another trick as well. He mixed the strongly volatile 
ether17 with solid carbon di-oxide. The ether evaporated and thus produced 
temperatures as low as –110°C, or 163 K. Having enough of this cold 
mixture available, Faraday and Thilorier could now liquefy other gases by 
simple heat exchange, although for some of them they needed high pressure 
to help in the process.

And yet, there are eight gases which cannot be liquefied at 163 K even 
under high pressure. They are oxygen, argon, fluorine, carbon monoxide, 
nitrogen, neon, hydrogen and helium of which Faraday knew five; he did 
not know the noble gases. So he called those five gases permanent. And 
that is where the further development was stuck for a while. Until Thomas 
Andrews (1813–1885) found out about the critical point or, in particular, 
the critical temperature. 

Andrews worked with carbon dioxide CO2, a gas that can be liquefied at 
room temperature under pressure. He took a sample of liquid CO2 under 
high pressure – 60–70atm (say) – and watched the liquid evaporate at some 
fixed temperature upon heating. Then he raised the pressure and started 
again, and again. He observed that the phase separation became less 
pronounced for higher pressure and vanished altogether at p = 73atm and 
T = 31°C. That point was called the critical point by Andrews. For higher 
pressures the liquid did not evaporate upon heating nor did the vapour 
liquefy upon cooling; the vapour just became ever denser without any 
evidence of a separation between liquid and vapour.

Andrews conjectured that all substances have critical points and that 
these points had escaped the attention of thermodynamicists only, because 
they were far out of the usual and easily accessible ranges of pressure and 
temperature. Therefore he concluded that the permanent gases can also be 
liquefied, if only we start raising the pressure on a sample that is colder, or 
even considerably colder than 163 K, which at that time was the record 
minimum.

Eventually this proved to be the case. But there was the problem of 
reaching lower temperatures. This problem was solved by Louis Paul 
Cailletet (1832–1913) in 1877.  He compressed oxygen to a pressure of 

66atm (say) in a compressor and then cooled the compressed gas back to 
room temperature TH = 298K. Afterwards he subjected the gas to an 
adiabatic expansion to pL= 1atm through a turbine, regaining some of the 
compressor work. For the expansion the adiabatic equation of state may be 

used in the form 1
)(

z

T

T

p

p

L

H

L

H , and for z = 5/2 – appropriate for a two-

atomic ideal gas  – it follows that the oxygen leaves the turbine with  TL  90 K,
 very close to the condensation point and far below the previous record 
minimum of 163 K. Actually Cailletet observed a fog of liquid droplets 

                                                     
17 Diethyl ether, not the luminiferous variety of Chap. 2, of course; that would have been 

something!

pH  
=
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behind the turbine. Thus he had successfully liquefied oxygen although, of 
course, the droplets quickly evaporated.  The same could be done for 
fluorine, carbon monoxide and nitrogen and – after the noble gases had 
been isolated – for argon and neon.18

Dewar was a man of many interests and talents: He erred, however, when 
he saw a connection between the blue of the sky and the blue colour of 
liquid oxygen. He invented cordite, a smokeless gun powder, and that 
brought him into a bitter fight about an alleged patent infringement with 
Alfred Bernhard Nobel (1833–1896). So, understandably, there was no 
Nobel prize for Dewar, although the road to absolute zero was otherwise 
paved with those prizes. However, Dewar was knighted and became Sir 
James. After his work only helium remained a gas. It deserves its own 
section, see below.

Despite effective isolation, until 1895 the cold liquids remained a 
laboratory curiosity. But then Carl Ritter von Linde (1842–1934) invented a 
continuous process of successive adiabatic throttling which produced 
liquids of oxygen and nitrogen in quantity, to be filled into high-pressure 
bottles and put to industrial use.19 Throttling occurs when a vapour or a 
liquid are pushed or sucked through a narrow opening so that the pressure 
decreases and so does the temperature in most substances. The cooling 
effect is known as the Joule-Thomson effect – or Joule-Kelvin effect. We 
have learned about this before, cf. Chap. 2. In an ideal gas the effect is nil, 
or very tiny indeed – to the extent that the gas is not really ideal. This 
means that before throttling can be applied efficiently, the gas has to 
undergo Cailletet’s adiabatic expansion, which converts it into a vapour 

                                                     
18 The reader has surely noticed the author’s special liking for the science essays of Isaac 

Asimov. Actually the present treatment of gas liquefaction also makes use of two such 
essays, namely I. Asimov: “Liquefying gases” and “Toward absolute zero” both in 
“Exploring the earth and the cosmos.” Penguin Books, London (1990). These essays, 
however, see Asimov wrong, because he confuses Cailletet’s adiabatic expansion and the 
adiabatic Joule-Thomson effect. The former is an essentially reversible process at constant 
entropy, while the latter is an inherently irreversible process with an unchanged enthalpy 
between beginning and end.

19 Oxygen, nitrogen and hydrogen come in blue, green and red bottles, respectively, under a 
pressure of 150 bar.

Effective isolation eventually produced liquids of the permanent gases in 
quantities sizable enough to study their properties, e.g. the boiling points. 
Even hydrogen was eventually liquefied in 1898 by James Dewar  
(1842–1923) and its boiling point turned out to be 20.3 K; solidification 
happens at 14K. For isolation Dewar invented the Dewar flask, a kind of 
thermos bottle, in which cold liquids could be stored for a long time, 
because the flasks had a vacuum-filled double wall, whose surface was 
silvered, so that even radiation losses were kept at a minimum.
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close to liquefaction. Linde used several steps of throttling and 
regeneration, i.e. he pre-cooled the incoming flow of vapour by making it 
exchange heat with the already throttled one. The Linde process is still used 
now. And Linde’s firm – founded in 1879 – thrives on selling liquefied 
gases, although it is mostly putting out the ubiquitous compression 
refrigerators, another invention of Linde’s.

Fig. 6.4 . Carl Ritter von Linde (1842–1934). Schematic view of his air liquefying apparatus 

Van der Waals was the person who made sense out of the concept of the 
critical point and who corroborated Andrew’s conjecture that all gases 
should have such a point.  He considered that the ideal gas law 

v

1  is 

an idealization which ignores inter-atomic forces. Van der Waals reasoned 
that the interaction force – now called van der Waals force – is mildly 
attractive at large distances and strongly repulsive when the atoms are close. 
Thus the potential (r) of the force between two atoms in the distance r has
the form shown qualitatively in Fig. 6.5.20 On the grounds of this 
assumption van der Waals was able to derive a modified form of the ideal 
gas law, namely, cf. Insert 6.1 

2
vv

21

                                                     
20 Van der Waals could not know the nature of the attractive force. It is an electric dipole-

dipole interaction, and the dipoles are due to a mutually induced differential shift of the 
electron shells and the nuclei of adjacent atoms.

21 J.D. van der Waals: “Over de continuiteit van den gas- en vloeistoftoestand.” [On the 
continuity of the gaseous and the liquid state]. Dissertation, Leiden (1873). 

.
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Fig. 6.5. Schematic form of the interatomic interaction potential as a function of the distance 
of two atoms.  Also: van der Waals coefficients 

Fig. 6.6.  Isotherms of a van der Waals gas. Also: Maxwell construction 

This has become known as the van der Waals equation for a real gas.
Obviously the modification lies in the positive coefficients a and b. The 
coefficient b represents the volume of an atom which clearly must detract 
from the total available volume. And the coefficient a represents the range 
and size of the attractive interaction which reduces the pressure exerted on 
the wall. 

In a certain range of temperatures the van der Waals equation describes 
isotherms in a (p,v)-diagram that are non-monotone, as shown qualitatively 
in Fig. 6.6. Thus there is the possibility to have two – actually three – 
specific volumes for one pressure and one temperature. Ignoring the middle 
one, van der Waals interpreted the two remaining volumes as those of the 
liquid and the vapour, and came up with the surprising conclusion that his 
theory, intended for real gases – as opposed to ideal gases –, could perhaps 
describe a liquid-vapour transition. This is what the title of his work 
suggests. Accordingly the temperature, whose isotherm develops a 
horizontal point of inflection, has to be interpreted as the critical isotherm 
and the inflection point itself as the critical point. By the van der Waals 
equation that point  has the coordinates 
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Although van der Waals’s work was presented as a doctoral thesis, – 
rather than in a scientific journal – it became quickly known. Boltzmann 
recognized it as a masterpiece, and he was so enthusiastic about the 
derivation that he called van der Waals the Newton of real gases.22 And 
Maxwell discovered a graphical method for the determination of the 
saturated vapour pressure p(T) for the van der Waals gas, see. Fig. 6.6. He 
wrote the phase-equilibrium condition of Insert 3.7 for the free energy 
F = U-TS in the form 

F  – F  = – p(T)(V  – V )      or with
T

F
p

V

V

V

VVTpdVTVp ))((),( ,

where the integration must be taken along the isotherm. Thus p(T) is the
isobar that makes the two shaded areas in Fig. 6.6 equal in size, This 
graphical method to determine p(T), and v (T), v (T) has become known as 
the construction of the Maxwell line. 

An interesting corollary of the van der Waals equation emerges when one 
introduces dimensionless variables 

v

v

, ,

because in that case the equation becomes universal, i.e independent of   
parameters relating to the particular fluid 

2

3

13

8
 . 

Van der Waals called this relation the law of corresponding states: States 
with equal non-dimensional variables correspond (sic) to each other 
irrespective of the material properties. This implies that the liquid-vapour 
properties of all substances are alike:

convex, monotonically increasing vapour pressure curves,
similar wet steam regions and, of course

The underlying reason for such conformity is the fairly plain ( ,r)-relation, 
cf. Fig. 6.5, which is common – qualitatively – to all gases. 

                                                     
22 In: Encyclopadie der mathematischen Wissenschaften, Bd. V.1. p. 550. 

 critical points.

.. 
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From a practical point of view, and with regard to liquefying gases, the 
most important conclusion from the van der Waals equation concerns the 
Joule-Thomson effect in a throttling experiment. It turned out that throttling 

The energy flux before and behind an adiabatic throttle must be equal; 
therefore the first law requires that the specific enthalpy h is unchanged, 
provided that the kinetic energy of the flow can be neglected. That 
condition could be used for the calculation of the temperature change T for
a given pressure drop p, cf. Insert 6.2. One obtains the criteria

cooling
1 1

0 for no change

heating
T Tp

v

v

 . 

Rather obviously the equality holds for ideal gases, so that ideal gases do 
not change their temperature upon adiabatic throttling. And for a van der 
Waals gas the criteria imply that the initial state must lie below the  graphs 
which define the inversion curve in the ( , )- , the ( , )-, or the ( , )-
diagram, viz. 

189
,2712324,

23

1

2

3

1

.

Obviously we have used here the dimensionless variables of the law of 
corresponding states. If a state lies on the inversion curves, it does not 
change temperature upon throttling; if it lies above the curves, the gas heats 
up.

Figure 6.7 shows the inversion curves in the ( , )-diagram and in the 
( , )-diagram along with – for better orientation – the critical isochor and 
the critical isotherm, respectively. Inspection of the ( , )-diagram – and of 
the mini-table in Fig. 6.7 with critical data for oxygen and hydrogen – 
shows that hydrogen of 1atm heats up, if throttled above T = 140 K. 
Therefore the Linde process for the liquefaction of hydrogen must start at a 
lower temperature. For oxygen, on the other hand, the process may start at 
room temperature. To be sure, it is not very efficient there; the cooling 
effect at room temperature was barely big enough to have been noticed by 
Joule and Kelvin.

The van der Waals equation with its two parameters a and b is 
quantitatively not good for any actual gas no matter how a and b are 
chosen. It does, however, have great heuristic value, because it is based on 
molecular considerations, cf. Insert 6.1, and it represents a fairly simple 
analytic thermal equation of state. It is therefore revisited over and over 
again. Fairly recently I have come across an instructive article entitled 

did not necessarily lead to cooling. One thing was well-known, however: 
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“Thirteen ways of looking at the van der Waals equation”.23 And I believe 
that in a recent book 24 I have presented a fourteenth way.

Fig. 6.7.  Inversion curves and critical isochor and isotherm Also: Mini-table of critical data 

Students of thermodynamics are often mystified by the non-monotone 
isotherms exhibited in Fig. 6.6 and, in particular, by the branch with a 
positive slope, which suggests instability. These features are reflections of 
the non-convex character of the function (r), but we shall not go into that, 
although at present – while I write this – there is great interest in similar 
phenomena occurring in phase transitions in solids, like shape memory 
alloys. An instructive mechanical model for non-monotone stress-strain 
curves has been proposed and investigated by the author.25

                                                     
23 M.M. Abbott: Chemical Engineering Progress, February (1989).
24 I. Müller, W. Weiss: “Entropy and energy,...” loc.cit. (2001).
25 I. Müller, P. Villaggio: “A model for an elastic-plastic body” Archive for Rational 

Mechanics and Analysis. 65 (1977). 

    Van der Waals equation 

All N atoms of a monatomic gas in a volume V with the surface V and outer 
normal n move according to Newton’s law of motion

Kxµ              ( = 1,2,…).

If that equation is multiplied by x , and then averaged over a long time , and 
summed over all , one obtains

NN

xKxµ
11

2
      (angular brackets denote averages). 
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The left hand side is equal to –3NkT, since each atom has an average value 1/2 kT
of kinetic energy. The right hand side was called virial by Clausius. The virial has 
two parts WS and Wi  due to forces on atoms from the surface and from other atoms 
respectively. Therefore we write 

-3 NkT = WS + Wi . 

Assuming that only atoms in the immediate neighbourhood of the surface element 
dA of V feel the effect of the surface, and that the sum of forces from the surface 
on those atoms is equal to –pndA on average, we obtain WS = -3 pV. Hence follows

                                            pV = N k T + 1/3 Wi..

Without the inner virial Wi we thus have regained the ideal gas law. 

The force on atom  from atom  may be written 
x x

K K x x
x x

β α
αβ α β

β α

. It 

follows for Wi

1 1
x x

x xN N
W K xi

x x
α β

αβ
αα β α β

1
2 1 1

for any2 1
.

x x

x x

N N
W K x xi

NN K x x

α β

α β

α βα β

βα βα
The last step requires that on average each atom is surrounded by others in the 
same manner. We set x -x = r  and convert the sum in an integral by defining 
the particle density n(r) .

.
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The  force K(r) and the potential (r) of Fig. 6.5 are related by K(r) = - rd
d  and the 

particle density n(r) may approximately be given by )exp( kTV
N , so that an atom 

on average is surrounded by a cloud of other atoms which is densest, where (r)
has its minimum. Insertion provides 

0

2d))exp(1(32 2 rrkTW kTV
N

i .

We set  =  for r < d  and 1kT  for r > d as indicated in Fig. 6.5 and obtain

341
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or, with a and b from Fig. 6.5,
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Helium

Helium deserves its own section, although it was liquefied in the same 
manner as hydrogen, by adiabatic expansion and throttling. It just took 
more time, because the boiling point was lower: 4.2K. It was Heike 
Kammerlingh-Onnes (1853–1926) who succeeded in 1908 and who 
eventually reached 0.8K by adiabatic evaporation of the liquid. 
Kammerlingh-Onnes received the Nobel prize for his efforts in 1912. 

He did not succeed, however, to freeze helium, and later it turned out that 
it cannot be done, no matter how far the temperature is lowered, at least not 
under ordinary pressures. It took pressures of 20 atm, or so, to make helium 
solid.

The reason for the persistence of the liquid phase is supposed to be 
quantum mechanical. According to quantum mechanics a particle with 

momentum p and energy 
2

2
p  may be considered as a de Broglie wave with 

23i
b aW NkT V
v v

 . 

Elimination of Wi between this and the equation for pV provides the van der Waals 
equation, provided we assume that b << v holds which is reasonable. 

Insert 6.1 

Throttling

Adiabatic throttling is an isenthalpic process of lowering the pressure by p < 0. 
The temperature changes accordingly so that h =0 can be satisfied. Therefore we 
have

.
)(
)(

pT
h

Tp
h

p
T

The denominator is the specific heat cp, and the numerator may be rewritten – by 

use of the Gibbs equation – in the form )()( vv . Hence follows 

1 1

p p

T T
p c T T

∆
∆

v v
v

and we conclude that cooling occurs, if the thermal expansion coefficient 

)(1 v
v is greater than 1/T . For ideal gases we have  = 1/T.

Insert 6.2 



Helium     183

a wave length 
p

h and a frequency 
2

1
2

p

h
.26 Such a particle has an 

equal probability to be anywhere in space, so that it cannot be localized. A 
particle, however, which we know to be boxed in, in a range of linear 
dimension x, is represented in quantum mechanics by a packet of de 
Broglie waves, i.e. a superposition of such waves with momenta in the 
range p. Between x and p there is the relation x p = h, which is called 
Heisenberg’s uncertainty relation. Thus either x or p may be fixed, but not 
both.

The above is a subject of single-particle quantum mechanics, governed 
by the Schrödinger equation. The uncertainty relation is extrapolated to 
thermodynamics by the assumption that p may be interpreted as the 
momentum of a particle of a liquid (say) during its thermal motion. Thus we 
may write 

.,:or with2
2

1

kT

h
xkTpkTEEp

x is therefore a typical de Broglie wave length of a particle of a body of 
temperature T, such that x3 represents the smallest volume element in 
which such a particle can be localized. For an atom of liquid helium at 
T  = 1K the uncertainty x of position comes out as x = 2·10-9m. This is 
considerably more than if the particle were confined to an elementary cell in 
a solid lattice structure. Therefore the solid lattice cannot form, and that is 
why helium remains liquid, or so they say.

Once liquid helium was available, it could be used to cool other 
substances down to the neighbourhood of absolute zero. And it turned out 
that some metals, like mercury and lead develop a very strange behaviour 
indeed. They lose their electrical resistance at some characteristic 
temperature. We say that they become super-conductors, materials with 
zero resistivity in which a current, once induced, moves round and round 
forever.

Actually helium itself, below 2.19K – the so-called -point – exhibits a 
somewhat similar unique phenomenon of its own: It behaves like a mixture 
of a normal fluid with a small viscosity and a super-fluid, which has no 
viscosity at all. That liquid mixture is called He II as opposed to He I, liquid 
helium above the -point. The lower the temperature is, the higher is the 
proportion of the super-fluid. 

substance dumbfounded eminent scientists like Lev Davidovich Landau 
(1908–1968) and Evgenii Michailovich Lifshitz (1915–1985), Landau’s 
colleague, collaborator and frequent co-author. It is, perhaps, worthwhile to 
describe two of the more illustrative snares in which those scientists found 

                                                     
26 h = 6.626·10-34Js is the Planck constant. 

Strange phenomena occur in He II, or they should occur and do not. The 
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themselves entangled for years. If nothing else, that will be a consolation 
for those of us – less eminent than Landau and Lifshitz – who find it 
difficult to adjust their minds to the evidence of the new and unusual. Let us 
consider:

Sound first: Sound in air – essentially a two-constituent mixture of 
nitrogen and oxygen – permits two wave modes, both longitudinal. One 
consists of the joint oscillation of both constituents with no relative 
velocity, while for the other one the two constituents move relative to each 
other with no motion of the mixture as a whole. Those modes may be called 
the first and second sound respectively. Both propagate with different 
speeds and both are usually coupled so that, if the first sound is stimulated, 
the second sound follows, and vice versa. We never actually hear the 
second sound in air, because it is damped away within the distance of less 
than 1 mm from our vibrating vocal cords; this may be a good thing, 
because it saves us from hearing everything twice. Also temperature 
oscillations are associated with both sounds, although in air they cannot be 
detected, at least not by our coarse human senses. 

Sound in helium below the -point is qualitatively similar, since it 
behaves like a mixture. But quantitatively it differs, chiefly on account of 
the fact that one constituent, the super-fluid, is free of friction so that 
damping is absent. The theory of first and second sound was first worked 
out by Lazlo Tisza (1907-    ).27 A little later Landau developed essentially 
the same theory 28 and therefore the governing equations are very often 
called the Landau equations. According to those equations the second 
sound should be detectable, but it was not, or not for years. The first sound 
came through helium loud and clear at one side when it was excited by a 
vibrating membrane at the other side, but no second sound could be 
detected. At the end, after many vain attempts, a frustrated Lifshitz sat 
down and did a simple calculation, a calculation that should have been done 
beforehand: He calculated the amplitudes.29 Then it turned out that, 
according to the Landau equations, the first and second sound were now 
uncoupled, so that the second sound could not be stimulated by a vibrating 
membrane, and that the first sound was not accompanied by a temperature 
oscillation, but the second sound was. So Lifshitz suggested to use an 
electric coil with an alternating current instead of a membrane. The Joule 
heating of the coil produced temperature oscillations, and there was the 
second sound immediately, – as a thermal wave, in a manner of speaking. It 
propagated with the speed predicted by the Landau equations.

                                                     
27 L. Tisza: “Transport phenomena in He II.” Nature 141 (1938).
28 L.D. Landau: “The theory of superfluidity of Helium II.” Journal of Physics (USSR) 5 

(1941).
29 E.M. Lifshitz: “Radiation of sound in Helium II.” Journal of Physics (USSR) 8 (1944). 
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For the Landau equations – and other achievements – Landau obtained 
the  Nobel prize in 1962. From January of that year, and for the whole year, 
he lay in a coma after an automobile accident. They say that he passed away 
several times but was brought back to life by drastic methods. Lifshitz 
presented the award to him in the hospital. Landau survived, but not as an 
active physicist. 

Another peculiarity of He II – apart from second sound – occurs under 
rotation: Since the super-fluid has no viscosity, it should be impossible to 
impart a rotation to it. Accordingly Landau – faithful to the Landau equa-
tions – predicted that the surface of super-fluid helium should remain flat, 
even if its container sits on a rotating turntable. That, of course, presented a 
challenge for experimentalists and it was not long before D.V. Osborne30

came up with a rotating container of liquid helium. The surface turned out 
to be a perfect paraboloid, just like for any other incompressible liquid in 
rigid rotation, – in contradiction to Landau’s expectations.

In that case it was Lars Onsager (1903–1976) who proposed an ingenious 
solution of the dilemma during a panel discussion of the Osborne 
phenomenon. Onsager knew that a homogeneous distribution of potential 
vortices 31 mimics a rigid rotation, i.e. has the same velocity field. Therefore 
he suggested that Osborne’s rotating helium was a superposition of such 
potential vortices. In this way he saved Landau’s theory and yet explained 
Osborne’s experiment. Moreover, sceptics were quickly convinced, because 
the vortices could in fact be made visible when it turned out that an electron 
beam could pass through the cores of the vortices and nowhere else.

It remains to understand the physical reason for super-fluidity of helium. 
The usual assumption seems to be that this phenomenon is a case of Bose-
Einstein condensation, which we shall come to know later in this chapter.

Adiabatic Demagnetisation 

The wish to study super-conductivity of metals and super-fluidity of helium 
has motivated a drive for lower and lower temperatures. New methods were 
needed to get below 0.5K and they were found. Peter Joseph Wilhelm 
Debye (1884–1966) and William Francis Giauque (1895–1982) came up 
independently with the idea of adiabatic de-magnetization. A magnetic 
salt – gadolinium sulfate in Giauque’s case – was put under a strong 
magnetic field so that the magnetic dipoles of the salt lined up in the 
direction of the field, because energetically that is the most favourable 
position. That material – still under the magnetic field – was cooled with 
                                                     
30 D.V. Osborne: “The rotation of liquid Helium II” Proceedings Physical Society A 63 

(1950).
31 Potential vortices are like the vortex in an emptying bathtub, or like a tornado. Ideally they 

are free of dissipation and thus should be able to exist in super-fluid helium.
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liquid helium and then adiabatically isolated. Afterwards the field was 
slowly switched off, so that the thermal motion of the dipoles could 
randomise their orientation by sending the dipoles uphill, as it were, in the 
energetic landscape, against the direction of the remaining field. This means 
that the salt was cooled and the salt in turn cooled the surrounding helium. 
Giauque reached 0.25K with gadolinium sulfate and later, with other salts, 
temperatures as low as 0.02K. The technique was refined  and eventually 
produced temperatures as low as 3mK. Further cooling proved to be 
impossible in this way, because the dipoles of the electron shells start to 
align themselves, so that the magnetic field had no effect, nor does 
randomisation take place. 

He
3
 – He

4
 Cryostats 

However, there are also nuclear dipoles, of copper (say). In order to align 
them, very strong magnetic fields and sustained small temperatures are 
needed and those can be provided by a He3-He4 cryostat. The method for 
maintaining low temperatures by evaporation of He3 was first conceived by 
Heinz London (1907–1970) in 1962. Let us consider this.

Helium comes in two isotopes He3 and He4. Under natural conditions 
there are about a million times more He4 atoms than He3 atoms. But the 
mixture can be enriched and, when this is done, it turns out that below 
0.87K – in the liquid phase – a miscibility gap opens up, cf. Fig. 6.8, 
because the now sluggish thermal motion cannot supply the energy needed 
to form (He3-He4)-neighbours. Roughly speaking that gap is bell-shaped in 
the (T,X)-diagram, see Fig. 6.8.32  Since He3 is lighter, it floats on top, where 
it may be made to evaporate. As always for adiabatic evaporation the 
temperature drops – by T – and, since the light constituent is more 
volatile, the system loses He3, even though the He3-rich solution on top 
becomes even more enriched, cf. Fig. 6.8. Thus more He3 evaporates and so 
it happens that a low temperature of 10µK can be reached and maintained 
for days. The copper is eventually just as cold and the magnetic field keeps 
its nuclear dipoles aligned.  Afterwards, when demagnetisation occurs, the 
dipoles randomise and the copper cools to 1.5 µK, the lowest temperature 
reached so far.

Physicists have so much faith in the third law that a jargon has developed 
among them according to which the third law forces miscibility gaps to 
appear in alloys and mixed isotopes because, after all, the mixture must 
shed its entropy of mixing, if the entropy is to go to zero. 

                                                     
32 I am told that the bell is not quite symmetric and that it does not seems to cover the whole 

range 0 < X < 1 when T  tends to zero. For the present consideration this is not important. 
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phase by evaporation. He3-He4 cryostat of the Physikalisch Technische  Bundesanstalt in 
Berlin.33

Entropy of Ideal Gases 

Although in this chapter we are dealing with low and lowest temperatures, 
we have to consider ideal gases for several reasons, but primarily because 
we wish to have further confirmation of the third law. Also we wish to 
understand super-fluidity, perhaps. 

We recall that Boltzmann’s extrapolation

!
ln with

!

N
S k W W

Nxc
xc

                                                     
33 The photograph is taken from an article by P. Strehlow: “Die Kapitulation der Entropie – 

100 Jahre III. Hauptsatz der Thermodynamik.” [The capitulation of entropy – 100 years of 
3rd law of thermodynamics] Physik Journal 4 (12) 2005.

Fig. 6.8.  Miscibility gap in He -He  phase diagram (schematic). Enriching He in  the H e -rich
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was seriously flawed, cf. Chap. 4. The basic reason is the way of counting
realizations of the distribution {Nxc}, because Boltzmann believed – as 
everybody did in his time – that an interchange between identical particles 

According to quantum mechanics of many particles this is not the case. 
Also Boltzmann could not know about bosons and fermions and de Broglie 
waves. So, if we wish to repair Boltzmann’s reasoning, we have to take two 
observations from quantum mechanics into account: 

There is no way to distinguish between identical particles

But this is not only impractical, it is incompatible with quantum mechanics, where the 
particles are de Broglie waves, as it were. 

There are two types of particles, fermions and bosons
No two fermions may occupy the same state, but there is no such restriction on 
bosons; they may all pile up in one state. 

For a unified treatment of fermions and bosons we assume here that each 
state may  be occupied by up to d particles. Of course, d = 1 holds for 
fermions and d =  for bosons and these seem to be the only two cases that 
occur in nature.34

The new argument was prompted by Satyendra Nath Bose (1893–1974), 
who made two important contributions when he improved the derivation of 
Planck’s radiation formula in 1924:

Bose was the first person to take seriously Boltzmann’s cells in x,c-
space and to give them a definite volume.35 We recall that Boltzmann 
himself had considered those cells as a calculational trick without 
physical significance, cf. Chap. 4. Not so Bose; he quantized the phase 
space – spanned by coordinates and momenta – into cells of size h3. He 
needed that value in order to arrive at Planck’s formula.36

Also Bose introduced a new way of characterizing realizations and 
distributions. He does that without any fanfare as a matter of course, 
and without commenting on the move, and without showing a sign that 
he was aware of revolutionizing statistical mechanics. Bose sent his

                                                     
34 The idea of having an occupancy of an arbitrary number d was introduced by G. Gentile: 

“Osservazioni sopra le statistiche intermedie.” [Observations on intermediate statistics] 
Nuovo Cimento 17, p. 493–497.

35 We shall review Bose’s contribution in detail in the next chapter which deals with 
radiation. Let it be said here – in anticipation – that Planck’s radiation formula had 
resulted from an interpolation between two empirical functions. This was not satisfactory, 
at least not for Bose. Einstein had already improved Planck’s derivation by introducing 
stimulated emission; but he, too, relied on classical thinking when he adopted the 
Boltzmann factor, cf. Chap. 4, for the relative frequency of atoms in different energetic 
states. Again Bose found this unsatisfactory.

36 Accordingly the measure factor Y which I have used heretofore will henceforth be chosen 
as Y = µ3/h3.

in different elements of the (x,c)-space leads to a new realization. 

The classical idea is that we may mark particles, e.g. paint them in different colours. 
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4 page-paper to Einstein who translated it into German and had it 
published in the Zeitschrift für Physik.37

Einstein added a note of the translator saying that Bose’s derivation of 
the Planck formula represents … an important step forward. The method 
used [by Bose] furnishes also a quantum theory of the ideal gas as I shall 
explain elsewhere. And indeed, Einstein let himself be inspired by Bose’s 
paper. He followed it up with two papers of his own which he read in July 
1924 and January 1925 to the Preußische Akademie der Wissenschaften.38

In these papers Einstein develops the novel theory of degenerate gases, i.e. 
ideal gases at low temperature and large density, which I proceed to 
describe.

Of course, S = klnW had to be retained, because of its inherent 
plausibility, and neither Bose nor Einstein touched that relation. But the 
realization of a distribution, and the distribution itself, were modified, and 
so was W. As before, cf. Insert 4.6, we concentrate on the infinitesimal 
element dxdc at (x,c) in (x,c)-space where we have 
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A realization of this distribution is given by {Nxc}, the number of atoms 
sitting in the individual cells (x,c) in dxdc. Thus by the rules of combi-
natorics the number of realizations of the distribution {pl
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37 S.N. Bose: “Planck’s Gesetz und Lichtquantenhypothese.” [Planck’s law and the 

hypothesis of light quanta] Zeitschrift für Physik 26 (1924).
38 A. Einstein: “Quantentheorie des einatomigen idealen Gases.” [Quantum theory of a 

monatomic ideal gas] Sitzungsberichte physikalisch mathematische Klasse, September 
1924 pp. 261–267.
A. Einstein: “Quantentheorie des einatomigen idealen Gases II” [Quantum theory of a 
monatomic ideal gas. II] Sitzungsberichte physikalisch mathematische Klasse, February 
1925 pp. 3–14. 
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is the entropy of the atoms in the element dxdc, and

xc

d

l

xc

l

dxdc

p

P
kS

0

!

!
ln

is the total entropy of the gas, where 
xc

is the product over all elements 

dxdc of the space (x,c).

Obviously S in terms of the distribution function f is a non-equilibrium 
entropy in general. In a closed adiabatic gas, i.e. for a fixed number N of
atoms and for a fixed energy U, we expect S to tend to a maximum Sequ in 
equilibrium. The calculation provides

                                                     
39 Recall that for Boltzmann it was a matter of course, that N

xc
 was greater than 1. In fact, it 

had to be big enough that the Stirling formula could be applied.

This new form of entropy lacks the inherent perspicuity of Boltzmann’s 
entropy, because the relation to Ndxdc, or to the distribution function f(x,c) is 
not explicit. However, for fermions such an explicit relation does exist, and 
for bosons it does exist in local equilibrium, where there is no knowledge 
about Nxc in dxdc except about the average value which is 

cx
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NN
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dd .

In those cases the entropy may be written in the form

1 1ln ln
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.

This is the proper form of the entropy in a monatomic gas; the expression 
generalizes Boltzmann’s relation 

eYbxcf
b

f
kS withddln ,

found – by accident or luck, as it were – in the kinetic theory of gases, cf. Chap. 4. 
And it coincides with Boltzmann’s form, if the difference between fermions and 
bosons, i.e. the ± - alternative, becomes unimportant. This happens for f/Y<<1 or

.ddelementeachofoccupancysparsefori.e.1
dd

dd cx
cxP
cxN

xcN 39

This observation is eminently plausible because, if there is much less than one atom 
per element dxdc on average, it makes no difference whether the atom is a fermion 
or a boson, since even a double occupancy of a cell practically does not occur, let 
alone higher occupancies. 
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where g is the specific Gibbs free energy, and T the temperature, of course. 
This expression replaces the Maxwellian distribution function in a degene-
rate gas , i.e. a gas for which the quantum effects – evidenced by the
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and the equilibrium entropy Sequ reads

T Sequ = – Nµg + 5/3 U.

Classical Limit 

The Boltzmann limit occurs – just like in the non-equilibrium case – when 
the ±-alternative for the fermions and bosons does not matter, i.e. for 

.1
kT

g  In that case we have

3
3

3
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.

It follows that the classical limit is the one, in which an element of phase 
space of the dimension of a typical thermal de Broglie wavelength, see 
above, contains practically no particle. In contrast, degeneration therefore 
appears as the state, where the particles are so dense, or the temperature is 
so low, that the de Broglie wavelengths overlap.

alternative – make themselves felt. The thermal and caloric equations  
of state

Note that for particles with a small mass the de Broglie wavelength is big. It is for 
that reason that even at room temperature – and even for a few thousand K – the 
electron gas in a metal is strongly degenerate, – also of course, because the electron 
density N/V is large. 



192       6  Third Law of Thermodynamics

For the non-degenerate state the equilibrium entropy has the form 

3

5
ln

2 2
equ

N h
S Nk

V kTπµ
.

That value is entirely explicit! Thanks to Bose’s choice Y = µ3/h3 there is 
no unknown constant. The expression provides the absolute value of the 
entropy for a rarefied ideal gas. Hence, by integration over cp(T,p)/T – and 
summation of latent heats divided by the temperatures of their occurrence – 
downward to lower temperatures, one may obtain the absolute value of 
entropy of liquids and solids at absolute zero, or as close as we can get 
there.

If one proceeds with that integration – after having made all those caloric 
measurements – one obtains the value zero for entropy in most cases and 
thus confirms Planck’s extension of the third law of thermodynamics. 
Sometimes, however, the value zero is not obtained. That seems to happen 
only when the solid phase is amorphous, – rather than crystalline – so that 
the third law must be qualified: the entropy at absolute zero for amorphous 
solids is not zero. Handbooks record the value as the zero point entropy. 

Full Degeneration and Bose-Einstein Condensation 

The opposite of the classical limit – the limit of full degeneracy – is 
different for fermions and bosons.

Fermions

For fermions the limit is characterized by 1
kT

g  so that

.for
0 2

2

2
1

2
1

g

g

c

cY
f

equ

At low temperature all atoms tend to assemble at zero kinetic energy, but 
that desirable state cannot be achieved, since each velocity can only be 
assumed by just one atom.40 Therefore the atoms do the next best thing and 
fill all states with the lowest velocities. N and U are given by 

                                                     
40 Actually, two atoms may assume the same velocity, if they have different spins.
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so that the energy is large, but the entropy vanishes. 

Bosons

For bosons – with the lower sign – we must realize that the biggest value of 
g must be g = 0, lest negative values of the distribution function appear. 
Therefore g = 0 and
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characterize the Bose case of full degeneracy. The properties of the 
distribution are much as expected, because it implies that there are less 
particles with larger speeds. However, there is a problem, since fequ is 
singular for c = 0: To be sure, the values of  N/V and p = 2/3

U/V  are finite, 
namely41
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 , 

but there is something strange. Indeed N/V and p are functions of T only, a 
circumstance that we have come to expect as an equilibrium condition for 
saturated vapour coexisting with a boiling condensate.

That observation may serve as a hint that the equation for the number N
of atoms is incorrect, because N cannot possible depend on T. And indeed, 
the equation holds only for the number of particles with c 0, while N0, the 
number of particles with c = 0, has somehow slipped through the 
(Riemann)-integration, although its density is singular. Therefore the N/V –
equation must be rewritten as 
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YV Tµ µπ ζ  is the number of particles in the vapour, N0

is the number of particles in the condensate. One says: The N0 particles with 

                                                     
41 (3/2) and (5/2) are values of the Riemann zeta function which occurs in the integration of 

the distribution function for g = 0.
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c = 0 form the Bose-Einstein condensate.42 For T 0 there will be more 
and more condensate, whose entropy is zero. The entropy of a Bose gas for 
full degeneracy vanishes therefore for T 0.

The observed decomposition of liquid helium into a normal fluid and a 
super-fluid is often seen to be a reflection of the Bose-Einstein 
condensation. The idea is appealing, although, of course, the reflection – if 
that is what it is – must be distorted, since helium is not a gas when the 
decomposition occurs at 2.19K. The whole argument about degeneracy 
ignores the van der Waals forces which enforce liquefaction of helium at 
the comparatively high temperature of 4.2K.

Satyendra Nath Bose (1893–1974) 

As a student Bose had been a member of a small and isolated, but dedicated 
group of scholars in Calcutta, and then for long years he was an underpaid 
lecturer at a measly salary of 100 rupees. In the opinion of Dutta,45 his 
obsequious biographer, Bose was thus being punished for his outspoken-
ness. Dutta gives no examples for this characteristic, but he does not forget 
to praise the youthful Bose as a person who – in his college days – prepared 

                                                     
42 We have seen that, if velocity and momentum of a particle are zero, it cannot be localized 

because of the uncertainty relation. That effect seems to be secondary in the present 
context and we have ignored it in the preceding argument. 

43 E. Schrödinger: “Statistical thermodynamics.” Cambridge at the University Press (1948).
44 This is not true for the electron gas in a metal as I have explained and, perhaps, liquid 

helium shows vestiges of gas-degeneracy in the phenomenon of super-fluidity.
45 M. Dutta: “Satyendra Nath Bose – life and work.” Journal of Physics Education. 2 (1975).

Erwin Schrödinger (1887–1961), the pioneer of quantum mechanics, has published 
a thoughtful and well-written small book on statistical ermodynamics,43 in which he 
discusses quantum effects in gases of fermions and bosons in some detail. He calls 
the theory of degeneracy of gases satisfactory, disappointing and astonishing. He 
finds the theory satisfactory, because for high temperature and small density it 
tends to the classical theory of ideal gases. At the same time the theory is 
disappointing, because all its fascinating peculiarities occur at temperatures that are 
so low, that van der Waals forces have overwhelmed the gases – and made them 

liquid – long before the effects of degeneracy can be expected to appear. 44  The 
most astonishing feature of the theory occurs, because in the classical limit we have 
Nxc <<1, while the classical theory itself has Nxc>>1, in fact, Nxc  must be big enough 
in the classical case that the Stirling formula can be applied. 

The fact that the entropies of gases of both bosons and fermions vanish in the state 
of full degeneracy is often quoted as collateral support of the third law. The support 
is somewhat precarious, however, since no gas exists close to absolute zero. 
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bombs. Presumably those were to be used for patriotic – terroristic (?) – 
deeds against  the colonial power.

Bose had treated a photon gas, then called a gas of light quanta.46 As I 
have mentioned before, Einstein translated his paper and it inspired him to 
develop the statistical mechanics of degenerate gases, in which he 
discovered the condensation-like phenomenon which is now called the 
Bose-Einstein condensation, see above. Fritz Wolfgang London (1900–
1954) and his brother Heinz London (1907–1970) were first to suggest – in 
1937 – that the super-fluidity of Helium II might be due to the Bose-
Einstein condensation. 

Soon after the Bose-Einstein statistics Enrico Fermi (1901–1954) 
formulated a statistics for particles which satisfy the Pauli exclusion 
principle. In his honour we call those particles fermions. It seems that 
Fermi’s work was independent of Bose’s and Einstein’s; at least that is what 
Belloni implies in a somewhat diffuse article.47 Paul Adrien Maurice Dirac 
(1902–1984) showed that quantum mechanics of many particles permits 
two types of statistics, i.e. ways of counting: Bose-Einstein for bosons and 
Fermi-Dirac for fermions.48

Still as a young man, but after the publication of his salient paper with 
the help of Einstein, Bose spent two years in Europe; in France and 
Germany. Then he returned to India and became an influential physics 
teacher and administrator. He finished his career as an honoured elder 
scientist; except when, after his retirement, he tried to continue his activity. 
According to Dutta this attempt violated the maxims laid down by the poet 
Rabindranath Tagore (1861–1941), and there was some public debate and 
severe criticism of Bose. 

Bosons and Fermions. Transition Probabilities 

The equilibrium distributions fequ for fermions and bosons acquire a certain 
interpretability by the following argument which concerns the transition 
probabilities in a collision between atoms with velocities c and c1 which, 

                                                     
46 An account of Bose’s arguments is given in Insert 7.4 below. 
47 L. Belloni: “On Fermi’s route to Fermi-Dirac statistics.” European Journal of Physics 15 

(1994).
Belloni informs us that Fermi’s detailed and definitive theory for the quantization of the 
ideal gas was published in German. He does not say when and where, and merely cites 
someone else’s opinion about the paper. Thus he provides a good example for modern 
writing in the history of science, where historians of science cite other historians of 
science rather than the original authors. 

48 Actually Fermi’s article appeared in: E. Fermi: Zeitschrift für Physik 86 (1926) 

Society (A) 41 (1927) p. 24. 
p. 902. Diracs contribution may be found in: P.A.M. Dirac: Proceedings of the Royal 
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after the collision, have velocities c and c1 . We assume that the transition 
probability is of the form. 

1 1 1

1
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(1 )(1 )
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xc xccc xc xcc c

P cN N N N

so that it depends not only on the occupation numbers Nxc of the elements 
dxdc before the collision, but also on those numbers after the collision. c is
a factor of proportionality. Thus the transition of fermions is less probable, 
if the target elements are well-occupied, – maximally with Nxc = 1 – while 
the transitions of bosons into such target elements become more probable 
when they are already well-occupied.

For the reverse transition we assume an analogous expression for the 
transition probabilities, viz. 
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In equilibrium, where both transition probabilities are equal, we conclude 
that
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Therefore this expression must be a linear combination of the collisional 
invariants mass and energy of the atoms and we may write 
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This agrees with the equilibrium distribution calculated before by a 
maximization of entropy. Thus the ansatz for the transition probabilities 
acquires some credibility. Comparison of the whole argument with 
analogous arguments by Maxwell and Boltzmann for the classical case, cf. 
Chap. 4, highlights the modification made necessary by quantum mecha-
nics. Classically an effect of the target element on the transition probability 
is unthinkable. Of course the classical formula is recovered for the special 
case Nxc << 1. 
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All energy available on earth – except nuclear and volcanic energy – comes 
from the sun through empty space by radiation, – or it came in previous 
geological eras and was stored as coal, mineral oil, or natural gas.

Animals on the surface of the earth have evolved so as to see with their 
eyes those frequencies, – from red to violet – where the sunlight has its 
maximal intensity. 
Plants utilize the red and yellow part of the visible spectrum for the 
thermodynamically precarious process of photosynthesis that has 
evolved for the production of glucose and cellulose, the biomass of 
plants.
And all creatures take advantage of the heating-part of the solar 
radiation which lies in the range of frequencies 3·1012 Hz < <3·1014 Hz
or in the range of wavelengths 10–6 m < < 10–4 m.

Despite the appearance of the numbers, these are small frequencies and 
long wavelengths. That is to say that the wavelengths (say) are long 
compared to the dimensions of atoms and molecules. However, the solar 
radiation does contain shorter wavelengths which are of the dimension of 
atoms and smaller. It stands to reason that the interaction of such high-
frequency-radiation with matter is strongly influenced by the atomic 
structure, which in turn is governed by the laws of quantum mechanics. 

Therefore the scientific research into radiation led to the discovery and 
development of quantum mechanics. This, of course, is no longer thermo-
dynamics, but the pioneers of radiation physics, Stefan, Boltzmann, Planck, 
and Einstein were either thermodynamicists themselves or they were trained 
to think thermodynamically. Therefore we follow their arguments in this 
chapter up to the point where they turn into quantum mechanics proper. 

Not only does radiation carry solar energy to the earth, the radiation
pressure inside the sun serves to maintain the star in a stable mechanical 
equilibrium. Stellar physics is a paradigmatic application of the thermo-
mechanical laws, and the consideration of radiation enriches the field in a 
non-trivial manner. 



198    7 Radiation Thermodynamics

Black Bodies and Cavity Radiation 

The history of the scientific study of light begins with Newton, of course, 
who concluded from his experiments with prisms that white light was a 
mixture of colours, from red to violet. Goethe, who occasionally dabbled in 
science – and usually drew the wrong conclusions – ridiculed the idea of 
white light as a mixture as clerical, because it reminded him of the Trinity, 
the hypostatic union of the Father, the Son, and the Holy Spirit in one 
godhead. Newton carried the day, although his prisms were not good 
enough to see more than just colours.

Actually those colours were a nuisance for the users of  microscopes, 
field-glasses and telescopes; they inevitably appeared at the rim of the field 
of vision and spoiled the view. Joseph von Fraunhofer (1787–1826) 
addressed those difficulties. He was an optician with strong scientific 
interests and he became an expert in making achromatic lenses. Also the 
quality of his prisms allowed him to discover lacking frequencies, i.e. dark 
lines in the spectra of the sun and of stars, – several hundred of them. 
Fraunhofer’s optical instruments served Bessel to discover the parallax of 
some stars, and therefore his gravestone carries the euphemistic engraving 
in Latin: Approximavit sidera – he brought the stars closer. Well, at least he 
did help to make astronomers appreciate how far away the stars really were. 
However, the significance of the dark lines was not recognized by 
Fraunhofer, or anybody else in Fraunhofer’s time. 

The study of hot gases and the light which they emit became a popular 
and important field of research in the mid 19th century and Gustaf Robert 
Kirchhoff (1824–1887) was the most conspicuous researcher in that field. 
He worked with Robert Wilhelm Bunsen (1811–1899), the inventor of the 
Bunsen burner, which burns with the emission of so little light that 
everything burning in it can be clearly distinguished. Kirchhoff discovered 
that each element, when heated to incandescence, sends out light of 
frequencies that are characteristic for the element. Thus with his 
spectroscope he discovered several new elements, e.g. cesium and 
rubidium, both named – in Latin – for the colour of their spectral lines: blue 
and red respectively.

Moreover, Kirchhoff found that when light passes through a thin layer of 
an element – or through its vapour – it would lose exactly those frequencies 
which the hot element emits. That observation is sometimes called 
Kirchhoff’s law, enunciated in 1860. So, since the sunlight lacks the 
frequencies that heated sodium (say) emits, Kirchhoff concluded that 
sodium vapour must be present at the solar surface. This was considered a 
great feat, since it gave evidence of the composition of the sun, something 
which had been deemed impossible before. Asimov writes1

                                                     
1 I. Asimov: “Biographies ...” loc.cit. p. 377. 
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Thus was blasted the categorical statement of the French philosopher 
Auguste Comte who, in 1835, had declared the composition of the stars to 
be an example of the kind of information science would be eternally 
incapable of obtaining. Comte died (insane) two years too soon to see 
spectroscopy developed.

Kirchhoff conceived of a black body, a hypothetical body that sends out 
radiation of all frequencies and that should therefore – by Kirchhoff’s law – 
also absorb all radiation, and reflect none, so that it appears black. Such 
black bodies came to play an important role in radiation research, although 
in the early days no real good black body existed to serve as a reliable 
object of study. Therefore Kirchhoff suggested an ingenious surrogate in 
the form of a cavity with blackened, e.g. soot-covered interior walls, which 
could be heated. Any radiation that enters the cavity by a small hole is 
absorbed or reflected when it hits a wall. If reflected, the light will most 
likely travel to another spot of the wall, being absorbed or reflected there, 
etc. etc. In this way virtually no reflected light comes out through the hole 
so that the hole itself absorbs radiation as if it were a black body. The 
radiation emitted through the hole is called cavity radiation and it can be 
studied at leisure for any temperature of the walls.

Of course, at that time it was already well-known that there is more to 
radiation than can be seen. As early as 1800 the eminent astronomer 
Friedrich Wilhelm Herschel, – Sir William since 1816, the discoverer of  
the planet Uranus – had placed a thermometer below the red end of the solar 
spectrum and noticed that it registered a fast increasing temperature. Thus 
he discovered heat radiation which came to be called infrared radiation.
And then Johann Wilhelm Ritter (1776–1810), an apothecary, discovered in 
1801 that silver chloride, which was known to break down under light – 
changing colour from white to black, the key to photography – continued to 
do so, if placed beyond the blue and violet end of the spectrum. In this 
manner he detected ultraviolet radiation.

                                                     
2  It is always difficult to prove experimentally that some property of bodies is universal, 

because one would have to test all existing bodies. However, in Kirchhoff’s time 
progressive scientists knew the then new second law very well and its universal prohibition 
that heat pass from cold to hot. So Kirchhoff used a cumbersome thought experiment to 
prove that, if J ( ,T) were dependent on material, the second law could be contradicted. 
The argument is convincing enough, but somewhat boring; therefore I skip it. The same is 
true for some arguments by Wien, see below.

Kirchhoff himself found that the energy flux density J d  emitted by a black 
body, or a cavity between frequencies and + d  depends on the 
temperature of the body universally, i.e. it is independent of the mechanical, 
or electrical, or magnetic properties of the body. 2 Thus Kirchhoff focused 
the interest of physicists on the universal function J ( ,T), the spectral
energy flux density.
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In 1879 Josef Stefan (1835–1893), Boltzmann’s mentor in Vienna found 

by careful experimentation that the radiant energy flux density 
0

dJJ

emanating from a black body – as black as possible – was proportional to 

sixteen times more energy than at 300K. Stefan’s experiments also provided 
a rough value for the factor of proportionality which, of course, is universal, 
since J ( ,T) is universal. 

Kirchhoff’s cavity-model was much more than a means of obtaining 
good-quality black body radiation. It proved to be an important heuristic 
tool for theoretical studies. One feature that attracted physicists to the 
radiation-filled cavity was its similarity to a cylinder filled with a gas. The 
similarity becomes even more pronounced when one wall of the cavity is 
considered a movable piston, thus making it possible to apply work to the 
radiation, or to extract work from it – at least in imagination. Moreover, the 
energy density e of the cavity radiation can easily be measured, because  
e = 4/c J holds, where J – as before – is the measurable energy flux density 
emitted by the hole in the cavity wall.

Fig. 7.1. Gustav Robert Kirchhoff (1824–1887) a pioneer of electrical engineering and of 
radiation thermodyanmics. Kirchhoff is best known for the Kirchhoff rules about currents 
and voltage drops in electric circuits 

Boltzmann utilized the cavity model in 1884 to corroborate Stefan’s 
T4-law: With considerable courage – or deep insight – he wrote a Gibbs 
equation for the radiation in the cavity in the form 

])([
1

pdVeVd
T

dS .

Now, Boltzmann was also an eager student of Maxwell’s electro-
magnetism and so he knew that the radiation pressure p and the energy 
density e of radiation are related so that p = 1/3e holds, see Chap. 2. 

the fourth power of its absolute temperature. Thus a body of 600K emits 

Therefore the integrability condition implied by the Gibbs equation reads 
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dlne = 4·dlnT so that e must be proportional to T4 just as Stefan had found it 
to be. The T4-law has been called the Stefan-Boltzmann law ever since. 

And this was just the beginning of the scientific return – experimental or 
conceptual – from the cavities. Experimentalists used them to measure the 
graph J ( ,T), cf. Fig. 7.2 and theoreticians used them to derive the function 
that fitted the graph.

Fig. 7.2.  Wilhelm Wien (1864–1928). Spectral energy density of black body radiation as 
observed (not the Wien ansatz!).  For small values of  the graphs are parabolic 

One of the experimentalists was Wilhelm Wien (1864–1928): He found 
that the peak of the graph shifts to larger frequencies in a manner 
proportional to T,3 and he fitted a function of the type4

)ansatzWien´s(),(
3 kT

h

eBTJ

to the descending branch of J ( ,T) for large frequencies.5 B and h are 
constants, universal ones of course, since the whole function is universal. 

The opposite limit for small frequencies deserves its own section, since 
its explanation baffled the scientists in the 1890’s.

Violet Catastrophe 

While actual cavities had soot-blackened walls for practical purposes, 
theoreticians did not see why the walls should not be perfectly reflecting in 
most parts, as long as they contained a tiny black spot of temperature T. The

                                                     
3  This observation became known as Wien’s displacement law.
4  Of course Wien did nor write h, he combined h/k into a universal constant . Wien’s ansatz

is not altogether too bad: It satisfies the T 4-law and Wien’s own displacement law. 
However, the 3-dependence for small frequencies was contradicted by  experiments. The 
curves should start with 2.

5 W. Wien: Wiedemann’s Annalen 58 (1896) p. 662.



202    7 Radiation Thermodynamics

effect on the cavity radiation should be the same, at least if the hole was 
small enough; after all, the radiation is universal, independent of the nature 
of the wall. As long as there is something somewhere to absorb the radiation 
and reemit it, the intermediate reflections are irrelevant. In fact, a single 
charge e with mass m connected to the wall by a linearly elastic spring 
capable of motion in the x-direction (say) should be sufficient. The spring 
must only be in thermal contact with the wall so that the oscillating mass 
has the mean energy = kT, cf. Insert 7.1. And there must be one spring of 
eigen-frequency  for every frequency of radiation.

Now, if physicists know anything very well, it is the harmonic oscillator; 
so they were on home ground with the one-oscillator model of a cavity. It is 
true that in the present case the oscillating mass m has a charge e so that 
there is radiation damping, but that was no difficulty for the top scientists in 
the field. Actually, as early as 1895, Planck had written a long article6 in 
which he showed that the equation of motion of a one-dimensional 
oscillator with mass m, charge e, and eigen-frequency  in an electric field 
E(t) reads approximately, i.e. for weak damping7
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It is true that E(t) is a strongly and irregularly varying function in the 

cavity, but only the Fourier component will appreciably interact with the 

oscillator which has its eigen-frequency . Let the energy density residing in 

that component be 
1
/2 0E

2
, see Chap. 2. This represents 

1
/6 of the spectral 

energy density e  of the cavity radiation, because the y- and z-components

of the electric field  also contribute to the energy density, and so do the 

components of the magnetic field; all of them contribute equal amounts. 

Thus it turns out – from the solution of the equation of motion – that the 

mean kinetic and potential energy of the oscillator is related to the  

radiative energy density e , or the energy flux density J =
c
/4 e  by

3

2
8

4

.

                                                     
6 M. Planck: “Über elektrische Schwingungen, welche durch Resonanz erregt und durch 

Strahlung gedämpft werden.” [On electrical oscillations excited by resonance and damped 
by radiation] Sitzungsberichte der königlichen Akademie der Wissenschaften in Berlin, 

Planck was much interested in radiation; primarily because he believed for a long time that 
radiation damping is the essential mechanism of irreversibility. Boltzmann opposed the 
idea and eventually Planck disabused himself of it. 

7  This equation and the following argument are too complex to be derived here, even as an 
Insert. However, they are replayed in all good books on electrodynamics. I found a 
particularly clear presentation in R. Becker, F. Sauter: “Theorie der Elektrizität.” [Theory 
of electricity.] Vol. 2 Teubner Verlag, Stuttgart (1959). 

,mathematisch-physikalische Klasse, 21.3.1895. Wiedemann s Annalen 57 (1896) p. 1. 
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Therefore, all that John William Strutt (1842–1919) – Lord Rayleigh 
since 1873 – had to do was to insert the mean energy  of the oscillator in 
order to come up with J ( ,T), the spectral energy flux density of  the black 
body radiation. According to the best of Rayleigh’s – or anybody else’s – 
knowledge at the time, that mean energy is kT, cf. Insert 7.1, so that 
Rayleigh obtained8

)formulaJeans-Rayleigh(
8

4
),(

3

2

kT
c

c
TJ .9

The formula fits the observed curve well for small frequencies, but it is a 
disaster for large ones: To begin with, the expression is not even integrable 
and, besides, it increases monotonically. These circumstances became 
known as the violet catastrophe, – or ultraviolet catastrophe10 – because the 
high frequencies, beyond the violet in the visible spectrum, were very badly 
represented by the formula indeed.

Obviously, in order to agree with observations, cf. Fig. 7.2, oscillators 
with high eigen-frequencies  must get less than their classical share = kT 
of energy. And the share must depend on the value of the eigen-frequency 
and decrease with it. Planck asked the question: How much do the 
oscillators get? How much in Latin is quantum – with plural quanta– and so 
Planck’s answer to the question, and all it entailed, became eventually 
known as quantum mechanics.11

The violet catastrophe of cavity radiation heralded the fall of classical 
physics which amounted to a scientific revolution. It started in 1900 with 
Planck’s paper: “Zur Theorie des Gesetzes zur Energieverteilung im 
Normalspektrum.”12 Ironically nobody at the time noticed the full signify-
cance of what had begun, certainly not Planck himself, – and not for many 
years. We proceed to consider this.

                                                     
8  Lord Rayleigh: Philosophical Magazine 49 (1900) p. 539.
9  We shall discuss Jeans’s contribution below.

10 So named by Paul Ehrenfest in 1910, – posthumously says S.G. Brush: “The kind of  
motion we call heat …” loc. cit. p. 306. And indeed, by that time, to all intents and 
purposes, the Raleigh-Jeans theory was dead.

11 Of course, Planck did not write Latin, but the Latin word Quantum is routinely used in the 
German language meaning portion, or share, or ration. 

12 [On the theory of the law of energy distribution in the normal spectrum] M. Planck: 
Verhandlungen der deutschen physikalischen Gesellschaft 2 (1900) p. 202.

 Normal spectrum is Planck’s word for the black body spectrum. 
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Expectation value of the energy of a classical oscillator 

We recall the Boltzmann factor, by which the probability of a body to have an 

energy n (n = 0,… ) is proportional to exp
n

kT

ε
. Therefore the expectation value 

 of the energy is given by 
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Insert 7.1 

Planck Distribution

The revolution started as an interpolation project between the Wien ansatz 
and the Rayleigh-Jeans formula which were good for high and low 
frequencies respectively. Actually given the task, a student can do the 
interpolation, – and identify the coefficient B of the Wien ansatz –, simply 
by studying the two relations given above like the pieces of a puzzle. He 
obtains the following formula after a little time which, admittedly, may be 
shortened by hindsight. 
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 of an oscillator of mass m, and eigen-freq-

uency , the

Hence follows =kT  by insertion. [The summation over ),( was converted 

here into an integration by virtue of the measure factor Y used before, cf. Chaps. 4 
and 6. Since that factor does not influence the result, the conversion – from sum to 
integral – might be considered as an auxiliary mathematical tool. Certainly 
Boltzmann considered it so, as we have discussed in Chap. 4.] 



Planck Distribution      205 

This is Planck’s radiation formula, or the Planck distribution. Planck 
apparently could not see how easy it was to get. Therefore he proceeded 
along a cumbersome route which I replay in Insert 7.2, for historical 
correctness, as it were.

The value of h may be determined by fitting the function to the observed 
curves. Thus h turns out to be equal to 6.55·10-34Js. This is sometimes called 
the action quantum, because it has the dimension of an action. More often it 
is called the Planck constant.

Pursuing this idea I came to construct arbitrary expressions for the entropy 
which were more complicated than those of Wien … but acceptable. 

)(2

2

eee

s

13 There were three such papers. Apart from the one cited above they are
 M. Planck: “Über eine Verbesserung der Wien’schen Spektralgleichung.” [On an 

improvement of Wien’s spectral equation] Verhandlungen der deutschen physikalischen 
Gesellschaft 2 (1900) pp. 202–204.

 M. Planck: “Über das Gesetz der Energieverteilung im Normalspektrum.” [On the law of 
energy distribution in the normal spectrum.] Annalen der Physik (4) 4 (1901) pp. 553–
563.

14 These researches were published in 1901: 
 H. Rubens, F. Kurlbaum: Annalen der Physik 4 (1901) p. 649.
 O. Lummer, E. Pringsheim: Annalen der Physik 6 (1901) p. 210.
15 M. Planck: “Die Entstehung und bisherige Entwicklung der Quantentheorie.” [The origin 

and subsequent development of quantum theory] Nobel lecture to the Royal Swedish 
Academy of Sciences in Stockholm, held on June 2nd, 1920. 

I believe that the true history of the interpolation that led to the Planck radiation 
formula will never be known. Planck himself gave slightly conflicting accounts. To 
be sure, textbook folklore has it that there was an interpolation between Wien’s 
ansatz and the Rayleigh-Jeans formula. I have so argued myself above. However, in 
the relevant papers by Planck in 1900/01 13 there is no mention of Rayleigh, let 
alone Jeans. So maybe Planck did not know Rayleigh’s work which, after all, had 
appeared only in the same year 1900. Planck says that he was convinced of the 
deficiency in Wien’s formula by the results of low-frequency experiments made 
known to him by the experimentalists F. Kurlbaum and H. Rubens who confirmed 
earlier measurements by O. Lummer and E. Prings heim.14  And then he says, 
referring to the arguments reported in Insert 7.2 

Among those expressions my attention was caught by

further  investigated.
which  comes closest to Wien’s in simplicity and … deserves to be   

On the other hand, in his Nobel lecture of 192015 Planck says that the 
 of Kurlbaum, Lummer et  al. convinced  him that for low frequencies  the

 expression should read 
2

2 2
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~
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Nothing was then more plausible than to set [the reciprocal of] this 
expression equal to the sum of a term with the first power and a term with 
the second power of  the energy. 

Of course, it was trial and error both ways, but a little less so in the second 
manner. Obviously Planck did not quite remember his arguments after 20 years. 
Maybe this is the place to quote a thoughtful remark by Einstein:16 Every
reminiscence is coloured by today’s being what it is, and therefore by a deceptive 
point of view.

Planck’s derivation of the radiation formula 

Planck, steeped in thermodynamics, as he was, replaced 1/T in Rayleigh-Jeans’s 

and Wien’s laws by 
e

s
using the Gibbs equation for the spectral entropy density 

s . Thus he obtained respectively 
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Differentiation with respect to e provides
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and it was between those two algebraic functions that Planck interpolated to obtain
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Integration provides 1/T  again on the left hand side and thus 
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if  one fixes the constant of integration by requiring that e  for T  . 
Solving for e one obtains the Planck distribution.

Insert  7.2 

                                                     
16

philosophers, New York (1949).
 P.A. Schilpp (ed.): “Albert Einstein:  Philosopher – Scientist.” Library of living 
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However, Sir James Hopwood Jeans (1877–1946), a mathematician 
much interested in astronomy, was not convinced that the Rayleigh formula 
was wrong for high frequencies. He kept a campaign going till the end of 
the first decade of the 20th century in which he criticizes the cavity model 
and maintains that no stationary state can prevail in such a cavity.17 His 
arguments faded away with the growing confidence in the Planck 
distribution. But the battle leaves its traces in the textbooks, because the 
violet catastrophe is a handy tool for the illumination of the scientific terrain 
of classical physics before quantum physics prevailed. As late as 1910 
Planck was moved to refute Jeans’s arguments.18 He says: 

The radiation theory of J.H. Jeans is the most satisfactory one according to 
the present state of physics; however, it must be rejected, because it leads 
to a contradiction with observations.

Energy Quanta 

From the above we conclude that according to Planck’s interpolation the 
mean energy  of the oscillator must be equal to

2
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1 1
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h
kT

Te e
ν ν

νε .

If that is compared with the generic expression for derived from the 
Boltzmann factor, cf. Insert. 7.1, namely 

                                                     
17 J.H. Jeans. Philosophical Magazine, February 1909 p. 229.
    J.H. Jeans: Ibidem, July 1909 p. 209
18 M. Planck: “Zur Theorie der Wärmestrahlung.” [On the theory of heat radiation] Annalen 

der Physik (4) 31 (1910) pp. 758–768.
19

notes.” loc. cit.

Note that Planck, even in 1910, ten years after his radiation formula, does 
not consider his own contribution as belonging to the present state of 
physics.

Note also that the low-frequency limit of the Planck distribution – the Raleigh-
Jeans formula – provides a possibility to determine the Boltzmann constant k. We 
may recall here Loschmidt’s complicated and inaccurate argument for the 
calculation of k, in order to determine the molecular mass µ, cf. Chap. 4. This 
argument can now be considered obsolete and indeed Einstein in his reminiscences 
speaks of   …Planck’s determination of the true size of the atom from  the law of 
radiation.19 On the other hand, in his work on Brownian motion in 1905 Einstein 
proposes to measure k by observation of a Brownian particle, see Chap. 9; that 
would be a cumbersome method in comparison. 

 P.A. Schilpp (ed.): In: “Albert Einstein:  Philosopher – Scientist.” “Autobiographical 
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Obviously the equation represents the summation of an infinite geometric 
series provided that n = nh holds.

Thus one may conclude – or must conclude – that the oscillator is not 
able to accommodate all energies, but only equidistant energies 0, h ,
2h ,… The oscillator can absorb – and emit – only energy quanta of size h
and, if the eigen-frequency grows, those quanta become ever bigger. For 
large eigen-frequencies the quanta are so big that the thermal motion of the 
particles of the wall of the cavity cannot provide them. Therefore high 
frequency oscillators are inactive, i.e. they remain at rest, – at least that was 
the idea at first. It is because of that, that the spectral energy density e  of 
the radiation is concentrated at relatively low frequencies. However, when 
the temperature grows, the range of accessible frequencies becomes bigger 
and the bulk of the area below e ( ,T) shifts to the right, as observed, cf. 
Fig. 7.2, and as expressed by Wien’s displacement law.

It is this – formally, and in retrospect – fairly straightforward argument 
by which Planck has introduced the concept of quantized energy levels of 
an oscillator.20 Of course, the argument was totally at odds with classical 
thinking. Therefore physicists – foremost Planck himself – suspected that 
the whole thing might be a piece of mathematical jugglery without any 
correspondence to anything real in nature. [Planck] struggled for years to 
find a way around his own discovery.21

At some time during this struggle Planck came up with the idea that 
maybe the emission of radiation from the oscillator indeed happened in 
steps of size h , but that absorption was continuous.22 According to the new 
hypothesis the oscillator was supposed to accumulate absorbed radiation 
between two steps so that on average it would be found half-way between 
nh and (n + 1)h . This led Planck to an alternative equation for the 
expectation value , namely 
                                                     
20 Since molecules usually represent high frequency oscillators, their vibrational degrees of 

freedom do not contribute to the specific heat at normal temperatures. The same is true for 
the rotation of a two-atomic molecule about the axis that links the atoms. Thus quantum 
mechanics finally explained that puzzling observation about specific heats. 

21 According to I. Asimov: “Biographies” loc.cit. p. 506.
22 M. Planck: “Eine neue Strahlungshypothese.” [A new hypothesis about radiation] 

Verhandlungen der deutschen physikalischen Gesellschaft, February 3, 1911.
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Accordingly, in effect the oscillator had to have energy levels 

n = (n+1/2)h  – instead of n = nh – so that it could never be quite without 
energy; even for T = 0 there had to be a zero point energy.

Miraculously this equation – and the concept of zero point energy – was 
later confirmed by proper quantum mechanics, based on the Schrödinger 
equation, although continuous absorption was never taken seriously, – or 
not to my knowledge. The zero point energy is nowadays taken to be a 
reflection of Heisenberg’s uncertainty relation applied to the oscillator.

Max Karl Ernst Ludwig Planck (1858–1947) 

Max Planck was 42 years old when he derived the radiation formula. He 
had studied under Helmholtz, Kirchhoff and Weierstraß. His doctoral 
thesis23 is a rehash of Clausius’s ideas which Planck admired greatly. He 
claimed that Helmholtz had not read his work. Kirchhoff read it and 
disapproved, while Clausius was not interested. 

Planck’s great achievement is the formulation of the correct radiation 
formula and – in consequence – the realization that the formula required 
quantized energy levels of an oscillator. Of course, Planck sent the paper 
around. Boltzmann received a copy and, according to Planck,24 he expressed 
his interest and basic agreement with my reasoning. As there is no 
reflection of this reaction in Boltzmann’s work, it was probably no more 
than politeness. Indeed, according to Lindley25 Boltzmann had never had 
much time for Planck. The two scientists had been in contact over Planck’s 
idea that the explanation of irreversibility required electro-magnetic 
radiation damping and could not be explained by the kinetic theory. 
Boltzmann won this argument hands down. And then there was the Zermelo 
controversy, see Chap. 4, which must have soured relations. 

Planck himself remained sceptical for many years of his own discovery, 
calling it an act of desperation.26 When Einstein went ahead and took 
quanta seriously, Planck did not wish to follow. Instead he continued to 
search for a way to reconcile the new concept with classical physics. He 
says: My vain efforts to incorporate the quantum of action somehow into the 
classical theory took several years and much work. Some of my colleagues 

                                                     
23 M. Planck: “Über den zweiten Hauptsatz der mechanischen Wärmetheorie.” [On the 

second law of the mechanical theory of heat] Dissertation, Universität München (1879).
24 Planck: Nobel lecture. loc. cit.
25 D. Lindley: “Boltzmann’s atom.” loc.cit. p. 212.
26 A. Hermann (ed.): “Deutsche Nobelpreisträger” loc.cit. p. 91.
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have seen this as tragic. But I disagree...27 Ironically Planck’s well-known 
and oft-quoted dictum about the non-acceptance of new ideas, cf. Fig. 7.3, 
is therefore primarily applicable to himself.

Planck’s own achievement, along with his partisanship of the works of 
his colleagues Nernst and Einstein, and his soft-spoken but steadfast 
rectitude in politically turbulent times made Planck one of the most 
renowned physicist of his time, second only to Einstein. Thus it happened at 
the end of the second world war, – when Planck was fleeing the rampaging 
Russian army, and was picked up at the roadside by an American passport-
checking patrol – that his name was recognized and he was given VIP-
transport to Göttingen in a jeep. There at the age of nearly ninety years, he 
became acting head of the Kaiser Wilhelm Institute, – the last one, because, 
when a worthy younger director was appointed, the institute was renamed 
Max Planck Institute.

Planck’s head was used on early 2 deutsch-mark coins, – not for long 
though, because soon a more deserving politician was found to replace him.

The only way to get revolutionary
                                                             advances in science accepted is to 
                                                             wait for all old scientists to die.28

Fig. 7.3.  Max Planck (1858–1947) 

                                                     
27 Ibidem. 
28 This is the somewhat shortened quotation from M. Planck: “A Scientific autobiography 

and other papers.” Williams and Norgate, London (1950).
 Brush writes: I suppose that most people who read (or repeat) this quotation think Planck 

is referring to his quantum theory, but in fact he was talking about his struggle to 
convince scientists in the 1880’s and 1890’s that the second law of thermodynamics 
involves a principle of irreversibility, and that the flow of energy from hot to cold is not 
analogous to the flow of water from a high level to a low one, as Ostwald and the 
energeticists claimed. Cf. S.G. Brush: “The kind of motion we call heat, ...” loc. cit. p. 
640.
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Photoelectric Effect and Light Quanta 

Heinrich Hertz had noticed that light falling upon metals stimulates the 
emission of electrons. This became known as the photoelectric effect, or 
simply the photo-effect. Philipp Eduard Anton von Lenard (1862–1947) 
investigated the effect systematically in 1902 and he found that the energy 
of the emitted electrons does not depend on the intensity of the incident 
light. A brighter light just produces more electrons, not more energetic 
ones. Instead, light of a higher frequency creates more energetic electrons. 
There was no explanation until Einstein stepped forward with an 
extrapolation of Planck’s energy quanta.29

Einstein argued that, if an oscillator could only exchange quanta of 
energy h  with the surrounding radiation field, the emitted radiation itself 
should appear as quanta; they came to be called light quanta at first and 
could, perhaps, be considered as little particles of light with the energy h .
If such a light quantum hits an electron, bound to a metal with less energy 
than h , the light may kick the electron loose and make it move off with the 
surplus. The higher the frequency, the higher the surplus and the quicker the 
electron moves. On the other hand, if the light quantum – for low 
frequency– carries less than the binding energy of the electron to the metal, 
there is no emission of electrons. The threshold frequency, when emission 
started, was found to be a characteristic property of the metal.

This is all simple enough except that one has to accept the idea of light 
quanta. Since the idea was based on Planck’s theory of energy quanta, its 
success was a first confirmation of that theory other than radiation itself. 
Einstein’s hypothesis of the photo-effect went a long way, perhaps even all 
the way toward establishing the new quantum theory.30 Einstein received 
the Nobel prize for this in 1921. However, among the scientists who 
remained sceptical, was Planck.31

Simple as the explanation of the photo-effect may be, it had a truly far-
reaching consequence on natural philosophy. Indeed, Einstein thus 
cancelled out the luminiferous ether as unnecessary by assuming that light 
travelled in quanta and therefore had particle-like properties and was not 
merely a wave that required some material [the ether] to do the waving.32

So the question of absolute space, in which the ether was at rest was finally 
done away with.

                                                     
29 A. Einstein: “Über einen die Erzeugung und Verwandlung des Lichtes betreffenden 

heuristischen Standpunkt.” [On a heuristic point of view concerning the creation and 
reaction of light.] Annalen der Physik (4) 17 (1905).

30 I. Asimov: “Biographies ...” loc.cit. p. 517.
31 A. Hermann (ed): “Deutsche Nobelpreisträger.” loc.cit. p. 91.
32 Asimov: “Biographies ...” loc.cit. p. 589.
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Radiation and Atoms 

Time went on and Planck’s concept of energy quanta of hypothetical 
oscillators in cavity walls found its way into the atom. Niels Henrik David 
Bohr (1885–1962) constructed a model of the atom in 1913, whose essential 
feature is quantized energy levels for electrons in the electric field of the 
nucleus. That model prevailed with slight modifications to this day and by 
now it is taught in elementary schools.

Thus it became possible to think about atoms in equilibrium with a 
radiation field and – not surprisingly – Einstein was first and foremost to 
develop the idea.33 He introduced the novel concept of stimulated emission 
and derived Planck’s radiation formula without Planck’s interpolation. The 
matter is simple enough so that we can replay it here in an understandable 
form on less than one page.

We are interested in radiation with frequency  and spectral energy 
density e ( ,T). If the frequency is such that h = n– m holds, the radiation 
may be emitted and absorbed when the electron moves between the levels 
with n and m. The emission and absorption probabilities are respectively

),(and),( .

Two of the three terms – those with A and C – represent spontaneous
emission and absorption. They are eminently plausible. But the third term – 
the one with B – is not. It represents what Einstein called induced or
stimulated emission and at the end, upon reflection, we shall recognize that 
that concept was introduced ad hoc so that the argument leads to the Planck 
distribution. Einstein expresses this by saying: 

In order for the desired result to come out we need to extend our hypotheses. 

The probabilities of finding atoms with energies n and m are proportional 
to the Boltzmann factors exp(– n/kT) and exp(– m/kT). Therefore the 
expectation values for emission and absorption are 
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In equilibrium both expressions must be equal so that the equilibrium 
spectral energy density has the form 

                                                     
33 A. Einstein: “Strahlungsemission und –absorption nach der Quantentheorie.” Deutsche 

physikalische Gesellschaft, Verhandlungen 18 pp. 318–323 (1916).
 A. Einstein: “Quantentheorie der Strahlung.” Physikalische Gesellschaft Zürich, 

Mitteilungen  16 pp. 47–62 (1916).
 A. Einstein: “Quantentheorie der Strahlung.” [Quantum theory of radiation] Physikalische 

Zeitschrift 18 pp. 121–128 (1917). 
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1
),( .

Since e ( , ) may be expected to be infinite, B must be equal to C and, 
since for small  the Raleigh-Jeans formula ought to hold, we may 
determine A/C and obtain 

1

8
),(

3

2

kT

h

e

h

c
Te ,

which is the Planck distribution.
The new and original feature in Einstein’s argument is stimulated

emission. Thus he envisages a process by which the radiation energy e
amplifies itself by shaking a quantum h loose from the atom and the 
probability for this amplification is proportional to the extant value of e , so 
that a run-away amplification is conceivable. 

In the 1917-paper there is a thoughtful but inconclusive discussion about 
the momentum exchange between matter and radiation, and about the recoil
of size c

c

h

c

h
2

actuallyor, of an atom that emits a light quantum h .

Although momentum is much on his mind, Einstein seems to shy away 
from definitely assigning the momentum n to a light quantum moving in 

the direction n.

Still, Einstein’s improved derivation of the Planck formula was eagerly 
accepted. Bose34 comments on the argument and calls it a remarkably 
elegant derivation.35 And yet, Bose had some reservations, essentially based 
on the fact that Einstein’s final result needs to refer to the Rayleigh-Jeans 
formula which is purely classical. Bose’s own argument avoids this. Bose 

                                                     
34 S.N. Bose: “Plancks Gesetz ...” loc. cit.
35 Actually it is Einstein who calls Einstein’s argument bemerkenswert elegant [remarkably

elegant], because he translated Bose’s paper. However, we may assume that Bose’s 
unpublished original English version used words to that extent.

Thus, although he came close, Einstein missed the full import of stimulated 
emission, which amplifies the energy of the emission-stimulating ray of radiation 
by a light quantum that moves in the direction of the ray. This fact was later – in 
the 1920’s and 1930’s – recognized and incorporated into the treatment of the 
photon gas by astrophysicists, see below. But then Einstein did not look back and 
so he – and everybody else – failed to recognize the potential applicability of the 
phenomenon for the creation of coherent, unidirectional, and monochromatic light. 
The result lay dormant for 50 years, before some clever electrical engineers used it 
in the 1960’s to construct an amplifier that became known by the acronym maser = 
microwave amplifier by stimulated emission of radiation. Shortly afterwards the 
same was done for light in the laser.
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was the first to take the cells of phase space seriously. We recall that 
Boltzmann had previously introduced cells as the smallest elements that can 
accommodate a point (x,c), or (x,p); Boltzmann had considered this – cf. 
Chap. 4 – as a conceptual artifact introduced for mathematical convenience, 
and he did not need to speak about the cell-size, because it dropped out of 
his final results. For Bose that size had to be equal to h3, if he wished to 
obtain the Planck distribution. Also Bose introduced the new way of 
characterizing a distribution of light quanta and counting the number of 
realizations. We review Bose’s paper in the briefest possible manner in 
Insert 7.4.

Photons, A New Name for Light Quanta 

Einstein’s hypothetical light quanta had the energy h , but they could not 
really be considered particles until they were firmly endowed with a 
momentum. Einstein had come close to doing that in his paper on 
stimulated emission, see above. His expression 

c

h  for the recoil of an 

emitting atom is in fact the magnitude of the momentum. This can easily be 
confirmed, since light – being electro-magnetic radiation – exerts a pressure 
p = 1/3 e on a wall, where e is the energy density, cf. Chap. 2. From this 
result it follows that the momentum p of the light quanta is in fact equal to 

n
c

h , where n is the direction of their motion, see Insert 7.3.

Arthur Holly Compton (1892–1962) proved this expression for the 
momentum directly when he observed collisions of light quanta with 
electrons, in which – naturally – momentum and energy had to be 
conserved. The observed Compton effect settled the matter. Thus the light 

Compton proposed the name photon and that was generally accepted after 
some time.

Radiation pressure and momentum of light quanta

As in Insert 4.1 we consider that 1/6 of the photons with the energy h and the 
(unknown) momentum p  move in the six spatial directions perpendicular to the 
sides of a cube. The walls reflect them elastically. In this manner the photons with 

momentum p  exert a pressure 
6

2  on a wall, where n  is the number density. 

The energy density is obviously h ·n and since – by Maxwell’s equations – the 

energy density equals three times the pressure, the momentum p of a quantum 

equals
c

h  in magnitude.

Insert 7.3 

quantum now had energy and momentum and could be considered a particle 
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Bose’s derivation of the Planck distribution 

Let V be a volume, homogeneously filled with N  photons with frequencies 

between and  + d . Accordingly the spectral energy is E = N h . The photons 

occupy a spherical shell of volume

c

h

c

h
V

d
2

4

in the phase space spanned by space and momentum coordinates. The phase space 

has cells of size h
3
 which can accommodate only two photons, – one each for the 

two possible polarizations. Therefore there are d4
3

2

c
VA  cells in the 

spherical shell. 

Bose introduced the idea that the distribution of photons is characterized by pr  , 

the number of cells occupied by r photons in the range d . Their spectral entropy is 

therefore

0

!

!
whereln

r r
p

A
WWkS .

Maximizing this under the constraints 

r r

rr
rpNpA and we obtain 

ln 1 ln 1
N A A

A N N
S k Nν

ν ν ν
ν ν νν .

With N = E /h  we get 

1
ln hence

exp 11
h

kT

N

S Ak A
N

N
E T h

A

ν

ν
ν ν ν

νννν ν

and with the above value for A and E = e ( ,T)Vd

2

3
( , ) 8

exp 1
h

kT

h
e T

c ν
ν ν

ν πν

which is the Planck distribution once again, but now derived without any reference 

to classical thinking and classical formulae and, of course, without any 

interpolation between empirical functions. 

Insert. 7.4 
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Photon Gas 

Now that photons may be considered as particles, endowed with momentum 

and energy, we may write an equation of transport for a photon gas. Let

f(x,p,t)dp be the number density of photons with momenta between  

p = n and p + dp. Since all photons have the speed c, the density function 

satisfies the photon transport equation

) ,( f
ff

which represents an equation of balance for the number of photons with x

and t and with momentum p. The equation is a little like the Boltzmann 

equation, cf. Chap. 4, except that the right hand side, which represents the 

source density of photons, is not specific yet. Since the photons do not 

interact among themselves – at least not normally – the right hand side is 

due exclusively to interaction of the photons with matter. S(f) is zero, when 

the radiation is in equilibrium with matter, and, of course, when there is no 

matter, there is no production either. 

Multiplication of the photon transport equation by a generic function 

(x,p, t) and integration leads to the equation of transport for radiative 

quantities

d d

d ( )d
k

k

k k

f cn f

cn f S f
t x t x

ψ ψ ψ ψ ψ
p p

p p.

The right hand side represents the production density of photons. 
1
/y is the 

volume of a cell of (x,p)-space, and it is equal to h
3
 according to Bose. 

For  = 1, , cp = h , and – ))1ln()1((ln
ff

f

f
 we 

obtain equations of balance for the number of photons and for momentum, 

energy and entropy with densities, fluxes and source densities as indicated 

in Table 7.1. 

The entropic terms in the table are those appropriate for a Bose gas, for 

which the photon gas is the prototype, see above and Chap. 6. For 

equilibrium the entropy has to have a maximum and that occurs for the 

density function

1
),(f ,

where T is the temperature of the matter with which the radiation is in 

equilibrium. The equilibrium density function is the Planck distribution, of 
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course; it is homogeneous and isotropic. Insertion of fequ into the table 

provides the entries of Table 7.2, most of which are zero. 

4K3m

J16-
7.8·10

33

4

15

58

,

202.1)3(

Of some interest are beams emanating from a spherical source S into
empty space. Inside the source the radiation is supposed to be in 
equilibrium and the temperature is TS.  Therefore in a point outside the 
source the density function is given by, cf. Fig. 7.4 

else.0

arcsin0,20for),(
),,(

0
f

f px

))1ln()1((ln
ff

f

f

 Density    Flux Source Density 
number 3)3(15

4

      0            0 

Momentum       0  
4

3

1

           0 

energy 4      0            0 

entropy 3

3

4      0            0 

      Density            Flux Source Density 
number dn f p d

k
f p dS p

Momentum pdf pdf d
h

c j
n S

ν
p

energy pdf pdf dh Sν p

entropy
pd[*] f pd[*] f ln(1 ) d

y

f
k S p

Table 7.1 Thermodynamic fields of radiation. [*] stands for –

cn

Table 7.2  Equilibrium  values  of  radiative  fields.

The distribution is strongly non-homogeneous and non-isotropic and 

therefore it is a non-equilibrium distribution, although within the spherical 

cone of angle o it is a Planck distribution appropriate for the temperature 

TS. We may calculate the entries of Table 7.1 for this distribution  and 

obtain the results of Table 7.3. 
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Fig. 7. 4.  Radiation from a spherical source 

Table 7.3. Radiative thermodynamic quantities of rays emanating from a spherical source S.
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Some of the entries in the table permit simple calculations for the 

temperatures of the sun and the planets as follows. The sun has the radius 

¤
r  = 0.7·10

9
m and it is at the distance RE = 150·10

9
m from the earth. Also 

we know from measurements that the energy flux density reaching the earth

from the sun  equals  1341 W/m2, – the so-called solar constant. Therefore we 
have

2m

W
1341

4
2

E

2

¤4

¤

R

r
aT

c
.

From this relation the surface temperature of the sun may be calculated 
and it comes out as 

¤
T  = 5700 K. 

If rP is the radius of a planet with the distance RP from the sun, the 
temperature TP of the planet follows from the equation 

242

2

2

4

4
4

PPP

P

¤

¤
raT

c
r

R

r
aT ,

since it absorbs solar radiation on the circle rP

2

radiation on its whole surface 4 rP

2. Since we know the distances RP of all 
planets, we may prepare a table of planetary temperatures as shown in 
Table 7.4. The value for the earth is a trifle low – the mean temperature of 
the earth is 288K – but this is due to the fact that all kinds of secondary 
effects have been ignored by the calculation, e.g. the albedo, or coefficient 
of reflection, and the cloud cover. The same is true for the values of other 
planets.

Let us also be interested in incoming and outgoing entropy fluxes of a 
body under solar radiation. The entropy flux density from the sun to the 
earth reads, according to Table 7.3 

Km

W
30.0

3

4

4 2
2

E

2

¤3

¤

R

r
Ta

c
.

Table 7.4 Planetary temperatures 

 Mercury    Earth   Mars Jupiter 

RP [m] 50·109 150·109 230·109 770·109

TP [K] 475 275 222 122 

4

c

 exposed  to  the sun  and  emits 

ϕ
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On the other hand, a body with the temperature T= 298K, the leaf of a 
plant (say), emits entropy at the rate 

Km

W
00.2

3

4

4 2

3Ta
c

.

Thus between absorption and emission the leaf has produced radiative 
entropy, because it emits more than it absorbs.

A more detailed investigation of this phenomenon was recently presented 
by Wolf Weiss as part of a memoir on the entropy sources of the earth’s 
atmosphere.36 As a preliminary exercise Weiss considers radiative and 
material entropy sources in a black stone plate exposed to the sun. This 
exercise shows what can be done without using explicit expressions for the 
source terms, if only conditions are stationary, cf. Insert 7.5. In that case the 
sources may be calculated from the balance of in- and effluxes of entropy 
and energy, and it turns out that the scattering of radiation provides the 

pation of matter. 
Therefore it is conceivable – at least from the entropic point of view – 

that the entropy source of matter is negative, if only it is accompanied by 

he declares37 radiation to be the cause, when plants decrease their entropy 
during growth in the process of photosynthesis of glucose. We shall review 
that proposition in Chap. 11.

Dissipative and radiative entropy sources

We consider a black stone plate of thickness L = 0.1m exposed to solar radiation 
perpendicular to the plate. The plate absorbs the radiation in a thin surface layer of 
temperature T1. That layer reemits part of the absorbed energy and the rest is 
transmitted through the plate by heat conduction. On the dark side – away from the 
sun – the plate emits radiation according to its temperature T2 and according to the 
Stefan-Boltzmann law. The emitted radiation on the dark side again comes from a 
thin surface layer. We look at stationary conditions. The heat flux is governed by 
Fourier’s law, cf. Chap. 8 so that we have 

1 2 1 2
and ( ) (0 )

2

T T T T
q T x T x x L

L L

κ .

First we determine T1 and T2. We balance the in-and effluxes in the whole plate and 
in the surface layer on the dark side and obtain respectively 

                                                     
36 W. Weiss: “The balance of entropy on earth.” Thermodynamics and Continuum 

Mechanics 8, (1996).
37 In his booklet: E. Schrödinger: “What is Life ?” Cambridge: At the University Press. New 

York: The Macmillan Company (1945). 

ϕ

biggest contribution to the entropy production; far bigger than the dissi- 

radiative scattering. Schrödinger seems to advocate that possibility when 
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4 4 4 1 2

and .
¤ 1 2 24 4 4

T Tc c c
Q aT aT aT

L
κ

With
mK

W
74.0 , appropriate for stone, and 

2m

W
1341

¤
Q , the solar constant, 

the only relevant solution is
T1 = 355K    and T2 = 296K. 

The area density of entropy sources has four terms in principle which we denote by 

rr  –  due to photon-photon interaction. Here absent. 

rm  –  source of radiative entropy due to matter. 

mr –  source of material entropy due to radiation. 

mm –  dissipative entropy source due to heat conduction. 

rm may be calculated from the entries of Table 7. 3 as the balance of in- and 
effluxes of radiative entropy 

2

4 4 4 W3 3 3¤

5.032rm ¤ 1 22 24 3 4 3 4 3 m K

r c cc
a T a T a T

R
E

.

mr may be calculated according to Clausius, cf. Chap. 3, as
T

Q
, i.e. as heat 

absorbed or emitted divided by the appropriate temperature. Thus

1 1 W
44

0.243
1mr 2 24 4 m K1 2

cc
Q aT aT¤

T T
.

And mm+ mr must together be zero, because outside the plate there is no material 
entropy flux. Therefore we have

K
2

m

W
243.0mm .

We conclude that, whatever entropy is produced by heat conduction is balanced by 
a decrease of the entropy of matter due to absorption and emission of radiation. We 
also see that the radiative entropy source is about 20 times bigger than the 
dissipative material one. Absorption, emission and scattering of radiation seems to 
be the prevalent mechanism of entropy production in the plate. 

Insert 7.5 

The most interesting – and most important – application of radiation 
thermodynamics is the physics of stars. And yet, the physicists of the 19th
century, who raised their eyes to the stars, as it were, were unaware of the 
decisive role of radiation for stellar structure. They thought, perhaps, that 
the only role of radiation in a star was to carry the energy away from it. 
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Although they were mistaken in this assumption, their work laid a foun-
dation and – by good luck – it could be used later as a basis for Eddington’s 
more informed work. Let us review this preliminary work first, before we 
discuss the radiation thermodynamics of stars.

Convective Equilibrium 

In the 19th century the only conceivable source of solar energy – or stellar 
energy – was the contraction of the stars under their gravitational pull as 
first envisaged by Helmholtz, cf. Chap. 2 and Insert 2.2. According to the 
contraction hypothesis, the heating occurs everywhere in the star while, of 
course, the cooling by radiation occurs near the surface. Thus it makes 
sense to think of a star as hot inside and cool – relatively cool – near the 
surface. And it was known that heat conduction could not account for the 
transfer of heat from the inner regions of a star to the surface, because the 
thermal conductivity is much too small. On the other hand, the important 
role of radiation inside the star was not recognized at the time. Therefore 
the transfer had to happen by convection, the same mechanism that 
distributes the heat from the stove throughout the living room. Let us 
consider this.

The situation of hot below and cool above is akin to the state of our 
atmosphere on a nice summer day, when the sun heats up the ground in the 
morning, and the ground heats up the air-layer next to it, which thus 
becomes warmer than the air on top, and lighter than it should be for equi-
librium.38 If that situation is only slightly disturbed, it causes thermal
convection, i.e. a vertical rise of the warm air. Since the rising air enters 
zones of lower pressure, it expands and, since heat conduction is negligible, 
it cools adiabatically. When this goes on for some hours the air reaches a 
convective equilibrium by mid-day. In that equilibrium the pressure P, and
the density  within the lower layers – as far up as the convection reaches – 
obey the adiabatic equation of state

P =  . 

The specific entropy is homogeneous in convective equilibrium. is the 

ratio of specific heats, equal to 
7
/5 in air and accordingly the air temperature 

drops by 1K for every 100 meters of height. In the atmosphere the convec-

tion stops at night and convective equilibrium breaks down.

In a star there is no night, of course, and therefore the convection may be 

supposed to persist until the whole star is in convective equilibrium with 

                                                     
38 Not lighter than the air on top, however, as scientific folklore sometimes has it.
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as mechanical equilibrium conditiond

2 or momentum balance andd

P Mr
G

r r

as (pressure, density) relation
Pc

P

c

γργρ
.

The index c refers to the centre of the star and Mr is the mass inside the 

sphere of radius r.

265

)1(3
.

Potential energy of a star 

According to Insert 2.2 the potential energy of a spherical mass is equal to

1 1
d

2 2

,

2 2

R r

2

RM M
E G G rpot

R r0

where the second term depends on the mass distribution in the star. That term may 
be rewritten, in terms of Epot itself, for a star in convective equilibrium by the 
following string of equations involving partial integrations and the repeated use of 
the mechanical equilibrium condition, the adiabatic equation of state and the 
identity dMr = 4 r2 dr.

2

2 3

1 1 1 1 1
d d d d

2 2 2 2 1

1 1 1
d 4 d d

2 1 6 1 6 1 0

1

6 1

2

P MR R R d rM dP Pr
G r M r M r Mr r r

r dr 1 dr0 0 0 0

M
R R RdP Mr

4 P r r r r G Mrdr r0 0

E .pot

Insertion into the original equation for Epot provides the equation given in the main 
text.

Insert 7.6 

Of course, this cannot have been acceptable for all, because the adiabatic equation 

of state refers to ideal gases and the sun has a mean density of 3cm
g4.1 , larger than 

the density of water and a thousand times denser than air. Could that matter 
possibly behave like an ideal gas? Well it does, at least approximately, but the 
physicists in the 19th century – without any knowledge of the atomic structure – 
could not begin to understand that. They put the problem on the shelf and 
proceeded anyway to calculate the potential energy of a gas sphere with radius R
and mass Mr, cf. Insert 7.6: 



224    7 Radiation Thermodynamics

The pioneer of convective equilibrium was W. Thomson (Lord Kelvin) 
who conceived of the idea and suggested it for the atmosphere of the earth 
and for the sun.39 He says: 

The essence of convective equilibrium is that the density and the 
temperature are so distributed throughout the whole fluid mass that the 
surfaces of equal density and equal temperature remain unchanged when 
currents are produced in it by any disturbing influence gentle enough that 
changes in pressure due to inertial motions are negligible.

And about stars he says that 

…the natural stirring produced in a great free fluid mass like the Sun’s by 
the cooling of the surface, must, I believe, maintain a somewhat close 
approximation to convective equilibrium throughout the whole mass. 

J. Homer Lane investigated the problem thoroughly. The long title of his 
paper reveals his main assumption that the stellar material be considered as 
an ideal gas: “On the theoretical temperature of the sun under the 
hypothesis of a gaseous mass maintaining its volume by its internal energy 
and depending on the laws of gases known to terrestrial experiment.”40

Lane obtained a fairly simple, albeit non-linear second order differential 

equations for P(r), or (r), or 
)(

)(  by differentiating the momentum 

balance in convective equilibrium. That equation may be written in the form  

0)(

][

42

d

d

d

d
1

1

1

1

P

1

c

c

1

P

1

2

P

1

2

P

G

rrr

,

and it is known as the Lane-Emden equation.41 Lane set it up and Emden 
solved it by a laborious numerical scheme, and published reams and reams 

                                                     
39 W. Thomson: “On the convective equilibrium of temperature in the atmosphere.”

Proceedings of the Literary and Philosophical Society of Manchester (3) II (1862) pp. 
125–131.

 See also: W. Thomson: Philosophical Magazine 22 (1887) p. 287 and  
 W. Thomson: “Mathematical and Physical Papers.” 5 Cambridge (1911) p. 256.
40 J. Homer Lane: American Journal of Science and Arts. Series 2 Vol. 4 (1870) p. 57.
41 So called by S. Chandrasekhar: “An Introduction to the Study of Stellar Structure.”

University of Chicago Press (1939) p. 88. Reprinted by Dover Publications (1957). Page 
numbers refer to the Dover edition.
Chandrasekhar also gives much credit to A. Ritter who investigated the condition of 
convective equilibrium in a star independently of Lane’s work. Ritter published 18 papers 
“Untersuchungen über die Höhe der Atmosphäre und die Constitution gasförmiger 
Weltkörper.” [Investigations on the height of the atmosphere and the constitution of 
gaseous bodies] Wiedemann Annalen (1878–1883). Those papers says Chandrasekhar 
…form a classic the value of which has never been adequately recognized…and he is 
tempted to rename the Lane-Emden equation and call it the Lane-Ritter equation. 
However, Emden gave much credit to Ritter.
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of tables for different values of .42 Nowadays the solution is very easy with 
any one of the software systems for doing mathematics, e.g. Mathematica®.
Thus Emden was able to calculate the central values c and Pc of density and 
pressure for the sun (say). He obtained, cf. Insert 7.7

3
0

kg3 10 7

m
75.6 10 , 22.5 10 bar, hence 4.03 10 K,

c c c
P T

µ
µρ

where was chosen as 4/3
43 and where 

0

 is the relative molecular mass of 

the particles of the sun. Such calculations suggested that the central tempe-
ratures of stars amount to several 10 million K, and that the central densities 
are many times higher than the density of the densest metal. 

Solution of the Lane-Emden equation for  = 
4
/3

With dimensionless dependent and independent variables

and

the Lane-Emden equation reads for  = 4/3

2

3

2

d 2 d d
0 with (0) 1, 0

0d d d

u u u
u u

t z z z

.

The solution is shown in Fig. 7.5. The radius of the star occurs where u(z) crosses 
the abscissa: the table in the figure shows that this happens for z(R) = 6.90. The 

table also shows values of 
z

u
z

d

d2  and, in particular, its surface value 

.015.2
)(d

d2

Rzz

u
z

Fig. 7.5. Solution of the Lane-Emden equation 

                                                     
42 R. Emden: “Gaskugeln: Anwendungen der mechanischen Wärmetheorie.” [Gas spheres: 

Applications of the mechanical theory of heat] Teubner, Leipzig and Berlin (1907).
43  = 4/3 proved later – in Eddington’s work – to be the correct coefficient, although in that 

work it is not the ratio of specific heats.
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These values are important for the calculation of Pc and c in terms of the radius R
of the star and of its mass MR. We have 
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the latter relation from the momentum balance. Hence follows 
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Insert 7.7 

Neither nor µ were known to the physicists of the time. We recall that for ideal 
gases can have three values, namely 5/3,

7/5 , or  4/3 depending on whether the 
molecules have one, two or more atoms. Later, when the significance of the 
radiation pressure was recognized, it turned out that = 4/3 is correct, see below, 
although there are no molecules in the sun. Indeed, the sun and other stars consist 
mostly of nuclei and free electrons, because the atoms are largely stripped of their 
electrons at the high temperatures which prevail.44 The particles – nuclei, electrons 
and a few ions – fly freely through the space that is shielded by the electronic shells 
under normal conditions. It is for that reason that the matter of a star may be 
considered an ideal gas, even when the density in its center is a hundred times 
bigger than the density of the heaviest  metal. 

The strong ionisation is also responsible for a rather small value of µ, the mean 
mass of the particles, because the free electrons contribute a lot to the number 
density of particles, but only little to the mass density. Of course, µ depends on the 
composition of the star: The heavier the atoms are that compose a star, the more 
closely µ/µo is equal to 2, because a heavy atom contributes approximately 1/2 µ/µo

electrons. If, on the other hand, the sun consists mostly of hydrogen – as we now 
think it does – µ/µo is equal to ½, because a hydrogen atom provides two particles, 
a proton and an electron. Thus the above calculation suggest an interior solar 
temperature of 20.000.000K.45

                                                     
44 Of course, neither Lane nor Emden – nor anybody else at the time – knew anything about 

the atomic structure, or that an atom contains largely empty space, and that there are 
nuclei and electrons. This knowledge came with Rutherford in 1913, I believe, and it was 
primarily Eddington in the 1920’s who made use of the new knowledge, see below. 

45 By good luck, perhaps, we have thus calculated an interior temperature of the sun that is 
currently considered to be right: According to the “Fischer Lexikon zur Astronomie” the 
temperature lies between 17 and 21 million K. 
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Arthur Stanley Eddington (1882–1944)

Although the pressure of radiation or, more generally, of electro-magnetic 
fields had been known since Maxwell’s equations were known, cf. Chap. 2, 
its role in stellar physics was not recognized at first. The reason must have 
been that the radiation pressure prad exerts a minimal force in everyday life, 
so small that it cannot be felt when we hold out our hand to absorb sunlight 
(say). Note that, by Table 7.1, the momentum density Pj is related to the 
energy flux Jj by 

jcj
JP

2

1 , so that the momentum density is a lot smaller 

than the energy flux. But then, prad  equals 1/3 aT 4 according to Table 7.2. It 
grows with the fourth power of T and as it became clear, or at least 
probable, that the interior temperature of stars reaches millions of degrees, 
researchers decided that it might be worthwhile to look at the momentum 
balance equation of radiation rather than only at the energy balance.

It seems that Karl Schwarzschild (1873–1916) was first to take the 
radiation pressure into account in his investigations of the solar 
atmosphere.46 Another influential astrophysicist was S. Rosseland.47

Between them they worked out a plausible expression for the source density 
S in the photon transport equation. In obvious analogy to Einstein’s ansatz 48

for absorption and emission – spontaneous and stimulated – of photons 
Rosseland sets 

( ( ) )
n m

S a bf c cfρ ,49

where cn and cm are the concentrations of atoms in the energetic state 

with m, and n = h  + m.50  is the mass density. Following ideas of 

Schwarzschild 51 about thermodynamic equilibrium Rosseland gives this 

and, since we know fequ, we obtain 
a
/c = h

3
,

b
/c = 1, while 

cn

cm

must be equal 

                                                     
46 K. Schwarzschild: “Über das Gleichgewicht der Sonnenatmosphäre.” [On the equilibrium 

of the solar atmosphere] Göttinger Nachrichten 1906 p. 41.
 K. Schwarzschild: “Über Diffusion und Absorption in der Sonnenatmosphäre.” [On 

diffusion and absorption in the solar atmosphere] Berliner Sitzungsberichte 1914 p. 1183.
47 S. Rosseland: “Note on the absorption of radiation within a star.” Monthly Notices Vol. 84 

(1924) p. 525. 

 S. Rosseland: “The theory of the stellar absorption coefficient.” Astrophysical Journal 
Vol. 61 (1925) p. 424.

48  A. Einstein: “Quantentheorie der Strahlung.” (1917) loc.cit.
49 Note that this expression goes a little beyond Einstein’s ansatz in that the emission-

stimulating ray produces a photon with its own  and in its own direction n. This is the 
phenomenon exploited in lasers.

50 E.g. see: S. Rosseland: “Astrophysik auf atomtheoretischer Grundlage.” [Astrophysics 
based on atomic theory] Springer, Berlin (1931).

51  K. Schwarzschild: Göttinger Nachrichten (1906).

equation a suggestive form: In equilibrium the right hand side must vanish 

c
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to  exp( )
h

kT

ν  Assuming that the coefficients a, b, and c obey the same 

relations in non-equilibrium, or near-equilibrium, Rosseland could cast the 

source term into the plausible form 

(1 exp[ ]) ( )
h

kTm equ
S cc f f

ν

k

.

Thus very plausibly the source is proportional to the difference between 
the photon density function and its equilibrium value with  – the - and T-
dependent coefficient of absorption – as factor of proportionality. 
According to Tables 7.1 and 7.2 we may therefore write the momentum 
balance of radiation in the form 

d d

d

j
j k

j

k

h
n f p h n n f p hc

n f p
t x c

ν
ν νρk ,

hand side represents the momentum density or 
2

1

c

j

41

3

2 2

1 1
or

rad

j j

j j

aTp
J J

x c x c
k k .

It was Arthur Stanley Eddington – Sir Arthur after 1930 – who used 
these equations decisively when he presented a consistent and complete 
standard model of a star.52 He considered the pressure P inside the star as 
the sum of  the gas pressure pgas = k/µT and the radiation pressure  
prad

1

3

4

relation of the form 

3/4P

which had been extensively studied already by Lane, Ritter and Emden, see 
above. It is true though that the exponent 4/3 in Eddington’s work had 
nothing to do with the ratio of specific heats of the stellar gas – it is a 
reflection of the T4 law, see Insert 7.8. The coefficient , which is equal to 

4/3

c

Pc , turned out to be determined by the mass of the star. So, Eddington 

was able to transfer much of the mathematics from the earlier researches to 

                                                     
52  A.S. Eddington: “The Internal Constitution of the Stars.” Cambridge, University Press 

(1926).

k

 energy flux. An appro- 

ximate value for the energy flux J  results when we calculate the inte- 

where the -dependence of k has been neglected. The integral on the right 

grals on the left hand side in equilibrium. Thus we obtain 

 = / aT .  Eddington was lucky, because he found a (pressure, density)-
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his own. And in a few additional steps he could derive a relation between 
the luminosity LR of a star – the total power emitted – and its mass MR, cf. 
Insert 7.8. Using Eddington’s data, one can find a rough analytical fit for 
the so-called mass-luminosity relation which reads 

5.3

¤

R

¤

R

M

M

L

L

so that the luminosity of a star grows fairly steeply with its mass. This 
relation was confirmed for all stars whose mass was known, and that fact 
provided strong support for Eddington’s model, e.g. for the ideal-gas- 
character of the stars, despite their large mean densities and their enormous 
central densities. After that structure was accepted for stars, the mass-
luminosity relation allowed astronomers to determine the mass of a star 
from its brightness provided, of course, that the distance was known. 

Mass-luminosity relation 

The momentum balance equations for matter and radiation and for radiation alone 

read

2 2
and

dpdP M radr
G J

dr r dr c

ρ ρ
k

,

where
24 r

L
J

r
 is the radiative energy flux density. Elimination of gives

1 1
and by integration ,

2 2
4 4

dp LL dPrad r R
p P

rad
dr G M dr Mc c Gr Ropacity

L
R

M
R

η
π π

η

k
k

where LR is the luminosity of the star. In Eddington’s standard model the opacity is 

considered homogeneous throughout the star and equal for all stars.

If P and (1- )P are the partial pressures of matter and radiation respectively, we 

have

41
(1 )

3

1/3
31 1 33 4 4/3

hence and ( )
µ

µ
=

p P aT
rad

k
k

T P

a µ a

k
p P Tgas

.
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Thus P is proportional to
4/3

 just like in the Lane-Emden theory for  = 
4
/3, where 

the factor of proportionality is 
4/3

Pc

c

. Therefore comparison with the results of 

2

)(
216

3
33

3
1

d

d

Rzz
u

z

R
MG

aµ

k

so that  is only a function of MR.

On the other hand, the formula for prad provides as a function of
R

R

L

M
:

1
1 k

2
4

L
R

Mc G R

η
π

.

LR is reliably measurable 53 for  all stars, whose distance is known, and MR is 
measurable for many binaries and, of course, both are known for the sun. Therefore 
k can be determined from solar data.

The mass-luminosity relation follows in an implicit form by elimination of 
between the last two equations. Eddington solved that equation by numerical 
means, plotted it graphically, and compared the curve with astronomical data for 
many stars, finding good agreement.

Insert 7.8 

His partisanship for relativity secured Eddington a place in 1919 on the 
expedition to Príncipe island in the gulf of Guinea, where the bending of 
light rays by the sun – predicted by Einstein’s theory of general relativity – 
was first observed during a solar eclipse. 

Eddington was so busy changing photographic plates that he did not 
actually see the eclipse.54

Since we are dealing with radiation in this chapter, the ratio of radiation 
pressure and gas pressure to the total pressure is of interest. Eddington’s 
calculations suggest, that that ratio depends only on the mass of the star and 
that it grows with the mass, cf. Insert 7.8. For the relatively small sun the 
radiation pressure amounts to only 5% of the total, but it runs up to 80% for 
a massive star of 60 times the solar mass. Since there are very few more 
massive stars than that, Eddington assumes that a high radiation pressure is

                                                     
53 Eddington remarks that…it is said that the apparatus on Mount Wilson [in California] is

able to register the heat radiation of a candle on the bank of the Mississippi river. That
was in 1926; I wonder what astronomers can do now.

54 According to I. Asimov: “Biographies …” loc. cit. p.603.

Insert 7.7 shows that we must set 
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dangerous for the stability of a star 55 … although one cannot, a priori, see 
a good reason why the radiation pressure acts more explosively than the 
gas pressure.56

Eddington was an infant prodigy of the best
                                                type, – the type that grows into an adult 
                                                prodigy. He was one of the first persons
                                                to appreciate Einstein’s theory of relativity, and 
                                                advertised it to British scientists. 

                                                At that time it was generally said that only 
                                                three persons in the world understand the theory of 
                                                relativity. When Eddington was asked about 
                                                that by a journalist he answered: Oh? And who
                                                 is the third? 57

Fig. 7.6. Arthur Stanley Eddington 

There is a group of fairly massive stars – between 5 and 50 solar masses– 
which exhibit a possible sign of instability by a regularly oscillating lumi-
nosity. These are the Cepheids, named after Delta Cephei for which that 
behaviour was first observed. Naturally Eddington’s attention was drawn to 
the phenomenon, and he investigated it without, however,  clearly relating it 
to the predominance of the radiation pressure. I suspect that now stellar 
physics can answer that question decisively; if so, I would not have heard 
about it.

The Cepheids play an important role in astronomy, because the 
astronomer Henrietta Swan Leavitt (1868–1921) has detected – in 1912 – a 
clear relation between the mean luminosity of those stars and the period of 

was at first known, but nevertheless the observation led to the Cepheid
yardstick for measuring the distance of galaxies. Since the brightness of 
equally luminous Cepheids depends on their distance, while the period of 
oscillation does not, of course, the relative distance of two Cepheids from 
the observer could be determined. Eddington’s mass-luminosity relation 
provides a plausible explanation for Leavitt’s observation: Indeed, more 
massive stars are more luminous and presumably more sluggish in their 
oscillations.

                                                     
55 A.S. Eddington: “The internal Constitution of the Stars.” loc.cit p. 145.
56 Ibidem, p. 21.
57 Nowadays meetings on Relativity Theory are visited by up to 2000 participants. One must 

assume that, perhaps, all of them understand what the theory is about.

their oscillation: The more luminous stars oscillate more slowly. No reason 
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Eddington’s book “The Internal Constitution of Stars” – written in 1924 
and 1925 – is crystal clear in style and argument, and when assumptions 
occur, as they invariably must, they are made plausible either by reference 
to observations, or by convincing theoretical arguments. Some things he 
could only guess at, most notably the origin of the stellar energy. But he 
guessed well, albeit without being specific: 

… after exhausting all other possibilities we find the conclusion forced upon 
 us that the energy of a star can only result from subatomic sources.58

Eddington did not identify the subatomic sources. However, his insight 
into the enormous temperatures of stellar interiors made it feasible that 
nuclear fusion occurs which – basically – forms helium from hydrogen, at 
least to begin with. Hans Albrecht Bethe (1906–2005) is usually credited 
with having worked out the details of this nuclear reaction in 1938, 
although there were forerunners, most notably Jean Baptiste Perrin (1870–
1924).

Strangely enough Eddington sticks to the obsolete ether waves when he 
speaks of radiation: 

Just as the pressure in a star must be considered partly as the pressure of 
ether waves and partly as pressure of material molecules, the heat content 
is also composed of ethereal and material components. 59

It seems then, that despite his partisanship for Einstein’s theory of 
relativity, Einstein’s light quanta and Compton’s photons did not impress 
Eddington – at least not at the time when he published the book. 

                                                     
58 Ibidem,  p. 31.
59

Another peculiarity about Eddington is that he still believed in the 

although Mendelejew’s reputation was so great that many scientists clung to 

61

element coronium – a hypothetical element of relative molecular mass of 
about 0.4 – which had been postulated by Dimitrij Iwanowitch Mendelejew 

,

by 1926 atomic physicists did not give credence to this fictitious element, 

...because of Mendelejews lucky shot with the prediction of germanium 
it seems to me that the hypothesis [about coronium] deserves our attention

 Ibidem, p. 29. 
60

the coronium. So also the eminent geophysicist Alfred Lothar Wegener 

 D.I. Mendelejew: Chemisches Centralblatt (1904) Vol. I p. 137.

(1880 – 1930) – author of the continental drift theory – who says 

,,

 A.L. Wegener: Thermodynamik der Atmosph re
,,
 [ Thermodynmics of the atmosphere]

Verlag J.A. Barth, Leipzig (1911).

61 ä

60(1934 – 1907)  in order to fill a perceived gap in the periodic table. Surely 
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Long before there was a thermodynamic theory of irreversible processes, 
there were phenomenological equations, i.e. equations governing the fluxes 
of momentum, energy and partial masses. They were read off from the 
observed phenomena of thermal conduction, internal friction and diffusion. 
Even the appropriate field equation for temperature was formulated 
correctly, – for special cases – before the first law of thermodynamics was 
pronounced and accepted. Thus it was that complex problems of heat 
conduction were being solved routinely in the 19th century before anybody 
knew what heat was. 

It took more than a century after phenomenological equations had been 
formulated – and proved their reliability for engineering applications – 
before transport processes were incorporated into a consistent thermo-
dynamic scheme. And the first theories of irreversible processes clung so 
closely to the laws of equilibrium – or near-equilibrium – that they achieved 
no more than confirmation of the 19th century formulae, and proof of their 
consistency with the doctrines of energy and entropy.

It is only most recently that non-equilibrium thermodynamics has been 
rephrased and given a formal mathematical structure with symmetric 
hyperbolic field equations. That structure is motivated by the classical laws, 
of course, but not in any obvious manner; no specific assumptions are 
carried over from equilibrium thermodynamics into the new theory of 
extended thermodynamics. It has thus been possible to modify the classical 
laws in an unprejudiced manner, and to extrapolate them into the range of 
rarefied gases and of non-Newtonian fluids. The kinetic theory of gases has 
provided a trustworthy heuristic tool for this extension of thermodynamics 
which, at this time, has only just begun.

Phenomenological Equations 

Jean Baptiste Joseph Baron de Fourier (1768–1830) 

Fourier came from poor parents and, besides, he became an orphan at the 
age of eight. So his ambitions to be a mathematician and artillery man 
seemed to be stymied and they would doubtless not have led him anywhere, 
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were it not for the French revolution and Napoléon Bonaparte. As it was, 
the revolution happened in 1789 and Fourier could enter a military school – 
the later École Polytechnique of early 19th century fame, cf. Chap. 3 – and 
after graduation he stayed on as an instructor. 

Napoléon took Fourier along on his disastrous Egyptian campaign and 
made him a baron in recognition of his great mathematical discoveries 
which were related to heat conduction and the calculation of temperature 
fields. Those discoveries were first published in the Bulletin des Sciences 
(Société Philomatique, année 1808). After that first work, Fourier continued 
a lively scientific production and eventually he summarized his life’s work 
in the book “Théorie analytique de la chaleur” in 1824. This book is not 
available to me; therefore I refer to a German edition, published in 1884.1

corrected numerous misprints.
The work is essentially a book on analysis. It is completely unaffected by 

any speculations about the nature of heat, or whether heat is the weightless 
caloric or a form of motion. Fourier says: 

One can only form hypotheses on the inner nature of heat, but the 
knowledge of the mathematical laws that govern its effects is independent 
of all hypotheses.2

It is true that Fourier’s pronouncements are couched in long and old-
fashioned sentences like this one:

If two corpuscles of a body lie infinitely close and have different 
temperatures, the warmer corpuscle transmits a certain amount of its heat 
to the other one; and this heat – given from the warmer corpuscle to the 
colder one at a given time and during a given moment – is proportional to 
the temperature difference, if that difference has a small value.3

However, Fourier also summarizes this cumbersome statement in the simple 
vectorial expression 

i

i

x

T
q ,

which is Fourier’s law for the heat flux q;  is the thermal conductivity. 
Fourier calls it the internal conductivity. He proceeds from there by 
assuming that the rate of change of temperature of a corpuscle is pro-
portional to the difference of the heat fluxes on opposite sides and thus he 
comes to formulate the differential equation of heat conduction, viz.

                                                     
1 M. Fourier: “Analytische Theorie der Wärme.” Translated by Dr. B. Weinstein. Springer, 

Berlin (1884). 
2 Ibidem: Introduction, p. 11.
3 Ibidem. p. 451/2. 

The translator claims that his work is identical to the original except that he 
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ii
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where is Fourier’s external conductivity, in modern terms it is the ratio of 

and the density of the heat capacity.  This equation is the prototype of all 

parabolic equations and Fourier presented solutions for a large variety of 

boundary and initial values in his book.

Among many other problems solved, there is the one – a particularly in-
genious one – by which the yearly periodic change of temperature on the 
surface of the earth propagates as a damped wave into the interior, so that at  
certain depths the earth is colder in summer than in winter.

As a tool for the solution of heat conduction problems Fourier developed 
what we now call harmonic analysis – or Fourier analysis – by which any 
function can be decomposed into a series of harmonic functions, and he 
expresses his amazement about the discovery by saying: 

It is remarkable that the graphs of quite arbitrary lines and areas can be 
represented by convergent series [of harmonic functions] … Thus there 
are functions which are represented by curves, … which exhibit an 
osculation on finite intervals, while in other points they differ.4

The harmonic analysis has found numerous applications in mathematics, 
physics and engineering. It transcends the narrow field of heat conduction 
and proves its usefulness everywhere. Let me quote Fourier on the subject: 

The main property [of mathematical analysis] is clarity; [the theory]  
possesses no symbol for the expression of confused ideas. It combines the 
most diverse phenomena and discovers hidden analogies.5

                                                His lifelong preoccupation with heat conduction
                                                had left Fourier with an idée fixe:

                                                He believed heat to be essential to health so he 
                                                always kept his dwelling place overheated and 
                                                swathed himself in layer upon layer of clothes. He
                                                died of a fall down the stairs.6

Fig. 8.1. Jean Baptiste Joseph Baron de Fourier 

                                                     
4 Ibidem. p. 160.
5 Ibidem. Forword, p. XIV.
6 I. Asimov: “Biographies…” loc.cit. p. 234. 
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Fourier’s book has a distinctly modern appearance.7 This is all the more 
surprising, if the book is compared with contemporary ones, like Carnot’s, 
which appeared in he same year. Maybe that shows that physics is more 
difficult than mathematics, but the fact remains that every line of Fourier’s 
book can be read and understood, while large parts of Carnot’s book must 
be read, thought over and then discarded.

One of the eager readers of Fourier’s book was the young W. Thomson 
(later Lord Kelvin). Fourier’s results troubled him and in 1862 he wrote: 

For 18 years I have been worried by the thought that essential results of 
thermodynamics have been overlooked by geologists.8

Kelvin praises … the admirable analysis which led Fourier to solutions and 
he uses its results to determine the age of the  consistentior status – the 
solid state – of the earth. That expression goes back to Leibniz. The 
prevailing  idea was that, at some time in the past, the earth was liquid. 
Obviously it had to cool off to a solid of at most 7000°F before the 
geological history could begin. And Kelvin sets out to determine when that 
was.

Fourier had given the temperature field in two half spaces initially at 
temperatures To ± T as

ze
T

TtxT t

x

z
o

d
2

),( 2
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2 .

Kelvin took T = 7000°F and in effect fitted Fourier’s solution to

a constant surface temperature To of the earth, 
the known value of Fourier’s external conductivity,
the known value of the present temperature gradient near the earth’s 
surface,

and calculated the corresponding value for t as 100 million years. Therefore 
the geological history of the earth had to be shorter than that.

That age was of the same order of magnitude as Helmholtz’s result for 
the age of the earth, cf. Insert 2.2. So great was Kelvin’s – and, perhaps, 
Helmholtz’s – prestige that biologists started to revise their time tables for 
evolution. Geologists were at a loss, however. Fortunately for them it turned 
out in the end that both Kelvin and Helmholtz had made wrong assump-
tions. Indeed, the earth possesses within itself a source of heat by 
radioactive decay so that, whatever it loses by conduction is replaced by 

                                                     
7 Well, that statement must be qualified. Let us say that the book has the appearance of a 

textbook on analysis written in the mid 20th century. Really modern books on the subject 
make even interested readers give up in frustration and bewilderment on the first half-page.

8 W. Thomson: “On the secular cooling of the earth.” Transactions of the Royal Society of 
Edinburgh (1862). 
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radioactivity. Thus the earth can maintain its present temperature for as 
long as needed to guarantee a geological – and biological – history of some 
billions of years. Yet Kelvin, who lived until 1907, would never accept 
radioactivity, he stuck to his old prediction till the end. Asimov says:

In the 1880’s Thomson settled down to immobility, … and passed his last 
days bewildered by the new developments.9

Adolf Fick (1829–1901) 

Fick was a competent physiologist who did much to increase our 
knowledge about the mechanical and physical processes in the human body. 
Later in life he became an influential professor in Zürich but at the time 
when he published his paper on diffusion10 he was a prosector, i.e. the 
person who cut open dead bodies up to the point where the anatomy 
professor took over for his demonstrations to a class of medical students. 

Fig. 8.2.  Cut from the title page of Fick’s paper 

Fick was interested in diffusion of solutes in solvents and he adopted a 
molecular interpretation that sounds very peculiar indeed to modern readers, 
with regard to physics, grammar and style:11

When one assumes that two types of atoms are distributed in empty space, 
of which some (the ponderable ones) obey Newton’s law of attraction, 
while the others – the ether atoms – repel each other also in the combined 
ratio of masses, but proportional to a function f(r) of the distance, which 
falls off more rapidly than the reciprocal value of the second power; when 
one assumes further that the ponderable atoms and ether atoms attract each 
other with a force, which again is proportional to the product of masses 
but also to another function (r) of the distance which decreases even 
more rapidly than the previous one,  when one – this is what I say – 
assumes all this, then one sees clearly, that each ponderable atom must be 
surrounded by a dense ether atmosphere, which if the ponderable atom 
may be thought of as spherical, will consist of concentric spherical shells, 
which all have the density of the ether, such that the ether density at some 

                                                     
9 I. Asimov: “Biographies ...” loc. cit. p. 380.

10 A. Fick: “Ueber Diffusion.” [On diffusion] Annalen der Physik 94 (1855) pp. 59–86.
11 Since all this was published, we must assume that it represented acceptable scientific 

reasoning at the time. And indeed, Navier and Poisson argued similarly when they 
derived their versions of the Navier-Stokes equations, see below. 
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point at the distance r from the centre of an isolated ponderable atom may 
be expressed by f1(r), which must certainly for a large argument assume a 
value which equals the density of the general sea of ether.

Fick continues like that speculating about the form of the functions f(r), (r)
and f1(r), and effectively weaving a Gordian knot of words and sentences 
until – on page 7(!) of his paper – he has the good sense of cutting the 
argument short with the words: 

Indeed, one will admit that nothing be more probable than this: The 
diffusion of a solute in a solvent … follows the same rule which Fourier 
has pronounced for the distribution of heat in a conductor…12

This is a relief, because now he comes to what has become known as 
i

n is the number density of solute particles and i is their velocity, if one 
assumes that the solvent is at rest. D is the diffusion coefficient.

And again, in analogy to heat conduction, Fick assumes that the rate of 
change of n in a corpuscle is proportional to the balance of influx and efflux 
and thus obtains 

2

2
n

D
t

n
.

This is known as the diffusion equation; it is formally identical to the 
equation of heat conduction, so that Fourier’s solutions can be carried over 
to boundary and initial value problems of diffusion.

In particular, for one-dimensional diffusion of a solute in an infinite 
solvent, if n(x,t) is initially  a constant no  in  a  small  interval X– /2 < x < X+ /2

 and zero everywhere else, the solution reads13
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It follows that a maximum of n(x,t) passes through a given point x at the 
time

                                                     
12 I have taken the liberty to prosect, as it were, Fick’s hemming and hawing from this  

sentence. He remarks that Georg Simon Ohm (1787–1854) has seen the same analogy for 

electric conduction. 
13 The solution refers to the limiting case 0 and no , but so that no  is equal to the 

total number of solvent particles. 
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Fick’s law for the diffusion flux J  : 

iJ  n i 
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so that, in a manner of speaking, diffusion proceeds in time as t . This is 
the hallmark of all random walk processes and we shall encounter it again 
in connection with Brownian motion, cf. Chap. 9. The maximum has the 
universal, i.e. D-independent value 
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George Gabriel Stokes (1819–1903). Baronet Since 1889

At the age of thirty Stokes became Lucasian professor of mathematics at 
Cambridge; in 1854, secretary of the Royal Society; and in 1885, president 
of that institution. No one had held all three offices since Isaac Newton.14

Stokes’s mathematical and physical papers fill five volumes with a total of 
close to 2000 pages.15 His main topic was fluid mechanics with an emphasis 
on viscous friction in liquids and gases and his name will always be 

tensor tij + p ij in a fluid to velocity gradients. In modern form they read16

.

To be sure, Stokes missed out on the second term with the bulk viscosity 

, but the other term is derived. is now called the shear viscosity but 

Stokes does not seem to have named it. He derived the formula from the 

principle:

That the difference between the pressure on a plane in a given direction 
passing through any point P of a fluid in motion and the pressure which 
would exist in all directions about P if the fluid in its neighbourhood were 
in a state of relative equilibrium depends only on the relative motion of the 
fluid immediately about P; and that the relative motion due to any motion 

                                                     
14

15 G.G. Stokes: “Mathematical and Physical Papers.” Cambridge at the Universities Press 
(1880 – 1905).

16 Angular brackets denote symmetric, trace-free tensors.

I. Asimov: “Biographies...” loc. cit. p. 354. 
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connected with the Navier-Stokes equations which relate the viscous stress 
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of rotation may be eliminated without  affecting the differences of the 
pressure above-mentioned.17

Nowadays we would say concisely that the viscous stress is a linear iso-
tropic function of the velocity gradient. But no matter, Stokes in his own 
way reached a result. After 13 pages of cumbersome, yet reproducible 
derivation Stokes came up with

Stokes:
2 2 2

2 2 2
3

p u u u u w

x x x y zx y z

ηη .

This is the stress contribution to the x-component of the momentum 
balance.

Nobody at that time used vector and tensor notation, and (u, ,w) were the 
canonical letters for the velocity components in x, y, z direction.

As it was, Stokes had been anticipated by two scientists across the 
English Channel: Louis Navier18 (1785–1836) and Siméon Denis Poisson19

(1781–1840). Both had employed somewhat irrelevant molecular models – 
much in the manner of Fick whom I have cited at length – but they did 
come up with reasonable expressions, viz. 

Navier:
2 2 2

2 2 2

p u u u
A

x x y z

Poisson:
2 2 2

2 2 2

p u u u u w
A B

x x x y zx y z
.

Thus we conclude that the credit should have gone to Poisson who, after 
all, had two coefficients which implies that he allowed for shear and bulk 
viscosity. However, Poisson is nowadays rarely mentioned in this context.

It is true though that Stokes did a lot more than set up the equations; he 
solved them in fairly complex situations. He was much interested in the 
motions of the pendulum and how this was affected by friction. In 1851 he 
wrote a long article on the question.20 Section II of that article is entitled 

Solutions of the equations in the case of a sphere oscillating in a mass of 
fluid either unlimited, or confined by a spherical envelope concentric with 
the sphere in its position of equilibrium. 

                                                     
17 G.G. Stokes: “On the theories of the internal friction of fluids in motion and of the 

equilibrium and motion of elastic solids.” Transactions of the Cambridge Philosophical 
Society. III (1845) p. 287. 

18 L. Navier: Mémoires de l´Académie des Sciences VI (1822) p. 389.
19 S.D. Poisson: Journal de l´´Ecole Polytechnique XIII cahier 20 p. 139.
20 G.G Stokes: “On the effect of the internal friction of fluids on the motion of pendulums.” 

Transactions of the Cambridge Philosophical Society IX (1851) p. 8.
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The result could be specialized to the case of uniform motion of a sphere 
of radius r with the velocity . The force to maintain the motion is given by

a formula that is universally called the Stokes law of friction. It is now 
derived as an exercise in all good books on fluid mechanics. 

The solution of boundary value problems for the Navier-Stokes equation 
requires more than an able mathematician: A decision about the boundary 
values of the velocity components near the walls of a pipe or the surface of 
a sphere must be made. Stokes says: 

The most interesting questions connected with this subject require for their 
solution a knowledge of the conditions which must be satisfied at the 
surface of a solid in contact with the fluid21

Fig. 8.3. George Gabriel Stokes. His degrees and honours 

Hesitantly he proposes the no-slip-condition which is now routinely 
applied for laminar flows:

The condition which first occurred to me  to assume … was, that the film 
of fluid immediately in contact with the solid did not move relatively to 
the surface of the solid.22

Stokes tends to consider this assumption as valid when the mean velocity 
of the flow is small. He is aware of the difficulties that turbulence might 
raise. But he is blissfully unaware, of course, of the problems that may arise 
in rarefied gases; these are problems that haunt the present-day researchers 
concerned with re-entering space vehicles.

                                                     
21 G.G. Stokes: “On the theories of the internal friction….”  loc.cit. p. 312.
22 Ibidem. p. 309. 

F = 6 r  ,
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Carl Eckart (1902–1973) 

However convoluted the 19th century arguments of Fourier, Fick and 
Navier, and Stokes may have been, their works provided valid equations for 
the fluxes of mass, momentum and energy in terms of the basic fields of 
thermodynamics, viz. mass density, velocity and temperature. Yet, they did 
not provide a coherent picture of thermodynamics of processes, or non-
equilibrium thermodynamics. The first such picture was created by Carl 
Eckart in 1940 in one stroke, or rather in two strokes, the first one con-
cerning viscous, heat-conducting single fluids,23 and the second one con-
cerning mixtures.24 Both papers form the basis of what came to be called 
TIP – short for thermodynamics of irreversible processes. Let us review 
these papers in the shortest possible form: 

One may say that the objective of non-equilibrium thermodynamics of 
viscous, heat-conducting single fluids is the determination of the five fields 

mass density (x,t),  velocity i(x,t),  temperature T(x,t)

in all points of the fluid and at all times. 
For the purpose we need field equations and these are based upon the 

equations of balance of mechanics and thermodynamics, viz. the conser-
vation laws of mass and momentum, and the equation of balance of internal 
energy, see Chap. 3 

.
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These equations are also known as the continuity equation, Newton’s 
equation of motion and the first law of thermodynamics respectively.

While these are five equations – the proper number for five fields – they 

are not field equations for , i

and, instead, the equations contain new quantities 

                                                     
23 C. Eckart: “The thermodynamics of irreversible processes I: The simple fluid.” Physical 

Review 58, (1940)
24 C. Eckart: “The thermodynamics of irreversible processes II: Fluid mixtures.” Physical 

Review 58, (1940). 

, and T. The temperature does not even occur 
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stress tij, heat flux qi, specific internal energy u.

In order to close the system of equations, one must find relations between 

tij, qi, and 

u

 and the fields ,
i
, T.

In TIP such relations are motivated in a heuristic manner from an entropy 
inequality that is based upon the Gibbs equation of equilibrium thermo-
dynamics, cf. Chap. 3 

)( 2

1 p

T .

s is the specific entropy. u and p are considered to be functions of  and T as
prescribed by the caloric and thermal equations of state, just as if the fluid 
were in equilibrium. This assumption is known as the principle of local 
equilibrium.

Elimination of  and  between the Gibbs equation and the equations 
of balance of mass and energy and some rearrangement lead to the  
equation25

1

32

1 1
( )

ii i n

kkij

i i j

q q T
s t t p

x T x T x T xT
,

which may be interpreted as an equation of balance of entropy. That 
interpretation implies that 

is the entropy flux and

is the dissipative source1 1 1

32

qi
i

T

q iTi n
t t p

kkijx T x T xT ni j

Inspection shows that the entropy source is a sum of products of 
thermodynamic fluxes and thermodynamic forces, see Table 8.1 

The dissipative entropy source must be non-negative. Thus results an 

entropy inequality – with i = qi /T  as entropy flux – which is often called 

the Clausius-Duhem inequality, because it represents Duhem’s 

extrapolation of Clausius’s second law to non-homogeneous temperature 

fields. Assuming only linear relations between forces and fluxes, TIP 

ensures the validity of the Clausius-Duhem inequality by constitutive 

                                                     
25 As before, angular brackets characterize symmetric traceless tensors. 

u

density of  entropy.

n

relations – phenomenological equations in the jargon of TIP – of the type

u

s



244      8   Thermodynamics of Irreversible Processes 

Table 8.1.  Fluxes and forces for a single fluid 

         Thermodynamic Fluxes           Thermodynamic Forces 

heat flux qi
temperature gradient 

deviatoric stress t deviatoric velocity gradient 

dynamic pressure  = – 1/3 tii – p divergence of velocity .

Stokes-Navier

0

02

Fourier0

nx

n

j
x

i

ij
t

i
x

T

i
q

Together with the thermal and caloric equations of state p = p( ,T) and  

u = u( ,T) the phenomenological equations form the set of material 

properties characterizing a fluid. is the thermal conductivity, and  and 

are the shear- and bulk viscosities respectively; all three may be functions 

of and T that must be found experimentally. 

In this manner TIP incorporates Fourier’s law and the law of Navier-

Stokes into a consistent thermodynamic scheme. Neither Fourier, nor 

Navier, or Stokes had made use of thermodynamic arguments, or of the 

Gibbs equation, nor did they need them. They proposed their laws on the 

basis of plausible assumptions about the phenomena of heat conduction and 

internal friction. 

The equations of state and the phenomenological equations combined 

with the equations of balance of mass, momentum and energy provide a set 

of field equations from which – given initial and boundary values – the 

fields (x,t), i(x,t), and T(x,t) may be calculated. And the solutions are 

satisfactory for nearly all normal cases. Indeed, it is no exaggeration to say 

that 99% of all flow problems in single fluids are solved by use of these 

field equations; and that begins with the calculation of pipe flow of a liquid  

ij
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and ends with the calculation of lift and drag on an airliner.26 To be sure, 

both problems need numerical methods in general.

It is true that all this could have been done before Eckart – except for the 

numerical solutions, of course. After all Jaumann and Lohr did have the full 

set of equations.27 Eckart’s achievement is that he formulated a consistent 

and coherent theory with the phenomenological equations as part of it. 

And Eckart did not stop with single fluids. He applied his scheme to 
mixtures of fluids as well. In that case he started with the Gibbs equation 
for a mixture, see Chap. 5 and identified thermodynamic fluxes and forces 
as shown in Table 8.2. 

Table. 8.2.  Fluxes and forces in a mixture of fluids 

Thermodynamic Fluxes Thermodynamic Forces 

heat flux qi
temperature gradient 

diffusion fluxes Ji

Chemical potential gradient
)(1

deviatoric stress t deviatoric velocity gradient 

dynamic pressure  = – 1/3 tii – p divergence of velocity .

reaction rate densities a chemical affinities 
1

Obviously diffusion and chemical reactions are taken into account,  
and there are different chemical reactions a = 1,2,…n. Vanishing of the 
chemical affinities implies the law of mass action, see Chap. 5. 
Phenomenological relations in the case of mixtures are more rich than for a 
single fluid; they read 

                                                     
26 The exceptional 1%, that cannot be treated with the field equations described here, relate 

exceptional cases like that.
27 G. Jaumann: “Geschlossenes System ...”  loc. Cit.

ij

to rarefied gases, non-Newtonian fluids, ultra-low and ultra-high temperatures and  

    E. Lohr: “Entropie und geschlossenes Gleichungssystem,’’ loc. cit. 
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The entropy inequality is satisfied, if the matrices 

and are positive semi - definite,
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and the viscosity must be non-negative. 
We note that the chemical potentials – functions of p, T, and the 

concentrations – play a central role in these laws, as they should. Clearly 
both Fourier’s and Fick’s laws are now made considerable more general 
than either Fourier or Fick had them. They allow for cross effects such that 
a temperature gradient may create diffusion and a concentration gradient 
may create heat conduction. Moreover, the concentration gradient of one 

effects may occur between the reaction rates and the dynamic pressure, 
although I believe that they have never been observed.

Eckart never received much credit for his work, because shortly after his 
publications Josef Meixner (1908–1994) published a very similar theory,28

and so did Ilya Prigogine (1917–    ).29 In contrast to Eckart the latter 
authors stayed in the field and monopolized the subject, as it were. On 
somewhat uncertain grounds they added Onsager reciprocity relations for 
transport coefficients, see below. As a result it is not uncommon to hear 

                                                     
28 J. Meixner: “Zur Thermodynamik der irreversiblen Prozesse in Gasen mit chemisch 

reagierenden, dissoziierenden and anregbaren Komponenten.” [On thermodynamics of 
irreversible processes in gases with reacting, dissociating and excitable components] 
Annalen der Physik (5) 43 (1943) pp. 244-270. 
 J. Meixner: Zeitschrift der physikalischen Chemie B 53 (1943) p. 235.

29 I. Prigogine: “Étude thermodynamique des phénomènes irréversibles.” Desoer, Liège   
(1947).

constituent may cause the diffusion flux of another one. Analogous cross 
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Eckart’s theory described as Onsager’s theory. TIP became also known as 
the thermodynamics of the Dutch school, because many Dutch thermodyna-
micists contributed to it. The major monograph on the subject was written 
by de Groot and Mazur.30  The book gives a fairly clear account of TIP; it 
puts some emphasis upon the so-called Curie principle by which thermo-
dynamic forces and fluxes cannot be related linearly unless they have the 
same tensorial rank.

Clifford Ambrose Truesdell (1919–2000) recognized the Curie principle 
for what it is: a corollary of the representation theorems of isotropic 
functions. Truesdell was openly disdainful of TIP and in the 1950’s and 
1960’s he waged war on Onsagerism31,32 which, by reaction, made most 

But Truesdell exempted Eckart to some degree from his criticism, 
because Eckart had been straightforward in his assumptions, not hiding 
them behind perceived principles. In fact Truesdell gives Eckart some faint 
praise when he says: 

… C. Eckart, … who attempted to split inequalities into parts without 
appeal to any non-existent theorem, … – and who did not obfuscate the 
scene by any circular or inapplicable rule of symmetry.33

One must realize that Truesdell had his own axe to grind, because he felt 
called upon to advertise rational thermodynamics, see below, and in that 
endeavour he proved himself to be a master of subjectivity.

Before we leave Eckart, we must mention his third important paper34

which appeared along with the two papers already cited. In that paper 
Eckart laid the foundation for relativistic irreversible thermodynamics of 
fluids, and he discovered the alternative form of Fourier’s law which is 
appropriate for a relativistic gas. The thermodynamic force that drives heat 
conduction is no longer the temperature gradient alone, rather it is equal to

,
2

where is the acceleration, possibly the gravitational acceleration. Con-
sequently, in equilibrium a gas in a gravitational field exhibits a temperature 
gradient. The reason is clear: higher temperature means higher energy, i.e. 
higher mass, i.e. higher weight and therefore the temperature field must be 

                                                     
30 S.R. de Groot, P. Mazur : “Non-Equilibrium Thermodynamics”  North Holland, 

Amsterdam (1963).
31  C. Truesdell: “Six Lectures on Modern Natural Philosophy” Springer 1966.
32 C. Truesdell: “Rational thermodynamics.” McGraw-Hill series in modern applied   

mathematics (1969) Chap. 7.
33  Ibidem, p. 141.
34 C. Eckart: “The thermodynamics of irreversible processes III: Relativistic theory of the 

simple fluid.” Physical Review 58 (1940). 

thermodynamicists rally behind Onsager.
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barometrically stratified, just like the mass density. Of course the 1/c2  in the 
denominator indicates that the effect is relativistically small. 

Onsager Relations 

Onsager relations in their proper form refer to some generic set of variables 
u  ( = 1,2…n) which all vanish in equilibrium and which satisfy linear rate 
laws of the type 

d

d
.

For obvious reasons we may call M a relaxation matrix. 
The entropy S depends on the u ’s in such a manner that it has a 

maximum in equilibrium. Thus in second order approximation – which is 
sufficient for a linear theory – the entropy reads 

,
2

1

2

1
2

where g is symmetric and positive definite. In this case, where fluxes are 
absent, the entropy source is simply given by the rate of change of entropy 

u

S

t

u
S

d

d
,

forces as shown in Table 8.3. 

Table 8.3.  Generic fluxes and forces

Thermodynamic Fluxes Thermodynamic Forces 

t

u
J

d

d

Linear relations between fluxes and forces, namely

J  = L X with L  – positive semi-definite 

which may be considered as a sum of products of thermodynamic fluxes and 
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guarantee that the entropy source is non-negative. And Onsager relations 35

require that

L  = M g-1      be symmetric.

~
and

~
.

A convincing proof in this more complicated case is not available.40

                                                     
35 L. Onsager: “Reciprocal relations in irreversible processes.” Physical Review (2) 37 

(1931) pp. 405-426 and 38 (1932) pp. 2265–2279.
36 S.R. de Groot, P. Mazur : loc. cit. p. 102.

It is often said that microscopic reversibility is the key assumption in the proof of Onsager 
relations. And it is true that the proof makes use of the fact that atomistic trajectories are 
reversed when the velocities change sign. But this is so evident from the laws of  
microscopic physics that it barely needs to be mentioned. Certainly microscopic 
reversibility is infinitely more certain than the mean regression hypothesis. 

37 L. Onsager: (1932) loc.cit. 
38 H.B.G. Casimir: “On Onsager’s principle of microscopic reversibility.” Review of    

Modern Physics 17 (1945) pp. 343–350. 
39 J. Meixner, H.G. Reik: “Die Thermodynamik der irreversiblen Prozesse in kontinuie-

rlichen Medien mit inneren Umwandlungen.” [Thermodynamics of irreversible processes 
in continuous media with internal transformations] Handbuch der Physik III/2, Springer 
Heidelberg (1959).

40 Again de Groot and Mazur, loc.cit. pp. 69–74 go farthest in the attempt to prove Onsager 
relations for transport processes, i.e. when the basic equations are partial differential 
equations rather than rate laws. They try to show that the tensor of thermal conductivity is 
symmetric, – Onsager’s original problem. But they do not quite succeed: All they can 
show is, that the divergence of the anti-symmetric part vanishes. 

Onsager relations in this form – and for these forces and fluxes – can be 
proved on the basis of Onsager’s  hypothesis about the mean regression of 
fluctuations, cf. Chap. 9. A good presentation of the proof is contained in 
the popular monograph by de Groot and Mazur. The authors are remarkable 
candid when they call Onsager’s hypothesis not altogether unreasonable.36

There are two qualifications of the Onsager relations, of which one is due to 
Onsager himself.37 It concerns the presence of a magnetic flux density B and it 
refers to the well-known fact that the path of a charged particle in a magnetic field 
cannot be reversed by reversing the velocity, unless B is also reversed. The other 
qualification is due to Casimir38 who distinguished even and odd variables among 
the u ’s with respect to time reversal. I shall not go into that and merely mention 
that the Onsager relations with Casimir’s amendment are often cited under the 
acronym OCRR, for Onsager-Casimir-Reciprocity-Relations. 

Meixner39 has extrapolated the OCRR to transport phenomena in 
mixtures. To wit, he applied them to Eckart’s phenomenological equations 
for mixtures, see above, where, according to Meixner, they read 
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However, there are some entirely macroscopic arguments which suffice 
to prove the symmetry of the matrix of diffusion coefficients L  on the 
basis of momentum conservation, and of the plausible assumption of binary
drag, so that the interaction between two constituents is unaffected by the 
presence of a third constituent. This was shown by Truesdell,41 and Müller42

extrapolated that argument to show that in a mixture of Euler fluids we have 

.
~

 The instances of valid Onsager relations often cited from the 

kinetic theory of gases are all of the type envisaged by Truesdell and 
Müller, so that there is not really confirmation for general Onsager relations 
to be found in the kinetic theory.

Also Meixner43 has proved the symmetry of lab from the principle of 
detailed equilibrium of several chemical reactions, – again without refe-
rence to any hypothesis on the mean regression of fluctuations. 

Rational Thermodynamics 

If the truth were known and admitted, rational thermodynamics is not all 
that different from TIP. Both theories employ the Clausius-Duhem in-
equality and the Gibbs equation. It is true that the arguments are shuffled 
around some: The Curie principle of TIP is replaced by the principle of 
material frame indifference, and the Gibbs equation of rational thermo-
dynamics is a result, whereas in TIP it is the basic hypothesis. With the 
Clausius-Duhem inequality it is the other way round. When applied to 
linear viscous, heat-conducting fluids, both theories lead to the same results. 
This is a good thing for both, because the field equations for such fluids 
were perfectly well known before either theory was formulated, and they 
were known to be reliable. 

The difference between the theories lies in the claims of the protagonists: 
Whereas TIP was never intended to represent anything but a linear theory, 
and could not be extrapolated, there was no such a priori restriction in 
rational thermodynamics. Therefore the authors expected – and hoped for – 
more general validity. However, in that expectation they were eventually 
disappointed; they had overreached themselves, and the non-linear part of 
the theory crumbled. Let us consider this: 

One new feature of the theory is the principle of material frame 
indifference.44 This had been invented by Hanswalter Giesekus45 in the 
                                                     
41 C. Truesdell: “Mechanical Basis of diffusion.” Journal of Chemical Physics 37 (1962). 
42 I. Müller: “A  new approach to thermodynamics of simple mixtures.” Zeitschrift für    

Naturforschung 28a (1973).
43 J. Meixner: Annalen der Physik (1943) loc.cit.
44 Also known as the principle of material objectivity. 
45 H. Giesekus: “Die rheologische Zustandsgleichung.” [The rheological equation of state] 

Rheologica Acta 1 (1958) pp. 2–20.



Rational Thermodynamics 251

context of non-Newtonian fluids and was formalized and extrapolated to 
continuum mechanics in general by Walter Noll (1925–    ) in 1958.46 The 
principle refers to Euclidean transformations, i.e. time-dependent rotations 
and translations between frames such that, if xi and xi* are the coordinates of 
a volume element in the frames S and S*, we have

xi* = Oij(t) xj + bi(t) xi = Oji (t) (xj*– bj(t)) . 

The orthogonal matrix O(t) and the vector b(t) may be arbitrarily time-
dependent and, if they are, at least one of the two frames is a non-inertial 
frame; in order to fix the ideas we take S as an inertial frame. The principle 
of material frame indifference states that the constitutive functions must not 
depend on the frame in which a body, or a volume element of a body, is at 
rest. This implies

that only Euclidean vectors and tensors may occur as variables, and 
that the constitutive functions are isotropic functions. 

The validity of hypotheses and postulates in continuum mechanics and 
thermodynamics – or at least their applicability to gases – can be checked 
by the kinetic theory of gases. And when such a check was made,47 it turned 
out that the principle of material frame indifference was wrong, cf. Insert 
8.1. To be sure, it was not very wrong, because the frame dependence is due 
to the curvature imparted to the mean free paths of the atoms by the Coriolis 
force. Therefore, in order to see an effect, one would have to use a very 
rapidly rotating frame indeed. In this sense the argument even confirms
frame indifference as a practical tool and reconciles it with the idea – 
prevailing in non-relativistic physics – that the only true invariance of 
physical laws is Galilei invariance.48

But this was not the way, the protagonists of rational thermodynamics 
saw the matter. There were no approximate principles for them. Some 
were prepared to give up the kinetic theory in order to save material frame 
indifference. Noll suggested that the whole universe be turned to 
maintain the principle; in the meantime he changed the wording of the 
principle, thus excluding the influence of external forces which – in his 

                                                     
46 W. Noll: “A mathematical theory of the mechanical behaviour of continuous media.” 

Archive for Rational Mechanics and Analysis 2 (1958).
47 I. Müller: “On the frame-dependence of stress and heat flux.” Archive for Rational 

Mechanics and Analysis 45 (1972).
48 Galilei transformations form a subgroup of Euclidean ones, where O is time-independent 

and b is a linear function of time. There are no inertial forces like the Coriolis force in  
Galilean frames. 
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understanding – include the inertial forces like the Coriolis force.49 This is a 
somewhat strange idea, because  frame indifference can only be violated by 
the effect of inertial forces; there is no other way!50 Truesdell,51 referring to 
the argument of Insert 8.1, wondered caustically why the physics of a 
hollow cylinder should be different from the physics of a full cylinder52 and 
afterwards ignored the objections. The subject was thus so successfully 
obfuscated that the discussion of material frame indifference never ended 
and is still going on in the years when I write this. However, nothing is said 
now that has not been said before. 

Frame dependence of the heat flux 
We consider a gas at rest between two concentric cylinders and focus the attention 
on a small volume element of the dimension of the mean free path of the atoms. 
There is a radial temperature gradient, see Fig. 8.4. The atoms at the bottom of the 
element have a greater mean kinetic energy than those on top, because the 
temperature is bigger. Therefore the atoms moving upwards through the plane H-H 
carry more energy through that plane than the downward moving atoms. Thus there 
is a net energy flux, a heat flux, in the upward-direction, opposite to the 
temperature gradient, just as predicted by Fourier’s law. This is true, if the gas is at 
rest in an inertial frame. But then we take the cylinders and the gas and put them on 
a carousel with the axis of rotation coinciding with the axes of the cylinders. Then 
the  paths of the atoms are curved by the Coriolis force so that there is a heat flux 
through the plane V-V as well as through the plane H-H, see figure. Therefore in 
the non-inertial frame of the carousel the heat flux has a component perpendicular 
to the temperature gradient and the size of that component is proportional to the 
angular velocity of the frame. The relation between the heat flux and the 
temperature gradient is therefore frame-dependent.

                                                     
49 W. Noll: “A new mathematical theory of simple materials.” Archive for Rational 

Mechanics and Analysis 48 (1972).
50 Logically the new principle of material frame indifference is at a par with Henry Ford’s 

well-publicized advertisement of the customer service of his company: The Model T may 
be had in all colours as long as they are black.

51 C. Truesdell: “Correction of two errors in the kinetic theory that have been used to cast 
unfounded doubt upon the principle of material frame indifference.” Meccanica 11 (1976).
One of the “errors” in Truesdell’s opinion was supposed to occur in Müller’s argument, cf. 
Insert 8.1. The other one was suspected by Truesdell to be contained in a paper by D.G.B. 
Edelen, T.A. McLennan: “Material Indifference: A Principle or a Convenience.” 
International Journal of Engineering Science 11 (1973).

52 The internal cylinder in the argument is needed  for setting up a temperature gradient. In a 
full cylinder a radially symmetric,   non-homogeneous temperature field cannot exist.
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Fig. 8.4.  On the frame dependence of the heat flux 

gradient. The kinetic theory of gases provides concrete equations for the suggestive 

Insert 8.1 

found that the theory could not be applied to non-Newtonian fluids. The 
early authors in the field were Bernard David Coleman (1930–    ) and 
Walter Noll, whose background was continuum mechanics and, in 

53

Therefore from the outset rational thermodynamics has put a strong 
emphasis on constitutive functionals,  by which the stress (say) depends on 
the history of the velocity gradient. This is fine as far as it goes. But for 
practical flow problems it has seemed appropriate to approximate the 
functional of the history by a function of a few time derivatives of the 
velocity gradient, say n of them. In this way one arrives at the theory of nth
grade fluids whose stationary version was widely used to calculate solutions 
for viscometric flows.54 However, then it turned out that rational 
thermodynamics predicts a maximum of free energy for a 2nd grade fluid in 

                                                     
53 B.D. Coleman: “Thermodynamics of materials with memory.” Archive for Rational   

Mechanics and Analysis 17 (1964). 
B.D. Coleman, W. Noll: “An approximation theorem for functionals, with applications in  
continuum mechanics” Archive for Rational Mechanics and Analysis 6 (1960).

54 E.g. see C. Truesdell: “The elements of continuum mechanics” Springer, New York 
(1966).
Also: B.D. Coleman, H. Markovitz, W. Noll: “Viscometric flows of non-Newtonian  
fluids.” Springer Tract in Natural Philosophy 5 (1966).

particular, continuum mechanics of visco-elastic solids and fluids.

argument presented in this insert. 

More damage was suffered by rational thermodynamics when it was 

A similar argument can be made for the relation between the stress and the velocity 
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equilibrium55 instead of the minimum necessary for stability. Later it was 
shown that no nth grade fluid with n > 1 has stable solutions.56 After that, 
there was serious doubt that rational thermodynamics could be used for 
non-linear problems, and now it is accepted by most people that it cannot be 
so used.

In some ways this is a pity, because rational thermodynamics did employ 
some elegant and rational (sic!) arguments for the exploitation of the 
entropy inequality. These arguments are not lost, however, because they can 
be transferred to extended thermodynamics which we proceed to consider 
now, – after this: 

Truesdell’s outspoken partisanship of rational thermodynamics and his 
flamboyant style fuelled some lively controversies between adherents of 
TIP and the protagonists of rational thermodynamics, chiefly Truesdell 
himself. His attacks on Onsagerism were advanced with much satirical 
verve, that makes them fun to read for those who were not targeted. 
However, the defenders of TIP tried their best to pay Truesdell back in his 
own coin. Woods pointed out some awkward features of rational 
thermodynamics in a paper entitled “The bogus axioms of continuum 
mechanics.”57 And Ronald Samuel Rivlin (1915–2005) delighted a 

continuum mechanics.” 

’’

                                                     
55 J.E. Dunn, R.L. Fosdick: “Thermodynamics, stability, and boundedness of fluids of   

complexity 2 and fluids of second grade.” Archive for Rational Mechanics and Analysis 
56 (1974).

56 D.D. Joseph: “Instability of the rest state of fluids of arbitrary grade greater than one.” 
Archive for Rational Mechanics and Analysis. 75 (1981).

57  L.C. Woods: Bulletin of Mathematics and its Applications 1 (1981).

Fig. 8.5.  Clifford Ambrose Truesdell III 

worldwide audience with a frequently repeated humorous lecture under the 

                                            He showed nothing but disdain for experiments, 

title “On red herrings and other sundry unidentified fish in modern 

                                            be they conducted in the laboratory or on the 
                                            computer.
                                             So, when Truesdell visited me in Berlin, on the ,,

                                            
’’

                                             first day he came and said:  Ingo, can I ask you 

,,                                             and one-time mentor, said: Of course, Clifford,

Truesdell was a consummate theoretician.

                                             what can I do for you ?

for a favour?  And I, eager to please my visitor

Truesdell: 

,,

Please, don
,
t show me your lab.’’
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Extended Thermodynamics 

Formal Structure 

The objective of extended thermodynamics is the determination of n fields, 
synthetically denoted by u (x,t) ( = 1,2,…n). Invariably the first five of 
these fields are the densities of mass, momentum and energy. But in 
extended thermodynamics the number of fields is extended (sic) and it may 
contain the stress, the heat flux and more, see below.

We need n field equations and these are based upon n equations of 
balance

),...2,1( .

The fields u  may therefore be called densities, the F
a
 are called the 

corresponding fluxes and the are called productions. The first five 

productions are zero in accord with the conservation of mass, momentum, 

and energy. And all productions vanish in equilibrium.

In order to obtain field equations for the densities u , the balance 

a and the productions 

constitutive relations have the forms 

)(ˆand)(ˆ

so that the fluxes F
a

and the productions at a point and a time depend 

only on the densities u  at that point and time. We may say that the 

constitutive equations are local in space-time.59

If the constitutive functions ˆ  and ˆ were known explicitly, we 

could eliminate F
a
 and  from the equations of balance and obtain explicit 

field equations for the u ’s. They form a quasi-linear system of partial 

differential equations of first order. Every solution of this system is called a 

                                                     
59

equations. In particular, there is no temperature gradient, and yet heat conduction is 
accounted for, because the heat flux is counted among the

 

variables

.

 

thermodynamic process. 

equations must be supplemented by constitutive equations. Such consti- 
to the densi- tutive equations relate the fluxes F

ties in a materially dependent manner. In extended thermodynamics the 

 Thus no gradients or time derivatives do occur among the

 fields

 in  the constitutive 
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Symmetric Hyperbolic Systems 

In reality, of course, the constitutive functions are not known and it is the 
task of the constitutive theory to determine those functions or, at least, to 
reduce their generality. The tools of the constitutive theory are certain 
universal physical principles which represent expectations based on long 
experience. The main principles are

entropy inequality, requirement of concavity, principle of relativity. 

The first two of these represent the entropy principle and, in particular, 
the second one guarantees thermodynamic stability and hyperbolicity of the 
field equations.

The entropy inequality is an additional balance law. We write 

.processesamic thermodynallfor0
x

h

t

h

a

a

h is the entropy density, and ha is the entropy flux. is the entropy 
production. All three are constitutive quantities so that in extended 
thermodynamics we have

).(and)(ˆ),(ˆ uuhhuhh aa

The requirement of concavity demands that h be a concave function  
of u :

.definitenegative

2

The principle of relativity states that the field equations and the entropy 
inequality have the same form in all Galilei frames.60

The key to the exploitation of the entropy inequality lies in the 
observation that the inequality must hold for thermodynamic processes, i.e. 
solutions of the field equations. In a manner of speaking the field equations 
provide constraints for the fields that must satisfy the entropy inequality. A 

                                                     
60 In relativistic thermodynamics we require invariance of the equations under Lorentz 

transfomations, but this is not a subject of this book, although relativistic thermodynamics 
is an interesting application of extended thermodynamics. See: I-Shih Liu, I. Müller, T. 
Ruggeri: “Relativistic thermodynamics of gases.” Annals of Physics 100 (1986). Also: I. 
Müller, T. Ruggeri: “Rational Extended Thermodynamics.” Springer, New York (1998) 
2nd edition. 

∑
 

∑

∑ ∑
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lemma by Liu61 proves that it is possible to use Lagrange multipliers  – 
functions of u  – to eliminate such constraints. Indeed, the new inequality

0 must  hold  for  all  fields (

aa

i

a a

u Fh h
u x

t x t x

α α
α α αΛ

This implies 

0and,dd, F ,

so that in equilibrium all but the first five Lagrange multipliers vanish. The 
residual inequality 0  represents the entropy source or dissipation. 

In order to appreciate the mathematical structure of the system of field 

equations we change variables from the densities u  to the Lagrange multi-

pliers  and obtain for the scalar and vector potentials h  = – h +  u  and 

h
a

 = – h
a
+  F

a

readequationsfield that theso,

).,...2,1(

22

All four matrices in this system are symmetric and the first one is 
negative definite.62 Therefore the system of field equations – written in 
terms of the Lagrange multipliers – is a symmetric hyperbolic system.

Hyperbolicity guarantees finite speed of propagation and symmetric

namely well-posedness of Cauchy problems, i.e. existence, uniqueness and 
continuous dependence on the data. The desire for finite speeds of 
propagation was the primary original incentive for the formulation of ex-
tended thermodynamics, see below. There are n speeds of propagation and 
they may be calculated from the characteristic equation of the system of 
field equations, viz.

                                                     
61 I-Shih Liu: “Method of Lagrange multipliers for the exploitation  of the entropy principle.” 

Archive for Rational Mechanics and Analysis 46 (1972). 
62 This follows from the concavity of the entropy density in terms of the densities 

u  , since h = – h +  u   defines a Legendre transformation associated with the map  

 u ..

,t).

hyperbolic systems have convenient and desirable mathematical properties, 

d dh hu

h h

h h

u
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2 2

det 0 .

a

a

h h
V n

α β α β

na and V denote direction and speed of propagation. Obviously, before any 

values for wave speeds can actually be calculated, the synthetic character of 

the equations of this section must be replaced by more concrete relations so 

that h ( ) and h
a
( ) can be identified. The most immediate concretization 

of the present formal framework is provided by extended thermodynamics 

of moments, see below.

Growth and Decay of Waves 

Non-linear hyperbolic equations tend to evolve discontinuities in the fields, 
even if the initial data are smooth. On the other hand, steep gradients 
involve strong dissipation with a tendency to smooth out the solution. Thus 
there exists a competition between non-linearity and dissipation which may 
lead to smooth solutions for all times. This is important for a system of field 
equations to be realistic, since most phenomena that occur in the real world, 
are smooth. After all: Natura non fecit saltus.63

An instructive example for the competition of non-linearity and 
dissipation is the growth and decay of acceleration waves, i.e. moving 
singular surfaces along which u (x,t) ( = 1,2...n) are continuous, but their 
gradients are not. As one moves with the wave, its amplitude A – 
representing the jumps of the gradients – obeys a Bernoulli equation, 
provided that the wave moves into an area of a homogeneous and time-
independent equilibrium 64

0
2 .

                                                     
63 According to Aristoteles: “Historia animalium.” Aristoteles said it in Greek, of course, and 

in quite a different context. The familiar quotation is often used in connection with the 
steep, but smooth structure of shock waves.

64 An excellent review of waves – in particular acceleration waves – is given by P. Chen: 
“Growth and decay of waves in solids. Mechanics of Solids III” Handbuch der Physik 
6A/3 Springer, Heidelberg (1973).

   I believe that the first person to calculate the rate of change of the amplitude A(t) of an 
acceleration wave was W.A. Green: “The growth of plane discontinuities propagating into 
a homogeneous deformed material.” Archive for Rational Mechanics and Analysis 16 
(1964).
The present compact form of the Bernoulli equation – with right and left eigenvectors – is 
due to G. Boillat: “La propagation des ondes.” Gauthier-Villars, Paris (1965).
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V is a characteristic speed and l  and d  are the left and right eigenvalues 

of the matrix 
1

F

u

α

β
 in the one-dimensional field equations 

),...2,1(

1

1

n
x

F

t

u
.

The solution of the Bernoulli equation reads

)1()0(1

)0(
)(

so that A(t) remains finite unless the initial amplitude A(0) is large.
In general – for arbitrary solutions instead of merely acceleration waves – 

the condition for smooth solutions is not decisively known. There exists a 
sufficient condition for smoothness65 which, however, is not necessary. 

Characteristic Speeds in Monatomic Gases 

We recall the generic equations of transfer in the kinetic theory of gases, cf. 
Chap. 4, and apply this to a polynomial in velocity components by setting 

...
21

. In this manner we obtain equations of balance for 

moments cd......
2121

fcccµu
ll

iiiiii
 of the distribution function f which 

read

)...2,1,0(...
......

21

2121 .

Since each index may assume the values 1,2,3, there are 

1

6

equations. These equations fit into the formal framework of extended 
thermodynamics, see above, but they are simpler. Indeed, on the left hand 
side there is only one flux, namely ...

21
 –  the  last one – which is  not 

explicitly related to the fields ...
21

(l = 1,..N).

                                                     
65 S. Kawashima: “Large-time behaviour of solutions to hyperbolic-parabolic systems of 

conservation laws and applications.”  Proceedings of the Royal Society of Edinburgh A 
106 (1987). 

n = / (N + 1)(N + 2)(N + 3) 
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Therefore the results of the previous sections may be carried over to the 
present case, in particular the exploitation of the entropy inequality. That 
inequality reads according to the kinetic theory of gases, cf. Chap. 4 

ln d ln d 0
e e

a

a

f f
k f k c f

t Y x Y
c c .

The  exploitation  makes  use  of  the  Lagrange  multipliers ...
21

1 2 1 2

1

0
exp ... ...

l l

N

i i i i i ik l
f Y µc c cΛ

so that the scalar and vector potentials may be written as

1 2 1 2

1 2 1 2

1

0

1

0

exp ...

exp ... ... d .

l l

l l

N

i i i i i ik l

Na

a i i i i i ik l

h kY

h kY c µc c c

Λ

Λ c

Insertion into the characteristic equation for the calculation of wave 
speeds gives 

1 1

det ( ) .. .. d 0
l n

a a i i j j equ
c n V c c c c f c

provided that the wave propagates into a region of equilibrium. fequ is the 
Maxwell distribution, cf. Chap. 4. 

Thus the calculation of characteristic speeds and, in particular, the 
maximal one, the pulse speed requires no more than simple quadratures and 
the solution of an nth order algebraic equation. It is true that the dimension 
of the determinant increases rapidly with N: For N = 10 we have 286 
columns and rows, while for N = 43 we have 15180 of them. But then, the 
calculation of the elements of the determinant and the determination of Vmax

may be programmed into the computer and Wolf Weiss (1956–    ) has the 
values ready for any reasonable N at the touch of a button, see Fig. 8.6. We 
recognize that the pulse speed goes up with increasing N and it never 

 

(l = 1,2,…N ) and the moment character of the densities and fluxes implies 
that the distribution function has the form 

µc c ...c dc and
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stops.66 Indeed, Guy Boillat (1937–   ) and Tommaso Ruggeri (1947–    ) 
have provided a lower bound for Vmax which tends to infinity for N .67

The fact that Vmax is unbounded represents something of an anticlimax for 
extended thermodynamics, because the theory started out originally as an 
effort to find a finite speed of heat conduction. Let us consider this: 

Fig. 8.6. Pulse speeds in relation to the normal speed of sound. Table and crosses: 

68 )(
2

1

5

6 by Boillat and Ruggeri69

Carlo Cattaneo (1911–1979) 

Fourier’s equation of heat conduction is the prototypical parabolic equation 
and it predicts an infinite speed of propagation of disturbances in tempe-
ratures. This phenomenon became known as the paradox of heat 
conduction. Neither engineers nor physicists generally were much worried 
about the paradox. It is quantitatively unimportant in solids and liquids and 
even in gases under normal pressures and temperatures. And yet, the 
paradox represented an awkward feature of thermodynamics and in 1948 
Carlo Cattaneo made an attempt to resolve it.

Upon reflection it was clear to Cattaneo that Fourier’s law was to blame 
and he amended it. We refer to Fig. 8.7 and recall the mechanism of heat 

is a downward temperature gradient across a small volume element – of the 
dimensions of the mean free path – an atom moving upwards will, in the 
mean,  carry more energy than an atom moving downwards. Therefore there

                                                     
66 W. Weiss: “Zur Hierarchie der erweiterten Thermodynamik.” [On the hierarchy of 

extended thermodynamics] Dissertation TU Berlin.
See also: I. Müller, T. Ruggeri: “Rational Extended Thermodynamics.” loc.cit.

67 G. Boillat, T. Ruggeri: “Moment equations in the kinetic theory of gases and wave 
velocities.”  Continuum Mechanics and Thermodynamics 9 (1997).

68 W. Weiss: loc.cit.
69  G. Boillat, T. Ruggeri: “Moment equations …” loc.cit. 

Calculations by Weiss  . Circles: Lower bound 

conduction in gases as described in the elementary kinetic theory. If there 
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is a net flux of energy upwards, i.e. opposite to the temperature gradient, 
associated with the passage of a pair of particles across the middle layer. 
That flux is obviously proportional to the temperature gradient, just as 
Fourier’s law requires for the heat flux.

Fig. 8.7.  Carlo Cattaneo. The Cattaneo equation 

Cattaneo70 changed that argument slightly. He argued that there is a time-
lag between the start of the particles at their points of departures and the 
time of passage through the middle layer. If the temperature changes in 
time, it is clear that the heat flux at a certain time depends on the tempe-
rature gradient at a time  earlier, where  is of the order of magnitude of the 
mean time of free flight. Therefore it seems reasonable to write an non-
stationary Fourier law in the form 

with 0
i

i i

T T
q

x t x
τ τ .

Now, this equation is badly flawed, because it predicts that for qi = 0 the 
temperature gradient tends exponentially toward infinity. Nor does this 
modified Fourier law lead to a finite speed, so that it does not resolve the 
paradox. Cattaneo must have known this – although he does not say so (!) – 
because he proceeded by converting his non-stationary Fourier law into 
something else in a sequence of three steps which deserve to be called 
mathematically creative.

                                                     
70 C. Cattaneo: “Sulla conduzione del calore.” [On heat conduction] Atti del Seminario 

Matematico Fisico della Università di Modena, 3 (1948). 
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The end result, now usually called the Cattaneo equation, is acceptable. 
It provides a stable state of zero heat flux for 0 and, if combined with 

the energy equation, it leads to a telegraph equation and predicts a finite 
speed of propagation of disturbances of temperature.

So, however flawed Cattaneo’s reasoning may have been, he is the author 
of the first hyperbolic equation for heat conduction. Let us quote him how 
he defends the transition from the non-stationary Fourier law to the 
Cattaneo equation: 

Nel risultato ottenuto approfitteremo della piccolezza del parametro per
trascurare il termine che contiene a fattore il suo quadrato, conservando 
peraltro il termine in cui compare a primo grado. Naturalmente, per 
delimitare la portata delle conseguenze che stiamo per trarre, converrà 
precisare un po’ meglio le condizioni in cui tale approssimazione è lecita. 
Allo scopo ammetteremo esplicitamente che il feno-meno di conduzione 
calorifica avvenga nell´intorno di uno stato stazionario o, in altri termini, 
che durante il suo svolgersi si mantengano abbastanza piccole le derivate 
temporali delle varie grandezze in giuoco. 

In the result we take advantage of the smallness of the parameter so that 
terms with squares of  may be neglected. First order terms in  are kept, 
however. Of course, in order to appreciate the effect on the consequences, 
which we are about to derive, it would be proper to investigate the 
conditions when that approximation  is valid. For that purpose we stress 
that the heat conduction should remain nearly stationary. Or, in other 
words, that the time derivatives of the various quantities at play  remain 
sufficiently small, while the stationary state changes slowly. 

Well, if the truth were known, this is not a valid justification. How could 
it be, if it leads from an unstable equation to a stable one and from a 
parabolic to a hyperbolic equation.

Let me say at this point that Cattaneo’s argument leading to the non-stationary 
Fourier law is the nut-shell-version of the first step in an iterative scheme that is 
often used in the kinetic theory of gases. In that field the objective is an 
improvement of the treatment of viscous, heat-conducting gases beyond what the 
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However, whatever the peculiarities of its derivation may have been, the 
Cattaneo equation on the paradox of heat conduction served as a stimulus. 
Müller72 generalized Cattaneo’s treatment within the framework of TIP, 
taking care – at the same time – of a related paradox of shear motion. And 
then, after rational thermodynamics appeared, Müller and I-Shih Liu 
(1943–    )73 formulated the first theory of rational extended thermo-
dynamics, still restricted to 13 moments, but complete with a constitutive 
entropy flux – rather than the Clausius-Duhem expression – and with 
Lagrange multipliers. 

Thus the subject was prepared for being joined to the mathematical 
theory of hyperbolic systems. Mathematicians had studied quasi-linear first 
order systems for their own purposes, – without being motivated by the 

74 Friedrichs and Lax,75 and 
Boillat76 discovered that such systems may be reduced to a symmetric 
hyperbolic form, if they are compatible with a convex extension, i.e. an 
additional relation of the type of the entropy inequality. Ruggeri and 

                                                     
71 The instabilities involved in the Chapman-Enskog iterative scheme have recently been 

reviewed by Henning Struchtrup (1956–    ). H. Struchtrup: “Macroscopic Transport 
Equations for Rarefied Gases – Approximation Methods in Kinetic Theory” Springer, 
Heidelberg (2005). 

72 I. Müller: “Zur Ausbreitungsgeschwindigkeit von Störungen  in kontinuierlichen Medien.” 
[On the speed of propagation in continuous bodies.]. Dissertation TH Aachen (1966).
See also: I. Müller: “Zum Paradox der Wärmeleitungstheorie.” [On the paradox of heat  
conduction]. Zeitschrift für Physik 198 (1967).

73

Archive for Rational Mechanics and Analysis 46 (1983).
74

Soviet Mathematics 2 (1961). 
75 K.O. Friedrichs, P.D. Lax: “Systems of conservation equations with a convex extension.” 

Proceeding of the National Academy of Science USA 68 (1971).
76 Boillat: “Sur l´éxistence et la recherche d´équations de conservations supplémentaires 

pour les systèmes hyperbolique.” [On the existence and investigation of supplementary 
conservation laws for hyperbolic systems] Comptes Rendues Académie des Sciences 
Paris. Ser5. A 278 (1974). 

Navier-Stokes-Fourier theory can achieve. The iterative scheme is called the 
Chapman-Enskog method and its extensions are known as Burnett approximation 
and super Burnett. The scheme leads to inherently unstable equations and should be 
discarded. The reason why the fact was not recognized for decades is that the 
authors have all concentrated on stationary processes.71 And the reason why it is 
still used is natural inertia and lack of imagination and initiative. 

The situation is quite similar mathematically and psychologically to the one 
mentioned in the context of rational thermodynamics of unstable equilibria of nth
grade fluids with n > 1, see above.

paradoxon of infinite wave speeds. Godunov,

 I-Shih Liu, I. Müller: “Extended thermodynamics of classical and degenerate gases.” 

 S.K. Godunov: “An interesting class of quasi-linear systems.” 



Extended Thermodynamics 265

Strumia77 recognized that the Lagrange multipliers – their main field – could 
be chosen as thermodynamic fields and, if they were, the field equations of 

of the theory was refined by Boillat and Ruggeri,78,79 and eventually they 

although it is always finite for finitely many moments, see above.80

outgrown its original motivation and had become a predictive theory for 
processes with large rates of change and steep gradients, as they might 
occur in shock waves. Let us consider this: 

Field Equations for Moments 

Once the distribution function is known in terms of the Lagrange 
multipliers, see above, it is possible – in principle – to change back from the 
Lagrange multipliers ...

21

to the moments ...
21

by inverting the 

relation

1 2 1 1 2 1 2

1

0
... ... exp ... ... d

l f l l

N

i i i i i i i i i i ik l
u c c Y c c cµ µ c .

Once this is done, we may determine the last flux

1 2 1 1 2 1 2

1

0
... ... exp ... ... d

N N l l

N

i i i a i i a i i i i i ik l
u c c c Y c c cµ µ c

),..1.0(...of termsin
21

. Also in principle the productions may 

thus be calculated after we choose an appropriate model for the atomic 
interaction, e.g. the model of Maxwellian molecules, cf. Chap. 4. 

                                                     
77 T. Ruggeri, A. Strumia: “Main field and convex covariant density for quasi-linear   

hyperbolic systems. Relativistic fluid dynamics.” Annales Institut Henri Poincaré 34 A 
(1981).

78 T. Ruggeri: “Galilean invariance and entropy principle  for systems of balance laws. The  
structure of extended thermodynamics.” Continuum Mechanics and Thermodynamics 1 
(1989).

79 G. Boillat, T. Ruggeri: “Moment equations …”  loc.cit.
80 Incidentally, in the relativistic version of extended thermodynamics the maximal pulse 

speed for infinitely many moments is c, the speed of light.

extended thermodynamics were symmetric hyperbolic. The formal structure 

proved that for infinitely many moments the pulse speed tends to infinity, 

has its own appeal and anyway: Extended thermodynamics had by this time 
had originally set out to calculate finite speeds. However, the infinite limiting case 

As mentioned before this phenomenon is a kind of anti-climax for a theory that 
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In reality the calculations of the flux 
aiii

N

u ...
21

and of the productions 

)...7,6(...
21

81 require somewhat precarious approximations, 

since integrals of the type occurring in the last equations cannot be solved 

analytically. However, when everything is said and done, one arrives at  

explicit field equations, e.g. those of Fig. 8.8, which are valid for N = 3 so 

that there are 20 individual equations. The equations written in the figure 

are linearized and the canonical notation has been introduced like  for u,

i for ui, 3
k
/µT for the trace uii, t<ij> for the deviatoric stress and qi for the 

heat flux. The moment u<ijk> has no conventional name, – other than trace-

less third moment – because it does not enter equations of mass, momentum 

and energy. But it does have to satisfy an explicit fields equation, see figure.   

                                                     
81 Recall that the first five productions are zero which reflects the conservation of mass, 

momentum and energy. 

right: Navier-Stokes. Bottom left: Cattaneo. Bottom right: 13 moment
Fig. 8.8.  4 times field equations of extended thermodynamics for N= 3 Top left: Euler. Top
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Figure. 8.8 shows the same set of 20 equations four times so as to make it 
possible to point out special cases within the different frames: 

On the upper left side we see the equations for the Euler fluid, which is 

entirely free of dissipation and thus without shear stresses and heat flux. 

The upper right box contains the Navier-Stokes-Fourier equations with 

the stress proportional to the velocity gradient and the heat flux 

proportional to the temperature gradient. This set identifies the only 

unspecified coefficient  as being related to the shear viscosity . We 

have
3

4 so that  grows linearly with T  as is expected for 

Maxwellian molecules, cf. Chap. 4. 

In the fifth equation of the third box I have highlighted the Cattaneo

equation which has provided the stimulus for the formulation of 

extended thermodynamics, see above. The Cattaneo equation is 

essentially a Fourier equation, but it includes the rate of change of the 

heat flux as an additional term even though it ignores other terms.

The fourth box exhibits the 13-moment equations. These are the ones 

best known among all equations of extended thermodynamics, because 

they contain no unconventional terms, – only the 13 moments familiar 

from the ordinary thermodynamics, viz. , i, T,  t<ij>, and qi.

For interpretation we may focus on the upper right box in Fig. 8.8, the 
one that emphasizes the Navier-Stokes theory. In this way we see that some 
specific terms are left out of that theory, namely

andandand .

For rapid rates and steep gradients we may suspect that these terms do 
count and, indeed, they do, and we must go to the full set of 20 equations, 
or to equations with even more moments. Since rapid rates and steep 
gradients are measured in terms of mean times of free flight and mean free 
paths, we may suspect that extended thermodynamics becomes necessary 
for rarefied gases.

Shock Waves 

Properly speaking shock waves do not exist, at least not as discontinuities in 
density, velocity, temperature, etc. What seems like shock waves turns out 
to be shock structures upon close experimental inspection, i.e. smooth but 
steep solutions of the field equations, which assume different equilibrium 
values at the two sides. Scientists and engineers are interested to calculate 
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the exact form of the shock structures; and they have realized that the 
Navier-Stokes-Fourier theory fails to predict the observed thickness.82 Since 
this is a case of steep gradients or rapid rates, it is appropriate, perhaps, to 
apply extended thermodynamics.

To be sure we cannot use the formulae of Fig. 8.8, because these are 
linearized. Their proper non-linear form is too complicated to be written 
here. Let it suffice therefore to say that, yes, extended thermodynamics does 
provide improved shock structures. But the work is hard, because even for 
rather weak shock – which move with a Mach number of  1.8 – the required 
number of moments goes into the hundreds as Wolf Weiss83 and Jörg Au 
have shown.84

An interesting feature of that research – first noticed, but apparently not 
understood by Grad85 – is the observation that, when the Mach number 
reaches the pulse speed and exceeds it, a sharp shock occurs within the 
shock structure. Obviously those Mach numbers are truly supersonic and 
not just bigger than 1. That is to say that the upstream region has no way of 
being warned about the onrushing wave, if that wave comes along faster 
than the pulse speed. For the mathematician this is a clear sign that he has 
over-extrapolated the theory: He should take more moments into account 
and, if he does, the sharp shocks disappear, or rather they are pushed to a 
higher Mach number appropriate to the bigger pulse speed of the more 
extended theory.

Boundary Conditions 

Extended thermodynamics up to 1998 is summarized by Müller and 
Ruggeri.86 Since the publication of that book boundary value problems have 
been at the focus of the research in the field, and some problems of the 13- 
moment theory have been solved:

It has been shown for thermal non-equilibrium between two co-axial 
cylinders that the temperature measured by a contact thermometer is not 

                                                     
82  This was decisively shown by D. Gilbarg, D. Paolucci: “The structure of shock waves in 

the continuum theory of fluids.” Journal for Rational Mechanics and Analysis 2 (1953).
83 W. Weiss: “Die Berechnung von kontinuierlichen Stoßstrukturen in der kinetischen 

Gastheorie.” [Calculation of continuous shock structures in the kinetic theory of gases] 
Habilitation thesis TU Berlin (1997). See also: W. Weiss: Chapter 12 in: I. Müller, T. 
Ruggeri: “Rational Extended Thermodynamics” loc.cit.
W. Weiss: “Continuous shock structure in extended Thermodynamics.” Physical Review 
E,   Part A 52 (1995).

84 Au: “Lösung nichtlinearer Probleme in der Erweiterten Thermodynamik.” [Solution of 
non-linear problems in extended thermodynamics’’]. Dissertation TU Berlin, Shaker 
Verlag  (2001). 

85 H. Grad: “The profile of a steady plane shock wave.” Communications of Pure and 
Applied Mathematics 5 Wiley, New York (1952).

86 I. Müller, T. Ruggeri: “Rational Extended Thermodynamics.” loc.cit.
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equal to the kinetic temperature, a measure of the mean kinetic energy 
of the atoms,87 cf. Inserts 8.2, and 8.3 and
It has been shown that a gas cannot rotate rigidly, if it conducts heat.88

Both results differ from those that are predicted by the Navier-Stokes-
Fourier theory, indeed, they are qualitatively and quantitatively
different.

Thus some extrapolations away from equilibrium, that we have grown 
fond of, must be revised in the light of extended thermodynamics. Notably 

inequality. Both lose their validity  when non-equilibrium becomes severe.
The problem with more than 13 moments is, that there is no possibility to 

prescribe and control higher moments – like u<ijk>, or uijjk, etc. – initially or 
on the boundary. Thus we face the situation that we do have specific field 
equations for those moments, but that we are unable to use them for lack of 
initial and boundary values.

values of uijjk (say) may affect the temperature field in a drastic – and totally 
unacceptable, since unobserved – manner. Therefore it seems to be 
inevitable to conclude that a gas itself adjusts the uncontrollable boundary 
values and the question is which criterion the gas employs. It has been 
suggested89 that the boundary values adjust themselves so as to minimize 
the entropy production in some norm. Another suggestion is that the 
uncontrollable boundary values fluctuate with the thermal motion and that 
the gas reacts to their mean values.90

In all honesty, however, the problem of assigning data in extended 
thermodynamics must still be considered open so far. At the present time 
only such problems have been resolved by extended thermodynamics – with 
more than 13 moments – which do not need boundary and initial conditions 
or which possess trivial ones. These include shock waves, which have been 
treated with moderate success, see above, and light scattering, which has 
been dealt with very satisfactorily indeed, cf. Chap 9.

Minor intrinsic inconsistencies within extended thermodynamics have 
been removed by a cautious reformulation of the theory91,92.

                                                     
87 I. Müller, T. Ruggeri: “Stationary heat conduction in radially symmetric situations – an 

application of extended thermodynamics.” Journal of Non-Newtonian Fluid Mechanics 
119 (2004).

88 E. Barbera, I. Müller: “Inherent frame dependence of thermodynamic fields in a gas.” Acta 

89 H. Struchtrup, W. Weiss: “Maximum of the local entropy production becomes minimal in 
stationary processes.” Physical Review Letters 80 (1998). 

90 E. Barbera, I. Müller, D. Reitebuch, N.R. Zhao: “Determination of boundary conditions in 
extended thermodynamics.” Continuum Mechanics and Thermodynamics 16 (2004).

91 I. Müller, D. Reitebuch, W. Weiss: “Extended thermodynamics – consistent in order of 
magnitude.” Continuum Mechanics and Thermodynamics 15 (2003).

this is true for the principle of local equilibrium and for the Clausius-Duhem 

On the other hand, it can be shown that an arbitrary choice of boundary 

Mechanica, 184 (2006) pp. 205-216.
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Heat conduction between circular cylinders. 
Fourier theory and 13-moment theory 93

For stationary heat conduction in a gas at rest between two concentric cylinders the 
BGK- version 94 of the 13-moment equations reads 

momentum balance : 0, energy balance : 0,
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92 D. Reitebuch: “Konsistent geordnete Erweiterte Thermodynamik.” [Consistently ordered 

extended thermodynamics] Dissertation TU Berlin (2004).
93 I. Müller, T. Ruggeri: “Stationary heat conduction ...” loc. cit. (2004).
94 P.L. Bhatnagar, E.P. Gross, M. Krook: “A model for collision processes in gases. I. Small 

amplitude processes in charge and neutral one-component systems.” Physical Review 94 
(1954).

    The model approximates the collision term in the Boltzmann equation by )(1 ffequ

with a constant relaxation time of the order of a mean time of free flight. The BGK 
model is popular for a quick check and qualitative results. In the present case it permits an 
analytical solution, which cannot be obtained by a more realistic collision term. 

µ µ

µ
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Figure 8.9 shows the comparison of the temperature fields in this solution and of the Navier-
Stokes-Fourier solution in a rarefied gas – with p = 1mbar – for a boundary value problem as 
indicated in the figure 

As expected, the difference becomes noticeable where the temperature gradient 
is big. Note that the Fourier solution becomes singular for r 0, but the Grad 
solution remains finite. 

Insert 8.2 

Kinetic and thermodynamic temperatures 95,96

We recall Insert 4.5 where the non-convective entropy flux i was calculated. It 

was unequal to Tq
i

. In fact it was given by

pT

qt

T

q jiji

i

5

2
,

so that T is not continuous at a diathermic, non-entropy-producing – i.e. 
thermometric – wall, where the normal components of the heat flux and the entropy 
flux are continuous.

In the case of heat conduction – treated in Insert 8.2 – there are only radial 
components of and q and we have

111 2
1 1 1 .
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95 I. Müller, T. Ruggeri: “Stationary heat conduction ...” loc. cit (2004).
96 I. Müller, P. Strehlow: “Kinetic temperature and thermodynamic temperature.” In: Dean 

C. Ripple (ed.) “Temperature: Its Measurement and Control in Science and Industry.” 
Vol. 7 American Institute of Physics (2003). 

Fig. 8.9.  Temperature field between coaxial cylinders 
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Thus  is the thermodynamic temperature, the temperature shown by a contact 

thermometer.  is not equal to T , the kinetic temperature, except in equilibrium, of 

course. Figure 8.10 shows the ratio of the two temperatures in a rarefied in the 

situation investigated in Insert. 8.2 for the Grad 13-moment theory.

Fig. 8.10. The ratio of thermodynamic to kinetic temperature 

Insert 8.3 
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Fluctuations are random and therefore unpredictable, except in the mean, or 
on average. They are due to the irregular thermal motion of the atoms. An 
instructive example – and the first one to be described analytically – is the 
Brownian motion of nearly macroscopic particles suspended in a solution. 
The velocity of such a particle fluctuates around zero in an apparently ir-
regular manner. Some regularity reveals itself, however, in the mean re-
gression of the velocity fluctuations. In fact, in some approximation the 
mean regression is akin to the non-fluctuating velocity of a macroscopic 
ball thrown into the solution.

That observation has been extrapolated to arbitrary fluctuating quantities 
by Lars Onsager. Applied to the fluctuating density field in a gas, or a 
liquid, Onsager’s mean-regression hypothesis furnishes the basis for the 
exploitation of light scattering experiments: The light scattered by a gas 
carries information about the transport coefficients of the gas, like the 
thermal conductivity and the viscosity, although the gas is macroscopically 
in equilibrium.

In a rarefied gas, where extended thermodynamics is appropriate, the 
Onsager hypothesis – if accepted – permits the prediction of the shape of 
the scattering spectrum. Experiments confirm that prediction.

Brownian Motion 

Brownian motion is observed in suspensions of tiny particles which follow 
irregular, erratic paths visible under the microscope. The phenomenon was 
reported by Robert Brown (1773–1858) in 1828.1 He was not the first 
person to observe this, but he was first to recognize that he was not seeing 
some kind of self-animated biological movement. He proved the point by 
observing suspensions of organic and inorganic particles. Among the latter 
category there were ground-up fragments of the Sphinx, surely a dead 
substance, if ever there was one. All samples showed the same behaviour 

                                                     
1 R. Brown: “A brief account of microscopic observations made in the months of June, July 

and August 1827 on the particles contained in the pollen of plants; and on the general 
existence of active molecules in organic and inorganic bodies.” Edinburgh New 
Philosophical Journal 5 (1828) p. 358. 
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and no convincing explanation or description could be given for nearly 80 
years. According to Brush the phenomenon was mentioned in books on the 
microscope which gave warnings about Brownian motion, lest observers 
should mistake it for a manifestation of life and attempt to build fantastic 
theories on it.2

After the kinetic theory of gases was proposed and slowly accepted, the 
impression grew that the phenomenon provides a beautiful and direct 
experimental demonstration of the fundamental principles of the 
mechanical theory of heat.3 That interpretation was supported by the 
observation that at higher temperatures the motion becomes more rapid. 
However, none of the protagonists of the field of kinetic theory addressed 
the problem, neither Clausius, nor Maxwell, nor Boltzmann. It may be that  
they did not wish to become involved in liquids.

A great difficulty was that the Brownian particles were about 108 times 
more massive than the molecules of the solvent so that it seemed 
inconceivable that they could be made to move appreciably by impacting 
molecules.

It was Poincaré – the mathematician who enriched the early history of 
thermodynamics on several occasions with his perspicacious remarks – who 
identified the mechanism of Brownian motion when he said:4

Also Poincaré noted that the existence of Brownian motion was in 
contradiction to the second law of thermodynamics when he said: 

And indeed, the existence of Brownian motion demonstrates that the 
second law is a law of probabilities. It cannot be expected to be valid when 
few particles or few collisions are involved. If that is the case, there will be 
sizable fluctuations around equilibrium.

                                                     
2  S.G. Brush: “The kind of motion we call heat.” loc.cit. p. 661.
3 G. Cantoni: Reale Istituto Lombardo di Scienze e Lettere. (Milano) Rendiconti (2) 1, 

(1868) p. 56.
4 J.H. Poincaré: In: “Congress of Arts and Science. Universal Exhibition Saint Louis 1904.”

Houghton, Miffin & Co. Boston and New York (1905).
5 Ibidem.

Bodies too large, those, for example, which are a tenth of a millimetre, are 
hit from all sides by moving atoms, but they do not budge, because these 

each other; but the smaller particles receive too few shocks for this 
compensation to take place with certainty and are incessantly knocked 
about.

… but we see under our eyes now motion transformed into heat by 
friction, now heat changed inversely into motion, and [all] that without 
loss, since the  movement lasts forever. This is the contrary of the 
principle of Carnot.5

shocks are very numerous and the law of chance makes them compensate 
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Brownian Motion as a Stochastic Process 

And so we come to the third one of Einstein’s seminal papers of the annus
mirabilis: “On the movement of small particles suspended in a stationary 
liquid demanded by the molecular-kinetic theory of heat.”6 After Poincaré’s 
remarks the physical explanation of the Brownian motion was known, but 
what remained to be done was the mathematical description.

Actually Einstein claimed to have provided both: The physical 
explanation and the mathematical formulation. As a matter of fact, he even 
claimed to have foreseen the phenomenon on general grounds, without 
knowing of Brownian motion at all. Brush is sceptical. Says he:7

… there is some doubt about the accuracy of these [claims] 

and he reminds the reader of Einstein’s own pronouncement quoted before, 
cf. Chap. 7: 

Every reminiscence is coloured by today’s being what it is, and therefore 
by a deceptive point of view.8

People do have a way of treading lightly around Einstein’s claims of 

however, that in later life Einstein sometimes overreached himself; so when 
he claims to have developed statistical mechanics because he had no know-
ledge of Boltzmann and Gibbs’s work in 1905.9 In fact, however, he had 
quoted Boltzmann’s book in an earlier paper published in 1902.10

Be that as it may. The fact remains that Einstein opened a new chapter of 
thermodynamics when he treated Brownian motion. 

Obviously, after the insight provided by Poincaré, the Brownian motion 
had to be considered as stochastic, i.e. random, or determined by chance 
and probabilities. As far as I can tell, it was Einstein who invented a method 

                                                     
6  A. Einstein: “Die von der molekularkinetischen Theorie der Wärme geforderte Bewegung 

von in ruhenden Flüssigkeiten suspendierten Teilchen.” Annalen der Physik (4) 17 (1905) 
pp. 549–560.

    All of Einstein’s early papers on the Brownian motion were later edited by R. Fürth: 
“Untersuchungen über die Theorie der Brownschen Bewegungen.” [Investigations on the  
theory of the Brownian movement] Akademische Verlagsgesellschaft, Leipzig (1922). 
This collection has been translated into English by A.D. Cowper and is available as a 
Dover booklet. 

7  S.G. Brush: “The kind of motion we call heat.” loc. cit. p. 673.
8 P.A. Schilpp (ed.): “Albert Einstein Philosopher-Scientist”. New York. “Library of Living 

Philosophers” (1949).
    The Schilpp collection contains an autobiographical note by A. Einstein from which the 

above quotation is taken.
9  Schilpp collection. Autobiographical notes. loc.cit  p. 17/18.

10 A. Einstein: “Kinetische Theorie des Wärmegleichgewichtes und des zweiten Hauptsatzes 
der Thermodynamik.” [Kinetic theory of heat equilibrium and of the second law of 
thermodynamics] Annalen der Physik (4) 9 (1902 )pp. 417–433.

priority, because there is a certain amount of hero-worship. The fact is, 
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to deal with such a process.11 We shall consider a one-dimensional and 
simplified version of his argument: 

Let the x-axis be subdivided into equal intervals of length  and let a 
Brownian particle jump – right or left with equal probability, i.e. probability 
1/2 – to neighbouring intervals after each time interval . The jumps occur 
because the particle is hit by solvent molecules but no explicit account is 
given of the mechanics of the collisions.

From what has been said, the probability w(x,t) of finding the particle at 
position x at time t must satisfy the difference equation 

),(),(),(
2

1

2

1 txwtxwtxw .

If  and  are small, one may expand the right hand side into a Taylor 
series breaking off at the leading non-zero terms in  and . Thus one 
obtains the differential equation 

2

22

2
.

Einstein says: This is the well-known diffusion equation and we recognize 
that D = 2/2 is the coefficient of diffusion.

Many solutions of this equation are known – primarily through Fourier’s 
work, cf. Chap. 8. In particular, if at time t = 0 the particle was in the 
interval at X, its probability to be at position x at time t is given by

2
1 ( )

( , ) exp
44

x X
w x t

DtDtπ

and the root mean square distance  from X comes out as
1

2

2 2
( ) ( ) ( , ) 2x X x X w x t dx Dtλ ,

so that it is determined by the diffusion coefficient. Thus by repeated 
careful observations of Brownian motion and averaging over the results one 
could determine D.

Einstein, however, favoured another application of the formula for . He 
had determined a relation between the unknown diffusion coefficient D – of
a Brownian particle of radius r in a solvent – and the known viscosity  of 
the solvent, viz, cf. Insert 9.1 

                                                     
11 A. Einstein: “Investigations ... ’’ loc.cit. § 4. 

w w
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   so that he could write   

6 3

kT kT
D t

r r
λ

πη πη
.

Thus measurements of for known values of  and r could determine the 
value of the Boltzmann constant k. Therefore Einstein concludes his paper 
with the words: It is to be hoped that some enquirer may succeed shortly in 
solving this problem [the experimental determination of k]… which is so 
important in connection with the theory of heat.

I cannot help feeling that the importance and feasibility of measuring k in 
this manner is somewhat exaggerated here by Einstein. After all, this recipe 
would involve a cumbersome observation of the mean motion of a 
Brownian particle. No doubt that it can be done, but why should it be done? 
A good value of the Boltzmann constant was already known from the 
Rayleigh-Jeans formula, cf. Chap. 7, which was perfectly convincing and 
indubitably correct for low-frequency radiation.

Relation between diffusion coefficient D and viscosity

When Brownian particles of mass µ, radius r, and with particle density n(x,t) are 
suspended – macroscopically at rest – in a solvent of temperature T, they are denser 
at the bottom than on top, because they must satisfy the stationary momentum 
balance

                                                     
12 Robert Andrews Millikan (1868-1953) – the man who determined the elementary charge e

– writes in his autobiography: The amazing thing is that this question could be debated at 
all at that time [1904] … and that even the brilliant philosopher Ernst Mach could at that 
epoch oppose atomic theories.
R. A. Millikan: “The autobiography of Robert A. Millikan.” Arno Press, New York 
(1980).
D. Lindley, the author of “Boltzmann’s atom” loc.cit. writes: To an audience of young 
New World scientists, this debate must have seemed an intrusion into their fresh universe 
from the Old World’s attic. 

13 Einstein writes: If the movement discussed here can actually be observed … an exact 
determination of actual atomic dimensions is then possible. On the other hand, had the 
prediction of this movement proved to be incorrect, a weighty argument would be 
provided against the molecular kinetic conception of heat.

This remark is obviously a reflection of the then still ongoing – albeit obsolete – 
discussion between Mach and Boltzmann in Vienna, where the former maintained 
that atoms were a fiction of imagination, since their properties could not be 
determined; [Mach ignored Loschmidt’s rough and ready calculation of 1865, cf. 
Chap. 4.] The rest of the world watched this out-dated debate in amazement12 but 
Einstein seems to have taken it seriously.13
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( , )
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This is Einstein’s relation between D and .

Insert 9.1 

Einstein’s paper carries the mark of genius in a positive and negative 
sense: The positive aspect is that the paper introduces stochastic arguments 
into Brownian motion and this made such arguments acceptable to thermo-
dynamicists. But then the paper is also carelessly written, it shows a benign 
neglect of detail and direction that might – and did – throw people off the 
track. Thus Brush14 complains about the muddled presentation. He says that 

Einstein did not emphasize very strongly the significance of his result that 
is proportional to the square root of time, and in fact it is quite probable 

that most early readers of the paper gave up in bewilderment before they 
got to the result. 

Indeed, it makes no sense that the initial growth rate of  is infinite as is  
implied by the result. And surely this prediction should have warranted a 
remark. It may in fact be understood as a shortcoming of the stochastic 
model by which the Brownian particle, – in executing its random jumps – is 

                                                     
14 S.G. Brush: “The kind of motion we call heat.” loc.cit. p. 681. 

        particle  under gravity,  cf.  Chap.  8 and

     according to Fick´s law,  cf.  Chap.  8.
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not ascribed an inertia. The physicist Paul Langevin (1872–1946)15 looked 
into the argument and he came up with an improved equation of the form 

62
2 1 exp

6

r
D t t

r

πη
µ

µλ
πη

by taking inertia into account. To be sure, for typical values of , µ, and r
the second term in the square brackets is usually negligible, so that 
Einstein’s results holds approximately. But this is not so for small times. 

Mean Regression of Fluctuations 

In the Brownian motion we see a nearly macroscopic body – the Brownian 
particle – kicked around by the atoms or molecules in the manner envisaged 
by Poincaré, see above. The force F(t) of impact by the molecules on the 
particle fluctuates, and it stands to reason that, averaged over a long time, or 
averaged – at one time – over many Brownian particles, the force is zero. 
Since the particle moves in a viscous fluid, its equation of motion reads 

6 1rπη
µ µ

This equation is known as the Langevin equation. On the basis of that 
equation Langevin was able to correct Einstein’s result for the root mean 
square distance , see above.

If the mass µ of the particle is very big, its equation of motion is 
unaffected by the fluctuating force F(t) and the velocity decays 
exponentially as a function of time 

6

0 0
( ) ( )exp ( )

r
t t t t

πη
µ .

I shall refer to this solution as the macroscopic law of decay. For the 
Brownian motion the decay is exponential, but this need not be so in other 
cases of fluctuating quantities; indeed, the decay may be a damped oscilla-
tion on other occasions.

On the other hand, when the particle has a small mass, the fluctuating 
force makes its velocity fluctuate as well about an average velocity zero as 

fluctuation  seems totally irregular, and certainly in no way related to the 
macroscopic law of decay. And yet, some regularity is hidden in the 
fluctuations; and that regularity is brought forth, if we construct the mean
regression of a fluctuation.
                                                     
15 P. Langevin: Comptes Rendues Paris 146 (1908) p. 530. 

illustrated in the upper part of Fig. 9.1. The graph of this velocity 

F ( )t
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Fig. 9.1.
fluctuation

When we consider very many, say N , velocity fluctuations of a particular 
fixed size  which occur at the times t ( = 1,2,…N), we may ask for the 
sizes of the fluctuation at a later time t + . They are all different, of course, 
but upon averaging we obtain

1
( , ) ( )

1

N
v t

N

β
β ατ τα .

This function of  is the mean regression of the fluctuation . We may 

)  as a graph of the type shown in the lower part of Fig. 9.1. 

According to Lars Onsager the mean regression is given by the same 
function as a macroscopic decay. This can be proved – after a fashion – for 
Brownian particles, see Insert 9.2. 

The mean regression of fluctuation for a Brownian particle

The formal solution of the Langevin equation reads with 
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so that the mean regression of a fluctuation comes out as 

Top: Velocity fluctuations of a Brownian particle. Bottom: Mean regression of a 
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Given time the force F(t) in the integrand is fluctuating between positive and 
negative values so that the integral itself may have a positive or negative value, but 
it is definitely finite. Therefore for large enough N the second term vanishes, so that 
the mean regression becomes 

0( ) e

τ
τ

β βτ

which is equal to the macroscopic decay. This may be considered proof of the 
Onsager hypothesis, at least for Brownian particles. 

[The fallacy of this proof for small values of  is obvious: Indeed, for small 
values of the force F(t ) in the interval t < t  < t +  is most likely close to the 
force F(t ), because the force does not really jump, although it may change 
quickly.  Thus for small the Onsager hypothesis fails. Another way to see this is 
as follows: For small values of  there are obviously equally many values 

)(  bigger and smaller than )( so that )(  must start out 

horizontally, i.e. it cannot decay exponentially at the outset.] 

Insert 9.2 

Auto-correlation Function 

The auto-correlation function – denoted by )()0(  for the velocity of a 

occurring initial values  ; let their number be denoted by M. So as to avoid 
the trivial result zero for the mean value, the mean regressions are pre-
multiplied by  before the mean value is taken. Thus the auto-correlation 
function is defined as
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Between all N values t  and all M values with  the summation covers a 
coherent large time interval T so that one may write 

.)()()()0(
0

1

Since all mean fluctuation regressions are equal in their functional 
behaviour to the macroscopic law of decay, – according to the Onsager 
hypothesis – this is also true for their mean value, i.e. the auto-correlation 
function.

The auto-correlation function is often easier to calculate and to measure 
than the mean regression of a particular size of fluctuation. Therefore the 
Onsager hypothesis is most often pronounced by saying that the auto-
correlation function is equal to the macroscopic decay function. 

Extrapolation of Onsager’s Hypothesis 

Brownian particles provide the first fluctuating phenomenon that has been 
studied and they are simple enough to be amenable to intuitive argument 

fluctuation and for the proof of Onsager’s hypothesis, see Insert 9.2. 
The hypothesis is not restricted to Brownian particles, however. It is 

supposed to hold for all fluctuating systems. And it is usually called 
theorem. Physicists have a way to quickly become very 

cariousness of the proof of the theorem, or because they do not  
understand it, or because Onsager has been canonized by the Nobel prize in 
1968, see Fig. 9.2. There is some uneasiness, however. We have already 
quoted the popular textbook by de Groot and Mazur,16 who give faint praise 
to Onsager by calling his hypothesis not altogether unreasonable.17

While Brownian particles and their erratic motion can be seen, albeit only 
under the microscope, fluctuations of mass density, and velocity and tem-

                                                     
16 S.R. de Groot, P. Mazur: loc.cit.
17 And we have seen above why  the proof of the hypothesis is flawed for small times even 

in Brownian motion. In the sequel I shall ignore that qualification. Physicists tell me that it 
is pedantic. 

Onsager’s

and to calculation. Therefore they serve as prototypes for the treatment of 

defensive of Onsager when challenged, probably because of the pre- 

perature in air cannot be seen. And yet they are there, and they affect 

Light Scattering 

the transmission of light. Indeed, very tiny and very short-lived local 
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compressions and expansions of air – and gases generally – occur as a result 
of the random motion of molecules and atoms and they affect the dielectric 
constant, because it depends on the mass density.

Onsager left his native Norway in 1928
         and came to the United States. Later he
         held a chair of theoretical chemistry at
         Yale University, where he taught Statistical
         Mechanics  I and II to chemistry students. 

         Among the students his course was known
         as Norwegian I and II.18

Fig. 9.2.  Lars Onsager receiving the Nobel prize for chemistry in 1968 

Because of these fluctuations some light is scattered sideways, see  
Fig. 9.3. Most of the scattered light has the frequency (i) of the incident 
mono-chromatic light, but neighbouring frequencies  are also present. 
Typically the spectrum S( ) of light – scattered in a gas and passed through 
an interferometer to a photo-multiplier – exhibits three peaks, if the gas is 
normally dense. In a moderately rarefied gas one sees a flatter curve with 
lateral shoulders, cf. Fig. 9.4 

The blue frequencies in sunlight are 16 
times more efficiently scattered than the
red frequencies. Therefore the cloudless sky
appears blue. It was John Tyndall – the
admirer of Robert Mayer – who recognized
this phenomenon after studying Lord
Rayleigh’s work on electro-magnetic waves.

Sir James Dewar – the low temperature
physicist – had thought erroneously that
the blue sky is due to the oxygen content 
of the air; he knew that liquid oxygen has
a blue colour.

Fig. 9.3.  Light  scattering, schematic

                                                     
18 According to J. Meixner: “Chemie Nobelpreis 1968 für Lars Onsager.” [Nobel prize 1968 

for chemistry for Lars Onsager] Physikalische Blätter 2 (1969). 
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Fig.  9.4.  Scattering spectrum S( ) in a normally dense gas and in a moderately rarefied gas. 
19 Lines: Calculation from a Navier-Stokes-

Fourier theory

If the Onsager hypothesis is accepted, S( ) can also be calculated from
the field equations of the gas, e.g. the Navier-Stokes equations. For dense 
gases the measured and calculated curves fit perfectly, and thus they 
support the hypothesis. For the rarefied gas, however, the fit is not good, cf. 
Fig. 9.4, and we may conclude that the discrepancy is due to the Navier-
Stokes equations which, indeed, according to Chap. 8 are expected to fail in 
a rarefied gas.

So, this is a case where extended thermodynamics can prove its 
usefulness and practicality. Wolf Weiss20 has applied the linearized field 
equations of 20, 35, 56, and 84 moments to the problem and has obtained 
the scattering spectra of Fig. 9.5 (top) for small pressures as in Fig. 9.4. 
They differ among themselves and none of them fits the experimental 
points well. Nor can we adjust parameters to obtain a better fit, because 
there are no adjustable parameters in the theories of extended 
thermodynamics. Or rather, one might say that the only parameter is the 
number of moments and moment equations. So Weiss went ahead to 120 
through 286 moments and obtained convergence as well as a perfect 
agreement with experimental results, cf. Fig. 9.5 (bottom).

Here we have another instance where a result of thermodynamics is 
satisfactory, amazing and disappointing at the same time.21

                                                     
19 N.A. Clarke: “Inelastic light scattering from density fluctuations in dilute gases. The 

kinetic-hydrodynamic transition in a monatomic gas.” Physical Review A 12 (1975). 
20  W. Weiss: “Zur Hierarchie der Erweiterten Thermodynamik.” loc. cit.
     See also: W. Weiss, I. Müller: “Light scattering and extended thermodynamics.”  

Continuum Mechanics and Thermodynamics 7 (1995).
21 Recall Schrödinger’s comment on gas degeneracy in Chap. 6. 

Dots: Measurements by Clarke for rarefied gas. 
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22

Satisfaction comes from the fact that extended thermodynamics 
combined with the Onsager hypothesis is capable of representing light 
scattering in rarefied gases.
The amazing feature is the convergence at some finite number of 
moments; that observation carries information about the range of 
validity of the theory, see below.
Disappointment stems from the large number of moments needed to 
achieve convergence. We might have hoped that 13 or, perhaps, 14 or 
20 moments could give good results. That would have given us a 
manageable system of equations. Instead, we need 120 of them, – at 
least for the low pressure to which the curves of Fig. 9.5 refer.

The convergence put in evidence by the plots of Fig. 9.5 permits us to 
conclude that extended thermodynamics determines its own range of 
applicability without any reference to experiments. This is something that is 
often said a theory cannot do. But then, extended thermodynamics is not a 

                                                     
22 N.A. Clarke: loc.cit. 

286. Dots: Experimental points measured by N.A. Clarke 
thermodynamicsN= 20, 35, 56, 84. Bottom: Extended thermodynamics N= 120, 165, 220, 
Fig. 9.5 . Light scattering spectra in a moderately rarefied gas. Top: Extended 
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single theory, rather it is a theory of theories, one each for a given number 
of moments. So if – after an increase of that number – we obtain the same 
function S( ) as before, in some norm, we have reached convergence and 
can fully trust the theory and predict the light spectrum, without making a 
single experiment.

validity and usefulness of the Onsager hypothesis in extended thermo- 

The scattered electric field which arrives at the interferometer consists of 
the high frequency carrier wave – from a laser with (i) = 4.7 1015 Hz (say) – 
modulated in its amplitude by a fluctuating spatial Fourier harmonic – of 
wave number q – of the density field. The value of q is determined by the 
position of the detector. The interferometer of type Fabry-Perot,23 cf.  
Fig. 9.6, superposes light that was scattered at different times in the past. In 

that way it registers the auto-correlation function (0) ( )E E τ of the 

scattered field or, in fact, the temporal Fourier transform of that function, 
i.e. the spectral density I(q, ), whose essential part is the scattering 
spectrum S( ) discussed above.

Fig. 9.6.  Schematic view of a Fabry-Perot interferometer 

In practical physics and engineering the scattering of light has by now 
become a powerful and elegant tool for the measurement of thermodyna-
mic state functions and of transport coefficients. Let us consider this: 
                                                     
23 A lucid description of this remarkable instrument is given by G. Simonsohn: “The role of 

the first order auto-correlation function in conventional grating spectroscopy.” Optics 

Thermodynamics.” loc.cit. pp. 233–236. 

dynamics. This is only one rather special aspect and application of light

More Information About Light Scattering 

In the previous section we have used light scattering to advertise the 

possible description about the method and its practical application. 
scattering. There are others, more practical ones, and we give the briefest 

Communications 5 (1972). See also: I. Müller, T. Ruggeri: “Rational Extended 
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The Onsager hypothesis permits the calculation of the scattering 
spectrum from the field equations of a gas (say). In particular, in a normally 
dense gas, where the Navier Stokes-Fourier theory is applicable we obtain 
three well-developed peaks, cf. Fig. 9.4. The heights and widths and 
distance of the peaks permit the determination of the constitutive properties 
of the gas as listed in Table 9.1. Thus it is possible to read off specific heats, 
sound speed, and transport coefficients like thermal conductivity , and
viscosity  from the properties of light scattered by a gas in equilibrium.

Table 9.1.  Constitutive data determine the shape of the scattering spectrum

 Central Peak Lateral Peaks 
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The theory of relativity must have implications in thermodynamics on two 
counts. Firstly, hot bodies are heavier than cold ones, because their atoms, 
or molecules have a bigger speed and therefore more mass. And secondly, 
since no particle can move faster than the speed of light, the velocity distri-
bution of the particles must reflect the fact. 

To be sure, both effects are minuscule and it takes extraordinary 
conditions – extraordinarily high temperatures – to make relativistic 
corrections of classical formulae relevant numerically; the conditions inside 
the sun are not sufficiently extreme, despite a temperature of millions of K 
in the solar centre. In fact it seems that white dwarfs are the only bodies for 
which relativity matters, and where thermodynamic arguments may still be 
employed without entering the realm of science fiction. For white dwarfs 
the relativistic effects are intermingled with quantum effects, because the 
density of the stars is so great that the de Broglie wave lengths of the free 
electrons overlap. 

In the beginning of this book I have given much space to the 
idiosyncrasies of the early authors in the field of thermodynamics. One 
must not think, however, that wild ideas, oversimplifications and shallow 
answers are a privilege of physicists of the 19th century. They do occur at 
all times and among the most distinguished people. As a case in point I 
describe – briefly – what has become known as the Ott-Planck imbroglio.

Ferencz Jüttner 

Although Planck was slow to accept his own theory of quantization as true, 
he was quick to trust Einstein’s theory of relativity. It was therefore soon 
obvious to him that the Maxwell distribution had to be revised in order to 
accommodate the upper bound on the speeds of atoms. We recall from 
Chap. 2 that no mass can be accelerated beyond the speed of light c. Planck 
suggested the problem to Ferencz Jüttner, who says in his paper: 
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It is a pleasant duty for me to express my warmest thanks to Hrn. 
Geheimrat1 Planck for the kind suggestion of this work and for his 
benevolent advise. 

Jüttner solved the problem in a satisfactory manner and published the 
result in 1911.2  What he did was basically very simple. In effect he obtains 
the equilibrium distribution by maximizing the entropy 

!
ln with

!
xp

x,p

N
S k W W

N
,

under the constraints of a fixed number N of atoms and fixed energy cP0

,and

px,

xp
A

px,

A
xp

NpPNN

where Nxp is the number of atoms at place x with momentum p.

                                                     
1 Privy Councillor. This is a honorific bestowed on eminent German – and Austrian – 

scientists in pre-WWI-times.
2 F. Jüttner: “Das Maxwellsche Gesetz der Geschwindigkeitsverteilung in der 

Relativtheorie.” [Maxwell’s law of the velocity distribution in the theory of relativity] 
Annalen der Physik 84 (1911) pp. 856–882.
F. Jüttner: “Die Dynamik eines bewegten Gases in der Relativtheorie.” [Dynamics of a 
moving gas in the theory of relativity] Annalen der Physik 35 (1911) pp. 145–161.
The first paper deals with a gas at rest, while the second one deals with a moving gas. The 
second paper is much influenced by Planck’s erroneous opinion that temperature should 
be transformed between two Lorentz frames, see below. In my account I present a 
streamlined modern version. 

Once again I apologize for a somewhat anachronistic presentation because, indeed, 

formulae which became  standard later. Capital indices run from 0 to 3 such that  
x0 = ct represents time, while xa are spatial coordinates. The four-momentum of an 

atom of velocity qa  and mass / 1
2

2
q
c  combines its energy cp0  = µc2 and

its momentum pa = µqa  (a = 1,2,3) in one four-vector pA . In that notation we have 

VA and VA respectively. Both are related through VA = gABVB by the tensor gAB which 
in Lorentz frames is given by 

1 0 0 0
0 1 0 0 2 2, so that .
0 0 1 0
0 0 0 1

Ag p p cAB A

Jüttner did not employ the elegant four-dimensional notation of relativistic 

to distinguish between co- and contravariant components of a generic vector 

and momentum Pa
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The maximization of entropy follows the usual steps known from the 
corresponding non-relativistic arguments. The result is known as the 
Maxwell-Jüttner distribution

,expwithexp
xp kT

Ap
A

U

aN
kT

Ap
A

U

a
equ

xpN

where UA is the four-vector of velocity a of the gas

2

2

2

2

c

a

c

A

1
,

1

c
U ,

and T is its temperature, a scalar quantity with respect to Lorentz trans-
formations. a is a Lagrange multiplier and it must be calculated as a 
function of N and T from the constraint on N. That calculation is best done 
in the rest frame of the gas, where UA = (c,0,0,0) holds. In the general case 
the summation – or integration – leads to Hankel functions which makes the 
expressions cumbersome although, of course, Hankel functions have been 
calculated numerically and are tabulated. So, they are available, if needed.

More instructive, however, than the full solutions in terms of Hankel 
functions are expansions in terms of what may be called the relativistic

coldness
kT

c2

, which represents the ratio of the total energy µ´c2 of the rest 

mass to the thermal energy kT. This is obviously a large number for normal
temperatures. The thermal and caloric equations of state may be given by 
such an expansion. Somewhat miraculously the thermal equation of state is 
unaffected by relativity; it still reads p = nkT, as it did for Mariotte and 
Avogadro. But the caloric equation of state becomes more complex, namely

2 3

2

2 22 2

3 15 15
1

8 8

kT kT kT
u µ c ...

µ c µ cµ c

.

Thus the internal energy is still only a function of T , but its derivative 
with respect to T – the specific heat cv – is no longer constant and universal 
as it is in the classical first order term. Rather it depends on T and on µ´, so 
that the equipartition of energy is violated in a mixture of gases.

Despite the successful completion of his task, Jüttner is rather 
despondent about observability and applicability of all this. He calculates 
the value of the relativistic coldness, and for helium he finds it equal to 

K/

1032.4 132

TkT

c  . He comments that result by saying: 

We recognize that for all temperatures amenable to experiment the 
parameter has a very high value for all monatomic gases: Even when we 

µ

µ
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20,000K, the parameter would not sink below1 billion.3 for any gas. 

Maybe Jüttner would have been less discouraged, had he known that the 
centre of the sun has a temperature of 20 million K. But even so, the relati-
vistic coldness would still be roughly one million, so that no noticeable 

And yet, Jüttner’s work was to achieve some relevance in the end, 
although he had to wait for it.

Seventeen years after the work of 1911, the phenomenon of quantum de-
generation was brought to Jüttner’s attention. He studied the works of 
Einstein,4 Fermi,5 and Dirac,6 in which Bose’s new method of counting 
realizations of a state were employed – and in which the difference between 
Fermions and Bosons was recognized. Jüttner incorporated these modifi-
cations of classical, i.e. non-quantum physics into his relativistic formula 
and obtained 7

The modification introduces more complex special functions even than 
Hankel functions into the equations of state, and the results are of little 
suggestive value to the non-expert. General results are listed in the literature 
on relativistic thermodynamics, e.g.8, 9, 10. More instructive are the limiting 
expressions of the equilibrium distribution function for either small or large 
relativistic coldness, or small or large quantum mechanical degeneration. 

As for relevance under physically realistic circumstances Jüttner was still  
pessimistic. He says: 

The significance of both generalized gas theories [relativistic only, and 
relativistic plus quantum corrections] is, however, essentially theoretical. 
One has to consider  that deviations of the relativistic from the Newtonian 
mechanics can only occur at such high temperatures that the speeds of the 

                                                     
3

i.e. 109 , in the rest of the world.
4 A. Einstein: Sitzungsberichte (1924) loc. cit. 
5 E. Fermi: Zeitschrift für Physik (1926) loc.cit. 
6 P.A.M. Dirac: Proceedings of the Royal Society (1927) loc.cit. 
7 F. Jüttner: “Die relativistische Quantentheorie des idealen Gases.” [The relativistic 

quantum theory of the ideal gas] Zeitschrift für Physik 47 (1964), pp. 542–566.
8 S.R. de Groot, W.A. van Leeuven, Ch.G. van Weert: “Relativistic Kinetic Theory.” North 

Holland Publishers Amsterdam (1980).
9 I. Müller, T. Ruggeri: “Rational Extended Thermodynamics.” loc.cit. (1998).

10 C. Cercignani, G.M. Kremer: “The Relativistic Boltzmann Equation. Theory and 
Applications.” Birkhäuser Verlag, Basel (2002). 

Some of these are exhibited in table 10.1. 

relativistic effect can be expected in the sun.

bosons1 1with
fermions1 1exp 1 exp 1

equN Nxp A AU p U pA xp A
a kT a kT

)( ) (
.

consider the temperatures of some stars, which have been calculated as 

 I am using the American nomenclature here: What Wall Street calls a billion is a milliard, 
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particles become comparable with the speed of light. On the other hand, 

eration only at small temperatures. Therefore the full theory could only 
be checked at intermediate temperatures by measurements conducted with 
extreme accuracy, and only, if the van der Waals corrections were taken 
into account properly. 

In other words, Jüttner did not believe that his formulae had any actual 
relevance anywhere. In that pessimistic evaluation he was wrong, however, 
as we shall see now.

White Dwarfs 

The first white dwarf was detected by the eminent astronomer Friedrich 
Wilhelm Bessel (1784–1846) in 1844, although the star was not actually
seen by Bessel; it was  only conjectured from the observation of the wavy 
line of the proper motion of the bright star Sirius. Therefore, ironically, the 
first white dwarf entered the literature as the dark companion of Sirius, also 

astronomer Alvan Graham Clark (1832-1897). And in 1914, Walter Sidney 
Adams (1876-1956) succeeded to measure the spectrum of Sirius B, and 

be quite small in order to appear dim. Thus it came to be called a white

2.7.107m, or 4% of the solar diameter. And yet, according to Eddington’s 
mass-luminosity relation, cf. Chap. 7, Sirius A was twice as massive as the 
sun and, in order to be forced into the observed orbit by the companion, 
the companion had to have about the same mass as the sun. This meant that 
the average density had to be a fantastic 140000 times that of the sun, or  
200000 times that of water. One cm3 has a mass of 200kg!

suggestion of Eddington – Adams re-examined his spectroscopic data and 
found the relativistic red shift of spectral lines which must be expected for 
the intense gravitational field of a massive and compact white dwarf. More 
white dwarfs were discovered as time went on – despite their dimness – and 
some are considerably denser and hotter even than Sirius B. 

Therefore, it was clear that no atoms could exist in a white dwarf, only 
nuclei and electrons. And the nuclei must be fairly heavy nuclei, because 
astronomers have good reasons to believe that white dwarfs are old stars, 
which have essentially burned up their light-weight-fuel, the protons. Now 
they consist of many electrons and few nuclei of atoms of intermediate 
mass, like iron, which cannot serve as fuel for further combustion. If that is 
so, the large majority of all particles are electrons and the mean relative 
molecular mass is µ/µo = 2, cf. Chap. 7.

could thus conclude that its surface temperature is about 10000K, making 

called Sirius B. The first person to see it – in 1862 – as a dim spot was the 

it white hot, considerably hotter than the sun. Given that fact, the star had to 

dwarf. From the known distance the diameter could be estimated as 

Any scepticism about such numbers was quickly silenced when – at the 

the quantization of the translational energy makes itself felt as gas degen- 
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The only remaining source of energy for a white dwarf is gravitational 
contraction, --  Helmholtz fashion. That keeps the star hot in the centre, 
perhaps hot enough – a thousand times as hot as the sun – that it must be 
considered a relativistic gas. Note that the small electronic mass helps in 

this respect, because the relativistic coldness 
kT

c2

is more than 103 times

smaller for electrons than for nuclei, or atoms at the same temperature. 
Now, large speeds make for small de Broglie wave lengths, so that quantum 
effects should be small. However, the large gravitational pressure 
compresses the star to such a degree that even the small de Broglie wave 
lengths interfere and thus produce quantum degeneration. Therefore in a 
white dwarf the electron gas can perhaps be both: a relativistic gas and a 
quantum gas. Chandrasekhar adopted this assumption as the basis for his 
theory of white dwarfs. In this way he provided an application for Jüttner’s 
formulae.

Thermal equation of state inside a white dwarf 

In relativistic thermodynamics the conservation of mass is replaced by the 
conservation of the number of particles, and momentum and energy conservation 
are combined in a vector equation. We have

where0and0 ,
B
,ABT

A

,AN

N A is the particle flux vector and T A B  is the energy-momentum tensor. The 
equilibrium quantities n, e, and p are related to N A  and T A B  as shown in the 
following table. 

 number density     energy density 
A

Ac
NUn

2

1 AB
BAc
TUUe

2

1
2

1 1

3
( )

AB

A B ABc
p U U g T

In a gas in equilibrium N A  and T A B  are moments of Jüttner’s equilibrium 
distribution

1exp

kT

Ap
A

U

a

1

Y
F

so that we have

1 3 1 3
d d d d d d

and .

o o

2 2
p p p p p pA A AB A B

N p F T c p p F
p p
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µ

               pressure 
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22

2

1with

3d2d1d

cµ

p
cµ

o
p

o
p

ppp
is the scalar element of momentum 

space, and 1/Y – or h3 – determines the cell of the phase space.
For a strongly degenerate Fermi gas we thus have, cf. Table 10.1

z

x

o

x

z

z
Ycµc

3

1
pzzYcµn

o

d
2

1

4
4)(4andd23)(4 ,

where 12)ln( akTx . It follows that p depends only on n, not on T ! An 

explicit form of the relation – the thermal equation of state – can be obtained, if the 
integrals are evaluated, so that x can be eliminated.

If relativistic effects were ignored, the square root in the integrand for p would
be absent.

Insert. 10.1 

Subramanyan Chandrasekhar (1910–1995) 

Chandrasekhar was an astrophysicist with a particular interest in white 
dwarfs. As Eddington did for normal stars, he argued that inside a white 
dwarf the atoms are broken down into nuclei and electrons, so that there is a
lot of space for the particles to move in freely, -- even when the densities 
are as big as described above: If the total mass of the star is big enough, 
however, the free space between the particles can be squeezed out, as it 
were. The  electrons are  then  pushed together  and  the  resulting  compact 
cluster of electrons resists the gravitational pull. That equilibrium can 
persist even when the white dwarf cools and becomes a red dwarf and 
eventually, a black one. But not all stars can follow that course as we shall 
now see. 

strongly  degenerate relativistic Fermi gas.11 In that case it was fairly easy to 
consider the limit of the ultimate white dwarf characterized by an infinite 
mass density at the centre and zero radius. Surely no other star could be 
denser and, presumably, have more mass. That ultimate white dwarf came 

                                                     
11 S. Chandrasekhar: “The maximum mass of ideal white dwarfs.” Astrophysical Journal 74 

(1931) p. 81.
    S. Chandrasekhar: “The highly collapsed configurations of a stellar mass, I and II.”

Monthly Notices of the Royal Astronomical Society 91 (1931) p. 456 and 95 (1935) p. 
207.

    See also: S. Chandrasekhar: “An Introduction to the Study of Stellar Structure” University 
of Chicago Press (1939). This book is available in a Dover edition, first published in 1957. 

In part of his work Chandrasekhar assumed that the electron gas is a 
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out to have a mass of approximately 1.4 solar masses, cf. Insert 10.2. This 
limiting mass for white dwarfs became known as the Chandrasekhar limit.
It was confirmed by observation in the sense that no white dwarf was ever 
seen that has more than Chandrasekhar’s limit mass.

The Chandrasekhar limit

Since the mean value of the relative molecular mass is 2, by Insert 10.1 the mass 
density and the pressure are given by
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Differentiation with respect to r and the use of the thermal equation of state, cf. 
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Non-dimensionalization with the unknown central value c of provides
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We investigate the case that c is infinite. Presumably that assumption 
characterizes the ultimate white dwarf in the sense that no other one could be 
denser and have more mass. In that case it is easy to solve – numerically – the 
differential equation for the central values (0) = 1 and (0) = 0 and one obtains 
the  graph  shown  in  Fig. 10.1. On the surface of the star, at r = R, we  must  have 

= 0,  hence = 0. According to the figure, that value occurs for = 6.9, so that R
is zero, but the mass is not. It can be calculated as follows: 
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                                                     Insert 10.2 

Fig. 10.1.  A kind of density distribution in
the ultimate white dwarf 

The last step makes use of the differential equation in the form
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Obviously, degeneration of the electron gas has played a decisive role in the 
forgoing analysis. It is less clear that the relativistic square root in the equation for 
p is essential for the result. However, it is! Without that relativistic contribution 
there is no mass limit.

The usual interpretation of the Chandrasekhar limit is that the electron gas cannot 
withstand the gravitational pull of bigger masses than 1.4 M . It is assumed that 
under great pressure the electrons are pushed into the protons of the iron nuclei to 
form neutrons. The star thus becomes a neutron star, with a truly enormous mass 
density: 1015 times the already large density of a white dwarf. Neutron stars have 
their own mass limit  – 3.2 M – according to a theory presented by J. Robert 
Oppenheimer (1904–1967) in 1939. If a star is bigger than that, – and does not get 
rid of the excess mass by nova- or supernova-explosions – it collapses into a black 
hole, at least according to current wisdom. There seems to be no conceivable 
mechanism to stop the collapse. It is tempting to pursue the matter further in this 
book. However, there is a touch of science fiction in the subject and I desist, – with 
regret.

Chandrasekhar has left his mark in several fields of physics. In his 
autobiography he says that he was … motivated, principally, by a quest 
after perspectives…compatible with my taste, abilities and temperament.
Stellar dynamics was the subject of only the first such quest. Others 
followed: Brownian motion, radiative transfer, hydrodynamic stability, 

relativistic astrophysics, mathematical theory of black holes. Whenever 
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The maximal mass of a white dwarf is not
                                                  alone in having been named after

                                                   Chandrasekhar. There is also the NASA X-ray
                                                   observatory which is called Chandrasekhar 
                                                   observatory, and a minor planet,– one of about
                                                  15000 – which was named Chandra in 1958. 

Fig. 10.2. Subrahmanyan Chandrasekhar 

Maximum Characteristic Speed

After Jüttner there was a period of stagnation in the development of rela-
tivistic thermodynamics. To be sure, there was some interest, and in 1957 
John Lighton Synge (1897–1995) streamlined Jüttner’s results in a neat 
small book12 which, however, did not significantly add to previous results. 

Also Eckart provided a relativistic version of thermodynamics of irrever-
sible processes,13 in which he improved Fourier’s law of heat conduction by 
accounting for the inertia of energy, cf. Chap. 8. However, his differential 
equation for temperature was still parabolic so that the paradox of heat 
conduction persisted. Understandably that paradox has irritated relativists 
more than it did non-relativistic physicists. After all, if no atom, or 
molecule can move faster than the speed of light, heat conduction should 

                                                     
12 J.L Synge: “The Relativistic Gas.” North Holland, Amsterdam (1957). 
13 C. Eckart: “The thermodynamic of irreversible processes III: Relativistic theory of the 

simple fluid.” loc. cit. 

he found that he understood the subject, he published one of his highly 
readable books, – in his words: a coherent account with order, form, and 
structure.  Thus he has left behind an admirable library of monographs for 
students and teachers alike. His work on white dwarfs, but also his lifelong 

physics in 1983, fifty years after he discovered the Chandrasekhar limit.
exemplary dedication to science, was rewarded with the Nobel prize in 
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not be infinitely fast. This problem was the original motive for Müller to 
develop extended thermodynamics, cf. Chap. 8, and its relativistic version.14

Shortly afterwards, Israel15 published a very similar theory and, eventually, 
it was shown by Boillat and Ruggeri16 that extended thermodynamics of 
infinitely many moments predicts the speed of light for heat conduction. 
Thus the paradox was resolved; the field is conclusively explained by 
Müller in a recent review article.17

                                                     
14 I. Müller: “Zur Ausbreitungsgeschwindigkeit ...” Dissertation (1966)  loc. cit.

A streamlined version of relativistic extended thermodynamics may be found in:
I-Shih Liu, I. Müller, T. Ruggeri: “Relativistic thermodynamics of gases.” Annals of 
Physics 169 (1986).

15 W. Israel: “Nonstationary irreversible thermodynamics: A causal relativistic theory.”
Annals of Physics 100 (1976).

16 G. Boillat, T. Ruggeri: “Moment equations in the kinetic theory of gases and wave 
velocities.” (1997) loc.cit. 

17 I. Müller: “Speeds of propagation in classical and relativistic extended thermodynamics.”
http:/www.livingreviews.org/Articles/Volume2/1999-1mueller.

18 N.A. Chernikov: “The relativistic gas in the gravitational field.” Acta Physica Polonica 23 
(1964).

    N.A. Chernikov: “Equilibrium distribution of the relativistic gas.” Acto Physica Polonica 
26 (1964).

    N.A. Chernikov: “Microscopic foundation of relativistic hydrodynamics.” Acta Physica 
Polonica 27 (1964).

19 H. Minkowski: “Raum und Zeit.” [Space and time] Address delivered at the 80th 
Assembly of German Natural Scientists and Physicists, at Cologne. September 21st, 1908. 

    The address has been translated into English and is reprinted in “The Principle of 
Relativity. A collection of original memoirs on the special and general theory of 
relativity.” Dover Publications pp. 75–91 

A decisive step forward in the general theory was done by N.A. 
Chernikov in 1964 18 when he formulated a relativistic Boltzmann equation. 
Let us consider this now. 

Boltzmann-Chernikov Equation

I have already mentioned the elegant four-dimensional formulation which is 
now standard in relativity. It was introduced by Hermann Minkowski 
(1864–1909). Minkowski had taught Einstein in Zürich and later he became 
the most eager student of Einstein’s paper on special relativity. He sugge-
sted that the theory of relativity makes it possible to take time into account 
as a kind of fourth dimension and he introduced the distance ds between 
two events at different places and different times19

23222122 )()()( ddddddd xxxtcxxgs BA
AB

2 .

                                                      in a Lorentz frame 
                                            with coordinates ct´,x´a
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In particular, for a rotating frame – on a carousel (say) – with coordinates 
(ct,r, ,z) given by

t  = t,  x 1 = r cos( + t), x 2 = r sin( + t), x 3 = z

the metric tensor reads
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The metric tensor has some significance, because it allows us to write the 
equation of motion of a free particle, whose orbit is parametrized by , in 
the form 

.
2

where
1

d

d

d

d

2d

2d

Dx

AC
g

Ax

DC
g

Cx

DA
g

BDg
B
AC

,

BxAx
B
AC

Bx

Indeed, in a Lorentz frame, with B

AC
 = 0, the solution of this equation is 

a motion in a straight line with constant velocity, which is the defining 
feature of an inertial frame. The parameter is usually chosen as the proper
time of the moving particle, i.e. the time read off from a clock in the 
momentarily co-moving Lorentz frame. With that, the equation of motion 
may be written in the form 

x
p,pp

µ

p A

ABAB
AC

B

d

d
where

1

d

d

is the four-momentum of the particle as before. 

In this manner the tensor g AB, whose invariance defines the Lorentz 
frames, may be interpreted as a metric tensor of space-time. Its components 
in a arbitrary frame xA = xA(x  B) can be calculated from

The equation of motion represents the equation of a geodesic in space-time. This is 
a nice feature, much beloved by theoretical physicists, because it supports their 
predilection for a specious geometrical interpretation of the theory of relativity. The 
notion was useful for Einstein, when he developed the theory of general relativity; 
but most often it is used to confuse laymen with talk about curved space, etc.
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The relativistic – non-quantum – formulation of the Boltzmann equation 
was derived in a series of three remarkable papers by N.A. Chernikov. It is 
an integro-differential equation for the relativistic distribution function 
F(xA,pa) which reads 
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Comparison with the classical Boltzmann equation, cf. Chap. 4, easily 
identifies the individual terms. I do not go into that, other than saying that

the term with  represents the acceleration of a particle between two 
collisions,20 and 
the collision term on the right hand side vanishes for the Maxwell-
Jüttner distribution because of conservation of the energy and mo-
mentum vector pA in the collision. 

Chernikov uses the equation for the formulation of equations of transfer 
for moments of the distribution function and he concentrates on 13 
moments, which is rather artificial for a relativistic theory; it is more 
appropriate to include the dynamic pressure and thus come up with a theory 
of 14 moments.21 But we shall not pursue this question here, because so 
far – apart from the finite characteristic speeds – the multi-moment theory 

Seeing that the collision term vanishes for the Maxwell-Jüttner 
distribution, we must ask whether the Boltzmann-Chernikov equation is 
satisfied by that distribution, or what conditions on the fields a(xB), T(xB),
and UA (xB) are required by the equation. Insertion of the distribution leads to 
the requirements 
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where the semi-colon denotes covariant derivatives. 

                                                     
20 The possibility of such a term was ignored in Chap. 4, because I wished to be brief. The 

term is only present in a non-inertial frame. 
21 See: I. Müller, T. Ruggeri: “Rational Extended Thermodynamics.” loc. cit.

Of course, nobody will try to solve the equation of the geodesic in  its general form 
in order to calculate the orbit of a free particle. It is so much easier to solve it in a 
Lorentz frame and transform the straight line obtained there to an arbitrary frame.

has not provided any suggestive results that go beyond Eckart’s reform-
ulation of the Fourier law, see Chap. 8. Let us concentrate on equilibrium 
instead:
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Since a is a function of n and T, it follows that a temperature gradient 
must exist in equilibrium, if there is a density gradient. That conclusion may 
be made more concrete by exploiting the second condition for the special 
case of a gas at rest on a carousel. We obtain 

This result is eminently plausible, because it reflects the inertia of the 
thermal energy in the field of the centrifugal potential 2r2. Indeed, if 
energy has mass – and weight – it should be subject to sedimentation, as it 
were, by centrifugation.

Einstein has postulated – in his general theory of relativity – that inertial 
forces and gravitational forces are equivalent. Accordingly non-homo-
geneous temperature fields are also created by gravitational fields – not 
only by centrifugal fields – because they lead to stratification of mass 
density. I have already commented on that aspect in the context of Eckart’s 
relativistic paper. 

In view of the following argument, I should like to stress that the last 
relation does not imply a transformation formula for the temperature. It 
represents a property of the scalar temperature field as a solution of the 
energy balance equation in a centrifugal force field. 

Ott-Planck Imbroglio 

In 1907 the theory of relativity was new. A fundamental change had 
occurred in mechanics, and physics in the immediate aftermath was in a 
state of flux. The extension of the new concepts to thermodynamics was 
clearly desirable. Everything seemed possible and so Planck22 came up with 
the idea to modify the Gibbs equation. Einstein23 elaborated on that idea and 
introduced a working term –qdG into the heating of a body moving with the 

                                                     
22 M. Planck: “Zur Dynamik bewegter Systeme.” [On the dynamics of moving systems] 

Sitzungsberichte der königlichen preußischen Akademie der Wissenschaften (1907). 

23 A.. Einstein: “Über das Relativitätsprinzip und die aus demselben gezogenen 
Folgerungen.” [On the principle of relativity and the conclusions drawn from it] Jahrbuch 
der Radioaktivität und Elektronik 4 (1907) pp. 411–462.  Reprinted in: “Albert Einstein, 
die grundlegenden Arbeiten.” [Albert Einstein, the basic works] K.v. Meyenn (ed) Vieweg 
Verlag (1990). 

 In the reprinting the modified Gibbs equation is misprinted: It says dQ instead of dG.

    Printed version: Annalen der Physik 26 (1908) p. 1. 
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speed q. G is the momentum; it includes a relativistically small term, 
because the mass is 

2c

Um . The modified Gibbs relation thus reads 

GqVpUQST ddddd .

The transformation of dU, p,dV, and dG between the moving body and 
the body at rest were known and thus Einstein produced the relation

2

02
d 1 d

q
Q Q

c

between the heating of the moving body and the heating of the body at rest.

                                                     
24 H. Ott: “Lorentz-Transformation der Wärme und der Temperatur.” [Lorentz transfor-

mation of heat and temperature] Zeitschrift für Physik 175 (1963) 70–104. 

Now Planck had already argued that the entropy of the body should be 
unaffected by motion, and therefore the second law written as dq = TdS
seemed to require 

2

021 qT T
c

.

That relation was later rephrased by epigones of the argument in the 
words: A moving body is cold. 

On the surface the argument appears plausible. It does ignore, however, the fact 
that the Gibbs relation is a relation for a body at rest: The heating consists of the 
non-convective part of the energy flux and the internal energy is the non-convective
part of the energy. The power, or working of the force dG has no place in the Gibbs 
equation therefore, or it should not have.

Also, the heating of a body in the Gibbs equation is the integral of the heat flux 
over the surface. And relativistically the heat flux forms three components of the 
energy-momentum tensor. It is that fact which determines the transformation of the 
heating, not its position in the Gibbs equation. 

None of the serious physicists in the following years and decades 
followed Planck and Einstein in this precarious thermodynamic argument, 
neither  Eckart, nor Synge, nor Chernikov. Consequently one might have 
thought that the argument was discarded as a valiant, perhaps, though 
erroneous early attempt on relativistic thermodynamics.

Not so, however! In 1962, H. Ott24 revisited the argument on a slightly 
different basis involving Joule heating, and he came to the conclusion that
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such that: A moving body is hot.
Serious people in the field ignore the subject, which was appropriately 

termed the Ott-Planck imbroglio by Israel and Stewart.25 However, the farce 
continues and Peter Thomas Landsberg26 – himself an enthusiastic 
contributor to the imbroglio – cites papers on the subject of temperature 
transformation in special relativity as recent as the late 1990’s.27

                                                     
25 W. Israel, J.M. Stewart: “On transient relativistic thermodynamics and kinetic theory II.”

Proceeding of the Royal Society London Ser. A 365 (1979). 
26  www.maths.soton.ac.uk/staff/Landsberg
27 I have a personal memory of all this: Ott’s paper was in the process of publication when he 

died. So the proof sheets – already adorned with the multi-coloured marks of the copy-
editor of the pre-computer era – where sent to Josef Meixner for his evaluation. Meixner 
was my advisor at the time and he gave the paper to me, his most junior assistant. 
Naturally, perhaps, I thought that my opinion was being requested. And so – having 
already studied Jüttner’s papers and Synge’s booklet – I put my precocious and very junior 
thumb down on the paper. But Ott had been an important member of the German Physical 
Society, and he was not to be embarrassed,  not even posthumously, and certainly not by 
the Zeitschrift für Physik. So the paper was published, and the imbroglio took another 
turn.
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11   Metabolism

If the truth were known, thermodynamics would be seen as explaining little 
about the details of life functions in animals and plants, at least compared to 
what there is to be explained. This is no different than with engines: 
Thermodynamics cannot provide a recipe for their construction, or give 
information about where and how to arrange seals and boreholes for 
lubrication, and how to operate the valves and where to install them. What 
thermodynamics can do about engines is to give an account of the balance 
of in- and effluxes of mass, momentum, energy and entropy, and that is 
essentially what it can also do about life. For the engine that task has been 
done satisfactorily; for animals and plants maybe there remains something 
to be done.

Having said this, I hasten to stress that, what thermodynamics is able to 
provide, is good enough to refute esoteric theories, and to convince people 
with an open mind that nothing unnatural occurs in the living body: No 
vitalistic force of old, nor Niels Bohr’s complimentarity of life and physics,
akin to the wave-particle dualism of quantum mechanics.1

I have previously – cf. Chap. 4 – warned against an over-interpretation of 
entropy as a measure of disorder and I stress that caution again. To be sure, 
an animal definitely seems more ordered than the sum of its atoms, loosely 
distributed, and it does probably have a lower entropy. But then, what is the 
entropy of an animal? Or let us ask the easier question: What is the entropy 
of a molecule like hemoglobin, one of the simpler proteins with only about 
500 amino acids? Maybe molecular biologists can come up with an answer; 
if so, I do not know about it. But I do know that surely it must be a case of 
simplism when Schrödinger says2 that animals maintain their highly ordered 
state, because they eat highly ordered food. Indeed, before the animal body 
makes use of the food in any way, – and sets about to create order – it 
breaks the food down to much less ordered fragments than those which it 
ingests.

                                                     
1  In his later years Bohr expressed doubts that life functions can be reduced to physics and 

chemistry. See: N. Bohr: ‘‘Atomphysik und menschliche Erkenntnis.” [Atomic physics 

and human knowledge] Vieweg Verlag, Braunschweig (1985).
2  E. Schrödinger: ‘‘What is life? The physical aspect of the living cell” Cambridge: At the 

University Press, New York: The Macmillan Company (1945) p. 75. 



308     11  Metabolism 

In writing this chapter on metabolism I disregard Schrödinger’s warning 
that a scientist is usually expected not to write on any topic of which he is 
not a master.3 But then, Schrödinger did not heed that warning himself. And 
the subject is interesting, and it seems to be replete with unsolved problems 
of a quantitative nature. Therefore it is easy to yield to the temptation to 
write about it, albeit in a layman’s manner. 

Carbon Cycle 

One of the truly mind-expanding discoveries of all times, concerning life 
and life functions, was the observation that carbon, hydrogen and oxygen 
cycle through living organisms, driven by solar radiation: Plants use water 
from the soil and carbon dioxide from the air to produce their tissue and 
they release oxygen. Animals on the other hand breathe oxygen and use it to 
break down plant tissue. In the process they release carbon dioxide and 
water. The plants perform their task only in the light.

Jan Baptista van Helmont (1577–1644) was an alchemist on the verge of 
becoming a chemist or, perhaps, a biochemist. On the one hand he claimed 
to have seen and used the philosopher’s stone – the hypothetical ultimate 
tool of alchemy – but on the other hand he was keen enough as an 
experimenter to see that water was essential for plant growth, while soil was 
not, or not to the same degree. Helmont did not recognize the importance of 
carbon dioxide for plants, even though he actually discovered that gas, 
which he called gas sylvestre, i.e. wood gas, because he had found that it 
was released by burning wood. It took another hundred years before the 
significance of that observation was recognized by Stephen Hales (1677–
1761). Carbon dioxide has originally entered the wood from the air 
surrounding the leaves of a plant, thus  furnishing the second component – 
after water – that is essential for plant growth.

Another generation later Joseph Priestley (1733–1804), one of the dis-
coverers of oxygen, noticed that oxygen was used up in the air by breathing 

giving off oxygen. These observation were all couched in the language 
of the phlogiston theory, – even then obsolete4 –, but Jan Ingenhousz 
(1730–1799) was able to penetrate the verbiage and to see a broad scheme 
of balance in nature: Plants consume the carbon dioxide of the air and 

                                                     
3  Ibidem. p. vi. 
4  The phlogiston theory is the forerunner of Lavoisier’s caloric theory, see Chap. 2. In the 

18th century a weightless fluid called phlogiston was supposed to flow from a body when 

that body burns, or rusts, or is just cooling. As far as burning and rusting was concerned, 

Lavoisier refuted the concept, because he showed that both phenomena are due to the 

combination of a body with oxygen. Heating or cooling was another matter. Lavoisier 

maintained that heat was indeed a weightless fluid which he called caloric.

and that, plants can restore the freshness of used-up air, obviously by 
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release oxygen, while animals breathe oxygen and give off carbon dioxide. 
In this manner there is a stable balance. Ingenhousz showed that the plants 
need light in order to build up their tissue. That is why we now call the 
process photosynthesis.

Ingenhousz, who was first to discover this grand scheme, is not very 
much known nowadays, but he was a celebrity in his time. Being a 
physician, he became an early expert on inoculation, particularly smallpox 
inoculation, and he travelled all over Europe serving the members of royal 
families with smallpox, as it were, – in small doses!

Respiratory Quotient 

It was the eminent chemist Berzelius, cf. Chap. 4, who introduced the 
distinction of organic and inorganic substances in 1807. The former were 
the substances of life, and – in Berzelius’s view – they called for a separate 
type of chemistry from the chemistry of elements and of their simple 
stoichiometric compounds that were the stock-in-trade of his own work and 
everybody else’s at the time. There were vague notions that a vis viva, a 
vitalistic force, was involved in living bodies, a spark of life. Berzelius 
himself and his followers even conceived of a strict barrier between the 
chemistries of life and non-life.

Seeing and appreciating the difference between rock and lizard, as it 
were, one must admit that there is a certain plausibility to the idea and it 
took at least half a century to refute it. This required an improved 
knowledge of the life functions, and exact measurements. The first organic 
process to be thoroughly investigated was respiration. Even Lavoisier and 
Henry Cavendish (1731–1810) had understood that respiration supported a 
kind of combustion in the body of animals by which the oxygen of the air 
was partially consumed and converted to carbon-dioxide and water. 
Obviously therefore, whatever substance, or substances fed the combustion 
had to contain carbon and hydrogen. Beyond that, the substances were 
unknown chemically, so that no quantitative conclusions  could be drawn. 
However, it stood to reason that, whatever it was that burned had to be 
supplied to the animal – or man – with the food. 

Early in the 19th century it became clear upon analysis of the food of 
animals that there were three main types 

carbohydrates lipids proteins.

The carbohydrates form the chief  components of cereals, and of fruit and 
vegetables. They are of different types but closely related and, for the 
moment, we take sugar – more precisely glucose – as their representative. 
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The chemical formula is C6H12O6, so that Gay-Lussac – one of the 
discoverers of the thermal equation of state of ideal gases – could assume 
that glucose consisted of 6 carbon atoms strung together and a water 
molecule attached to each one in the manner of hydrates. The structure is 
more complex, as we know now, see Fig. 11.1, but Gay-Lussac’s concept 
led to the misnomer carbohydrate, which is here to stay. Actually, what we 
eat is not glucose itself, but rather something like starch or other substances 
which are built up from several or many glucose molecules. The large 
molecules are held together by glycoside bonds, having shedded water 
molecules in a process that is called condensation – obviously because it 
produces liquid water.

Again lipids, or fats are of varied types. Their pioneer was Michel 
Eugène Chevreul (1786–1889). Fats are used in manufacturing soap and 
as a young man Chevreul was involved in that business. He was able to 
isolate different insoluble organic acids – also called carbonic acids, or fatty 
acids – like stearic acid, palmitic acid and oleic acid.  Lipids themselves 
result from the carbonic acids by esterification with glycerol C3H8O3 , 
giving off water, i.e. undergoing condensation cf. Fig. 11.1. A typical 
representative is oleine C57H104O6,  an ingredient of olive oil, or also of 
blubber, i.e. whale oil.

Fig. 11.1. Left: Two glucose molecules combining by a glycoside bond. Right: Olein. 
Glycerol combining with oleic acids



Respiratory Quotient 311

While carbohydrates and lipids contain only carbon, hydrogen and 
oxygen, the third type of food-stuff – of which egg-white is the best-known 
representative – also contains nitrogen, a little sulphur and, sometimes, still 
less phosphorus. The molecules are polymers formed from amino-acids 
which are bound together by a peptide link, again a bond formed by 
condensation. The detailed structure is too complex and varied to be easily 
characterized. In 1838 Gerardus Johannes Mulder devised a model 
molecule of 88 individual atoms which he hoped might be used to build up 
other albuminous substances. The word albuminous is derived from albus = 
white in Latin; it is sometimes used as a generic name for substances like 
egg-white.5 More often these substances are called proteins in English, 
because Mulder called his model molecule Protein, from Greek, meaning of 
first importance. Otherwise the model sank into oblivion; it was too simple. 

Now, if indeed food was involved in a combustion inside animals, and if 
CO2 and H2O were the reaction products, the reactions for carbohydrates 
and lipids had to obey the stoichiometric formulae 

1

6 12 6 2 2 26

57 521

57 104 6 2 2 280 80 80

C H O O CO H O

C H O O CO H O
.

The volume ratio of exhaled CO2 to inhaled O2 is called the respiratory
quotient, abbreviated as RQ. Thus the stoichiometric formulae imply 

RQ = 1         for the carbohydrate 
                                RQ = 0.71    for  the lipids,

since both CO2 and O2 are ideal gases. The value for proteins lies in-
between, at roughly RQ = 0.8. 

So, if chemistry is involved in respiration, the RQ should lie between 0.7 
and 1. And indeed, the chemist Henri Victor Regnault6 put animals in a 
cage and carefully measured the oxygen input and the carbon-dioxide 
output and found the ratio to be right. What is more, if he fed the animals a 
diet of carbohydrates, the RQ tended to one, while on a fat-rich diet it 
tended to 0.7. This was later confirmed for a man in a cage by the chemist 
Max von Pettenkofer (1818–1901) – the founder of scientific hygiene. All 
of this provided strong evidence that there was no vis viva involved, at least 
not in respiration.

                                                     
5  Actually, in German proteins are called ‘‘Eiweisse” [egg whites].
6 We have met him before in connection with his 700 page-long memoir of careful 

measurements of vapour properties, cf. Chap. 3.
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Metabolic Rates 

So what about the energy to be gained from food? Was the first law 
satisfied, or did the intervention of a vitalistic force render thermodynamic 
laws invalid in the field of nutrition?

If sugar and fat and the mix of proteins normally eaten by an animal are 
burned in a calorimeter they provide heats of reaction as follows7

g

kJ

105.39

106.23

101.17

lipids

proteins

sugar

3

3

3

.

The question is whether these values are also relevant when food is 
consumed by eating. 

The experimental investigation was infinitely more difficult than the 
determination of the respiratory quotient. First of all, it requires calorimetric 
studies which are notoriously difficult even in the best of circumstances. 
Secondly, here the feces had to be analysed in order to find out which 
proportion of the ingested food remained unconsumed by the body. And a 
quantitative urine analysis had to determine the urea content, which is the 
substance by which the body gets rid of the nitrogen ingested with proteins. 
Naturally the RQ was also part of the investigation. 

The person who did all this carefully was the physiologist Max Rubner 
(1854–1932). He presented his findings in a report8 in which he came to the 
conclusion that the law of conservation of energy was maintained in 
nutrition just as punctiliously as in ordinary combustion. By now scientists 
were ready to believe that physical laws govern both: life and non-life. 

Once this was understood, the distinction between organic and inorganic 
chemistry began to lose its original meaning. Organic chemistry became the 
branch that deals with carbon compounds. 

The chemical changes that take place in animals and humans are called 
metabolism; from Greek: to rearrange. The metabolic rate may be 
measured in Watt – just like the power of a heat engine. The maximal 
metabolic rate that a person can achieve is approximately 700W, but that 
can only be sustained for a few minutes. So what is the minimum, the basal
metabolic rate?

The basal metabolic rate is abbreviated as BMR; it can be achieved by a 
person lying down in a comfortably warm room, having fasted for some 

                                                     
7 We are now back from the mol to ordinary mass units. The use of the mol in organic 

chemistry with it huge molecules would be totally impractical. Not so, however, for the 

glucose synthesis and the glucose decomposition, see below.
8 M. Rubner: ‘‘Gesetze des Energieverbrauchs bei der Ernährung.” [Laws of energy 

consumption in nutrition] (1902). 
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time and being mentally relaxed. In that case we measure a BMR of 50W 
for a typical adult man; that is the rate at which we need to feed him to keep 
him alive. A normally active person may need approximately twice that 
amount. And he or she emit this power as heat, which is why a crowded 
room needs no heating. 

Digestive Catabolism

So far so good. But the fact remains that there is a lot of difference when 
food is burned in a fire or when it is consumed in the body. And indeed, the 
direct reaction between the sugar (say) and oxygen involves so large an 
activation energy that it takes an open flame to start it. This is not feasible 
in the body, of course. In the body the energy barrier must be bypassed by 
suitable catalysers rather than overcome by brute force, i.e. heat in this case.
The catalysers were originally called ferments. Later – when their nature 
became clearer – they were called enzymes; and they are proteins. Reading 
about biochemistry, one gets the impression that we do not know much 
about body thermodynamics, when all we do know is that carbohydrates, or 
lipids, or proteins burn to give CO2 and H2O. The real question is how the 
body goes about this, and that makes biochemistry a science of enzymatic 
catalysis. Having said this, I hasten to add that in the sequel, although we 
shall always be dealing with enzyme-catalysed reactions, we shall largely 
ignore the enzymes; and we are able to do that, since presumably – or by 
definition –  the catalysers do not contribute to the energies and entropies of 
the reactants and resultants.

The most evident difference between the burning in an open fire and 
burning inside animal bodies is that the latter occurs slowly and at body 
temperature. In fact, it is common knowledge that human life is severely 
jeopardized when a person has a temperature beyond 42°C. The reason for 
this high sensitivity of organic material against heat was discovered by 
Linus Carl Pauling (1901–1994), who suggested in 1936 that the proper 
functioning of proteins (say) depended to a large extent on weak hydrogen
bonds. Such bonds provide a precarious stability to organic macromolecules 
when they are folded in a particular fashion. Pauling even envisaged helical 
protein molecules and thus became a forerunner of the biochemistry of the 
genetic code.9

As we eat them, starch, lipids and proteins have no chance to arrive 
where we need their structural units, the glucose, fatty acids and amino 
acids: We do not need them in the digestive tract but rather inside the body 
tissue, – in the blood, the liver, etc. The large molecules of food must be 
broken down before they can be absorbed by the tissue, and that break-
                                                     
9  The notion of molecular helicity helped Francis Harry Compton Crick (1916–2004) and 

James Dewey Watson (1928–    ) to uncover the shape of nucleic acids (DNA).
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down happens during the digestive catabolism. Catabolism is the Greek 
word for break-down. Let us take starch as an example, which is essentially 
a long chain of glucose molecules. 

Of course, it is common knowledge that the stomach contains acid juices, 
and they might go a long way to break up the starch into glucose. The study 
of gastric digestion begins in the Wild West in the year 1819 where William 
Beaumont (1785–1853) was surgeon of a border post in northern Michigan. 
One of his patients had received a bullet wound that left him with a fistula – 
an opening – leading to the stomach. Thus Beaumont was able to study the 
changes which the food undergoes in the stomach, and he did so with so 
much enthusiasm that the patient eventually ran away from him. That was a 
wise decision on the part of the patient, because away from his doctor he 
lived to the old age of 82 years,10 always with the fistula.

Later, and in a different part of the world, the physiologist Claude 
Bernard (1813–1878) created fistulae artificially in different parts of the 
digestive tract of animals. He was heavily attacked for this by the anti-
vivisectionists of the day, including his own wife, who left him over the 
issue. However, Bernard was able to discover that digestion does not 
exclusively happen in the stomach. By inserting foodstuffs into the small 
intestine he showed that the major part of the digestion takes place there, 
under the influence of the secretions of the pancreas, the large gland 
situated below the stomach. 

As time went on, the enzymes were discovered and their nature as 
proteins with very specific capacities to catalyse reactions. Digestive 
enzyme activity begins actually in the mouth, where the saliva contains the 
enzyme amylase which breaks up starch, – or helps water to break up the 
glycoside links between the glucose molecules that form starch. This is why 
bread, if kept in the mouth long enough, develops a distinctive sweet taste. 
Further down the digestive track other enzymes pitch in, so that, when the 
small intestine is left, the food is largely split into its structural units: Not 
only starch into glucose, but also lipids into fatty acids, and proteins into 
amino acids. Whatever is not broken up at that point is excreted. 
Chemically speaking the break-up occurs through enzyme-assisted 
hydrolysis, the insertion of water molecules between the structural units of 
the macromolecules, or the reverse of condensation. Hydrolysis breaks up 
the glycoside- and ester- and peptide-bonds in the food. These are 
exothermic processes, although the heats of reaction are small. 

That is the first step of catabolism, the food break-down. Now, the small 
break-down products, viz. glucose, fatty acids and amino acids are able to 
pass the intestinal membranes out of the digestive tract and into the body 
tissue itself, where they are decomposed further; remember that we must 
end up with CO2 and H2O – and urea.

                                                     
10 I. Asimov: ‘‘Biographies...” loc.cit. p. 268. 
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Tissue Respiration

The discovery of the modes of break-down of glucose inside the body tissue 
occurred in the first half of the 20th century. To a non-chemist like myself it 
represents the successful assembling of the most amazing inventive puzzle, 
based on the flimsiest evidence. In the beginning it was known that  glucose 
(say) enters the tissue through the intestinal walls and that oxygen enters the 
blood through the lungs and is carried to the body cells by hemoglobin, the 
stuff that gives blood its red colour. But how do those two components 
come together in order to react and liberate the energy and consume entropy 
according to the stoichiometric equation, see above 
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such that the Gibbs free energy – which is the essential quantity – decreases 
by 2873

mol

kJ , if the reaction occurs at the body temperature of 37°C. 

Actually it turns out that the glucose molecule is first decomposed into 
two lactic acid molecules C3H6O3 before the interesting things happen. 

2 2

The problem was approached from opposite ends: The consumption of 
oxygen and the lactic acid oxidation. Both occur separately so that lactic 
acid and oxygen never get together directly chemically. The early 
champions of the discovery were the chemists Heinrich Otto Wieland 
(1877–1957) and Otto Heinrich Warburg (1883–1970) and both engaged in 
a fruitful scientific controversy. 

Warburg had invented a manometer that could be used to measure the 
uptake of oxygen by tissue and he observed that the oxygen combined with 
heme enzymes. He did not know what the oxygen was doing there, but his 
insight and experimental acumen were rewarded with the 1931 Nobel prize. 
Wieland on the other hand recognized that the oxidation of lactic acid 
proceeds by dehydrogenation, i.e. the splitting-off of two hydrogen atoms 
from the organic molecule. Subsequently the two bonds left free in lactic 
acid – by the departure of the hydrogen atoms – join to form a double bond 
C = O inside the molecule – a keto group – which, with water, is converted 
to a CO2 molecule plus another pair of hydrogen atoms. There remains 
acetic acid CH3COOH as the organic compound to be broken down further.

After Wieland, one of Warburg’s students, Hans Adolf Krebs (1900–
1981) – Sir Hans Adolf after 1958 – took up the matter of dehydrogenation 
and invented the Krebs cycle which can attach an acetic acid molecule to an 
enzyme and grind it down to individual H-atoms and CO2 and then return 
and be ready to accept the next acetic acid molecule for grinding down, etc. 
The overall formula – starting from lactic acid – reads 

Therefore we rephrase the above question and ask how lactic acid reacts with 
oxygen to form CO  and H O.
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3 6 3 2 2
3 3 12C H O H O CO H .

The six pairs of hydrogen atoms are handed down a sequence of enzymes 
with which they build tighter and tighter bonds, before they reach oxygen 
and form water. The energetic downward steps are such that each hydrogen 
pair activates three adenosine tri-phosphate molecules. These so-called 
ATP’s are the molecular energy carriers and we shall describe them and 
discuss their action in a short while.

Fig.11.2. Wieland, Warburg and Krebs, pioneers of intermediary metabolism 

Before that, however, let it be said that the Krebs cycle is not only 
involved in glycolysis, the breaking up of sugar, but also in the catabolism 
of fatty acids and of amino acids. Fatty acids and amino acids are first 
broken down to acetic acid which can then enter the Krebs cycle just as the 
acetic acid originating from lactic acid does. The catabolism of fatty acids is 

discuss.

Anabolism

Obviously the energy – or enthalpy – of reactions in the tissue does not all 
appear as heat, as it does in a flame. Indeed, an animal and man are able to 
exert power, and they must do so, at least to the extent of the basal 
metabolic rate. Also animals grow, and they are able – in their bodies – to 
produce fat even if they ingest primarily carbohydrates. So they are building 
up complex molecules from the simpler ones that have entered their tissue. 
The process is called anabolism from Greek: to build up.

A first case of anabolism was discovered as early as 1856 by Bernard, the 
vivisectionist. He noticed that glucose is converted into glycogen, a starch-
like substance in the liver. And he also saw that glycogen regulates the 
sugar content of the blood: If the blood is swamped with glucose, glycogen 
is formed , and if there is too little glucose in the blood, glycogen falls back 

particularly productive of new ATP’s, which we shall now proceed to 
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to sugar. Diabetes happens, if that balance fails to function. Therefore, 
obviously, the liver is capable of forming starch from glucose, just the 

Two things are interesting about the balancing act between glucose and 
glycogen: Firstly, that it proceeds through sugar phosphate, albeit only as an 
intermediate,11 and secondly that adenosine tri-phosphate is involved, an 
organic compound – invariably abbreviated as ATP – which was discovered 
in 1929 by the biochemist K. Lohmann. He found that phosphoric acid 
H3PO4, which had been thought to belong firmly to inorganic chemistry, 
played an important role in muscle action.

ATP results from phosphoric acid by condensation of three phosphor 
acid molecules and an adenosine molecule which we may write as R–OH,
since its exact form does not concern us. Thus ATP has the structural 
formula

The biochemist Fritz Albert Lipman (1899–1986) noticed that the two 
phosphate ester bonds marked by an arrow can be more easily hydrolized 
than the bond near the adenosine, and his interpretation was that those two 
bonds lie at a higher level of free energy. Quantitatively it seems that there 
is about 30

mol

kJ to be gained from a reaction involving a high energy bond, 

twice as much as from the low energy one.
Now, back to the glucose–glycogen balance. This will help us to 

understand what ATP does with its high energy bonds. If we characterize a 

glucose molecule by ,  the glycogen molecule may be 

written in the form 

OH O O O OH

and one might assume that this chain results from a direct multiple 
condensation of glucose. However, this is not so. Indeed, in the 1930’s Carl 
Ferdinand Cori (1896–1984) and his wife Gerty Theresa Radnitz Cori 
(1896–1957) found that the formation of glycogen proceeds in two steps as 
follows.

                                                     
11 The metabolic reactions inside the body tissue are called intermediary metabolism., 

because it is the intermediates that play the most decisive role. 

opposite of what the digestive track achieves.
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Step (I):  Formation of glucose phosphate and ADP from glucose and 
ATP

Step (II): Shedding of phosphorous acid: 

The energy-consuming step is the first one and the energy needed for the 
formation of glucose phosphate results from the de-activation of one of the 
high energy bonds of ATP which sinks down energetically to become ADP, 
i.e. adenosine di-phosphate with only one high energy bond. 

Thinking mechanically we may say that the high energy bonds are like 
compressed springs. In that visualization, step (I) of the above reaction 
releases  the spring and allows the subsequent uncoiling to lift the emerging 
compound glucose phosphate to its high level of energy. Actually, after 
Lipman’s discovery, ATP has been found in body chemistry at all points 
where energy is needed. One may say that the large amount of energy 
contained in food is broken down – by tissue respiration as explained 
above – into energetic small change appropriate to pay for molecular 
reactions in the course of anabolism. Thus reactions with ATP allow a 
compound to move uphill energetically.
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On Thermodynamics of Metabolism 

One often hears it said that the functions of life create order and should 
therefore decrease entropy, cf. Chap. 4. Such a statement must be qualified, 
at least as far as animal life is concerned.12 Indeed, one of the functions of 
life is the decomposition of glucose and that increases entropy as we saw 
above. Doubtless the decompositions of fatty acids and amino acids are the 
same in that respect, although I lack numbers for those cases. 

It is true, however, that the decomposition of glucose in the tissue is 
accompanied by anabolism, which is also a function of life. Like when 
glucose builds glucose phosphate and then glycogen. We have seen that 
the assiduous ATP’s carry their energy to the site of construction of glucose 
phosphate and we have implied that glycogen and glucose phosphate are 
energetically on the same level. Thus the two reactions involved may 
be written as 

Glucose + ATP  glucose phosphate + ADP + hR

(I) with hR

(I) < 0
n ×  glucose phosphate  glycogen + n × phosphoric acid + hR

(II)

with hR

(II) = 0. 

Of course, one may ask why step (I) and step (II) occur at all. Why is the 
glucose  glycogen balance not simply maintained by mass action via 
hydrolysis and condensation? And what about the entropy change of the 
reaction? It seems likely that entropy decreases – because order is created
by the build-up of the long glycogen chain – but again I lack numbers.13 If 
indeed entropy decreases, it must be that hR

(I) has a sufficiently large 
negative value, – i.e. the reaction (I) is exothermic to a large degree – in 
order to offset the entropy drop so that the free energy can decrease, as it 
must.

It seems to me that it might be worthwhile to study the thermodynamics 
of anabolism with an eye on the energies of reaction and the entropies of 
reaction.  This may not actually teach us more about the reactions than we 
already know; but it may explain why a particular reaction occurs rather 
than another, seemingly simpler one.

On the other hand, the people, who disentangled the complex workings 
of intermediary metabolism, were probably not much concerned with 
thermodynamic questions. Even without that concern it must be admitted 
that they did an excellent job. Nor did they go unrecognised. Nearly all of 
those biochemists whom I have mentioned received the Nobel prize: 
Wieland, Warburg, Krebs, Lipman, Pauling,14 and the Coris. The Germans 

                                                     12 We shall come to plant life in a short while.
13 Those books which I have consulted for the writing of this chapter do not give entropies 

for such molecules as glucose phosphate and glycogen chains. 
14 Pauling is one of only two persons who received two Nobel prizes, – one for peace, 

because of his commitment against nuclear armament. The other person with two prizes is 

Marie Sklodowska Curie (1867–1934).
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among them all had some difficulties with Adolf Hitler, or he with them.15

Most of them emigrated, and life was not made easy for those who stayed.

What is Life? 

Another emigrant was the eminent quantum-physicist Erwin Schrödinger 
(1887–1961) who found a fairly comfortable temporary home at the School 
of Advanced Studies in Dublin, Ireland. There, in 1943, he gave a course of 
public lectures entitled ‘‘What is life?” which was afterwards published as a 
booklet.16

To the modern reader – well-informed by newspapers about DNA and 
the human genome – the book is somewhat obsolete, but it is still 
worshipped by theoretical physicists. Schrödinger expounds the idea that 
the gene must be a molecule lest it be subject to constant change by the 
thermal motion. He observes that a gene seems to be stable over many 
generations as put in evidence by the persistence of the well-documented 
Habsburg lower lip, a slight deformity of the lip in the members of that 
illustrious and oft-portrayed family. Also, in order to account for mutations, 
Schrödinger emphasizes the need for meta-stable states in the gene, i.e. 
energetic minima separated from other, conceivably lower minima by 
barriers. He sees thermal motion, or possibly X-rays, or cosmic rays as the 
only means to overcome such barriers. This seems to offer a satisfactory 
explanation for the fact that a mutation is a rare event because, after all, we 
are not very often exposed to X-rays, and the temperature must not be 
increased much beyond 37°C.

The closest Schrödinger comes to answer his self-imposed question 
about life is, when he says 17

What is the characteristic feature of life? When is a piece of matter said to 
be alive? When it goes on ‘‘doing something”, moving, exchanging 
material with its environment, and so forth, and that for a much longer 
period than we would expect an inanimate piece of matter to ‘‘keep going”

under similar circumstances. 

                                                     
15 In the 1930’s German scientists were not allowed to accept the Nobel prize, because Hitler 

was angered when the 1935-peace prize was given to Carl von Ossietzky (1889–1938), a 

well-known pacifist who, at the time of the award, was kept in a concentration camp 

where he later died.
16 E. Schrödinger: ‘‘What is life? The physical aspect of the living cell.” Cambridge: At the 

17 E. Schrödinger: ‘‘What is life? …” loc.cit. p. 70. 

University Press. New York: Macmillan Company (1945). 
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In 1918, after World War I, Schrödinger
                                                               made up his mind to abandon physics for
                                                               philosophy, but the city where he had
                                                               hoped to obtain a university post was lost
                                                               to Austria in the peace treaties. Therefore 
                                                               Schrödinger remained a physicist.18

Well, that answer seems to be begging the question. Maybe we cannot 
have a better – and shorter – answer than that. But I, for one, would 
certainly wish to. Since we are on the subject, let me also quote Asimov,19

himself a biochemist 

A living organism is characterized by the ability to effect a temporary and 
local decrease in entropy by means of enzyme-catalysed chemical 
reactions.

So, thus we are back on the subject of entropy. Schrödinger devotes the 
last part of his booklet to it. He says that a living organism feeds on 
negative entropy, meaning that an animal maintains a high level of order 
because it feeds on plants which have themselves a high degree of 
orderliness, i.e. a low entropy. He says:

Indeed, in the case of higher animals we know the kind of orderliness they 
feed upon well enough, viz. the extremely well-ordered state of matter in 
more or less complicated organic compounds, which serve them as 
foodstuffs.

I do wonder though whether that argument is not a trifle superficial. After 
all, we have seen that, before the animal does anything constructive with the 
foodstuffs, it breaks them down to material of lesser order in the digestive 
process. So, at least we can say that the organism does not make the most of 
the order that is offered to it.

                                                     
18  I. Asimov: ‘‘Biographies …” loc.cit. p. 621.
19 I. Asimov: ‘‘Life and Energy.” Avon Publishers of Bard, New York (1972).

I owe much of the information presented in this chapter to the study of that book by 

Asimov. On these pages I have often quoted Asimovs book of biographies and 

occasionally  other science essays by the author. Indeed, if the truth were known, I do 

admire Asimov’s way of writing, – except when he writes Science Fiction. 

Fig. 11.3. Erwin Schrödinger (1887–1961) 
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However, the metaphor feeding on negative entropy – the term was 
quickly changed into negentropy – has fired the imagination of physicists of 
the more esoteric type and theologians. I am told that Teilhard de Chardin, a 
Jesuit palaeontologist and anthropologist – who attempted to reconcile the 
theory of evolution with the teachings of the catholic church – was inspired 
by negentropy. Schrödinger cannot be blamed, perhaps. After all he was 
giving a public lecture to a mixed audience. And he lived to regret his 
simplified presentation. Indeed, in the German translation of his book in 

20

My remarks about negative entropy have been criticized by experts in 
physics. I have to say to them that I should have used the word free
energy, if I had spoken to them. 

Let us look at plants next, surely one of the sources of negentropy for 
animals. This is an interesting subject in itself. What happens in a plant is 
the photosynthesis of glucose from the CO2 of the air and from H2O of the 
soil and the release of oxygen. We rewrite the stoichiometric formula from 
before, except in reverse order as is appropriate for the synthesis of glucose 
rather than its decomposition.
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In some way this is the worst possible case for a chemical reaction: The 
energy – or enthalpy – increases and the entropy decreases. Since the 
process occurs at constant pressure pR = 1atm and at the normal temperature, 
roughly TR = 298K, the first law requires that we provide heat and the 
second law demands that we withdraw heat. Indeed we have

.lawsecondby the0andlaw,firstby the0

This is a clear contradiction and, if we did not know better, we could now 
come to the conclusion that the process is impossible.

Another way to emphasize the contradiction is to calculate the change of 
Gibbs free energy 

02870
mol

kJ .

Thus the free energy grows, when we know very well that it should 
decrease according to Gibbs, Helmholtz and every other thermodynamicist 
since their time.

                                                     
20 E. Schrödinger: ‘‘Was ist Leben? Die lebende Zelle mit den Augen des Physikers 

betrachtet.” 2nd edition. A. Francke Verlag, Bern and Leo Lehnen Verlag, München 

(1951).

1951 he says
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So there is a dilemma! The only way out seems to be to conclude that the 
reaction cannot occur by itself. Apart from a supply of energy there must be 
an accompanying process which increases the entropy far enough to offset 
the negative entropy of reaction. In fact, the increase of entropy must even 
be big enough to effect an overall decrease of Gibbs free energy.

At first sight the supply of energy does not seem to present a problem, 
since the sun sends 1341W toward every square meter on the earth that is 
held perpendicular to the incoming radiation.21 75% of that radiative power 
reaches the earth’s surface and a plant leaf absorbs 65% of that, primarily 
the red and yellow part of the spectrum, which is why the leaves are green.

So, a leaf receives 650W/m2, and it emits the radiative power 4

4

22

appropriate to its temperature T. According to plant physiologists,23 if the 
leaf works well at photosynthesis, each m2 may produce 1g, or 1/180 mol 
glucose in one hour. Thus the energy balance reads 

4

2 2 2

W kJ 1 1 W
650 2789 mol 4.3

m 4 mol 180 3600sm m

c
aT .

Hence follows T = 327K, or 54°C, a temperature which is high enough to 
let the leaf wilt and die. Moreover, plant physiologists inform us that photo-
synthesis does not work anymore beyond a temperature of 35°C.  
Therefore, there is a problem even with respect to the first law. A possible 
key to the solution is known to farmers, gardeners and house-wives, who all 
know that a plant requires more water – much more, x-times more (say) – 
than dictated by the stoichiometric formula. The plant absorbs all that water 
in the roots, passes it upwards to the leaves and evaporates it there. Thus a 
plant cools its leaves in the same manner as animals cool their skins: By 
evaporation of water.24 It is easy to calculate the value of x when we require 
that the temperature stay at 298K. We obtain x 500 so that, for each gram 
of water that helps to build up glucose, the plant needs to evaporate 
500grams to keep itself cool.

                                                     
21 We need to know, of course, the chemical ‘‘mechanism” by which the plant makes use of 

the radiative energy. Biophysicist are working hard on that question and I am told that 

they have not uncovered all parts of the reaction yet, although they are getting close.

22

4
 equals 5.67·10

–8 2 4

23 E.g. see W. Larcher: ‘‘Ökophysiologie der Pflanzen. Leben, Leistung und 

Stressbewältigung der Pflanzen in ihrer Umwelt” [Ecophysiology of plants. Life, 

performance and stress management of plants in their environment] 5.Auflage, Verlag 

Eugen Ulmer Stuttgart (1994).
24 As far as I know, this idea was first presented by myself and A . Klippel in the paper:

A. Klippel, I. Müller: ‘‘Plant growth – a thermodynamicist’s view.” Continuum 

Mechanics and Thermodynamics 9, (1997). 

W/m K , cf. Chap. 7.
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that process indeed increases entropy. However, that fact does not help with 
respect to the Gibbs free energy balance, since the free energy does not 
change upon evaporation. It is true that entropy grows, but the enthalpy also 
grows, such that the free energy h-Ts remains equal. So we are still looking 
for the entropy-producing accompanying process that could set the free 
energy balance right. Schrödinger made his task easy by saying: 

These [the plants] of course have their most powerful supply of negative
entropy in the sunlight. 

Let us see whether we can make sense out of this statement. We refer to 
Chap. 7 and recall that absorption and emission of radiation by one m2 of 
leaf surface produces entropy at the rate of 1.7 W/K. That amount is far 
bigger than the entropy increase needed for the process accompanying the 
photosynthesis, which is only 0.014 W/K according to the numbers given 
above. Thus, as far as pure numbers are concerned, Schrödinger’s sugges-
tion about the negative entropy of the sunlight could be right. And yet, there 
remains a feeling that his answer is too pat: One does not see how the leaf  
incorporates all that entropy – or even part of it – into the chemical process. 
As far as I know this question has never been addressed.25

All of this does not really help to answer the question ‘‘What is life?”

and, although so many eminent people have failed, I should like to try 
myself: Life is the indefinite working of a complex machinery. Thus even 
the steam engine, or a locomotive show traces of life. Obviously the 
question is: How complex is complex? Surely the locomotive is too simple 
to be called alive; its mechanism is too easy to understand. One is tempted 
to draw the analogy with art. Someone has said: If I can do it, it is not art.
And so: If I can understand it, it is not life.

Eventually, of course, we shall understand the working of animals and 
plants as well as we now understand the working of the locomotive. The 
biophysicists and biochemists are quite successful in clearing up the living 
mechanisms better and better. To be sure, they will not find life, just as little 
as an engineer finds steam, when he disassembles a steam engine.

                                                     
25 I have suggested an alternative accompanying process, – leaving out entropic radiation 

altogether –, namely the mixing of the water evaporated by the leaf with the surrounding 

air. A. Klippel, I. Müller: ‘‘Plant growth …” loc.cit. 

Therefore evaporation is a process accompanying photosynthesis, and  
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