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PREFACE 

Now I think hydrodynamics is to be the root of all physical science, and is at 
present second to none in the beauty of its mathematics.' (William Thomson, 
December 1857) 

In Victorian Britain, William Thomson wanted hydrodynamics to reign over all the 
physical sciences, from the intimate constitution of ether and matter to the beautiful 
pattern of ship waves. Although today's scientists tend to ascribe a less dominant role to 
this theory, it still inspires many human endeavors and it challenges the skills of a large 
community of experts. Many of the problems of modem hydrodynamics have ropts in 
Thomson's times. Despite tremendous improvements in methods, the basic equations and 
the basic questions have been more stable in this field than in any other domain of physics. 
These circumstances probably explain the interest that students of hydrodynamics often 
manifest in the history of their subject. 

The present book aims at satisfying this curiosity, in a way that only requires an 
elementary knowledge of modem fluid mechanics. Through its focus on the concrete, 
worldly circumstances of theoretical progress, it should appeal to a great variety of users of 
hydrodynamics. By attending to the technicalities of concept formation and evolution, it 
may help budding specialists understand the foundations of their own field. By exploring 
deep genetic connections with other domains of knowledge, it should also interest histor
ians of science. In addition, this history answers a few questions recently raised in the 
philosophy of science, regarding the failures of purely deductive conceptions of physical 
theory and the role of asymptotic theory and singular approximations. 

Hydrodynamics may be defined as the art of subjecting flow to the general principles of 
dynamics. This book tells how, in the eighteenth century, a small elite of Swiss and French 
geometers inaugurated this theory; how nineteenth-century engineers, physicists, and 
mathematicians widely expanded its concepts, methods, and purposes; and how its con
crete applications nevertheless failed until, in the first third of the twentieth century, it 
evolved into a reliable guide for the engineers of flow. 

There were many natural and artificial worlds of flow to which hydrodynamics was 
meant to be relevant: the hydraulics of conduits, rivers, and canals; the physiology of 
blood and sap circulation; aspects of navigiltion including tides, waves, and ship resist
ance; acoustic phenomena; the damping of the seconds pendulum in air; atmospheric 
motion; bird flight, ballooning, and aviation; British theories of the ether as a perfect 
liquid; and hydrodynamic analogies for electromagnetic phenomena. This book offers 
glimpses into each of these worlds, with an emphasis on aspects of fluid mechanics in 
which compressibility and thermal effects play no role (hydrodynamics in the narrow 
sense). 

1Thomson to Stokes, 20 Dec. 1857, ST. 
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There were also many socio-professional worlds of flow, which may be arranged into 
two categories: one comprising the academic elite of mathematics, natural philosophy, and 
astronomy; and another including the practical men of hydraulics, naval architecture, 
construction engineering, meteorology, and instrument making. Although the founders of 
hydrodynamics belonged to the first category, they hoped to serve the world of engineers 
as part of their pursuit of the enlightenment ideal of a rational unification of knowledge. 
The new hydrodynamics largely frustrated this desire. It is indeed a cliche of the history of 
fluid mechanics that until the twentieth century at least two separate disciplines of flow 
existed-hydrodynamics and hydraulics-which implied utterly different methods and 
professional identities, and which evolved independently of each other. Whereas hydro
dynamicists applied advanced mathematics to flows rarely encountered by engineers, 
hydraulicians used simple empirical or semi-empirical formulas that defied deeper theory. 2 

D' Alembert's paradox of 1768, according to which the steady motion of a perfect liquid 
exerts no force on a fully-immersed solid, quickly became the emblem of the split between 
the ideal and the practical worlds of flow. As may be retrospectively judged, the cause of 
this misfit was not any error in the application of the laws of mechauics. The correct 
equations of fluid motion, namely Euler's and Navier's, were indeed known at early stages 
of the history of hydrodynamics. The real difficulty lay in analyzing the consequences of 
these equations. The results and solutions that could be derived from them contradicted 
common observation-indeed they forbade the soaring of birds and made water rush at 
unreal velocities in channels or conduits. In 1786, the prominent hydraulician Charles 
Bossut recorded this impotence of the new fluid mechauics: 

These great geometers [d'Aiembert and Euler] seem to have exhausted the resources 
that can be drawn from analysis to determine the motion of fluids: their formulas are 
so complex, by the nature of things, that we may only regard them as geometric 
truths, and not as symbols fit to paint the sensible image of the actual and physical 
motion of a fluid. 

More than a century later, the prominent hydrodynamicist Wilhelm Wien similarly 
lamented:3 

In hydrodynamics ... the real processes differ so much from the theoretical conclu
sions that engineers have had to develop their own approach to hydrodynamics 
questions, usually called hydraulics. In this approach, however, both foundations 
and conclusions lack rigor to such an extent that most results remain confined Jo 
empirical formulas of very limited validity. 

For a long time, knowledge of the fundamental equations of the theory proved utterly 
insufficient in practice-a philosophically interesting situation on which more will be said 
in the conclusions in Chapter 8. Yet there was no lack of attempts, all through the 
nineteenth century, to make hydrodynamics more relevant to the practical problems of 
flow. Despite their frequent failure, these attempts were the source of almost every 
conceptual innovation in the science of flow of those times. For this reason this book is 
largely a history of the transgression of the borders between ideal and practical worlds of 

2In this book, I indulge in tbe convenient neologisms 'hydrodynamicist' and 'hydraulician'. 

3Bossut [1786], vol. I p. xv; Wien [1900] p. V. 
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flow, and of the several subcultures that favored them. Polytechnique-trained French 
engineers such as Navier and Saint-Venant formed one of these subcultures. In Victorian 
Britain, natural philosophers such as Stokes, Thomson, and Rayleigh, and theory
oriented engineers or engineering professors such as Russell, Rankine, Froude, and 
Reynolds formed two others. In Germany, the quintessential polymath Hermann Helm
holtz by himself defmed still another subculture of mediation between the ideal and the 
practical. 

By elevating themselves above and yet struggling to act in the many practical worlds of 
flow, investigators like Saint-Venant, Stokes, or Helmholtz blurred the borders between 
these worlds. In their view, the retardation of water in hydraulic conduits, the friction of 
water on ship hulls, the subduction of winds near the ground, or the steering of airships, all 
belonged to the same category of phenomena. Any insight into one of them was transfer
able to the others. They trusted that ultimately these phenomena would be covered by the 
same mathematical theory. This synthetic perspective and the belief in theoretical transfer 
and cross-fertilization contrasted with the cultural isolation of the average practitioner. 
Whereas, for example, a Rankine or a Froude found it natural to apply pipe retardation 
formulas to the skin resistance of ships, most naval architects and hydraulicians ignored 
one another's fields and thus sometimes arrived at similar Jaws without knowing it. 

The opposition between ideal and real worlds of flow, the fertility of attempts to 
reconcile them, and the bridging of different practical worlds, are the organizing themes 
of the following narrative. Chapter I recounts the eighteenth-century emergence of an 
ideal world of flow under the rule of partial differential equations by tracing the efforts of 
Daniel and Johann Bemoulli, Jean le Rond d'Alembert, Leonhard Euler, and Joseph 
Louis Lagrange. The creation of this theory was intimately bound with the formulation 
of the general dynamics of connected systems, with an extension of the concept of 
pressure, and with the elaboration of partial differential calculus. The importance of 
these broader innovations led nineteenth-century physicists to place great value in hydro
dynamic theory; it also led to great dismay as they recognized the absurd consequences of 
this elegant theory. 

As d'Alembert admitted, the paradox of vanishing resistance threatened to confme the 
new hydrodynamics to the realm of pure abstraction. There was nonetheless one sort of 
fluid motion, namely water waves, for which hydrodynamicists from Lagrange to Boussi
nesq harvested results that proved important to tide prediction, ship resistance, and ship 
roiling. Chapter 2 is devoted to these important advances. Although the mathematicians 
Laplace, Lagrange, Poisson, and Cauchy here obtained significant results, the more 
'physical', application-oriented approaches to water waves came from members of the 
above-mentioned subcultures of mediation, .namely Airy, Russell, Stokes, Thomson, and 
Rayleigh in Britain, and Saint-Venant and Boussinesq in France. These investigators 
successfully explained a great variety of observed wave behaviors. In the 1870s, Boussinesq 
and Rayleigh even managed to explain Russell's 'great solitary wave,' which had long 
perplexed wave theorists. 

The analysis of other kinds of flow involved greater difficulties. In 1843, the founding 
father of British hydrodynamics, George Gabriel Stokes, imagined three possible ways 
nature could have chosen to escape d' Alembert's paradox: fluid friction, the formation of 
surfaces of finite slip of fluid over fluid, and instability leading to turbulence in the wake 
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of the immersed solid. Much of the history of nineteenth-century hydrodynamics can be 
seen as a successive exploration of these three areas of research, to which Stokes himself 
largely contributed. 

Chapter 3 of this book is devoted to the first option, namely, the introduction of 
viscosity. Navier inaugurated this approach in 1822, by analogy with the molecular theory 
of elasticity that he also invented. Although the relevant equation, now called the Navier
Stokes equation, was rediscovered four or five times, it failed to explain the hydraulic 
retardation for which it was intended, and only succeeded in the cases of pendulum 
oscillations and capillary flow. Some fifty years elapsed before physicists commonly 
agreed that this failure was only superficial and adopted the Navier-Stokes equation as 
the general foundation of hydrodynamics. 

According to Helmholtz, viscosity alone could not be held responsible for the drastic 
difference'between real flows and the ideal flows described by French mathematicians. For 
slightly viscous fluids such as air and water, the main defect of earlier theories was rather 
the assumption that the velocity of the flow derived from a potential. As is recounted in 
Chapter 4, in 1858 Helmholtz showed that, in the lack of a velocity potential, vortices 
existed in the fluid and obeyed simple laws of conservation in the incompressible, inviscid 
case. Ten years later, he argued that unstable vortex sheets, equivalent to surfaces of finite 
slip of fluid over fluid, were formed at the edges of solid walls. He thus explained the 
tendency of water and air to form coherent jets when projected into a quiet mass of the 
same fluid, as well as the convoluted decay of these jets. This idea of discontinuous fluid 
motion wonderfully bridged different worlds of flow: originally meant to solve a paradox 
of organ pipes, it turned out to provide the dead-water solution of d' Alembert's paradox, 
an explanation of the observed velocity of trade winds, some clues about the formation of 
water waves under wind, and even an anticipation of the meteorological front theory. 

Helmholtz's considerations involved two special kinds of instability: the growth of 
discontinuity surfaces at the edges of solid walls; and the growth and spiral unrolling of 
any small bump on a surface of discontinuity. Chapter 5 is devoted to these and other flow 
instabilities contemplated by nineteenth-century hydrodynarnicists. Owing to the difficul
ties inherent in any mathematical investigation of these questions, opinions diverged on 
whether some basic forms of perfect-liquid motion were stable or not. Stokes tended to 
favor instability because he believed he could thus recover slightly-viscous fluid behavior 
within the perfect-liquid picture. Thomson tended to favor stability because he hoped to 
construct permanent molecules out of vortex rings in a perfect liquid. Beyond this playful 
controversy, in the 1 880s Rayleigh and Reynolds made decisive progress on the problem 
of the stability of parallel flow within both viscous and non-viscous fluids. 

By their very nature, proofs of instability provide a negative kind of information, 
namely, certain fluid motions that seem to result from the fundamental equations never 
occur in nature because they are utterly unstable. Although the way a perturbation grows 
may sometimes indicate features of the fmal motion, the primary source of knowledge of 
this motion was by necessity experimental. Since the beginning of the nineteenth century, 
both hydraulicians and hydrodynamicists were aware of the turbulent character of the 
flow occurring in hydraulic conduits and in open channels. As is recounted in Chapter 6, 
the unpredictable, confused character of turbulent flow did not scare off every nineteenth
century theorist. Saint-Venant and his disciple Boussinesq sought to describe hydraulic 
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flow through large-scale averaging and effective viscosity. Similarly, Reynolds later con
ceived a kinetic theory of turbulent momentum transport. 

By the end of the century, a variety of mediations between ideal and real worlds of flow 
had led to the new concepts of viscous stress, vortex motion, discontinuity surface, 
instability, and turbulence. However, none of these conceptual innovations fully achieved 
the intended mastery of real flows. Further progress resulted from the extension and 
orchestration of nineteenth-century concepts of flow, with a focus on rendering the 
high-Reynolds-number flows most frequently encountered in natural and technical 
worlds. A much more efficient kind of fluid mechanics thus emerged at the beginning of 
the twentieth century, based on the boundary-layer and wing theories developed by 
Ludwig Prandtl and his disciples. These synthetic achievements, and anticipations by 
Rankine and Froude in the context of ship design, form the subject of the seventh and 
final chapter of this book. In the conclusions in Chapter 8, I examine the mechanisms of 
theory evolution through application, their neglect in Kuhnian philosophy, their perva
siveness in the history of major physical theories, and the special form they take in tlw case 
of fluid mechanics. 

By emphasizing the sort of conceptual innovations that are induced by challenges from 
the natural and technical worlds, the present history of hydrodynamics leaves aside a few 
abundant developments of a more formal or mathematical nature. 4 Although this selective 
approach conveniently reduces the amount of relevant sources, the preparation of this 
book required much original research. The historians' interest in hydrodynamics indeed 
seems to have been inversely proportional to its historical importance. The two main 
reasons for this neglect have been the technical difficulty of the subject, and the focus of 
historians of the nineteenth and twentieth centuries on entirely new theories such as 
electrodynamics, thermodynamics, relativity, and quantum theory. There are only two 
global surveys of the history of hydrodynamics, written by modern leaders in this field. 
The first, by Hunter Rouse and Simon Ince, is a useful series of short biographies of 
leading hydraulicians and hydrodynamicists from antiquity to the present. The second, by 
Gregori Tokaty, is a historical sketch of the main conceptual advances in fluid mechanics. 5 

A few particular aspects of the history of hydrodynamics have received more detailed 
attention. To the late Clifford Truesdell we owe a penetrating account ofEuler's founda
tional contributions, which must however be balanced with Gerard Grimberg's more exact 
assessment of d' Alembert's role. On water waves and on open-channel flow, we have 
Saint-Venant's schematic but technically competent histories, as well as recent contribu
tions by Robin Bullough, Alex Craik, and John Miles. The profiles of polytechnique
trained engineers, who play essential parts in this story, are well described in Bruno 
Belhoste's and Antoine Picon's works. On .Saint-Venant's own fluid mechanics, Chiara 

4The best-known nineteenth-century treatises on hydrodynamics, those of Basset [1888] and Lamb [1879, 
1895], had large chapters on the Lagrangian treatment of the motion of solids immersed in a perfect liquid, the 
stability of vortex systems, or German mathematical theorems of potential flow, none of which receives much 
attention in this book. Basset and Lamb also had chapters on the effects of fluid compressibility, including sound 
waves and shock waves, which I have completely left aside. My incursion into early twentieth-century hydro
dynamics is even more limited: I have exclusively attended to the Gottingen school, although the Cambridge 
school harvested results of fundamental import to the broader development of hydrodynamics. 

5Rouse and !nee [1957]; Tokaty [1971]. 
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Melucci has written an informative dissertation. On tides, there is the clearly-written book 
by the modem expert David Edgar Cartwright. The monumental biography of Kelvin by 
Crosbie Smith and Norton Wise is a rich source on Victorian science and Kelvin's interest 
in flow analogies and navigation. On ship hydrodynamics, there is the excellent (unfortu
nately unpublished) dissertation by Thomas Wright. On aerodynamics and the theory of 
flight, John Anderson's recent, easily readable history stands out. In a freshly published 
book, John Ackroyd, Brian Axcell, and Anatoly Ruban give competently commented 
translations of a few historical papers. Information on Prandtl's school, Theodore von 
Karman, aerodynamics, and applied mathematics in the early twentieth century are found 
in two rich books by Karman himself and by Paul Hanle, and in a short insightful study by 
Giovanni Battimelli. I have myself published a few articles on some aspects of the history 
of hydrodynamics. Much of their content is included in this book, with the kind permis
sion of the University of California Press, the Societe Mathematique de France, and 
Springer Verlag. 6 

Part of the research for this book was done in Paris, within the Rehseis research team of 
CNRS and Paris VII. It is a pleasure to thank the director of that team, Karine Chemla, 
for intellectual stimulation and institutional support, and my friends Martha-Cecilia 
Bustamante, Nadine de Courtenay, and Edward Jurkowitz for fruitful discussions. 
Long, pleasant stays at the Max Planck Institut fiir Wissenschaftsgeschichte in Berlin, at 
the Dibner Institute in Cambridge, MA, at Harvard University's History of Science 
department, and at UC-Berkeley's OHST have greatly eased my compilation of biblio
graphical and archival materials, as well as my subsequent reflections. I am very grateful to 
Jiirgen Renn, Peter Galison, Jed Buchwald, and Cathryn Carson, who welcomed me in 
these institutions and offered useful suggestions for my work. I am also indebted to a few 
hydrodynamicists for their warm support and for helpful criticism: Alex Craik, Marie 
Farges, Elizabeth Guazzelli, Etienne Guy on, and John Hinch (also Saint-Venant, in one of 
my dreams). 

It is not easy, and perhaps not desirable, to reduce the pleasant gurgling of a mountain 
creek or the great surfs of the Silver Coast to the dry symbolism of a few fundamental 
equations. Neither is it easy to predict tides, pipe retardation, or ship resistance from first 
principles. Over the two centuries spanned in this book, a few valiant men gradually 
mastered these more technical problems and even gained some insights into the more 
poetical kinds of flow. I hope the story of their efforts will convince my reader that the life 
of hydrodynamics has been-and will be-as beautiful as some of the flows it purports to 
explain. 

"1-ruesdell [1954]; Grimberg [1998]; Saint-Venant [1887c], [1888]; Bullough [1988]; Craik [2004]; Belhoste 
[1994]; Picon [1992]; Melucci [1996]; Cartwright [1999]; Smith and Wise [1989]; Wright [1983]; Anderson [1997]; 
Ackroyd, Axcell, and Ruban [2001] (of which I became aware only after writing Chapter 7); Karman [1954]; Hanle 
[1982]; Battimelli [1984]; Darrigol [1998], [2002a], [2002b], [2002c], [2003]. 



CONVENTIONS AND NOTATION 

For the ease of the reader, uniform notation is used throughout this book, which of course 
implies some departure from original notation. To a large extent, this liberty amounts to a 
permutation of letters. Less innocuously, Cartesian-component equations are rendered as 
vector equations (although no hydrodynamicist used the vector notation before Prandtl 
and Sommerfeld), and Daniel Bemoulli's statements of proportions are translated into 
equations with dimensional proportionality constants. This is not to deny the importance 
of investigating how Johann Bemoulli, Euler, and others gradually reached the modern 
concept of a physics equation, why Prandtl promoted for the vector notation, and how 
these changes affected theory. Such enquiries would, however, exceed the scope of the 
present book. 

dl, dS, d,. 
g 
h 
k 
p 
r 

u,v 
V 

e 
J.L 
V 

00 
w 

'V 
\7 X V 
\7. V 

elements of length, surface, and volume, respectively 
acceleration of gravity 
height 
wave vector 
pressure 
position vector 
time 
x- and y-components of the velocity, respectively 
fluid velocity 

Laplacian operator 
effective, large-scale viscosity (including eddy viscosity) 
viscosity parameter 
kinematic viscosity J.L/ p 
fluid density 
deformation of a water surface, sometimes pulsation 
shear stress 
stress tensor 
velocity potential (v ='V cp) 
stream function for two-dimensional, incompressible flow 
(di/J = -V dx+ U dy) 
vorticity 'V x v 
either vorticity value or pulsation, according to the context 

gradient operator 
curl of the vector field v 
divergence of the vector field v 



xiv CONVENTIONS AND NOTATION 

• Citations are in the author-date format and refer to one of the two bibliographies 
(primary and secondary). Page numbers refer to the last-mentioned source in the 
bibliographical item. Abbreviations are listed at the start of the bibliography. 

• Translations are my own, unless the source is itself a translation. 
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1 

THE DYNAMICAL EQUATIONS 

Admittedly, as useful a matter as the motion of fluid and related sciences has 
always been an object of thought. Yet until this day neither our knowledge of 
pure mathematics nor our command of the mathematical principles of nature 
have permitted a successful treatment.1 (Daniel Bernoulli, September I 734) 

Modern derivations of the fundamental equations for non-viscous fluids have an air of 
evidence. The fluid is divided into volume elements, and the acceleration of a volume element 
is equated to a force divided by a mass. The force on the element dT is the sum of an external 
action fd,. ( e.g. gravity) and of the resultant -(\7 P)dT of the pressures exerted on the surface 
of the element by the surrounding fluid. Ifv (r, t) denotes the velocity of the fluid at the point r 
and timet, andr (t) is the position of the element at timet, then the acceleration of the element 
is the time derivative of V [r(t), t], that is, a V I ot + (v. 'ii')v. The mass of the element is the 
product of its density pand its volume dr. Hence Euler's equation follows: 

p(�;+ (v·'ii')v) =f-'ii'P. (1.1) 

The conservation of the mass of a fluid element during its motion further gives the 
'continuity equation': 

(1.2) 

so named because it assumes that the fluid remains continuous and does not burst into 
droplets during its motion. 

A closer look at this derivation shows that it relies on concepts and idealizations that are 
by no means obvious. Firstly, it assumes that the action of the surrounding fluid on a given 
fluid portion can be represented by a normal pressure on its surface, whereas molecular 
intuition suggests a more complex distribution of the forces between inner and outer 
molecules. In fact, in real fluids the pressure is only normal in the case of rest; viscosity 
implies a tangential component of the pressure . In order to justify the existence and 
properties of internal pressure without appealing to the molecular picture, one could 
examine experience. Unfortunately, experience only informs us of the pressure exerted 
on the surface of immersed objects, not of the pressure of the fluid on itself. The latter 
notion requires an unwarranted idealization. 

Another difficulty lurks in the application of Newton's second law to fluid elements. If 
the fluid is thought of as an assembly of molecules, this application does not immediately 

1D. Bernoulli to Shoepflin, in Mercure Suisse (Sept. 1734) pp. 42-50; also in Bernoulli [2002] pp. 87-90. 
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follow from the validity of the law for individual molecules, because a volume element is 
not necessarily made of the same molecules during its evolution in time. If the fluid is 

instead regarded as a true continuum, then an unwarranted extension of the law to 
infinitesimal elements of mass is needed. 

To one who has these difficulties in mind, the canonical derivation of Euler's equations 

seems largely illusory. It rests on axioms that need further justification, possibly through a 

kinetic-molecular theory of matter, or through the empirical success of their conse

quences. Accordingly, one should expect the historical genesis of Euler's equations to 
have been a difficult, roundabout process. Indeed, seventeen years elapsed between Daniel 

Bernoulli's first attempt at applying a general dynamic principle to fluid motion and 

Leonhard Euler's strikingly modern derivation of the equations named after him. 
Another fact makes the history of early hydrodynamics even more intricate and inter

esting: the basic physico-mathematical tools of the modern derivation ofEuler's equations 
were not originally available. In the early eighteenth century, there was no concept of a 

dimensional quantity, no practice of writing vector equations (even in the so-caiied 

Cartesian form), no concept of a velocity field, and no calculus of partial differential 
equations. The idea of founding a domain of physics on a system of general equations 

rather than on a system of general principles expressed in words did not exist. 

Any historical investigation of the origins of hydrodynamics requires a tabula rasa of 

quite a few familiar notions of today's physicist. The purpose of the present chapter is to 
show how these notions graduaily emerged together with modern hydrodynamics; it is not 

to determine who the main founder of this new science was. Excessive concern with 
priority questions leads to misinterpretations of the goals and concepts of the actors, 

and it harbors the myth of sudden, individual discovery. In contrast, the present chapter 

describes a long, multifaceted process in which fluid motion was graduaily subjected to 

general dynamics, with a concomitant evolution of the principles of dynamics and with 
extensions of the classes of investigated flows.Z 

The first attempt at applying a general dynamical principle to fluid motion occurred in 

Daniel Bernoulli's Hydrodynamica of I 738. The principle was the conservation of live forces, 

expressed in terms ofHuygens' pendulum paradigm. The main problem of fluid motion was 
efflux, or the parailel-slice flow through an opening on a vessel. The result was a geometrical 

expression of laws that implicitly contained the one-dimensional version of Euler's equa
tions. This approach did not require the concept of internal pressure. Daniel Bernoulli 

nonetheless extended the concept of wall pressure to moving fluids, and derived 'Bernoulli's 
law' for this pressure. These inaugural achievements are described in Section 1. I.' 

Section I .2 is devoted to the Hydraulica that Daniel's father J ohann Bernouiii published 
in I 742. The standard problem was stiii parailel-slice efflux, approached through the 

2In the history found in his Mechanique analitique [1788] pp. 436-7, Lagrange made d' Alembert the founder of 
hydrodynamics. He did not even mention Euler's name, although he no doubt appreciated his contributions (the 
second edition ([18 1 1 115] vol. 2, p. 271) has the sentence: 'It is to Euler that we owe the ftrst general formulas for 
the motion of fluids, founded on the laws of their equilibrium, and presented with the simple and luminous 
notation of partial differentials.' In disagreement, Truesdell ([1954] p. CJOtvn) writes: 'It seems that much of what 
d' Alembert is commonly credited with having done is taken from the simple and clear attributions of Lagrange, 
for I have searched for it in vain in d' Alembert's own works.' Grimberg [1998] has identified gaps and flaws in 
Truesdell's reading of d' Alembert. 
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pendulum analogy. The dynamical principle was now Newton's second law, together with 
a rule for replacing the gravities and the accelerations of the various parts of the system 
with equivalent gravities and accelerations acting on one part only. Again, this method did 
not require the concept of internal pressure. Johann Bernoulli nonetheless defmed the 
internal pressure as some sort of contact force between successive slices of fluid, and gave 
its value in a generalization of Bernoulli's law to non-permanent flow. A key point of his 
success was his awareness of two contributions to the acceleration of a fluid slice: the 
velocity variation per time unit at a given height (our 8v I 8t); and the velocity variation per 
time unit due to the change of section (our v8v I 8z, z being a coordinate in the direction of 
parallel motion). His style was more algebraic than his son's, with recourse to dimensional 
quantities including the acceleration g of gravity. But his reliance on partial differentials 
was only implicit. 

Section 1.3 is devoted to the contributions of Jean le Rond d'Alembert. In 1743/44, the 
French philosopher and geometer rederived the results of the Bernoullis by means of a new 
principle of dynamics, according to which a moving system must be in equilibrium with 
respect to fictitious forces obtained by subtracting from the real (external) forces acting on 
the parts of the system the product of their mass and their acceleration. In the particular 
case of parallel flow, or for the oscillations of a compound pendulum, this method is 
equivalent to those of the Bernoullis. D' Alembert, however, was innovative in explicating 
the partial differentials in the expression of the fluid acceleration. Most importantly, his 
method enabled him to consider two-dimensional flows (with infinitely many degrees of 
freedom), whereas the Bernoullis were confined to flows with only one degree of freedom. 3 

D' Alembert achieved this tremendous generalization in his memoir on winds of 1747 
and in his memoir on fluid resistance of 1749. There he obtained particular cases ofEuler's 
equations, for the two-dimensional or axially-symmetric flow of an incompressible fluid. 
More precisely, his equations were those we would now obtain by eliminating the pressure 
from Euler's equations (vorticity equation). The reason for this peculiarity is that d' Alem
bert's principle essentially short-cuts the introduction of internal contact forces such as 
pressures. D' Alembert nevertheless had a concept of internal pressure, which he used in his 
expression of Bernoulli's law. In his memoir on winds he even indicated an alternative 
route to the equations of fluid motion, by balancing the pressure gradient, the gravity, and 
the inertial force at any point of the fluid. 

Soon after studying d'Aiembert's memoirs, Leonhard Euler showed how to derive 
completely general equations of fluid motion through a similar method, by applying 
Newton's second law to each fluid element and taking into account the pressure from 
the surrounding fluid. This achievement is described in Section 1.4. The clarity and 
modernity of Euler's approach has lent itself to the myth of a sudden emergence of Euler's 
hydrodynamics in Euler's magic hands. In reality, Euler struggled for many years to 
develop a satisfactory theory of fluid motion. He only reached his aim after integrating 
decisive contributions by Johann Bernoulli and by d' Alembert. His famous memoir of 
1755 did not reflect sudden, isolated inspiration.4 

3New insights into d' A1embert's fluid dynamics and mathematical methods are found in Grimberg [1998] 
(thesis directed by Michel Paty). 

"Truesdell [1954] has a detailed, competent analysis ofEuler's memoirs on fluid mechanics. 
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Nor should Euler's memoir be regarded as the last word on the foundations of perfect
fluid mechanics. As explained in Section 1.5, the last section in this chapter, Lagrange 
offered an alternative foundation to Euler's equations, based on the general principles of 
his analytical mechanics. He also specified the boundary conditions, without which Euler's 
equations would largely remain an empty formal scheme; he obtained a fundamental 
theorem about the existence of a velocity potential; and he gave a general method of 
approximation for solving the equations of narrow flows. Due to these advances, he could 
prove the approximate validity of the old hypothesis of parallel-slice motion and solve the 
problem of small waves on shallow water. Together with Euler's fundamental memoirs, 
these brilliant results were the starting-point for most of later hydrodynamics. 

1.1 Daniel Bernoulli's Hydrodynamica 
In 1738 the Swiss physician and geometer Daniel Bemoulli published his Hydrodynamica, 
sive de viribus et motibus jluidorum commentarii (hydrodynamics, a dissertation on the 
forces and motions of fluids). He coined the word hydrodynamica to announce a new, 
unified approach of hydrostatics and hydraulics. Although he did not create the modem 
science of fluid motion, his treatise marks a crucial transition: with novel and uniform 
methods, it solved problems that belonged to a long-established tradition.5 

Since Greek and Roman hydraulics, an important problem of fluid motion was the flow 
of water from a vessel through an opening or a short pipe. The Renaissance and the 
seventeenth century saw the first experimental studies of this problem, as well as the first 
attempts to subject it to the laws of mechanics. Other topics of practical interest were the 
working of hydraulic machines and waterwheels, and ship resistance. Topics of philosoph
ical interest were the elasticity of gases and Cartesian vortices. The Hydrodynamica 
covered all these subjects, except fluid resistance, which Bemoulli probably judged to be 
beyond the grasp of contemporary mathematics. His newest results concerned efflux. He 
also introduced the concept of work (vis absoluta) done by hydraulic machines, and he 
inaugurated the kinetic theory of elastic fluids. 6 

1.1.1 The principle of live forces 
The basic principle on which Daniel Bemoulli based his hydrodynamics was what he 
called 'the equality of potential ascent and actual descent'. He thus alluded to Christiaan 
Huygens' study of the center of oscillation of a compound pendulum in the celebrated 
Horologium Oscillatorium of 1673. In modem terms, we would say that Huygens obtained 
the length of the simple pendulum that is equivalent to a given compound pendulum by 
equating the kinetic energy of the system of oscillating masses at a given instant to its sign
reversed potential energy. In Bemoulli's terms, the potential ascent means 'the vertical 
altitude which the center of gravity of the system would reach if the several particles, 
converting their velocities upward, are considered to rise as far as possible.' The actual 
descent denotes 'the vertical altitude through which the center of gravity has descended 
after the several particles have been brought to rest.' The potential ascent corresponds to 

5Cf. Dugas [1950] pp. 274--<l, Truesdell [1954] pp. XXIII-XXXI, Mikhai1ov [2002]. 

60n early hydraulics, cf. Rouse and !nee [1957] Chaps 2-9, Garbrecht [1987]. On D. Bernoulli's Hydrodyna
mica, cf. Calero [1996] pp. 422-59. 
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our kinetic energy divided by the total weight, and the actual descent to the sign-reversed 
potential energy divided by the total weight. 7 

For a modem reader, Bemoulli's text is much harder to penetrate than this simple 
identification would suggest. The main difficulty comes from the lack of a theory of the 
combination of dimensional quantities, and the now archaic appeal to Euclidean propor
tions and equivalent lengths. The modem concept of dimensional quantities emerged at 
the turn of the nineteenth century, and found its first systematic formulation in Fourier's 
theory of heat. 8 A full history of early hydrodynamics would necessarily take into account 
this important transformation in the writing style of physico-mathematical equations. 
Modernized notation is nevertheless used in what follows, because the main points to be 
made resist this perversion of the original text. 

In order to appreciate the daringness of Daniel Bemoulli's approach, one must remember 
that until the nineteenth century energy considerations were very rarely used in mechanics 
and elsewhere. Gottfried Wilhelm Leibniz's principle of the conservation of vis viva, which 
had both Huygenian and Cartesian roots, had little impact because the concept of live force 
(roughly our kinetic energy) was usually interpreted as a metaphysical threat to therNew
tonian concept of accelerating force. The most significant exception to this general attitude 
was Daniel Bernoulli's father Johann, who used Leibniz's principle to ease the solution of 
various mechanical problems. Father and son also agreed with Leibniz that every apparent 
loss of live force in the universe was a dissimulation oflive force in small-scale motions. They 
even believed that potential forms of live force should be reducible to invisible motions, as 
exemplified in Daniel's kinetic explanation of gas pressure.9 

As the compound pendulum was the implicit paradigm of the Bernoullis' use of the 
conservation of live forces, some of Huygens' treatment must be recalled. Consider a 
pendulum made of two point masses A and B, rigidly connected to a massless rod that can 
oscillate around the suspension point 0 (see Fig. 1.1). In modem notation, the equality of 
the potential ascent to the actual descent reads: 

mA(Ji/2g) + ms(ifs/2g) =zo, mA + ms (1.3) 

where m denotes a mass, v a velocity, g the acceleration of gravity, and ZG the descent of 
the gravity center of the two masses measured from the highest elevation of the pendulum 
during its oscillation. This equation leads to a first-order differential equation for the angle 
() that the suspending rod makes with the vertical. The comparison of this equation with 
that of a simple pendulum then yields the expression (a2mA + b2ms)/(amA + bm8) for the 
length of the equivalent simple pendulum (with a = OA and b = OB).10 

1 . 1 .2 Efflux 
As Daniel Bernoulli could not fail to observe, there is a close analogy between this problem 
and the hydraulic problem of efflux, as long as the fluid motion occurs by parallel slices. 
Under the latter hypothesis, the velocity of the fluid particles that belong to the same 

7D. Bernoulli [1738] pp. 1 1 ,  30. 
9Cf. Costabel [1983], Seris [1987]. 

8Cf. Ravetz [1961]. 
10Cf. Vilain [2000] pp. 32-6. 
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A 

z 

Fig. 1.1. Compound pendulum. 

section of the fluid is normal to and uniform through the section. Moreover, if the fluid is 
incompressible and continuous (no cavitation), then the velocity in one section of the 
vessel completely determines the velocity in all other sections. The problem is thus reduced 
to the fall of a connected system of weights with one degree of freedom only, just as it is for 
the case of a compound pendulum. 

This analogy inspired Daniel Bernoulli's treatment of efflux. Consider, for instance, a 
vertical vessel with a sectionS depending on the downward vertical coordinatez(see Fig. 1.2). 
A mass of water falls through this vessel by parallel, horizontal slices. The continuity of the 
incompressible water implies that the product Sv is a constant through the fluid mass. The 
equality of the potential ascent and the actual descent implies that at every instant11 

1 (�)s dz =  1 zS dz, 

zo zo 

S(z) 
� 
I I 
I I 
I I 

Zo 

0 

z 

-------- Zt 

Fig. 1.2. Parallel-slice flow of water in a vertical vessel. 

11D. Bernoulli gave a differential, geometric version of this relation ([1738] pp. 31-5). 

(1.4) 
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where zo and ZJ denote the (changing) coordinates of the two extreme sections of the fluid 
mass, the origin of the z-axis coincides with the position of the gravity center of this mass 
at the beginning of the fall, and the units are chosen so that the density of the fluid is one. 
As v is inversely proportional to the known function S of z, this equation yields a relation 
between zo and vo = zo, which can be integrated to give the motion of the highest fluid 
slice, and so forth. Bernoulli's investigation of efflux amounted to a repeated application 
of this procedure to vessels of various shapes. 

The simplest sub-case of this problem is that of a broad container with a small opening 
of sections on its bottom (see Fig. I .3). As the height h of the water varies very slowly, the 
escaping velocity quickly reaches a steady value u. As the fluid velocity within the vessel is 
negligible, the increase of the potential ascent in the time dt is simply given by the potential 
ascent (if j2g)sudt of the fluid slice that escapes through the opening at velocity u. This 
quantity must be equal to the actual descent hsudt. Therefore, the velocity u of efflux is the 
velocity ..f2ili of free fall from the height h, in conformity with the law formulated by 
Evangelista Torricelli in 1 644Y 

I I -IJ.U 
¥ 

Fig. 1.3. Idealized effiux through small openiog (without vena contracta). 

1.1.3 Bernoulli's law 
Bernoulli's most innovative application of this method concerned the pressure exerted by a 
moving fluid on the walls of its container, a topic of importance for the physician and 
physiologist that he was. Previous writers on hydraulics and hydrostatics had only 
considered the hydrostatic pressure due to gravity. In the case of a uniform gravity g, 
the pressure per unit area on a wall portion was known to depend only on the depth h of 
this portion below the free water surface. According to the law enunciated by Simon Stevin 
in 1 605, it is given by the weight gh of a water column (of unit density) that has a unit 
normal section and the height h. In the case of a moving fluid, Bernoulli defined and 
derived the 'hydraulico-static' .wall pressure. as follows.13 

12D. Bernoulli [1738] p. 35. This reasoning assumes a parallel motion of the escaping fluid particle. Therefore, 
it only gives the velocity u beyond the contraction of the escaping fluid vein that occurs near the opening (Newton's 
vena contracta, cf. Lagrange [1788] pp. 430- 1, Smith [1998]). On Torricelli's law and early derivations, cf. Blay 
[1985], [1992] pp. 331-352. 

13D. Bernoulli [1738] pp. 258-60. Mention of physiological applications is found in Bernoulli to Shoepflin, 25 
Aug. 1734, in D. Bernoulli [2002] p. 89: 'Hydraulico-statics will also be useful to understand animal economy with 
respect to the motion of fluids, their pressure on vessels, etc.' 
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Fig. 1.4. Daniel Bernoulli's figure accompanying 

his derivation of the velocity-dependence of pres

sure ([1738] plate). 

The section S of the vertical vessel ABCG of Fig. 1.4 is supposed to be much larger than 
the section s of the appended tube EFDG, which is itself much larger than the section e of 
the hole o. Consequently, the velocity u of the water escaping through o is ,j2i/i. Owing to 
the conservation of the flux, the velocity v within the tube is (e/s)u. Bemoulli goes on:14 

If in truth there were no barrier FD, the final velocity of the water in the same tube 

would be [sfs times greater]. Therefore, the water in the tube tends to a greater 

motion, but its pressing [nisus] is hindered by the applied barrier FD. By this pressing 
and resistance [nisus et renisus] the water is compressed [comprimitur], which com
pression [compressio] is itself kept in by the walls of the tube, and thence these too 

sustain a similar pressure [pressio]. Thus it is plain that the pressure [pressio] on the 
walls is proportional to the acceleration . . . that would be taken on by the water if 
every obstacle to its motion should instantaneously vanish, so that it were ejected 

directly into the air. 

Based on this intuition, Bemoulli imagined that the tube was suddenly broken at ab, 
and made the wall pressure Pproportional to the acceleration dv/dt of the water at this 
instant. According to the principle of live forces, the actual descent of the water during the 
time dt must be equal to the potential ascent it acquires while passing from the large 
section S to the smaller section s, plus the increase of the potential ascent of the portion 
EabG of the fluid. This gives (again, the fluid density is one) 

hsvdt= (�)svdt+bsd(�} (1.5) 

where b = Ea. The resulting value of the acceleration dv/dt is (gh-!Jl)jb. The wall 
pressure P must be proportional to this quantity, and it must be identical to the static 
pressure gh in the limiting case v = 0. It is therefore given by the equation 

(1.6) 

14D. Bernoulli [1738] pp. 258-9. Translated In Truesdell [1954] p. XXVII. The compressio in this citation 
perhaps prefigures the internal pressure later introduced by Johann Bernoulli. 
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which means that the pressure exerted by a moving fluid on the walls is lower than the 
static pressure, the difference being half the squared velocity (times the density). Bernoulli 
illustrated this effect in two ways (see Fig. 1 .5): by connecting a narrow vertical tube to the 
horizontal tube EFDG, and by letting a vertical jet surge from a hole in this tube. 

The modern reader may here recognize Bernoulli's law. In fact, Bernoulli did not quite 
write eqn (1 .6), because he chose the ratio sfe rather than the velocity v as the relevant 
variable. Also, he only reasoned in terms of wall pressure, whereas modern physicists 
apply Bernoulli's Jaw to the internal pressure of a fluid. 

There were other limitations to Bernoulli's hydrodynamics, of which he was largely 
aware. He knew that in some cases part of the live force of the water went to eddying 
motion, and he even tried to estimate this loss in the case of a suddenly enlarged conduit. 
He was also aware of the imperfect fluidity of water, although he decided to ignore it in his 
reasoning. Most importantly, he knew that the hypothesis of parallel slices only held for 
narrow vessels and for gradual variations of their section. But his method confined him to 
this case, since it is only for systems with one degree of freedom that the conservation of 
live forces suffices to determine the motion.15 

1.2 Johann Bernoulli's Hydraulica 
In 1742, Johann Bernoulli published his Hydraulica, with an antedate (1732) that made it 
predate his son's treatise. Although he had been the most ardent supporter of Leibniz's 
principle of live forces, he now regarded this principle as an indirect consequence of more 
fundamental laws of mechanics. His aim was to base hydraulics on an incontrovertible, 
Newtonian expression of these laws. To this end he adapted a method that he had invented 
in 1714 to solve the paradigmatic problem of the compound pendulum. 

1 .2.1 Translation 
Consider again the pendulum of Fig. 1.1. According to Johann Bernoulli, the gravitational 
force msg acting on B is equivalent to a force (b/a)msg acting on A, because, according to 

Fig. 1 .5. Effects of the velocity dependence 

of pressure according to Daniel Bernoulli 

([1738] plate). 

15D. Bernoulli [1738] pp. 12 (eddies), 124 (enlarged conduit), 13 (imperfect fluid). 
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the law of levers, two forces that have the same moment have the same effect. Similarly, the 
'accelerating force' msM of the mass B is equivalent to an accelerating force 
(b/a)msM = ms(b/aiaiJ at A. Consequently, the compound pendulum is equivalent to 
a simple pendulum with a mass m A + (b / a?ms located on A and subjected to the effective 
vertical force mAJ5 + (b / a)msg. It is also equivalent to a simple pendulum of length 
(crmA + b2ms)/(amA + bms) oscillating in the gravity g, in conformance with Huygens' 
result. In summary, Johann Bemoulli reached the equation of motion by applying New
ton's second law to a fictitious system obtained by replacing the forces and the momentum 
variations at any point of the system with equivalent forces and momentum variations at 
one point of the system. This replacement, based on the laws of equilibrium of the system, 
is what Bemoulli called 'translation' in the introduction to his Hydraulica. 16 

Now consider the canonical problem of water flowing by parallel slices through a 
vertical vessel of varying section (see Fig. 1.2). Johann Bemoulli 'translates' the weight 
gSdz of the slice dz of the water to the location z 1  of the frontal section of the fluid. This 
gives the effective weight S1gdz, because, according to a well-known law of hydrostatics, a 
pressure applied at any point of the surface of a confmed fluid is uniformly transmitted to 
any other part of the surface of the fluid. Similarly, Bemoulli translates the 'accelerating 
force' (momentum variation) (dv/dt)Sdz of the slice dz to the frontal section of the fluid, 
with the result (dv/dt)SJ dz . He then obtains the equation of motion by equating the total 
translated weight to the total translated accelerating force: 

(1.7) 
zo zo 

1 .2.2 Gorge 
For Johann Bemoulli the crucial point was the determination of the acceleration dv/dt. 
Previous authors, he contended, had failed to derive correct equations of motion from the 
general laws of mechanics because they were only aware of one contribution to the 
acceleration of the fluid slices, namely, that which corresponds to the instantaneous 
change of velocity at a given height z, or &v/8t in modem terms. They ignored the 
acceleration due to the broadening or to the narrowing of the section of the vessel, 
which Bemoulli called gurges (gorge). In modem terms, he identified the convective 
component v&v / 8z of the acceleration. Note that his use of partial derivatives was only 
implicit: due to the relation v = (So/ S)vo, he could split v into a time-dependent factor vo 
and a z-dependent factor So/S, and thus express the total acceleration as 

(So/S)(dvo/dt) -(ifoSff/S3)(dS/dz ).17 

16J. Bernoulli [1714], [1742] p. 395. In modem terms, Johann Bemoulli's procedure amounts to equating the 
sum of moments of the applied forces to the sum of moments of the accelerating forces (whlch is the time derivative 
of the total angular momentum). Cf. Vilain [2000] pp. 448-50. 

17J. Bernoulli [1742] pp. 432-7. He misleadingly called the two parts of the acceleration the 'hydraulic' and the 
'hydrostatic' components. Truesdell's translation of gurges ([1954] p. XXXlll) as 'eddy' seems inadequate 
(although it does have this meaning in classical Iatin), because Bernoulli only meant the velocity difference 
between successive layers of the fluid. In his treatise on the equilibrium and motion of fluids ([1744] p. 1 57), 
d'Alembert interpreted J. Bernoulli's expression of the acceleration in terms of two partial differentials. 
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Thanks to the gurges, J ohann Bernoulli successfully applied eqn (I .  7 )  to various cases of 
efflux and retrieved his son's results.18 He also offered a novel approach to the pressure of 
a moving fluid on the sides of its container. This pressure, he asserted, was simply the 
pressure, or vis immaterialis, that contiguous fluid parts exerted on one another, just as 
two solids in contact act on each other:19 

The force that acts on the side of the channel through which the liquid flows ... is 
nothing but the force that originates in the force of compression through which 
contiguous parts of the fluid act on one another. 

Accordingly, Bernoulli divided the flowing mass of water into two parts separated by 
the section z = { Following the general idea of 'translation', the pressure that the upper 
part exerts on the lower part is 

More explicitly, this is 

!: !: ' !: 
P(() = g dz- v-dz- -dz = g(t' - zo) - -v (C) +-if(zo) -- vdz. I I 8v IOv I 2 I f) I 8z 8t 2 2 8t 

zo zo zo zo 

(1 .8) 

(1 .9) 

Johann Bernoulli thus obtained (in a widely different notation) a generalization of his 
son's law to unsteady parallel-slice flow.Z0 

Johann Bernoulli interpreted the relevant pressure as an internal pressure analogous to 
the tension of a thread or the mutual action of contiguous solids in connected systems. Yet 
he did not rely on this new concept of pressure to establish the equation of motion (1 .  7). He 
only introduced this concept as a shortcut to the velocity dependence of wall pressure.Z1 

1.3. D' Alembert's fluid dynamics 

1 .3 . 1  The principle of dynamics 
In 1743, the French geometer and philosopher Jean le Rand d' Alembert published his 
influential Traite de dynamique, which subsumed the dynamics of connected systems under 
a few general principles.22 The first illustration he gave of his approach was Huygens' 

18D'Alembert later explained this agreement, see pp. 14-15. 19J. Bernoulli [1742] p. 442. 

201. Bernoulli [1742] p. 444. His notation for the internal pressure was 11'. In the first section of his Hydraulica, 
which he communicated to Euler in 1839, he only treated the steady flow in a suddenly enlarged tube. In his 
enthusiastic reply (5 May 1739, in Euler [ 1998] pp. 287-95), Euler treated the vertical, accelerated effiux from a 
vase of arbitrary shape with the same method of'translation', not with the later method of balancing gravity with 
the internal pressure gradient, contrary to Truesdell's claim ([1954] p. XXXIII). Bernoulli subsequently wrote his 
second part, adding only obliqueness of the vessel to Euler's treatment. 

21For a different view, cf. Truesdell [1954] p. XXVI, Calero [1996] pp. 460-74. 

22D' Alembert began to read a memoir on the same theme at the Academic des Sciences on 24 Nov. 1 742. A few 
months earlier, he had read two memoirs on the refraction of solids moving in fluids of variable density (a then 
classical approach to the refraction of light). His treatment did not involve any explicit fluid mechanics, for he 
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compound pendulum.23 As we saw, Johann Bernoulli's solution to this problem leads to 
the equation of motion 

( 1 . 10) 

which may be rewritten as 

( 1 .  I I) 
This last equation is the condition of equilibrium of the pendulum under the action of the 
forces mAg - mA'YA and msg - ms'Ys acting, respectively, on A and B. In d'Alembert's 
terminology, the products mAg and msg are the motions impressed (per unit time) on the 
bodies A and B under the sole effect of gravitation (without any constraint). The products 
m A 'Y A and ms'Ys are the actual changes of their (quantity of) motion (per unit time). The 
differences mAg - m A 'Y A and msg - ms'Ys are the parts of the impressed motions that are 
destroyed by the rigid connection of the two masses through the freely-rotating rod. 
Accordingly, d'Alembert saw in eqn ( 1 . 1 1) a consequence of a general dynamic principle 
from which the motions destroyed by the connections should be in equilibrium.24 

How d' Alembert arrived at this principle is not known. In 1703 Jacob Bemoulli, the 
elder brother of Johann, had derived the center of oscillation of the compound pendulum 
through the same method. D'Alembert did not refer to this source. Perhaps he found his 
inspiration while meditating on the compound pendulum. Or he could have deduced the 
principle from a new philosophy of motion, as is suggested by the presentation given in the 
Traite de dynamique.25 

D'Alembert based dynamics on three laws, which he regarded as necessary conse
quences of the principle of sufficient reason. The first law is that of inertia, according to 
which a freely-moving body moves with a constant velocity in a constant direction. The 
second law stipulates the vector superposition of motions impressed on a given body. 
According to the third Jaw, two (ideally rigid) bodies come to rest after a head-on collision 
if and only if their velocities are inversely proportional to their masses. From these three 
laws and some further recourse to the principle of sufficient reason, d' Alembert believed 
he could derive a complete system of dynamics without recourse to the older, obscure 

assumed from the start a generalization ofNewton's resistance formula for the impact of fluid on a solid segment. 
It did not involve any dynamics either, for he computed the deflection of the solid on the basis of Newton's second 
law. Cf. Academie Royale des Sciences, Proces-verbaux 60 (1741) pp. 369-404, 424-38; 61 (1742) pp. 126-33, 349-
56 (text of the memoirs on refraction, also in Part Ill of d'Alembert [1744] with little change); Proces-verbaux 61 
(1742) p. 424 (mention that D' Alembert has·read a memoir on a new principle of dynamics). D' Alembert was not 
the only one to feel the need of a systematization of mechanics at that time; in the Memoires of the same year, 
([1742] pp. 1-52), Clairaut published his own 'general and direct principle' of dynamics (pp. 21-2), based on the 
introduction of internal forces (such as thread tension). 

23D'Aiembert [1743] pp. 69-70. 

24Cf. Vilain [2000] pp. 456-9. D' Alembert [1743] reproduced and criticized Johann Bernoulli's derivation on 
p. 71. 

250n Jacob Bernoulli as a source, cf. Lagrange [1788] pp. 176-7, 179-80, Dugas [1950] pp. 233-4, Vilain [2000] 
pp. 444-8. Jacob Hermann's treatment of the compound pendulum in his Phoronomia (1716) and Euler's early 
treatment of the same problem (1734) read like convoluted statements of Jacob Bernoulli's method. 
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concept of force as the cause of motion. He defined force as the motion impressed on a 
body, that is, the motion that a body would take if this force were acting alone without any 
impediment. The third law then implies that two contiguous bodies subjected to opposite 
forces are in equilibrium. Consequently, d' Alembert regarded statics as a particular case of 
dynamics in which the various motions impressed on the parts of the system mutually 
cancel each other. 26 

Based on this concept, d' Alembert derived the principle of virtual velocities, according 
to which a connected system subjected to various forces remains in equilibrium if the work 
of these forces vanishes for any infinitesimal motion of the system that is compatible with 
the connections.27 As for the principle of dynamics, he regarded it as a self-evident 
consequence of his dynamic concept of equilibrium. In general, the effect of the connec
tions in a connected system is to destroy part of the motion that is impressed on its 
components by means of external agencies. The rules of this destruction should be the 
same whether the destruction is total or partial. Hence, equilibrium should hold for that 
part of the impressed motions that is destroyed through the constraints. This is d' Alem
bert's principle of dynamics. 

Stripped of d'Alembert's philosophy of motion, this principle stipulates that a con
nected system in motion should be, at any time, in equilibrium with respect to the fictitious 
forces sf - my, where f denotes the force applied on the mass point m of the system, and 
'Y the acceleration of this mass point. As a simple example, consider two masses m A and ms 
hanging on the two sides of a massless pulley by an inextensible, massless thread (see 
Fig. 1 .6). According to d'Alembert's principle, the forces mAg - mA "YA and msg - ms"Ys 
should be in equilibrium, and therefore should be equal. This condition, together with the 
kinematic condition -y A + "YB = 0, yields the equation of motion of the system. Compared 
to other treatments of the same problem, the essential advantage of d' Alembert's method 

B 

A 

Fig. 1 .6. Simple connected system for illristrating d' Alembert's principle. 

26D'Alembert [1743] pp. xiv-xv, 3. Cf. Hankins [1968], Fraser [1985]. 

27The principle of virtual velocities was first stated generally by Johann Bernoulli and thus named by Lagrange 
[1788] pp. 8-1 1 .  Cf. Dugas [1950] pp. 221-3, 320. The term work is of course anachronistic. 
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is that it does not require the introduction of the subtle (and obscure for d' Alembert) 
concept ofthe tension of the thread. It directly gives the equations of motion of the system 
if only the conditions of equilibrium are known. 

1 .3.2 Ejjlux revisited 
At the end of his treatise on dynamics, d' Alembert considered the hydraulic problem of 
efflux through the vessel of Fig. 1 .2. His first task was to determine the condition of 
equilibrium of the fluid when subjected to an altitude-dependent gravity g(z). For this 
purpose he considered an intermediate slice of the fluid, and required the pressure from the 
fluid above this slice to be equal and opposite to the pressure from the fluid below this 
slice. According to a slight generalization of Stevin's hydrostatic law, these two pressures 
are given by the integral of the variable gravity g(z) over the relevant range of elevation. 
Hence the equilibrium condition reads:28 

or 

( ZJ 

S(?) I g(z) dz = -S(?) I g(z) dz, 
zo ( 

ZJ I g(z) dz = 0. 
zo 

(1 . 12) 

(1. 13) 

According to d' Alembert's principle, the motion of the fluid under a constant gravity g 
must be such that the fluid is in equilibrium under the fictitious gravity g(z) = g - dvjdt, 
where dv j dt is the acceleration of the fluid slice at the elevation z. Hence follows the 
equation of motion 

(1. 14) 

which is the same as Johann Bernoulli's eqn (1 .7). 
D' Alembert further proved that this equation implied the conservation of live forces in 

Daniel Bernoulli's form. To this end, he inserted the product Sv, which does not depend on 
z, in the above equation. This gives 

,, 

Z! Zt I V�� s dz = I gvS dz. 
zo zo 

(1 . 15) 

As the two integrals can be regarded as sums over moving slices of fluid, this equation is 
equivalent to 

28D'A1embert [1743] pp. 183-6. 
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Zl Z1 
d J 1 2 d J dt 2v S dz = dt gzS dz, 

zo zo 

which is the differential version of Daniel Bernoulli's eqn (1 .4). 
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(1 . 16) 

D' Alembert intended his new solution of the efflux problem to illustrate the power of his 
principle of dynamics. He clearly relied on the long-known analogy with a connected 
system of solids. Yet he believed this analogy to be imperfect. Whereas in the case of solids 
the condition of equilibrium was derived from the principle of virtual velocities, in the case 
of fluids d' Alembert believed that only experiments could determine the condition of 
equilibrium. As he explained in his treatise of I 744 on the equilibrium and motion of 
fluids, the interplay between the various molecules of a fluid was too complex to allow for 
a derivation based on the only a priori known dynamics, that of individual molecules. 29 

In this second treatise, d' Alembert provided a similar treatment of efflux, including his 
earlier derivations of the equation of motion and the conservation of live forces, with a 
slight variant: he now derived the equilibrium condition (1 .13) by setting the pressure 
acting on the bottom slice of the fluid to zero.30 Presumably, he did not want to base 
the equations of equilibrium and motion on the concept of internal pressure, in conform
ance with his general avoidance of internal contact forces in his dynamics. His statement of 
the general conditions of equilibrium of a fluid, as found at the beginning of his treatise, 
only required the concept of wall pressure. Yet, in a later section of his treatise, d' Alembert 
introduced 'the pressure at a given height' 

(1. 17) 

just as Johann Bernoulli had done, and for the same purpose of deriving the velocity 
dependence of wall pressure.31 

In the rest of his treatise, d' Alembert solved problems similar to those in Daniel Ber
noulli's Hydrodynamica, with nearly identical results. The only important difference con
cerned cases involving the sudden impact oftwo layers of fluids. Whereas Daniel Bernoulli 
still applied the conservation oflive forces in such cases (save for eventual dissipation into 
turbulent motion), d' Alembert's principle of dynamics there implied a destruction of live 
force. Daniel Bernoulli disagreed with these and a few other changes. In a contemporary 
letter to Euler he expressed his exasperation over d' Alembert's treatise:32 

I have seen with astonishment that apart from a few little things there is nothing to be 
seen in his hydrodynamics but an impertinent conceit. His criticisms are puerile indeed, 
and show not only that be is no remarkable man, but also that he never will be. 

29D' Alembert [1744] pp. viii-ix. 30Ibid. pp. 19-20. 31Ibid. p. 139. 

32D. Bernoulli to Euler, 7 July 1745, quoted in Truesdell [1954] p. XXXVIIn. Truesdell approves 
([1954] p. XXXVII): 'D' Alembert's method makes no contribution and has had no permanent influence in fluid 
mechanics.' 
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1 .3.3 The cause of winds 
In this judgment, Daniel Bemoulli overlooked the fact that d' Alembert's hydrodynamics, 
being based on a general dynamics of connected systems, lent itself to generalizations 
beyond parallel-slice flow. In a prize-winning memoir of 1746 on the cause of winds, 
d' Alembert offered striking illustrations of the power of this approach. As thermal effects 
were beyond the grasp of contemporary mathematical physics, he focused on a cause that 
is now known to be negligible: the tidal force exerted by the Moon and the Sun. For 
simplicity, he confined his analysis to the case of a constant-density layer of air covering a 
spherical globe with uniform thickness. He further assumed that fluid particles originally 
on the same vertical line remained so in the course of time (owing to the thinness of the air 
layer) and that the vertical acceleration of these particles was a negligible fraction of 
gravity, and he neglected second-order quantities with respect to the fluid velocity and to 
the elevation of the free surface. His strategy was to apply his principle of dynamics to the 
motion induced by the tidal force f and the force of gravity g (for unit density), both of 
which depend on the location on the surface of the Earth.33 

Calling 'Y the absolute acceleration of the fluid particles, the principle requires that 
the fluid layer should be in equilibrium under the force f + g - 'Y· From earlier theories 
on the shape of the Earth (regarded as a rotating liquid spheroid), d' Alembert borrowed 
the equilibrium condition that the net force should be perpendicular to the free surface of 
the fluid. He also required that the volume of vertical cylinders of fluid should not be 
altered by their motion, in conformance with his constant-density model. As the modem 
reader would expect, from these two conditions d' Alembert derived some sort of momen
tum equation, and some sort of continuity equation. But he did it in a rather opaque 
manner. Some features, such as the lack of specific notation for partial differentials or the 
abundant recourse to geometrical reasoning, disconcert modern readers only.34 Others 
were problematic to his contemporaries: he often omitted steps and introduced special 
assumptions without warning. Also, he directly treated the utterly difficult problem of 
fluid motion on a spherical surface without preparing the reader with simpler problems. 

Suppose, with d' Alembert, that the tide-inducing luminary orbits above the equator 
(with respect to the Earth).35 Using the modem terminology for spherical coordinates, 
denote by e the colatitude of a given point of the terrestrial sphere with respect to an axis 
pointing toward the orbiting luminary (this is the geographical longitude), </> the longitude 
measured from the meridian above which the luminary is orbiting (this is not the geograph
ical longitude), TJ the elevation of the free surface of the fluid layer over its equilibrium 
position, ve and v.p the 6- and </>-components of the fluid velocity with respect to the Earth, h 
the depth of the fluid in its undisturbed state, and R the radius of the Earth (see Fig. 1 .  7). 

33D' Alembert [1747]. D' Alembert treated the rotation of the Earth, the Sun's attraction, and the Moon's 
attraction as small perturbing causes whose effects on the shape of the fluid surface simply added (ibid. pp. xvii, 
47). Consequently, he overlooked the Coriolis force in his analysis of the tidal effects (ibid. p. 65, he announces that 
he will be reasoning as if it were the luminary that rotates around the Earth). 

34D'Alembert used a purely geometrical method to study the free oscillations of an ellipsoidal disturbance of 
the air layer. 

35The Sun and the Moon actually do not, but the variable part of their action is proportional to that of such a 
luminary. 
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Fig. 1 .  7. Spherical coordinates for d '  Alembert's atmospheric tides. The fat line represents the visible part of 
the equator, over which the luminary is orbiting. N is the North pole. 

D' Alembert first considered the simpler case </> >=:J 0, for which he expected the compon
ent vq, to be negligible. To first order in 7J and v, the conservation of the volume of a 
vertical column of fluid yields 

(1 . 18) 

which means that an increase in the height of the column is compensated for by a 
narrowing of its base (the dot denotes the time derivative for a fixed point on the Earth's 
surface). Since the tidal force f is much smaller than the gravity force, the vector sum 

· f + g - 'Y makes an angle (fe - y8)jg with the vertical. To first order in 7J, the inclination 
of the fluid surface over the horizontal is 877/ R8(). Therefore, the condition that f + g - 'Y 

should be perpendicular to the surface of the fluid is approximately equivalent to36 

(1 .19) 

As d'Alembert noted, this equation of motion can also be obtained by equating the 
horizontal acceleration of a fluid slice to the sum of the tidal component fe and of 
the difference between the pressures on both sides of this slice. Indeed, the neglect of the 

36D'Aiembert [1747] pp. 88-9 (formulas A and B). The correspondence with d'Alembert's notation is given by 
e - u, v, - q, dTJ/dB - -v, R/hw - s, w/Rg - b2/2a, R/gK - 3S/4pd3 (with/ =  -K sin 28). 
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vertical acceleration implies that, at a given height, the internal pressure of the fluid varies 
as the product g7). Hence d'Alembert was aware of two routes to the equation of motion, 
namely, through his dynamic principle, and through an application of the momentum law 
to a fluid element subjected to the pressure of contiguous elements. In some sections he 
favored the first route, in others the second. 37 

In his expression of the time variations ij and v9, d' Alembert considered only the forced 
motion of the fluid for which the velocity field and the free surface of the fluid rotate 
together with the tide-inducing luminary at the angular velocity -w. Then the values of 71 
and v9 at the colatitude () and at the time t + dt are equal to their values at the colatitude 
() + wdt and at the time t. This gives 

. &uo . 871 
vo = wae, 7) = w 8() . (1 .20) 

D' Alembert equated the relative acceleration v9 with the acceleration y9, for he neglected 
the second-order convective terms, and judged the absolute rotation of the Earth irrele
vant (he was aware of the centripetal acceleration, but treated the resulting permanent 
deformation of the fluid surface separately; and he overlooked the Coriolis acceleration). 
With these substitutions, his equations (1 . 18) and (1 .19) become ordinary differential 
equations with respect to the variable (). 

D'Alembert eliminated 7) from these two equations, and integrated the resulting differ
ential equation for Newton's value -K sin 2() of the tide-inducing forcef9• In particular, he 
showed that the phase of the tides (concordance or opposition) depended on whether the 
rotation period 27T / w of the luminary was smaller or larger than the quantity 27T R/ .fili., 
which he had earlier shown to be identical to the period of the free oscillations of the fluid 
layer.38 

In another section of his memoir, d'Alembert extended his equations to the case when 
the angle </> is no longer negligible. Again, he had the velocity field and the free surface of 
the fluid rotate together with the luminary at the angular velocity -w. Calling Rwdt the 
operator for the rotation of angle wdt around the polar axis, and v(P, t) the velocity vector 
at point P and at time t, we have 

v(P, t + dt) = Rwdtv(RwdtP, t). 

Expressing this relation in spherical coordinates, d'Alembert obtained 

. (&ue A. &uo sin </> . A. • e) 
V9 = W [jj} COS '+' - 8</> tan ()

- V<f> Sm '+' Sill , 

(1.21) 

(1 .22) 

37D' Alembert [1747] pp. 88-9. He represented the internal pressure by the weight of a vertical column of fluid. 
In hls discussion of the condition of equilibrium (ibid. pp. 15-16), he introduced the balance of the horizontal 
component of the external force acting on a fluid element and the difference in the weight of the two adjacent 
columns as 'another very easy method' for determining the equilibrium. In the case of tidal motion with </> "'  0, he 
directly applied this condition of equilibrium to the 'destroyed motion' f + g - 'Y· In the general case (ibid. pp. 
1 12-13), he used the perpendicularity off +  g - 'Y to the free surface of the fluid. 

38The elimination of 1J leads to the easily integrable equation 
(gh - R2w2) dv, + gh d(sine)j sin e - R2wKsin 9d(sin9) = 0. 
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. (&v"' -1.. Ov<f> sin</> . -1.. • e) v<P = w 8e cos '+' -
8</> tan () 

+ vo sm'+'sm . 
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(1 .23) 

For the same reasons as before, d' Alembert identified these derivatives with the acceler
ations Ye and 'Y<t>· He then applied his dynamic principle to obtain 

'Y<t> = -g R sine 8</> 
(1 .24) 

Lastly, he obtained the continuity condition 

(1 .25) 

in which the modern reader may recognize the expression of a divergence in spherical 
coordinates. 39 

D'Alembert judged the resolution of this system to be beyond his capability. The 
purpose of this section of his memoir was to illustrate the power and generality 'of his 
method for deriving hydrodynamic equations. For the first time, he gave the complete 
equations of motion of an incompressible fluid in a genuinely bidimensional case. Thus 
emerged the velocity field and the corresponding partial derivatives with respect to two 
independent spatial coordinates. D' Alembert pioneered the application to the dynamics of 
continuous media of the earlier calculus of differential forms by Alexis Fontaine and 
Leonhard Eu1er. His notation of course differed from the modern one. Where we now 
write 8f /8x (following Gustav Kirchhoff), F ontaine wrote df / dx, and d' Alembert wrote 
A, with df = A dx + B dy + . . . .  
1 .3.4 The resistance of fluids 
In 1749, d' Alembert competed for another Berlin prize on the resistance of fluids, and 
failed: the Academy judged that none of the competitors had reached the point of 
comparing his theoretical results with experiments. D'Alembert did not deny the import
ance of this comparison for the improvement of ship design. However, he judged that the 
relevant equations cou1d not be solved in the near future, and that his memoir deserved 
consideration for its methodological innovations. In 1752, he published the Iatin text and 
an augmented translation as a book.40 

Compared with the earlier treatise on the equilibrium and motion of fluids, the first 
important difference was a new formu1ation of the laws of hydrostatics. In 1744, d'Alem
bert started with the uniform and isotropic transmissibility of pressure by any fluid (from 

39D'Alembert [1747] pp. 1 1 1-14 (equations E, F, G, H, I). To complete the correspondence given in 
footnote 35, take </> __, A, v.; __, 7), 'Yo __, 'IT, 'Y.; __, <p, gfR __, p, 8TJ/89 __, -p, 87]/84> __, -u, &u0/89 __, r, 
&uo/84> __, .\., &u.; 89 __, -y, &u.;/84> --+ {3. D'Alembert has the ratio of two sines instead of the product in the 
last term in each of eqns (1.22) and (1 .23). An easy, modem way to obtain these equations is to rewrite eqn. 
(1.21) as v = [("' x r) · 'V]v + "'  x v, with v = (0, v0, v.;), r = (R, 0, 0), "' = w(sin 9 sin </>, cos 9 sin </>, cos 4> ), and 
'il = (8" 8o/R, 8.;/Rsin9) in the local basis. 

40D' Alembert [1752] p. xxxvili. For an insightful study of d' Alembert's work on fluid resistance, cf. Grimberg 
[1998]. See also Calero [1996] Chap. 8. 
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one part of its surface to another). He then derived the standard laws of this science, such 
as the horizontality of the free surface and the depth dependence of wall pressure, by 
qualitative or geometrical reasoning. In contrast, in his new memoir he relied on a 
mathematical principle borrowed from Alexis-Claude Clairaut's memoir of 1743 on the 
shape of the Earth. According to this principle, a fluid mass subjected to a force density fis 
in equilibrium if and only if the integral J f · di vanishes over any closed loop within the 
fluid and over any path whose ends belong to the free surface of the fluid.41 

D' Alembert regarded this principle as a mathematical expression of his earlier principle 
of the uniform transmissibility of pressure. If the fluid is globally in equilibrium, he 
reasoned, then it must also be in equilibrium within any narrow canal of section s 
belonging to the fluid mass. For a canal beginning and ending on the free surface of the 
fluid, the pressure exerted by the fluid on each of the extremities of the canal must vanish. 
According to the principle of uniform transmissibility of pressure, the force f acting on the 
fluid within the length di of the canal exerts a pressure sf · di that is transmitted to both 
ends of the canal (with opposite signs). As the sum of these pressures must vanish, so does 
the integral J f · dl. This reasoning and a similar one for closed canals establish d' Alem
bert's new principle of equilibrium.42 

Applying this principle to an infinitesimal loop, d' Alembert obtained (the Cartesian 
coordinate form of) the differential condition 

\1 X f =  0, (1 .26) 

as Clairaut had already done. Combining it with his principle of dynamics, and confining 
himself to the steady motion ( &v / 8t = 0, so that 'Y = (v · \J)v) of an incompressible fluid, 
he obtained the two-dimensional, Cartesian coordinate version of 

\1 x [(v · \J)v] = 0, (1 .27) 

which means that the fluid must formally be in equilibrium with respect to the convective 
acceleration. D' Alembert then showed that this condition was met whenever \1 x v = 0. 
Confusing a sufficient condition with a necessary one, he concluded that the latter 
property of the flow held generally. 43 

This property nonetheless holds in the special case of motion investigated by d'Alem
bert, that is, the stationary flow of an incompressible fluid around a solid body when the 
flow is uniform far away from the body (see Fig. 1 .8). In this limited case, d' Alembert gave 
a correct proof, of which a modernized version follows.44 

Consider two neigh boring lines of flow beginning in the uniform region of the flow and 
ending in any other part of the flow, and connect the extremities through a small segment. 

41D' Alembert [I 752] pp. 14-17. On the figure of the Earth, cf. Todhunter [1873]. On Clairaut, cf. Passeron [1995]. 
On Newton's and MacLaurin's partial anticipations ofC!airaut's principle, cf. Truesdell [1954] pp. XIV-XXII. 

42 As is obvious to the modern reader, this principle is equivalent to the existence of a single-valued function (P) 
of which f is the gradient and which has a constant value on the free surface of the fluid. The canal equilibrium 
results from the principle of solidification, the history of which is discussed in Casey [1992]. 

43D' Alembert [1752] art. 78. The modern hydrodynamicist may recognize in eqn (1 .27) a particular case of the 
vorticity equation. The condition \7 x v = 0 is that ofirrotational flow. 

44For a more literal rendering of d' Alembert's proof, cf. Grimberg [1998] pp. 43-8. 
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p 
T 

Fig. 1.8. Flow around a solid body according to d'Alembert ([1752] plate). 

According to d' Alembert's principle together with the principle of equilibrium, the integral 
f (v · 'V)v · dr vanishes over this loop. Using the identity 

(v · 'V)v = \7 Gv2) -v x (\7 x v), (1.28) 

this implies that the integral f (\7 x v) · (v x dr) also vanishes. The only part of the loop 
that contributes to this integral is that corresponding to the small segment joining the end
points of the two lines of flow. Since the orientation of this segment is arbitrary, \7 x v 
must vanish. 

D' Alembert thus derived the condition 

'V x v = O  (1.29) 

from his dynamic principle . He also obtained the continuity condition 

'V · v = O  (1.30) 

by requiring the constancy of the volume .of a given element of fluid during its motion. 
More exactly, he obtained the special expressions of these two conditions in the cylindric
ally-symmetric case and in the two-dimensional case . In order to solve this system of two 
partial differential equations in the two-dimensional case, he noted that the two conditions 
meant that the forms u dx + v dy and v dx-u dy were exact differentials. This property 
holds, he ingeniously noted, if and only if (u - iv) (dx + i dy) is an exact differential. This 
means that u and -v are the real and imaginary parts of a ( holomorphic) function of the 
complex variable x + iy. They must also be such that the velocity is uniform at infinity and 
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tangent to the body along its surface. D' Alembert struggled to meet these boundary 
conditions through power-series developments, to little avaiJ.45 

The ultimate goal of this calculation was to determine the force exerted by the fluid on 
the solid, which is the same as the resistance offered by the fluid to the motion of a body 
with a velocity opposite to that of the asymptotic flow.46 D'Alembert expressed this force 
as the integral of the fluid's pressure over the whole surface of the body. The pressure is 
itself given by the line integral of -dv j dt from infinity to the wall, in conformance with 
d' Alembert's earlier derivation of Bemoulli's Jaw. This law still holds in the present case, 
because -dvjdt = -:-(v · 'i7)v = -'ii'(�if) . Hence the resistance could be determined, if only 
the flow around the body was known.47 

In 1749, d'Alembert did not know enough about this flow to reach definite conclusions 
on the resistance. A few years later, he realized that, for a head-tail symmetric body, a 
solution of his differential equations was possible in which the fluid velocity was the same 
at the front and at the rear of the body (up to a sign change). Bemoulli's Jaw gives zero 
resistance for this solution, since the head pressure exactly balances the tail pressure. As 
d' Alembert knew, his equations only admit one solution. Therefore, the flow is unique and 
symmetric, and the resistance must vanish. D' Alembert concluded:48 

Thus I do not see, I admit, how one can satisfactorily explain by theory the resistance 

of fluids. On the contrary, it seems to me that the theory, developed in all possible 

rigor, gives, at least in several cases, a strictly vanishing resistance; a singular paradox 

which I leave to future geometers for elucidation. 

Although d' Alembert ended his fluid dynamics on a paradox, he had achieved much on 
the way. Through his dynamic principle and his equilibrium principle, he had obtained 
hydrodynamic equations for the steady flow of an incompressible fluid that we may 
retrospectively identify as the continuity equation, the condition of irrotational flow, 
and Bemoulli's Jaw. Admittedly, he only wrote these equations for the cylindrically
symmetric and two-dimensional cases that were relevant to the fluid-resistance problem. 
The modem reader may wonder why he did not try to write general equations of fluid 

45D'Alembert [1752] pp. 60-2. Here d' A1embert discovered the Cauchy-Riemann condition for u and -v to be 
the real and imaginary components, respectively, of an analytic function in the complex plane, as well as a 
powerful method to solve Laplace's equation Au = 0 in two dimensions. In [1761] p. 139, d'Alembert introduced 
the complex potential rp + iop such that (u - iv)(dx + i dy) = d(rp + i,P). The real part rp of this potential is the 
velocity potential introduced by Euler in 1752; its imaginary part ofr is the so-called stream function, which is a 
constant on any line of current, as d' Alembert noted. 

46D'Alembert gave a proof of this equivalence, which he did not regard as obvious. 

47D' Alembert had already discussed fluid resistance in part Ill of his treatise of 1744. There he used a 
molecular model in which momentum was transferred by impact from the moving body to a layer of hard 
molecules. He believed, however, that this molecular process would be negligible if the fluid molecules were too 
close to each other, for instance, when fluid was forced through the narrow space between the body and a 
containing cylinder. In this case ([1744] pp. 205--6), he assnmed a parallel-slice flow and computed the fluid 
pressure on the body through Bernoulli's law. For a head-tail symmetric body, this pressure does not contribute to 
the resistance if the flow has the same symmetry. After noting this difficulty, d'Alembert evoked the observed 
stagnancy of the fluid behind the body to retain only the Bernoulli pressure on the prow . 

.. D' Alembert [1768] p. 138. In his memoir of 1749, besides the Bernoulli pressure, d' Alembert evoked a 
velocity-proportional friction of the fluid on the body, and the tenacite of the fluid, according to which a certain 
(velocity-independent) force was required to separate the fluid molecules from each other at the prow of the body 
([1752] pp. 106--8). For a modern, more general derivation of the paradox, see Appendix A. 
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motion in Cartesian coordinate form. The answer is plain: he was following an older 
tradition of mathematical physics according to which general principles, rather than 
general equations, were applied to specific problems. 

D' Alembert obtained his basic equations without recourse to the concept of pressure. 
Yet he had a concept of internal pressure, which he used to derive Bernoulli's law. Then we 
may wonder why he did not pursue the other approach sketched in his theory of winds, 
that is, the application of Newton's second law to a fluid element subjected to a pressure 
gradient. Plausibly, he favored a derivation that was based on his own principle of 
dynamics and thus avoided obscure internal forces. 

D' Alembert knew well, however, that his equilibrium principle was simply the condition 
of uniform integrability for the force density f. Had he cared to introduce the integral, say 
P, he would have found the equilibrium equation f = \7 P that makes P the internal 
pressure. Applying his dynamic principle, he would have reached the equation of motion 

dv f - P dt = \JP, (1 .31) 

which is simply Euler's equation. But he did not proceed along these lines, and rather 
wrote equations of motion that did not involve internal pressure.49 

1.4 Euler's equations 

1.4.1 The Latin memoir 
Unlike d'Alembert, the Swiss geometer and Berlin Academician Leonhard Euler did not 
believe that a new dynamic principle was necessary for continuous or connected systems, 
and he had no objection to internal forces. In 1740, he congratulated Johann Bernoulli for 
having 'determined most accurately the pressure in every state of the water.' In 1750, he 
claimed that the true basis of continuum mechanics was Newton's second law applied to 
the infinitesimal elements of bodies. Among the forces acting on the elements, he included 
'connection forces' acting on the boundary of the elements. In the case of fluids, these 
internal forces were to be identified with the pressure. The acceleration of the fluid 
elements therefore depended on the combined effect of the pressure gradient and external 
forces (gravity), as noted by d' Alembert in his memoir on winds. In hydraulic writings of 
1750/51 ,  Euler thus obtained the differential version 

dv dP dt = g - d.z 
of Johann Bernoulli's equation (1 .8) for parallel-slice efflux. 5° 

(1 .32) 

49In this light, d' Alembert's later neglect of Euler's �pproach should not be regarded as a mere expression of 
rancor. 

50Euler to J. Bernoulli, 1 8  Oct. 1740, in Euler [1998] pp. 386-9; Euler [1750] p. 90 (the main purpose of this 
paper was the derivation of the equations of motion of a solid). On the hydraulic writings, cf. Truesdell [1954] pp. 
XLI-XLV. These included Euler's evaluation of the pressure in the pipes that were being built to feed the fountains 
of Sanssouci (Euler [1752]), nicely discussed in Eckert [2002]. There Euler used the generalization (1.9) of 
Bernoulli's law to non-permanent flow, which he derived from eqn (1.32). As Eckert explains, the failure of the 
fountains project and an ambiguous letter from the King of Prussia to Voltaire have led to the myth of Euler's 
incapacity in concrete matters. 
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In a Latin memoir of 1752, probably stimulated by the two memoirs of d' Alembert he 
had reviewed for the Berlin Academy, Euler obtained the general equations of fluid 
motion for an incompressible fluid in terms of the internal pressure P and the Cartesian 
coordinates of the velocity v. For this purpose, he simply applied Newton's second law to a 
cubic element of fluid subjected to the gravity g and to the pressure P acting on the cube's 
faces. By a now familiar reasoning, this procedure yields (for unit density) 

&v 
at + (v · 'i7)v = g - 'i7 P. 

Euler also obtained the continuity equation 

'i7 · V =  0, 

and eliminated P from the equation of motion to obtain 

[ * + (v · 'i7) J ('i7 x v) - (('i7 x v) · 'i7]v = 0. 

(1 .33) 

(1 .34) 

(1 .35) 

Interestingly, Euler repeated d' Alembert's mistake of regarding 'i7 x v = 0 as a necessary 
condition for the validity of the former relation, whereas it is only a sufficient condition. 
This error allowed him to introduce what later fluid theorists called the velocity potential, 
that is, the function <;o(r) such that v = 'i7 <p. Equation (1.33) may then be rewritten as 

Spatial integration of this equation yields a generalization of Bemoulli's law: 

P = g · r - �if -
8�" + C 

2 8t , 

(1 .36) 

(1 .37) 

where C is a constant (time dependence can be absorbed into the velocity potential). 
Lastly, Euler applied this equation to the flow through a narrow tube of variable section to 
retrieve the results of the Bemoullis. 51 

Although Euler's Latin memoir contained the basic hydrodynamic equations for an 
incompressible fluid, the form of exposition was still in flux. Euler often used specific 
letters (coefficients of differential forms) for partial differentials rather than Fontaine's 
notation, and measured velocities and acceleration in gravity-dependent units. He pro
ceeded gradually, from the simpler two-dimensional case to the fuller three-dimensional 
case. His derivation of the continuity equation was more intricate than we would now 
expect. In addition, he erred in believing in the general existence of a velocity potential. 
These characteristics make Euler's Latin memoir a transition between d'Alembert's fluid 
dynamics and the fully-modem foundation of this science found in the French memoirs of 
1 755.52 

51Euler [1752] pp. 154-7. 

52Cf. Truesdell [1954] pp. LXII-LXXV. 
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1.4.2 The French memoirs 
The first of these memoirs is devoted to the equilibrium of fluids, both incompressible and 
compressible. Euler presumably realized that his new hydrodynamics contained a new 
hydrostatics based on the following principle: the action of the contiguous fluid on a given, 
internal element of fluid results from an isotropic, normal pressure P exerted on its 
surface. The equilibrium of an infinitesimal element subjected to this pressure and to the 
force density f of external origin then requires 

f - "VP = 0. (1 .38) 

As Euler showed, all known results of hydrostatics follow from this simple mathematical 
law. 53 

In his next memoir, Euler obtained the general hydrodynamic equations for compres
sible fluids: 

for the continuity condition, and 'Euler's equation' 

&v 1 ot + (v · "V)v = 
P 

(f - 'V P), 

(1 .39) 

(1 .40) 

to which a relation between pressure, density, and heat must be added for completeness. 
Euler now realized that 'V x v did not necessarily vanish, for example in the case of vortex 
flows. In a sequel to this memoir, he showed that Bernoulli's law nonetheless remained 
valid along the stream lines of any steady flow of an incompressible fluid. Indeed, owing to 
the identity 

(1 .41) 

the integration of the convective acceleration term along a line of flow eliminates 'V x v 
and contributes the !if term of Bernoulli's law. 54 

Euler deplored the difficulty of solving his equations. He could not really handle any 
problem that was not accessible to earlier methods, although he devoted much space to the 
general conditions of integrability. His true achievement was a strikingly modern and 
crystal-clear expression of the foundations of hydrodynamics. Present derivations of the 
fundamental equations follow Euler's original procedures very closely. Unlike the earlier 
hydrodynamic writings of d' Alembert and of the Bernoullis, Euler's memoirs are immedi
ately intelligible to the modern reader. They mark the emergence of a new style of math
ematical physics in which fundamental equations take the place of fundamental principles. 

Yet we should not underestimate Euler' s debts to his predecessors. Euler himself paid 
tribute to the Bernoullis and to d' Alembert, despite his obscure role in d' Alembert's failure 

53Euler [1755a] p. 5. 
54Euler [1755b] pp. 63, 65; [1755c] 1 17. Cf. Truesdell (1954] pp. LXXV-C. 
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to win the Berlin prize on winds. 55 These authors anticipated essential features of Euler's 
approach. J ohann Bernoulli had a concept of internal pressure, and some sort of convect
ive derivative (the gurges). D'Alembert had particular cases of the partial differential 
equations of continuity and motion, as well as the general idea of deriving the equations 
of motion by balancing acceleration, external forces, and pressure gradient. Euler's role 
was to prune unnecessary and unclear elements in the abundant writings of his predeces
sors, and to combine the elements he judged most fundamental in the clearest and most 
general manner. 

1.5 Lagrange's analysis 

1 .5.1 Methods of resolution 
In his celebrated memoir of 1781 on fluid motion, J oseph Louis Lagrange judged that the 
foundations of this subject had been sufficiently established by d' Alembert and his 
followers. But he deplored the lack of efficient, rigorous methods for solving practical 
questions of fluid motion. Having already done much work on the integration of partial 
differential equations, he knew that the general integral of this kind of equation depended 
on an arbitrary function that could only be determined through the boundary conditions. 
A first condition for the determination of specific flows was a clear and complete state
ment of the boundary conditions. 56 

Already known were the condition that the velocity of the fluid on the walls of its 
container should be parallel to the walls, and the condition that the pressure on the free 
surface should be equal to the external pressure. Lagrange added the condition that a fluid 
particle initially on the free surface of the fluid should retain this property 'so that the fluid 
does not divide itself but always forms a continuous mass.' lff(r, t) = 0 is the equation of 
the fluid surface, this condition implies 

on the surface. 57 

8f - + (v · \i')f = 0 8t (1 .42) 

In order to ease the resolution of Euler's equation, Lagrange systematically introduced 
the velocity potential cp, which reduces the number of unknown functions from three to 
one. It was therefore important to him to determine the condition under which this 
potential existed. The following, important theorem answered this question: whenever 
the motion of an incompressible fluid is prompted by forces that derive from,,a potential 
(gravity or external pressure), a velocity potential exists. 

In order to prove this, Lagrange multiplied Euler's equation (1 .40) by dr to obtain 

8v 1 dP (if) 
- · dr + (\7 x v) · (v x dr) = -f · dr - - - d - : 
& p p 2 

55Cf. Grimberg [1998] pp. 8-10. 56Cf. Truesdell [1955] pp. XC-CV. 
57Lagrange [1781] p. 704. On later criticism oftbis condition, cf. Truesdell [1955] p. XCI. 

(1 .43) 
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If the pressure is a function of density only (which is, of course, the case for an incom
pressible fluid) and iff/ p derives from a potential, then the right-hand side of this equation 
is an exact differential. After noting this, Lagrange applied his favorite method, power
series development, to the functions v(t) and '11 x v(t). As the left-hand side of eqn (1 .43) 
must be an exact differential, the vanishing of the coefficients of '11 x v(t) up to order n 
implies that the (n + l)th coefficient of v · dr is an exact differential or, equivalently, that 
the (n + l)th coefficient of '11 x v(t) vanishes. As, by hypothesis, v · dr is an exact differ
ential for t =  0, the first term of the development of 'V x v(t) must vanish. By induction, all 
other terms must then vanish. Therefore, '11 x v(t) vanishes at any time and there exists a 
velocity potential at any positive time. 58 

Although Lagrange seems to have believed that the conditions of his theorem were met 
for most flows in nature, he gave one example in which they were not, namely tidal motion 
(since the Coriolis forces do not derive from a potential). Lagrange also (incorrectly) 
argued that the velocity potential existed for small motions in which the second-order term 
(v · 'V)v could be neglected. As either this condition or that of the previous theorem seemed 
to hold in many cases of motion, Lagrange believed he could restrict his analysis to 
potential flows without much loss of generality. He gave the propagation of sound in a 
compressible fluid as an example of the applicability of the second condition. He gave the 
motion of an incompressible fluid under the sole effect of gravity as an example of the 
applicability of the first condition. 59 

In the latter case, the equations for the velocity potential were still too complicated to 
allow integration in finite terms. Lagrange assumed one of the dimensions of the fluid to 
be very small, so that one of the coordinates of the fluid particles could be taken to be 
much smaller than the other coordinates. Then the velocity potential could be expressed as 
a power series with respect to this coordinate. Lagrange thus obtained the parallel-slice 
solution of the effiux problem in a first approximation, and also corrections depending on 
higher powers of the width of the vessel. Most originally, he showed that small surface 
disturbances on shallow water obeyed the equations of a vibrating string with a propaga
tion velocity ../ifi, where h is the depth of the water.60 

Lagrange's equations and boundary conditions for the velocity potential of an incom
pressible fluid were the invariable basis of much of nineteenth-century hydro
dynamics, for instance; the theories of waves by Poisson, Cauchy, Stokes, Boussinesq, 
Korteweg, and de Vries. The resolution of these equations is intimately bound to the 
development of potential theory and Fourier analysis. To cite only two examples, Cauchy 
reinvented Fourier analysis in his memoir on waves, and Stokes obtained important 
theorems for the potential, which his friend Kelvin transposed to electric and magnetic 
contexts. 61 

58Lagrange [1781] pp. 714-17; Lagrange to d'Alembert, 15 Apr. 1781, in Lagrange [1867-1892] vol. 13, pp. 
362-6. This proof only holds if the function v(t) is analytical. Cauchy [1827a] has the first rigorous, general proof. 

59/bid. pp. 713-18, 721-3, 728. 60/bid. pp. 728-48. Cf. Chapter 2, pp. 35-37. 
61Cf. Wise [1981], Darrigol [2000] pp. 128-9, Darrigol [2003]. 
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1 .5.2 Continuum dynamics 
Lagrange returned to hydrodynamics when he wrote his M echanique analitique of 1 788. As 
is well known, he there obtained the general equations for the dynamics of connected 
systems by combining the principle of virtual velocities and d' Alembert's principle. From 
d' Alembert's viewpoint, fluids could not be treated on the same footing, because their 
internal composition was too complex to allow a deduction of the condition of equilib
rium; this condition had to be obtained empirically. In his analytical mechanics, Lagrange 
prided himself on eliminating this asymmetry between solid and fluid dynamics. He first 
showed that the condition of equilibrium of an incompressible fluid derived from the 
principle of virtual velocities applied to an ideal continuum. 

According to this principle, the moment (virtual work) ofthe force density f acting within a .  
fluid mass and of the pressure P exerted on the free surface of the fluid must vanish for any 
displacement 8r of the fluid particles that satisfies the condition of incompressibility 
\l · 8r = 0. Through Lagrange's method of multipliers, this condition is equivalent to 

I (f · 8r + A  \l · 8r)d-r - I 8r · PdS = 0, (1 .44) 

where A(r) is the Lagrange multiplier, and the displacement 8r is now arbitrary, except on 
solid walls where it must be parallel to the walls. Integrating by parts the A term, this gives 

I (f - \lA.) · 8r dT + J (A. - P)8r · dS = 0. ( 1.45) 

Hence f - \lA. must vanish within the fluid, and the parameter A must be equal to the 
external pressure on the free surface. This is equivalent to Euler's equilibrium condition, 
the parameter A playing the role of the internal pressure. 62 

For a compressible fluid, there is no constraint on the displacement 8r (save for 
parallelism on solid walls), but the moment of the internal forces of elasticity must be 
added to the moment of the external forces. As the 'elasticity' P tends to increase the 
volume dT of the particles of fluid, Lagrange wrote this new moment as 

I P8(d'T) = I P(\l · 8r)dT (1 .46) 

Consequently, the condition of equilibrium has the same form as in the case of incom
pressibility, and the 'elasticity' P plays the role of Euler's internal pressure. D�embert's 
principle, combined with this condition, yields Euler's equations of fluid motion. In all, 
Lagrange's purely analytical approach to the equilibrium and motion of fluids led to the 
same set of fundamental equations as Euler's more intuitive approach. With a mathemat
ical subtlety that prevented large diffusion, he subsumed the conditions of equilibrium of a 
continuum nnder a general principle of statics. 63 

62Lagrange [1788] pp. 139-45, 438-41 (case of motion). A similar procedure was previously given in Lagrange 
[1761] pp. 435-59. Cf. Truesdell [1954] p. CXXIV. 

63Lagrange [1788] pp. 155-7, 492-93. A similar procedure is found in Lagrange [1761] pp. 459-68 (although at 
that time Lagrange used a generalization of a variational principle by Euler instead of d' Alembert's principle). 
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1 .5.3 The Lagrangian picture 
Combining d'Alembert's principle and the principle of virtual velocities, Lagrange 
obtained Euler's equation in the form 

f - P'Y - \1 P = 0. (1 .47) 

In his memoir of 178 1 ,  Lagrange followed d' Alembert's and Euler's original method of 
characterizing the fluid motion through the velocity v as a function of the points of space r 
and the time t. This leads to the 'Eulerian' form (1 . 1) of Euler's equation. In the Mechan
ique analitique, however, Lagrange judged that 'a distinct idea of the nature of this 
equation' required another representation, in which the position r of the fluid particles is 
regarded as a function of time and of their position R at the origin of time. 64 

Multiplying eqn (1 .47) by the differential dr yields 

(f - P'Y) · dr - dP = 0, (1 .48) 

or, in terms of the coordinates Rr, Rz, R3, and t, 

(1 .49) 

This is the so-called 'Lagrangian' form of Euler's equation. For an incompressible fluid, 
the continuity condition further requires that the transformation R -t r locally conserves 
volumes, that is, 65 

( 8r;) 
det BRj = 1 . (1 .50) 

As Lagrange noted, this form of the equations of fluid motion is more complex than the 
Eulerian form. Despite its name, it was not invented by Lagrange. 66 Euler introduced it in 
his theory of sound of 1759, and Laplace used it in his theory of tides of 1776. In these 
cases the neglection of second-order terms with respect to r - R turns the equations into 
more manageable ones. 

An interesting question is why the Eulerian picture historically preceded the Lagrangian 
one. There may be no simple answer, however. Daniel Bernoulli naturally focused on the 
fluid's velocity, since he based his analysis on the principle of live forces. His father, who 
did not rely on this principle, still focused on velocity, presumably because it was the main 
quantity of interest in the efflux problem. The same could be said for d' Alembert's treatise 
on fluids, with its classical emphasis on efflux. In his memoirs on winds and on fluid 
resistance, velocity was again the most relevant quantity, the more so because the flow was 
steady (or uniformly rotating in the wind case). Perhaps orie should instead wonder why 
Euler introduced the Lagrangian picture in an acoustic context. The answer may be that 

64Lagrange [1788] p. 442. 65Ibid. p. 283. 

66Ibid. p. 280. Cf. Truesdell [1954] pp. CXIX--CXXIII. Lagrange's earliest discussion of this picture is in 
Lagrange [1761] pp. 448-52. 
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earlier solutions of problems of elastic motion, such as d' Alembert's for vibrating strings 
or La grange's for sound propagation, were formulated in terms of the displacements of the 
particles of the system that determined the elastic response. 

The vanity of seeking the true founder of hydrodynamics should now be clear. Although 

Euler's name is legitimately attached to the equations of motion of inviscid fluids, his 
contribution should only be regarded as one step toward the end of a long formative 
process. Particular cases of his equations or closely-related statements already appeared in 
the works of the Bernoullis. D'Alembert invented a general method through which the 
equations of any problem of fluid motion could be formulated, and obtained the first 

partial differential equations of fluid mechanics. Euler brilliantly capitalized on these 
earlier achievements. Lagrange offered alternative foundations, and powerful methods 

for solving the equations. 
· 

An essential element of this evolution was the recurrent analogy between the efflux from 
a vase and the fall of a compound pendulum. Any dynamic principle that solved the latter 

problem also solved the former. Dauiel Bernoulli appealed to the conservation of live 

forces, Johann Bernoulli to Newton's second law together with the idiosyncratic concept 
of translatio, and d' Alembert to his own dynamic principle of the equilibrium of destroyed 
motions. With this more general principle and his taste for partial differentials, d' Alembert 
leapt from parallel-slice flows to higher problems that involved two-dimensional anticipa
tions of Euler's equations. His method implicitly contained a completely general deriv
ation of these equations, as Lagrange later showed. Another important element was the 
concept of internal pressure. So to say, the door on the way to general fluid mechanics 

opened with two different keys, namely, d'Alembert's principle, or the concept of internal 
pressure. D'Alembert and Lagrange used the first key, and introduced internal pressure 
only as a derivative concept. Euler used the second key, and ignored d' Alembert's 
principle. As Euler guessed (and as d' Alembert suggested en passant), Newton's old second 
law applies to the volume elements of the fluid, if only the pressure of fluid on fluid is taken 
into account. Euler's equations derive from this deceptively simple consideration. 



2 

WATER WAVES 

Of all the beautiful forms of water waves that of Ship Waves is perhaps most 

beautiful, if you can compare the beauty of such beautiful things. The subject of 
ship waves is certainly one of the most interesting in mathematical science. 1 
(William Thomson, August 1887) 

As d' Alembert and Euler admitted, one could well know how to write the basic equations 
of hydrodynamics without knowing how to apply them to concrete problems. In the case of 

fluid resistance, this gap could only be filled in the twentieth century. Yet there is one kind 
of problem that earlier fluid theorists could solve to their satisfaction, namely, the motion 
of waves on the free surface of water. In 1 781 ,  La grange wrote the basic equations of water 
waves, and solved them in the simplest case of small waves on shallow water. His 
nineteenth-century followers determined the celerity of small, plane, monochromatic 
waves on water of constant depth, the pattern of waves created by a local action on the 
water surface, the shape of oscillatory or solitary waves of fmite size, and the effect of 
friction, wind, and a variable bottom on the size and shape of the waves. 2 

There is, however, a puzzling contrast between the conciseness and ease of the modem 
treatment of these topics, and the long, difficult struggles of nineteenth-century physicists 
with them. For example, a modem reader of Poisson's old memoir on waves fmds a 
bewildering accumulation of complex calculations where he would expect some rather 

elementary analysis. The reason for this difference is not any weakness of early nineteenth
century mathematicians, but our overestimation of the physico-mathematical tools that 
were available in their times. It would seem, for instance, that all that Poisson needed to 
solve his particular wave problem was Fourier analysis, which Joseph Fourier had intro
duced a few years earlier. In reality, Poisson only knew a raw, algebraic version ofFourier 

analysis, whereas modem physicists have unconsciously assimilated a physically 'dressed' 
Fourier analysis, replete with metaphors and intuitions borrowed from the concrete wave 
phenomena of optics, acoustics, and hydrodynamics. In our mind, a F ourier component is 
no longer a mere coefficient in an algebraic development, it is a periodic wave that may 
interfere with other :waves in a manner we can easily imagine. 

The transition from a dry mathematical analysis to a genuinely physico-mathematical 
analysis occurred gradually in the nineteenth century, through reversible analogies between 
different domains of physics. It concerned not only Fourier analysis, but also the theory of 

1Thomson [1887fl p. 410. 

2Nineteenth-century wave theorists did not understand the random, statistical character of ocean waves, nor 
. the mechanisms responsible for their formation. Progress on these difficult questions only occurred in the 1950s, 

cf. Kinsman [1965]. 



32 WORLDS OF FLOW 

ordinary differential equations, potential theory, perturbative methods, Cauchy's method 
of residues, etc. The modern recourse to such mathematical techniques involves a great deal 
of implicit knowledge that only becomes apparent in comparisons with older usage. 

The motivation for the introduction of more powerful tools of analysis was mainly 
experimental. Most water-wave phenomena were known well before they could be 
explained. In most cases, they were discovered in connection with navigation problems. 
Not surprisingly, the wave theorists after Poisson and Cauchy shared an interest in the 
rational development of navigation. Waves were relevant to several aspects of this science, 
namely: tide prediction, ship rolling, ship resistance, harbor safety, the wearing of canals, 
etc. British natural philosophers such as Airy, Stokes, Thomson, Rayleigh, and Lamb 
were evidently more concerned with these questions than their continental counterparts. 
They did most to bring the theory of water waves to the service of sea and canal travel, 
although there were a few French contributions in Saint-Venant's wake.3 

Section 2.1 is devoted to the theories of waves developed between 1775 and 1 825 by the 
four French mathematicians Lap1ace, Lagrange, Poisson, and Cauchy, mostly for the sake 
of mathematics, on the basis of the new hydrodynamics. Section 2.2 is devoted to Scott 
Russell's many instructive experiments on waves of various kinds, including his now 
famous and then infamous solitary wave, in the context of British Association sponsored 
research on ship design. Section 2.3 presents Airy's wave theory of tides and his critical 
analysis of Russell's results. Section 2.4 deals with the problem of finite waves of perman
ent shape, as studied by Stokes, Boussinesq, and Rayleigh. It also includes Boussinesq's 
treatment of the evolution of an arbitrary swell, through which he arrived (in 1877) at the 
equation which is now attributed to Korteweg and de Vries [1895]. Section 2.5, the last 
section in this chapter, concerns the application of optical or acoustic ideas of interference 
to the explanation of water-wave phenomena. Due to such innovations, Stokes, Reynolds, 
and Rayleigh forged the concept of group velocity, Rayleigh solved the problem of waves 
created by a drifting fishing line, and Kelvin computed the pattern of ship waves, thereby 
inventing the celebrated method of stationary phase. 

2.1 French mathematicians 

2.1 . 1  Lap lace 's attempt 
In 1775/76, Pierre-Simon de Laplace published his celebrated theory of tides, based on the 
hydrodynamics of Jean le Rond d'Alembert. Laplace represented the oceans as a layer of 
perfect liquid of variable depth on a uniformly-rotating spheroid, subjected to tj:J.e variable 
attraction of the Moon and the Snn. Applying d' Alembert's principle of dynamics to the 
fluid particles, and neglecting the vertical acceleration of the water as well as any quantity 
of second order with respect to the fluid velocity, he obtained the fundamental equations of 
tidal motion. As will appear in a moment, the former approximation requires the depth of 
the water to be small compared to the length over which the tidal elevation varies sensibly; 
the latter approximation requires the tidal elevation to be much smaller than the depth.4 

3Saint-Venant [1888] provides the most competent and thorough history of the water-wave problem to date. See 
also Craik [2004] for French and British contributions before 1 850, and Craik [2005] for Stokes's contributions. 

4Cf. Cartwright [1999] chap. 6. 
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For a modem reader, it is obvious that Laplace's equations are those for the propaga
tion of small waves in shallow water, with an additional term corresponding to the Coriolis 
force and an external force density corresponding to the lunar and solar perturbations. 
La place could not state so much, since at that time the theory of water waves remained to 
be developed. He did realize, however, that his derivation of the tidal equations opened the 
road to the simpler problem of the propagation of small disturbances in a large pond of 
uniform depth. Laplace knew Isaac Newton's analogy between water waves and the 
oscillations of a fluid in a U -shaped tube, which gave a propagation velocity proportional 
to the square root of the length of the wave, but he judged this argument to be 'very 
uncertain'. His own theory rested on well-established mechanical principles.5 

Laplace focused on free propagation, which only occurs if the cause of the wave is 
localized in space and tinie. The obvious example is a stone thrown into a pond. In order to 
ease calculation, La place considered a narrow canal instead of a pond, and the emersion of 
a solid body instead of its impact:6 

The simplest manner to conceive the formation of waves is to imagine an arbitrary 

curve, dipped'.into the fluid to a very small depth and held in this state until all the 
' 

fluid is in equilibrium; when this curve is thereafter withdrawn from the canal, it is 
clear that the fluid will tend to retrieve its equilibrium state by forming successive 

waves. 

La place then used the so-called Lagrangian picture, in which the fluid motion is described 
by giving the position (X + g, Y + rt) of a particle of the fluid at time t as a function of its 
position (X, Y) at the origin of time (the moment when the curve is withdrawn). To first 
order in g and Tf, the incompressibility of water implies the continuity equation 

(2. 1)  

According to d'  Alembert's principle of  dynamics, the work of  the sum of inertial, gravi
tational, and pressure forces during a virtual displacement d(X + g, Y + rt) of the position 
of a fluid particle at any given time must vanish. Taking the ordinate axis to be vertical and 
directed upwards, this gives 

azg &rt dP 
;;z d(X + g) + !iT d( Y + rt) + g d ( Y  + rt) + - = 0, ut ut p (2.2) 

where g is the acceleration of gravity, p the density of water, and P the pressure. To first 
order, this equation makes (82gjot2) dX + (82rt/8P) d Y  an exact differential, so that 

(2.3) 

As the expression in parenthesis and its first time.derivative vanish identically for t =  0, it 
must vanish at any time. Together with the continuity equation, this gives 

5Laplace [1776l 6/bid. p. 302. 
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(2.4) 

Laplace first took TJ to be a function of Y and t only, multiplied by coskX. Then the 
differential equation (2.4) and the boundary condition TJ = 0 at the bottom Y = 0 of the 
canal further restrict TJ to the form 

TJ = a(t) sinh k Y coskX. (2.5) 

The function a(t) is determined through the condition that, for a virtual displacement 
along the water surface, the pressure does not vary. Using eqn (2.2), assuming the form 
Y = h + scoskX for the water surface at t = 0, and retaining only terms of first order in 
g, TJ, and s, this implies that 

&g OTJ . 
012 

+ g 
oX

= sgksmkX (2.6) 

for Y = h. The derivation of this equation with respect to X and the continuity equation 
(2.1) yield 

82 OTJ a2TJ 
- 8t2 aY

+ g 8X2 
= sg� coskX 

for Y = h. Substituting the form (2.5) for TJ then leads to the equation 

d2a 
dt2 

k cosh kh + ag� sinh kh = -sg�. 

(2.7) 

(2.8) 

The only solution of this equation that agrees with the vanishing of a and da/dt for t =  0 is 

(2.9) 

with 

w2 = gktanh kh. (2.10) 

The corresponding elevation of the water surface above its original height h is, at the same 
order of approximation, 

u(X,t) = s cos kX + TJ(X,h;t) = s cos kX cos wt. (2.1 1) 

Laplace thus obtained what we would now eaU a standing wave, as a consequence of his 
seeking a factored solution. The modem reader may wonder why he did not also find a 
solution of the form sin kX sin wt and superpose it with the former solution to get the 
progressive form cos (kX - wt). The reason is that the initial condition of zero velocity 
imposes the cosine form of the time dependence. Hence Laplace did not reach the 
progressive sine solution for the free propagation of small disturbances on water of finite 
depth, although he came very close to it from a formal point of view. 

The rest ofLaplace's analysis was unfortunately flawed. To proceed from a sine-shaped 
disturbance to a disturbance caused by local emersion, Laplace could not rely on Fourier 
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synthesis, which was unknown at that time. Instead, he truncated the sine function 
by taking u(X,O) = s(coskX - cos ka) for IXIsa, and u(X,O) = 0 for IXI;;:a. In what 
he called 'a delicate application of the calculus of partial differentials', he then rewrote 
the product coskXcos wt in the expression (2.1 1) for cr(X,t) as Hcos (kX - wt)+ 
cos (kX + wt)], and replaced the latter cosines by their truncated values. This gives a 
propagation of the depression toward the two extremities of the X-axis, and without 
deformation. The propagation velocity w/k only depends on the depth of water and on 
the spatial period of the truncated cosine (roughly determined by the curvature of the 
originally immersed solid). As the calculus of partial differentials was still in its infancy, 
Laplace did not realize that the truncated wave no longer satisfied his differential 
equations. 7 

2. 1 .2 Lagrangian foundations 
In his memoir of 1781,  loa grange addressed the problem of water waves in a most elegant 
manner, with no mention of Laplace's earlier analysis. As already mentioned in the 
previous chapter, his purpose was to apply the methods of analytical mechanics to 
hydrodynamics, and thus solve a large class of useful problems, including the traditional 
efflux from a vase and the less-explored water-wave problem. 8 

In these two problems, the fluid is (nearly) incompressible and the gravity is a constant 
g. Lagrange based his analysis on eqn (1.37): 

arp P ("Vrp)2 
- = g · r - - --- + C  at P 2 

(2.12) 

for the velocity potential <p, which he knew to exist whenever the motion was started from 
rest by the sole effect of gravity and external pressures. He then assumed that the fluid 
mass never left the space between two mutually-close parallel planes, so that a power 
development of the potential with respect to the perpendicular coordinate could be used. 
This condition is met in Bernoulli's problem of efflux from a narrow vase, as well as in the 
propagation of surface disturbances in shallow water. In the latter case, Lagrange's 
method is simply illustrated by assuming two dimensions only, a flat horizontal bottom, 
and velocity and surface disturbances so small that terms involving their second powers 
can be neglected. 9 

At the lowest non-trivial order, the expansion of the potential has the form 

rp(x,y,t) = 'Po(x,t) + Y'PI (x,t) + i'P2(x,t), (2.1 3) 

where x is the horizontal coordinate and y is the vertical one. The incompressibility of 
water gives 

(2.14) 

7Ibid. p. 307. 
8Lagrange [1781]. Lagrange did not mention Euler's memoirs, although they were probably a major source of 

inspiration. Cf. Grattan-Guinness [1990] pp. 664-5. 

9 Ibid. pp. 728-48. 
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so that cpg + 2cp2 = 0 (primes denote derivation with respect to x). The vanishing of the 
vertical velocity at the bottom y = 0 implies that cp1 = 0. To summarize, the potential must 
have the form 

(2.15) 

The equation of the surface is obtained by making P a constant and neglecting second
order terms in eqn (2.12): 

8cp 
8t + g(y - h) = 0. 

The condition that a particle of the surface should remain on the surface 'yields 

where (.X, y) is the velocity of the fluid particle. To first order, this gives 

Combining this condition with eqn (2.15), we obtain 

(2. 16) 

(2. 17) 

(2.18) 

(2. 19) 

The general integral of this equation, which d' Alembert had given in his theory of 
vibrating strings, is 

'Po(x,t) = f(x - et) + g(x + et), (2.20) 

where f and g are two arbitrary (differentiable) functions, and 

C = Vifz. (2.21) 

According to eqn (2.16), the elevation of the water surface has the same form. The two 
components represent the distortionless propagation of any (small) perturbation with the 
velocities +c and -c. "· 

Lagrange concluded his analysis with a speculative extension to waves on deep water. 
He argued that the 'tenacity and the mutual adherence' of the particles of water confined 
the agitation to a superficial layer of water, the thickness of which would depend on the 
propagation velocity through formula (2.21). 10 

Like Laplace, Lagrange selected physics problems according to the possibilities of 
mathematical analysis. Both mathematicians came to the water-wave problem after real
izing that mathematical procedures they had designed in other contexts, namely tides and 

10Lagrange [1781]. Lagrange did not mention Euler's memoirs, although they were probably a major source 
of inspiration. Cf. Grattan-Guinness [1990] p. 748. 
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efflux, applied to this problem. They both found that their mathematics only gave limited 
solutions of the wave problem: standing sine waves for La place, and small-depth solutions 
for Lagrange. They both tried 'to overcome these limitations by speculative moves that 
later proved illegitimate. 

2.1.3 Poisson 's thorny, but thorough analysis 
In the following thirty years, mathematical analysis progressed so much that the flaws of 
Laplace's and Lagrange's theories of waves became obvious. On 27 December 18 13, an 
Academic committee including Legendre, Poinsot, Laplace, Biot, and Poisson made 'the 
waves at the surface of an indefinitely deep liquid' the subject of the Academy prize for the 
year 1816. Laplace wrote the announcement: 1 1  

A ponderable fluid mass, primitively a t  rest, and indefinitely deep, i s  set into motion 
under the effect of a given cause. It is asked to determine, after a given time, the form 
of the external surface of the flnid and the velocity of every of the molecules situated 
on this surface. 

This was his old problem of 1776, in a slightly more general form. 
Laplace's brilliant disciple Simeon Denis Poisson, who belonged to the prize committee, 

wrote the first memoir on this subject that reached the Academy. He was one of the first 
Polytechnicians, with an unusual capacity for labyrinthine mathematical analysis and a 
deep interest in fundamental physics.12 

In his memoir, Poisson first recalled the earlier contributions by Newton, Laplace, and 
Lagrange. He judged Newton's siphon analogy to be 'insufficiently founded'. Laplace's 
solution of 1776, he politely noted, only applied to an initial sine-shaped form of the water 
surface, and could not be truncated to yield a solution of the local-perturbation problem. 
Lagrange's solution of 1782 was correct for small depth, but its extension to large depth 
was illegitimate. In order to prove the latter point, Poisson appealed to 'the principle of the 
homogeneity of quantities', probably borrowed from Fourier's theory of heat. This early 
dimensional argument went as follows.13 

Poisson, like Laplace, assumed that the waves were produced by the sudden withdrawal 
of a partially-immersed body. In infinitely-deep water, the only 'lines' of the problem are 
the breadth l of the original depression of the water surface, and the product gt2, where g is 
the acceleration of gravity and t is the time of observation. The distance traveled by a wave 
summit at time t must therefore be a homogenous function of l and grl. If this distance is 
independent of l, then it must be proportional to gt2 and the wave is accelerated like a free
falling body. If the wave has constant velocity, this distance must be proportional to t-/ijl. 
Therefore, Lagrange's assumption of waves traveling at a constant velocity, independent 
of their mode of production, is impossible. Whether the waves produced by emersion 

11Cf. the Proces-verbaux of the Academie des Sciences 5 (1812-1815) pp. 262, 292, 546, 556, 595, and the 
statement in Cauchy [1827a] p. 1 .  

12Poisson's memoir was read on 2 October 18 15, and a sequel on 1 8  December 18 15. It was published i n  1 8 1 8  
in a volume dated 1816. A summary o f  the main conclusions appeared in the Annales de chimie e t  de physique 
(Poisson [1817b]), Cf. Grattan-Guinness [1990] pp. 666--74, Dahan, [1989a]. For a modern treatment, cf. Lamb 
[1932] pp. 384-98. On Poisson's physics in general, cf. Arnold [1983]. 

13Poisson [1816] pp. 71-5. 
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travel with constant velocity, with constant acceleration, or else with variable acceleration 
can only be decided by calculation. 

Having thus dismissed Lagrange's approach to deep-water waves, Poisson adopted 
Lagrange's equations for the velocity potential rp. In the two-dimensional case, and for a 
small perturbation of the fluid surface, these equations are eqn (2.14), namely 

&rp &rp 
f)x2 + f)y2 = 0, 

within the fluid mass, orpfoy = 0 at the bottom y = 0, and eqn (2.1 8): 

&rp orp 
ot2 + g 

oy 
= 0 for y = h. 

Poisson, now imitating Laplace's procedure, sought factored solutions of the form 
cosh ky cos k(x - a) sin wt or cosh ky cosk(x - a) cos wt. The boundary condition 
(2.18) requires that eqn (2.10) holds, namely14 

w2 = gk tanh kh. 

Poisson then obtained the most general solution by superposition of the factored 
solutions. Using Fourier's identity (without naming Fourier) 

f(x) = � I If(a) cos k(x - a) da dk 

and eqn (2.16), namely 

orp 
fii(x, h;t) + g(y - h) = 0, 

for the fluid surface, he easily found that the superposition15 

+oo +oo g If( ) d I dk
coshky 

k( ) sin wkt 
If' = - ;  a a coshkh cos x - a -;;;;-

-oo 0 

(2.22) 

(2.23) 

met the initial conditions of zero velocity (rp = 0) and surface shape y = h + J(x). The 
corresponding elevation cr(x,t) of the water surface above the level h is 

+oo +oo 

er = � I f(a) da I dk cos k(x - a) cos wkt. 
0 

(2.24) 

Poisson then studied the behavior of these two double integrals in the case of large 
depth, for which wk = .Jifk. He did this in a purely mathematical manner, by cleverly 
combining changes of variables, integration by parts, and power series developments. To 

14Poisson [1816] p. 82. 15Poisson [1816] p. 92. 
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give a first idea of these 'rather thorny transformations' consider the first integral in the 
expression (2.23) of the potential. It is a linear combination of terms of the form 

+oo +oo 1: J -g-yk sin Wkt 
dk J 2 -yw' . 

d � = e --g = e sm wt w, 
Wk 0 0 

(2.25) 

where 'Y is a linear combination of x, y, and a with complex-number coefficients. Deriv
ation with respect to time yields 

Integration by parts then yields 

+oo 
t = J 2we-yw' cos wt dw. 

0 

+oo 
t =  [-y-l e-'Y"'

' 
coswtJ :oo 

-y-1 t J e-yw' 
sin wt dt, 

0 
or 

The integral of this equation is 

(2.26) 

(2.27) 

(2.28) 

(2.29) 

Poisson thus reached a familiar form, whose behavior for small and large times t he 
obtained through development in positive and negative powers, respectively, of t. He 
then computed the corresponding expression for the potential cp and the derived velocities, 
paying special attention to the case when the profile f (a) of the disturbance is very 
narrow.16 

Poisson's most detailed discussion of the wave pattern was based on the formula (2.24) 
for the surface disturbance. For a very narrow disturbance, the double integral in this 
formula may be replaced by the simpler expression 

A 
+

J
oo 

2A 
+

J
oo (w2x) u = ; dkcoskxcos t,fik =:  7rg w dw cos g cos wt, 

0 0 
(2.30) 

where A is the area of a vertical section of the original disturbance. Poisson astutely 
rewrote the last integral as u = (Aj'TT'g)(h + L), where 

1 6Jbid. pp. 93-107; Poisson [1817a] p. 85 (thorny). 
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+Joo (w2x ) +Joo [X ( gt)2 gP)] h =  w dwcos g ± wt = w dwcos g w ±
2x - 4x · 

0 0 

For obvious symmetry reasons, it is sufficient to consider the case x > 0. Putting 

and 

we obtain 

and 

+oo +oo 
h = � J dw(w =J= a) cos (w2 - a2) = =Fg: J cos(w - a2) dw 

±a ±a 

(2.31) 

(2.32) 

(2.33) 

(2.34) 

(2.35) 

The modem reader may recognize the Fresnel integrals that appear in the theory of 
diffraction. Poisson, who had no such knowledge, developed these integrals in powers of 
a and gave numerical estimates of the position of the first extrema of u. As he noted, these 
extrema occur for well-defmed values of a = ..j gt2 l4x. Therefore, the crests of the waves 
move with the acceleration of gravity.17 

For large values of et, the two integrals in the last expression for a differ little from their 
limit ! Ffi. Hence the surface profile is approximately given by 

u =  
x
� cos (a2 -� } (2.36) 

The behavior of this function is mostly given by the fast oscillations of the cos,\ne, with an 
amplitude increasing linearly in time and decreasing with distance as x-312• Maxima 
approximately correspond to a2 = -rrl4 + 2n-rr, where n is an integer. The distance A 
between two consecutive crests at a given time, which Poisson calls wavelength, is given 
by Aoa2 I ox = 2-rr, or A = 8-rrx2 I gt2• The period of the oscillations at a given place is such 

+oo 17Poisson [1816] pp. 108-14. Without any comment, Poisson ignored the indefinite contribution 
f wdwcos (W' - a2) = ! sin ( + oo) to the integral (2.34). This indetermination results from the use of a singular 

±a 
distribution f(a) = AS(a) for the initial surface deformation. Convolution with a regular profile eliminates the 
indefinite, infinitely-oscillating terms. 
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that rfJa2 IEJt = 27T, or r = 47Txlgt. As Poisson noted, the period is a function of the 
wavelength only, namely r = J2'TTAig.18 

Poisson also considered the more general case in which a is still large but the width of 
the original disturbance is no longer negligible. He assumed a truncated parabolic profile 

!(a) = h(Pz-2 
a2) " I I z .or a :5 , (2.37) 

and performed the integration over a explicitly in the formula (2.24) for cr. This led him, 
after painstaking consideration of the variation rates of the various factors in the remain
ing integral, to the formula 

where 

- (gt2) a ( 2 'TT) 
er = f 4x2 xfo 

cos a - 4 , 

+oo 4 - J ik 4hZ f(k) = f(a)e- a da = v ( sinkl - klcos kl). 
-oo 

(2.38) 

(2.39) 

This new factor involves the sine and the cosine of a2l I x, which oscillate much slower than 
the cos (a2 - 'TTI4) factor, as long as the distance x is much larger than the width l of the 
original perturbation. 19 

As Poisson noted, the crests of the modulating envelope travel at a constant velocity, 
since the maxima of j occur for definite values of the dimensionless ratio g!P I x2. Poisson 
described the resulting wave pattern as ondes dente!ees (dentate waves, see Fig. 2.1). This 
expression indicates that he regarded the envelope as physically more important than its 
accelerated corrugation. A dent, Poisson reasoned, corresponds to a fixed value of a and 
therefore decreases like 1/x as it moves away from the origin; however, an anti-node 
corresponds to a fixed value of gt2ll4x2 and therefore decreases more slowly, as 1Ift. 
This is why Poisson believed the anti-nodes to be more visible than the dents.20 

In the last sections of his memoir, Poisson obtained similar results in the more realistic, 
three-dimensional case. To a modern reader, much of his lengthy essay seems uselessly 
complicated and overly abstract. It must be recalled, however, that Poisson was discover
ing, or at least perfecting, much of the calculus he needed for his problem. Most import
antly, he could not benefit from the physico-mathematical language later developed in the 
context of wave optics and acoustics. At that time, Fourier analysis and synthesis still 

18Ibid. pp. 1 1 3-14, 1 19-20. This means that, in the vicinity of a distant point, the progressive sine wave solution 
with wk = ../ilC approximately represents the traveling disturbance. Poisson, who did not have the modern 
propensity to favor sine wave solutions, did not make this remark. 

19Jbid. pp. 1 15-18. 

20Ibid. pp. 1 19-26. At a given distance x, only the first oscillations of the water surface are unaffected by the 
finite width of the generating perturbation. After a time of order xj,fil, the modulation of these oscillations 
begins. Their amplitude, which originally grew linearly in time, now oscillates between limits that ultimately 
decrease as t-3. 
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Fig. 2.1 .  Computer drawing of Poisson's "dentate waves" caused by a local, parabolic disturbance of the 

water surface (witb exaggerated vertical scale). The faster oscillations travel witb a constant acceleration, 

their slower modulation travel at constant velocity. 

were-despite Fourier's intentions-mostly formal operations. They did nof·carry with 
them the series of images and metaphors that later physicists learned together with them. 
Notions such as monochromatic wave and constructive/destructive interference were 
lacking. As we will see in a moment, these notions not only eased the expression of 
Poisson's results, but they also suggested more expedient demonstrations. One author of 
this simplification, Horace Lamb, professed a 'deep admiration' for Poisson's memoir on 
waves.21 

21Larnb [1904] p. 372. 
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2.1 .4 Cauchy 's prize-winning memoir 
Being himself an Academician and a member of the prize committee, Poisson could not 
compete for the Academy's prize on waves. A young but already important mathemat
ician, Augustin Cauchy, won the prize. 22 The original text of his memoir was published 
eleven years later in the Memoires des savants etrangers, with a few appendices taking into 
account Poisson's contribution. The overlap between Poisson's and Cauchy's memoirs is 
considerable, even though they worked independently. They both used Lagrange's vel
ocity potential and the relevant differential equations; they both considered a local 
perturbation of the fluid surface; and they both solved the equations through Fourier 
analysis. This last point is the most remarkable because Cauchy, unlike Poisson, was not 
aware ofFourier's theory of heat when he submitted his memoir. He simply reinvented the 
reciprocal relation between a function and its Fourier transform.23 

From a mathematical point of view, Cauchy was more systematic and more rigorous 
than Poisson. In particular, he carefully attended to the existence conditions for various 
kinds of solutions of his differential equations. A major novelty of his memoir was a 
rigorous proof of Lagrange's theorem regarding the existence of the velocity potential. 24 

For this purpose, Cauchy used the Lagrangian form of the equations of motion. 
Denoting by X; the coordinates at time t of the fluid particle that has the coordinates X; 
at time zero, F; the components of the force density acting within the fluid, P the pressure, 
and p the density, these equations read (in anachronistic tensor notation): 

px; dx; = F; dx; - dP. (2.40) 

If the fluid is incompressible and if the force density F derives from a potential, x; dx; must 
be an exact differential. With respect to the coordinates X;, this implies 

Permutations of the partial derivatives then lead to 

� (avk axk
-

avk axk) = 0 
a t  ax. BJ0 a10 ax. ' 

or, by integrating from time zero to time t, 

(2.41) 

(2.42) 

22Cf. Belhoste [1991] pp. 87-91,  Grattan-Guinness [1990] pp. 674--81, Dahan [1989a]. In July 1815, a month 
before Poisson submitted his first memoir on waves, Cauchy read a note containing the main results of his theory, 
namely, the constant acceleration of the waves, the decrease of the height of a wave during its propagation, and the 
increase of the distance between two successive waves; cf. Academic des Sciences, Proces-verbaux 5 (1812-1815) 
p. 530, Cauchy [1827a] p. 188. Bruno Belhoste notes ([1991] pp. 297-8) that Cauchy also investigated the 
production of waves at the interface between a compressible and an incompressible fluid. This unpublished 
manuscript is inserted in the Cahier sur la theorie des ondes belonging to Madame de Pomyers. 

23Cauchy [1827a]. On Cauchy's ignorance ofFourier, cf. Cauchy [1818] and Cauchy [1827a] p. 291. 

24Cauchy [1827a] pp. 35-43. Cauchy's rigor was not flawless: although he was aware that eqn (2.1 8) only held 
for y = lz, he used reasoning that implicitly assumed its validity for any y and thus derived the equation 
l/'cpj8t4 + i'ff'cpjax'- = 0 (ibid. pp. 52-3). Fortunately, this assumption happens to be correct in the case of 
infinite depth, the only one treated in Cauchy's prize memoir. Cauchy corrected this slip in an appendix to the final 
publication (ibid. pp. 173-4). Cf. Craik [2004] p. 6. 
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avk axk avk axk avJ av? 
axi aXj - 8Xj a xi = axi - aXj · 

(2.43) 

Using the identity 8vk/8Xi = (8vk/8xi)(8xt/8Xi), the incompressibility condition 
det (8xtf8Xj) = 0, and some algebra, Cauchy finally obtained the simple relation25 

a xi wj(t) = Wj(O) ax- ' 
J 

(2.44) 

where WJ = 8v2/ ax3 - 8v3/ ax2, and so forth. Consequently, if a velocity potential exists 
at time zero, the condition for its existence is maintained at any later time. This is 
Lagrange's theorem. 

Another mathematical difference between Poisson's and Cauchy's memoirs was the 
latter's systematic recourse to dimensionless variables. For example, Cauchy rewrote eqn 
(2.30) in terms of the variables JL = gtlk and K = gt2 j2x to obtain 

+oo 
(j = A 

2 
J dJLCOS

2
JL COSJL112. 

7Tgt K 0 
(2.45) 

Under this form, it is immediately clear that the wave crests correspond to definite values 
of gt2 j2x, so that their motion is uniformly accelerated. In general, Cauchy sought 
universality beyond the specific physics problems he was studying. He tried to extract 
formulas and structures that had intrinsic mathematical value and could eventually serve 
in other physical situations. 26 

Regarding the physical discussion of waves, the scope of Cauchy's differed from 
Poisson's. Like Laplace, Poisson confmed his analysis to disturbances created by the 
sudden emersion of a solid body. He briefly indicated how the case of an impulsive 
pressure applied on a portion of the fluid surface could be included in his general formulas, 
but he did not pursue the analysis of this case any further. In contrast, Cauchy showed 
how the initial fluid velocity depended on the impulsive pressure, and thus reached a 
physical interpretation of the velocity potential as the internal impulsive pressure resulting 
from the external impulsion (for unit density). He also proved that the motion of the fluid 
at any instant could be regarded as being created from rest by impulsive pressures applied 
on its surface, a result important to later British hydrodynamicists. 27 

In other respects, Cauchy's physical discussion was less complete than, Poisson's. 
Cauchy only described waves independent of the shape of the original disturbance,28 
whereas Poisson regarded the effect of this shape as the most perspicuous aspect of 

25This is the Lagrangian expression of the fact, established by Helmholtz in 1858, that the convective derivative 
of the vorticity vanishes in an incompressible, Eulerian fluid. A much easier proof of the theorem (Lamb [1932] 
p. 17) is obtained by noting that v · dr = &(v · dr)/ &t - d(if /2) in the Lagrangian picture, for which r denotes the 
evolving position of a given fluid particle. As v·dr is an exact differential at any time, ifv · dr is an exact differential 
at time zero then it must be so at any later time. 

26Cauchy [1827a] p. 88. 27Poisson [1816] p. 92; Cauchy [1827a] pp. 14-15. 

28Cauchy [1827a] pp. 92-4 gave the validity condition for this. 
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V 
Fig. 2.2. Disturbed water surface with a convex profile, as imagined by Cauchy. 

wave motion. After reading Poisson, Cauchy investigated this question more thoroughly 
than Poisson had done. He showed that, for any symmetric profile of the immersed body, 
the modulating envelope of the fast oscillations was the Fourier transform of the profile 
(eqns (2.38) and (2.39) ). He confirmed Poisson's result for the parabolic profile and 
expressed it with the slightly more apt metaphor of ondes sillonnees. He also showed 
that, for convex profiles (as in Fig. 2.2), the modulating factor did not oscilJate. In 
response to this nice theorem, Poisson argued that the only case of physical interest was 
the small-depth parabolic profile, because other profiles would not be consistent with the 
continuity of the fluid during the first instants of the motion.29 

The comparison between Cauchy's and Poisson's memoirs suggests that Poisson was 
more concerned with physical meaning, and Cauchy with mathematical meaning . .  Pais
son's physics nonetheless remained idealized physics. As we wilJ see shortly, his and 
Laplace's emersion method for producing waves does not work in practice. Poisson did 
not perform any experiment. He contented himself with calling, in the introduction to his 
memoir, for an experimental confirmation of his theory.30 

2.1 .5  Apparent confirmations 
In 1820, the Turin-based hydraulician George Bidone claimed to have confirmed Poisson's 
most striking prediction, namely, the uniformly-accelerated motion of the first waves 
created by a local perturbation of the water surface, as well as the numerical values of 
the accelerations of the two first waves (0.3253g and 0. 1 1 83g). Bidone operated with a 24-
inch wide and 24-inch deep canal. He did not say how he measured the velocity of the 
waves, but he dwelt on the difficulty he encountered in applying the Laplace-Poisson 
emersion method for the production of waves. The immersed body did not instantly leave 
the water surface upon withdrawal as the two mathematicians had imagined. On the 
contrary, the water adhered to the body and followed it to a certain height until it violently 
fell down (see Fig. 2.3). Bidone believed he could circumvent this difficulty by attending to 
the two first waves only, which in his opinion were created before the fall of the raised 
water column. Apparently, he did not realize that Poisson's calculations did not apply to 
this impulsive excitation either. It is not clear how he reached such 'a marvelous agreement 
between theory and experiment.'31 

In 1 825, the Leipzig professor Ernst Heinrich Weber and his brother Wilhelm published 
a very thorough Wellenlehre, which summarized all previous theories of waves and 

29Cauchy [1827a] note XVI, pp. 1 96, 220; Poisson [1 829b]. Fourier [1818] recommended the investigation of a 
non-parabolic profile. 

30Poisson [1816] p. 78. 

31Bidone [1820] p. 25. Poisson [1829b] p. 571 noted Bidone's confirmation of the accelerated waves. Strangely, 
he did not comment on the failure of the emersion method, even though his new memoir was about the permissible 
profiles of the initial water surface. 
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Fig. 2.3. The emersion of a parabolic solid according to Bidone ([1820] plate). 

provided many astute, quantitative experiments on this matter. Their motivation was the 
recent development of wave physics in acoustic and optical contexts, owing to the works of 
Emst Chladni, Felix Savart, Thomas Young, and Augustin Fresnel. They wanted to 
provide the subject with a solid empirical basis, using water waves as an archetype of 
wave motion. In their most extended series of experiments, they used two long, narrow 
water tanks (see Fig. 2.4). They disturbed the water at one end of the tank, and obtained 
'self-drawn' wave profiles by suddenly withdrawing a vertically- and longitudinally
immersed board. They also measured the time a wave took to travel along the tank, and 
visualized the internal fluid motion through suspended dust particles. 32 

The Weber brothers became aware of Poisson's 'very important' theory of waves after 
they had performed their experiments, but before the final editing of their treatise. As they 
believed their observations to confirm some aspects of this theory, they included a 
commentary of Poisson's paper in French. They approved his general description of the 
wave pattern, with faint accelerated waves at the front, followed by constant-velocity 
waves with a 'dentate' surface. They also confirmed the proportionality between the 
period of oscillation and the square root of the wavelength. 33 

These conclusions would not have resisted a more accurate reading ofPoisson and more 
adequate experiments. As Scott Russell later commented, the Webers' tank was too 
narrow, too shallow, and too short to approximate the ideal conditions of frictionless 
deep-water wave motion far from the source. In order to create their waves, the Webers 
dipped a glass tube vertically into water, drew up the water by suction, and let it fall back. 
This method differs widely from the static surface deformation imagined by Poisson. Most 
fatally, the two brothers mistook Poisson's ondes dentelees to mean large waves with a 
ruffied surface, whereas Poisson's formulas show that he meant what we would now call 
modulated waves. What they actually observed was probably capillarity ripples super
posed with gravity waves. The lack of figures and concise summaries in Poissqn's memoir 
favored the confusion. As Thomson put it in 1 871 :  

. 

A great part of what they [Poisson and Cauchy] have to say would be much shortened 
even by the addition of graphic representations, and it would be much easier for any 
one (the authors I believe included) to understand the whole character of the 
phenomena investigated, with illustration like this of the chief function on which 
the expression of these depends. 

32Weber and Weber [1825] pp. V, 1 05-17 (self-drawn profiles), 166-99 (velocity), 1 17-55 (visualization). 

33 Ibid. pp. 377-434. 
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Fig. 2.4. The experimental tanks of the Weber brothers ([1825] plate). 
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What had become a common practice in the 1 870s would, however, have seemed costly 
bad taste to a French mathematician of the early nineteenth century.34 

2.2 Scott Russell, the naval engineer 

2.2.1 A horse's discovery 
In 1 833, the Cambridge astronomer James Challis reviewed the present state of 
hydrodynamics for the British Association. Although he praised Poisson's and Cauchy's 
theories of waves and rejoiced over their verification by Bidone and the Webers, he 
concluded on a pessimistic note, lamenting over the stagnation of the more pressing 
problem of fluid resistance. The hydrodynamics of d' Alembert and Eu1er completely 
failed on this matter, since it yielded a vanishing resistance. Newton's old theory of 
resistance, based on individual impacts of the fluid molecules at the prow of the immersed 
body, at least explained the usually observed proportionality of the resistance with 
the square of the velocity. Yet even this simple law suffered exceptions. In particu1ar, 
Challis referred to a 'singu1ar fact' observed m canal navigation: for a speed of four or five 
miles per hour the hau1ed boat rose out of the water and the resistance was suddenly 
diminished. 35 

34Russell [1845] p. 25n; Weber and Weber [1825] p. 106; Thomson to Stokes, 20 Nov. 1871, ST. 
35Challis [1833] p. 155. More will be said on Newton's theory in Chapter 7, pp. 264-265. 
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John Scott Russell, a young Glasgow engineer who specialized in steam power and naval 
architecture, knew well of this striking anomaly. 36 He later described it in vivid terms: 

As far as I am able to learn, the isolated fact was discovered accidentally on the 
Glasgow and Ardrossan Canal of small dimensions. A spirited horse in the boat of 
William Houston, Esq., one of the proprietors of the works, took fright and ran off, 
dragging the boat with it, and it was then observed, to Mr. Houston's astonishment, 
that the foaming stem surge which used to devastate the banks had ceased, and the 
vessel was carried on through water comparatively smooth, with a resistance very 
greatly diminished. Mr. Houston had the tact to perceive the mercantile value of this 
fact to the Canal Company with which he was connected, and devoted himself to 
introducing on that canal vessels moving with this high velocity. 

There was indeed, in the 1830s, a system of fly-boats carrying passengers on two Scottish 
canals. A pair of horses drew each boat at a speed of about 1 0  miles per hour. 37 

Stimulated by Challis's interest in this paradox of fluid resistance, Scott Russell sub
mitted his own simple solution at the Edinburgh meeting of the British Association in 
1 834. The motion of a boat through water, he reasoned, raised the pressure of the water at 
the bottom of the ship above its static value. This caused a partial emersion of the boat, 
and the observed decrease in resistance. Denoting by S and S' the transverse sections of 
immersion for velocities zero and v, respectively, Russell wrote the strange non
dimensional equation S'v = S(v ..? j2g), and inserted the resulting value of S' in the 
Newtonian resistance formula R = S1..?pj2. Of this departure of the resistance law from a 
quadratic form, he said that he had found ample evidence in towing experirnents.38 

A fuller version of this argument displays Russell's crude misunderstanding of the 
laws of mechanics. There he derived the bottom pressure from the well-known front 
pressure of the N ewtonian theory of resistance, artistically combined with the isotropy 
of pressure. In the rest of his reasoning, he seems to have confused the Archirnedean 
displacement with the dynamic displacement pSv.39 

2.2.2 The great, solitary wave 
Russell was not a man to worry over such infractions of the laws of mechanics. He did, 
however, recognize that his consideration only gave a gradual correction to the Newtonian 
resistance, not the desired Houston jump. In order to understand this stronger anomaly, 
he attended to the fluid motion induced by the boat. One day, 'the happiest of [his] life', 
something unexpected happened:40 

36For a biography, cf. Emmerson [1977]. On Russell and waves, cf. Bullough [1988]. On ship hydrodynamics in 
the nineteenth century, cf. the excellent Wright [1983]. 

37Russell [1839] p. 79. Cf. Thomson [1887./] pp. 418-20, with the lament: 'Is it possible not to regret the old fly
boats between Glasgow and the Ardrossan and between Glasgow and Edinburgh, and their beautiful hydro
dynamics, when, hurried along on the railway, we catch a glimpse of the Forth and Clyde Canal still used for slow 
goods traffic; or of some swampy hollows, all that remains of the Ardrossan Canal on which the horse and Mr. 
Houston and Scott Russell made their discovery?' 

38Russell [1834]. Of course, Russell intended his formula to be used with fixed foot and pound units. 

39Russell [1839] p. 57. 

40Russell [1865], vol. I, p. 217, [1 839] p. 61. 
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In directing my attention to the phenomena of the motion communicated to a fluid 
by the floating body, I early observed one very singular and beautiful phenomenon, 
which is so important, that I shall describe minutely the aspect under which it first 
presented itself. I happened to be engaged in observing the motion of a vessel at a 
high velocity, when it was suddenly stopped, and a violent and tumultuous agitation 
among the little undulations which the vessel had formed around it, attracted my 
notice. The water in various masses was observed gathering in a heap of a well
defined form around the centre of the length of the vessel. This accumulated mass, 
raising at last to a pointed crest, began to rush forward with considerable velocity 
towards the prow of the boat, and then passed away before it altogether, and 
retaining its form, appeared to roll forward alone along the surface of the quiescent 
fluid, a large, solitary, progressive wave. I i=ediately left the vessel, and attempted 
to follow this wave on foot, but finding its motion too rapid, I got instantly on 
horseback and overtook it in a few minutes, when I found it pursuing its solitary path 
with a uniform velocity along the surface of the fluid. After having followed it for 
more than a mile, I found it subside gradually, until at length it was lost among the 
windings ofthe channel. This phenomenon I observed again and again as often as the 
vessel, after having been put in rapid motion, was suddenly stopped; and the accom
panying circumstances of the phenomenon were so uniform, and some consequences 
of its existence so obvious and important, that I was induced to make The Wave the 
subject of numerous experiments. 

49 

Russell soon suspected a connection between the existence of solitary waves and 
Houston's resistance paradox. A few trials confirmed that 'the velocity of the motion of 

the solitary wave had a peculiar relation to a certain well-defmed point of transition in the 

resistance of the fluid.' Russell performed the necessary experiments 'during the leisure of 

two summers', 1 834 and 1 835, with the support of canal, naval, and academic authorities, 

and with the help of 'two scientific friends' and 'a dozen hired assistance'. Four different 

vessels were towed in canals of various depths at a velocity ranging between 3 and 15  miles 

per hour. Horses provided the towing force, directly in 1 834, and through a suspended

weight regulator in 1835 (see Fig. 2.5). A dynamometer measured the resistance. Russell 

found it to increase regularly until a certain critical velocity depending on the depth was 

reached, then to suddenly diminish, and finally to increase again (see Fig. 2.6). The critical 

velocity turned out to be identical to the velocity of the solitary wave for the given depth h. 
With a gun-shooting friend and a chronometer, Russell measured the time that this wave 

took to travel between two distant points. This gave him Lagrange's velocity formula yg!i, 
or more precisely .J g(h + O"), where O" is the height of the wave crest above the undisturbed 

water surface.41 

Russell also described how the shape of the water surface around the moving vessel 

evolved with the velocity (see Fig. 2. 7). Fo.r velocities inferior to the critical value, the 

water level is raised around the prow, thus forming 'the great primary wave of displace

ment'. The resulting inclination of the vessel, Russell reasoned, increases its effective 

transverse section of immersion and the corresponding resistance. When the velocity of 

the vessel reaches the critical value, this wave has the velocity of a solitary wave. The push 

from the vessel is no longer necessary for its progression. If the velocity is further 

41Russell [1835a], [1837b], [1839] pp. 61 (quote), 47 (friends), 49-50. 
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Fig. 2.5. Russell's towing mechanics of 1835 (plate ofRussell [1839], redrawn in Thomson [1887f]). 
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Fig. 2.6. Resistance as a function of towing velocity according to Russell [1839] p. 49. 
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(b) 
Fig. 2. 7. Positions of a canal boat towed at a velocity inferior to the critical velocity (a), superior to the critical 

velocity (b) (Russell [1839] p. 70). 

increased, the vessel catches up with its own wave, so as to be 'poised on its sununit'. The 

effective transverse section is much smaller, and so is the resistance.42 

For subcritical velocities, Russell also noted the 'posterior wave of displacement', 

namely, the depression of the water surface at the stern that necessarily accompanies its 

rise at the prow. As water rushes into this depression from both sides, Russell reasoned, it 
induces a series of oscillations of the water behind the vessel (see Fig. 2.7(a)). The violence 

of these oscillations increases until the critical velocity is reached. They subside beyond 

this velocity, because the posterior wave no longer exists.43 

2.2.3 Wave-lined vessels 
Whatever the value of this intuitive reasoning, it convinced Russell that the accumulation 

of water at the prow of a vessel was a major obstacle to its progression.44 In canals of small 
depth this obstacle could be overcome by exceeding the critical velocity. For maritime 

navigation, this cause of resistance necessarily grew with increased velocity. It could 
compromise the high-speed, steam-powered navigation in which the city of Glasgow had 

the highest stakes. Russell soon suggested a remedy, namely, to shape the prow of the 
vessel according to hollow lines, so that it could enter the water without ruffling its surface. 

Specifically, he recommended lines made of two parabolic arcs, for this shape would 

induce a uniformly-accelerated motion of the water along the lines. As he later put it, 

'There is a way of setting about the removal of the water from the place the ship wants to 
enter, which is pleasant and profitable to both.' Russell noted that hollow lines had long 

been used by pirates, to whom speed was essential. They occur spontaneously in a most 

primitive mode of ship construction: binding the extremities of two planks, and separating 

their middle part through a transverse beam. Russell only claimed to be first in showing 

their theoretical superiority.45 

42Russell [1835a], [1839] p. 40. 43Russell [1839] pp. 65-7. 

44 According to the modern understanding of ship resistance, the wave component derives from the waves that 
propagate away from the ship, not from a direct action on the prow. 

45Russell [1835b], [1837a], [1839] p. 51,  [1865] vol. 1, p. 161  (quote and pirates). Cf. Wright [1983], pp. 71-80. 
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Fig. 2.8. Russell's first hollow-line model: "The Wave" ([1839] plate). 

In 1 835, Russell built The Wave, a model with a 75-foot keel and a 6-foot beam, to test 
this new principle of ship construction (see Fig. 2.8). The following year he continued with 
a series of more important wave-lined vessels: the Storm, the Skiff, . . . and the Scott 
Russell. In the early 1 840s, while steering a British Association committee 'on the form of 
vessels', he performed some twenty thousand observations with models and full-scale 
vessels, ranging from 30 inches to 1300 tons. The wave profile came out best, though 
with some modification. Russell found the hollowness of parabolic lines to be excessive, 
and ultimately adopted sine-shaped lines for their analogy with the harmonic waves of 
Lagrange's theory. For the rest of his career, he pressed for the systematic use of the 'wave 
profile' and repeatedly denounced British conservatism in matters of ship design. In the 
mid-1850s he applied his wisdom to the Great Eastern, a monster metal vessel built for the 
Eastern Navigation Company.46 

2.2.4 Taming water waves 
Russell's investigation of the best form of ships went along with further studies of water 
waves. At the Bristol meeting of 1 836, the British Association appointed a 'Committee on 
Waves' directed by Russell and John Robison. Russell gave a first report of this research at 
the Liverpool meeting of 1 837. A section of this report was devoted to an attempt at 
explaining tides in terms of solitary waves, which will be discussed shortly. In most of his 
report, Russell described experiments he made in canals and in a 20-foot long and 1-foot 
broad experimental reservoir. Through a clever optical method, he established the 
J g(h + CT) velocity formula for solitary waves. He found that these waves had a quasi
cycloidal form which was independent of the way they were produced. He described the 
induced motion of the fluid particles: 'By the transit of the wave the particles of the fluid 

46Russell [1835b], [1841], [1842a], [1843b], [1865] vol. I, pp. 210--1 1  (sine lines), [1852], [1865] vol. 1, p. XXX 
(denouncing), [1854], [1857] (Great Eastern). Cf. Emmerson [1977], Wright [1983] p. 80, who claims that Russell 
applied far less hollow lines to the Great Eastern than required by his theory, despite a lot of propaganda. In the 
later conceptions of ship resistance developed by Rankine and Froude, wave formation still played a role, though 
with mechanisms different from Russell's and in competition with two other forms of resistance, namely skin 
friction and eddy formation. Cf. Wright [1883] Chaps 5-7, and Chapter 7. 
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are raised from their places, transferred forwards in the direction of the motion of the 
wave, and permanently deposited at rest in a new place at a considerable distance from 
their original position', in opposition to 'second-order', oscillatory waves in which the 
particles oscillate around a fixed point. He found that two solitary waves 'cross[ed] each 
other without change of any kind'. He observed that sea waves, originally of second order, 
evolved into solitary waves after breaking on a gently sloped shore. He determined that the 
highest possible wave had a relative height u equal to the depth h. Lastly, he performed a 
few measurements on sea waves. Owing to unfavorable weather conditions, these gave 
little more than the independence of the waves on the depth of the sea.47 

In a later report, Russell confirmed the singular properties of solitary waves, extended 
his investigation to other sorts of waves, and compared his results with previous math
ematical theories. As we wi!l see shortly, the Astronomer Royal, George Biddell Airy, had 
already denied the existence of solitary waves and downgraded Russell's observations to a 
mere confirmation of Lagrange's shallow-water waves. Russell, who saw Airy's text just 
before sending his report to the printer, was naturally disappointed:48 

This paper I have long expected with much anxiety, in the hope that it would furnish 
a final solution of this difficult problem [the discrepancy between wave theory and 
wave phenomena], a hope justified by the reputation and position of the author, as 
well as by the clear views and elegant processes which characterize some of his former 
papers . . . It is deeply to be deplored that the methods of investigation employed 
with so much knowledge, and applied with so much tact and dexterity, should not 
have led to a better result. 

Russell insisted that his waves, unlike Lagrange's, had a definite shape for a given height, 
with a length about six times their height. New experiments performed 'after the best 
methods employed in inductive philosophy' confirmed this point. The disturbance produced 
by the injection of additional water at one end of his tank soon evolved, while propagating 
along the channel, into the perfectly stable form of the solitary wave (see Fig. 2.9). When the 
injection was irregular, a compound wave was produced which evolved into separate solitary 
waves (see Fig. 2.12). Using Weber's self-drawing method, Russell showed that the shape of 
the solitary height was perfectly determined for a given height and tended to a cusped shape 
when the maximal height was reached (see Fig. 2.1 1). Lastly, Russell confirmed his velocity 
formula for this wave, .J g(h + u), instead of Lagrange's or Airy's formulas.49 

2.2.5 The four orders 
No one, Russell argued, had predicted or observed his great solitary wave before him: 
Lagrange's waves were too small compared to the depth of water; the mode of production 
of Poisson's and Cauchy's waves precluded solitary waves; and the Weber brothers 
believed that a positive wave never went without a correlative negative wave. In order to 
avoid confusion of his great wave with others' waves, Russell introduced the following 
four orders of waves (see Fig. 2.10).50 

47Russell [1 837c] pp. 423 (reservoir, quote), 424 (cycloid), 425 (crossing waves), 426 (sea waves). 
48Russell [1 845] pp. 27, 30; Airy [1845]. 49Russell [ 1845] pp. 27 (quote), 33-4, 45-6. 

50 Ibid. pp. 23-5 (priority), 9 (orders). 
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Fig. 2.9. Two ways of producing a solitary wave: through the displacement of a wall (a); through the 

immersion of a solid (b) (Russell [1845] plate). 

System cif Water Waves. 
ORDERS. �- FrasT. SECOND. THIRD. 

I 
FouaTH, 

Designation. Wave of translation . • . .  Oscillating waves. Capillary waves. Corpusenlar wave. 

Characters ••. Solitary • . . . . • . . • • • . . .•..•. Gregarious . • . . . . . . .  Gregarious . . • • . . .  Solitary. 

S ci { Positive . . . . • . . . . •.••...••. 1Stationa.rv •••••.••• Free. pe es 
··· Negative . • • . . . . . . . •.••••.. Progressive •.••... Forced. 

y arieties { Free ..... . . ............... Free. 
Forced •••. . . . • . • • . . . • . • .  · [Forced. 

{ e wave of resistauce.1Stream ripple .... Dentate waves . . .  Watet·�sound wave� 
Instances The tide wave •.••.•.••• Wind waves ....... Zepbyral waves. 

The aerial sound wave. Ocean swell. ... ..  . 

Fig. 2.10. Russell's wave orders ([1845] p. 9). 
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(i) Waves of translation. They involve mass transfer. Positive waves of this kind can be 
solitary. Negative ones are always accompanied by an undulating series of secondary 
waves (see Fig. 2.13). 

(ii) Oscillatory waves. These do not involve mass transfer. They appear as groups of 
successively positive and negative waves. They are the most commonly seen waves, created 
by wind for instance. They can be progressive or standing. 

(iii) Capillary waves. These only involve a minute-depth agitation of the water. They 
depend on the surface tension of the water. 

(iv) Corpuscular waves. These are rapid successions of solitary waves. Sound waves are 
the prime example. 

Although Russell focused on the first order, he also performed careful experiments on 
the second and third kind. For instance, he showed that the Kelland-Airy formula 
c? = (gjk) tanh kh correctly represented the velocity c of progressive oscillatory waves, 
even when their amplitude was not small. 51 He illustrated the evolution of such waves 

Fig. 2.1 1 .  Self-drawn solitary-wave profiles of various heights (Russell [1845] plate). 

51 Ibid. p. 67. 
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when approaching a shore (see Fig. 2.14). He drew the shape of steady waves produced by 
an obstacle in the bed of the stream (see Fig. 2.15). He obtained a beautiful pattern of 
capillary waves by plunging a rod vertically in a stream of water (see Fig. 2.17).52 

Strangest to Russell's readers must have been the fourth order of waves, supposed to 
represent sound waves. For any physicist at that time, sound corresponded to the propa
gation of small-amplitude vibrations through an elastic medium. No special kind of wave 
was needed. As appears from a posthumously published manuscript, Russell rejected this 
explanation for he believed it could not explain the ability of sound to propagate far from 
its source. From the fact that the sound of a tuning fork or the vibrations of a string could 
be heard at a non-negligible distance only if the fork or string was attached to a hollow case 
with an aperture, he inferred that sound was not the harmonic vibration of the fork and 
surrounding air but the repeated emission of solitary waves through the aperture of the 
case. As solitary waves are surface waves, Russell needed to imagine an open surface for the 
medium of propagation. For sound in water, the free water surface did the job. For sound 
in air, he imagined an ocean of air oflarge but fmite depth around the Earth. Most daringly, 
he proposed that light was a wave of fourth order in an even larger ocean of ether.53 

These suggestions ouly confirm Russell's ignorance of elementary principles of mech
anics. The Royal Society never published the series of manuscripts it received from him on 
this theme. Yet the elite of British natural philosophers often praised Russell's early works 
on waves and ship forms, for they admired the quality of his experiments and the frequent 
validity of his intuitions. 

2.3. Tides and waves 

2.3.1 Russell's illumination 
Between Russell's careful experiments on water waves and his hair-raising speculation on 
corpuscular waves, there was a middle ground which seems to have perplexed his learned 
supporters, namely, the notion that tides were essentially solitary waves of very large 
extent. As Russell recounts, he submitted this idea to William Whewell in 1835 together 
with a plan for observations. Whewell had then been working for several years on tidal 
observations and prediction, and was with John Lubbock, the leading British expert on 
this topic. He approved Russell's project, which thus became part of the duties of the 
'Committee on Waves'.54 

At the Liverpool meeting of 1837, Russell reported the tidal observations the 
committee had made on the rivers Dee (Cheshire) and Clyde (Scotland). He als,o promoted 
his own theory of tides. The general idea was to divide the problem into two parts: 
the general elevation of water in the Pacific and Atlantic Ocean as ruled by celestial 
mechanics, and the propagation of this elevation in smaller basins, channels, and rivers 

52Russell (ibid. p. 78) was aware of similar observations by Poncelet ((1831] p. 78). 
"Russell (1 885]. 
54Russell [1837c] p. 420. In 1838 (BAR p. 20), Whewell praised Robison and Russell for 'highly valuable 

materials, likely to assist us in the further prosecution of the subject [the theory of tides].' On Lubbock, Whewell, 
and tides, cf. Deacon [1971] Chap. 12. 
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Fig. 2.12. The separation of two solitary waves (Russell [ 1845] plate). 
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Fig. 2.13. Negative wave of translation and the accompanying oscillatory wave (Russell [1845] plate). 
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Fig. 2.14. Waves approaching a shore and evolving into solitary waves (Russell [1845] plate). 

Fig. 2.15. Standing wave created by an obstacle in running water (Russell [1845] plate). 
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Fig. 2.16. The evolution of a compound solitary wave according to Russell ([1845] plate). 
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Fig. 2.17. Waves generated by a vertical rod (0 = l/16 inch) moving along the water surface with a uniform 

velocity. The smaller waves in front of the rod are capillarity waves (Russell [1845] plate). 
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as ruled by terrestrial hydrodynamics. Russell described the latter mechanism as 
follows:55 

The Tide Wave appears to be . . .  identical with the great primary wave of translation; 
its velocity diminishes and increases with the depth of the fluid, and appears to 
approximate closely to the velocity due to half the depth of the fluid . . .  -The tide 
appears to be a compound wave, one elementary wave bringing the first part of the 
flood tide, another the high water, and so on: these move with different velocities 
according to the depth. On approaching shallow shores the anterior tide waves move 
more slowly in the shallow water, while the posterior waves, moving more rapidly, 
diminish the distance between two successive waves. The tide wave becomes thus 
dislocated, its anterior surface rising more rapidly, and its posterior surface descend
ing more slowly than in deep water.-A tidal bore is formed when the water is so 
shallow at low water that the first waves of flood tide move with a velocity so much 
less than that due to the succeeding part of the tidal wave, as to be overtaken by the 
subsequent waves, or wherever the tide rises so rapidly, and the water on the shore or 
in the river is so shallow that the height of the first wave of the tide is greater than the 
depth of the fluid at that place. 

Russell thus explained a few basic facts: that for river tides, the time of ebb is larger than 
the time of flood, with the difference increasing with the distance from the mouth of the 
river; that tides can be very different in nearby locations, that they depend on the bottom 
of the sea or the form of channels and rivers, and that strong river tides are often 
accompanied by a breaking surge or tidal bore (mascaret in French). In his later water
tank experiments, Russell verified that 'compound solitary waves' evolved during their 
propagation so that the front became steeper than the rear (see Fig. 2. 16, p. 58). 56 

2.3.2 From Newton to Whewell 
Although the idea that tides were a wave phenomenon was not as new as Russell 
suggested, it departed from the then current approaches· to tide theory and prediction. 
The historical background of these approaches must first be recalled. 57 

In his Principia Newton gave the correct expression for the force that is responsible for 
tides, namely, the combined action of the Moon's and the Sun's attractions. His derivation 
of the resulting deformation of the surface of the oceans was only tentative and retrospect
ively erroneous. He seems to have adopted an equilibrium theory, with retardation due to 
friction. According to the pure equilibrium theory that Colin MacLaurin, Leonhard Euler, 
and Daniel Bemoulli developed in their competition for the 1740 prize oMhe French 
Academy, under every instantaneous configuration of the Moon and the Sun, the water 
surface takes the form it would have if the corresponding forces were acting permanently. 
Retaining only the lunar action in a first approximation, the net force exerted by the Moon 
on oceanic water is the Newtonian gravitational force, which is proportional to the inverse 

"Russell [1837c] p. 426. Although Russell's identification of the tidal wave with a compound solitary wave 
makes little sense from a modern point of view, his theory appears to be similar to Partiot's more correct theory, 
discussed later on p. 82. 

56Russell [1837c], [1838], [1 845]. 57The following account is based on Cartwright [1999]. 



WATER WAVES 61 

,,, 8 0 
Moon 

0 Moon 

Fig. 2.18 .  Tides on an ocean of uniform depth as given the equilibrium theory (a); as inferred from observed 

tides (b). 

squared distance of the water from the Moon, minus the inertial force due to the acceler
ation of the Earth toward the Moon, which is proportional to the inverse squared distance 
of the center of the Earth from the Moon. Therefore, this net force is a maximum at the 
points closest to and furthest from the Moon. For a uniform ocean covering the whole 
Earth, the resulting equilibrium surface (obtained by making the total potential of the 
terrestrial and lunar forces a constant) has the form indicated in Fig. 2.1 8(a). Unfortu
nately, observed tides more closely correspond to the form indicated in Fig. 2.1 8(b ). 

For this reason, in 1776 Laplace proposed a dynamic theory of tides. Assuming that the 
horizontal velocity of the water was the same on a vertical line, and neglecting second
order quantities, he obtained the equations of motion (in modern notation) 

au 1 a 
- - 2fiv cos e = - - - (g? - V - oU) at R ae ' 

av 1 a 
- + 2fiu cos e = - -.- - (g? - V - o V) 
at R sm &  aq, 

(2.46) 

where u and v are the velocity components along the meridians and the parallels, respect
ively, 0 and 4> are the colatitude and the longitude, respectively, n is the angular velocity of 
the Earth, R is the radius of the Earth, ? is the elevation of the water surface, V is the 
combined gravitational potential from the Moon and the Sun, and o V is the gravitational 
self-potential of the water. The first terms on the left-hand side of these equations 
correspond to the acceleration of the water particles, and the second to the Coriolis 
force (not yet named so, of course). The right-hand side corresponds to the sum of pressure 
forces (depending on the elevation of the sll1face) and gravitational forces. These equa
tions are to be solved in combination with the continuity equation 

:
0

(uh sin 0) + � (vh) + R sin &�� = 0, (2.47) 

where h is the original depth of the water. 58 

58Laplace [1775/76]. 
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Laplace decomposed the potential Ufrom the Moon and Sun into three terms that had 
monthly, diurnal, and semi-diurnal variations, and then solved his equations through 
perturbative methods in the analytically simple case for which the depth h varies as the 
sine-squared of the latitude. As he himself realized, this assumption could not pass for a 
realistic representation of the oceans. In the last section of his memoir, he switched to a 
semi-empirical method in which the elevation of the water in one harbor was represented 
as a sum of sine functions with the frequencies of the perturbing forces. In modern terms, 
we would say that he understood that the forced oscillations of the water surface neces
sarily had the same spectrum as the perturbing forces, owing to the linearity of the basic 
equations. 59 

Laplace's memoir looked and still looks forbiddingly complex, not only because of the 
idiosyncratic notation and the elliptic style, but also because most of the developments 
were purely algebraic. Physical discussion was confmed to the first assumptions and to the 
fmal results, whereas a modern tide-theorist would anticipate and comment on the 
intermediate algebraic steps by appealing to general notions of forced oscillations and 
wave propagation. That Laplace's equations in fact describe a wave motion modified by 
the Coriolis force is easily seen by combining them to get, for n = 0 and constant h, 

{j2� 
ot2 - gM� = -M(U + 8U), (2.48) 

where 11 is the two-dimensional Laplacian. Although Laplace must have recognized 
d' Alembert's equation of vibrating strings, he did not exploit this analogy in his theory 
of tides. Instead, he appended to this theory the water-wave calculations with which our 
story began. 

Laplace's theory was alien to contemporary British physics, which remained dependent 
on older Newtonian methods and tended to ignore the newer French mathematical 
physics. In 18 13, the founder of the wave theory of light, Thomas Young, judged that 
the theory of tides was too practically important to be treated with Laplace's abstruse 
methods. Instead of the learned calculus of partial differentials, he offered a simple 
analogy between the ocean and a pendulum: 

The oscillation of the sea and oflakes, constituting the tides, are subject to laws exactly 
similar to those of pendulums capable of performing vibrations in the same time, and 
suspended from points which are subjected to compound regular vibrations, of which 
the constituent periods are completed in half a lunar and half a solar day. 

u 

In modern words, he assimilated tides with the forced oscillations of harmonic oscillators 
subjected to the superposition of two periodic forces. 60 

In order to justify this analogy (perhaps suggested by Laplace's equations), Young first 
showed that, in a canal of constant depth h, long waves of small amplitude were propa
gated with the Lagrangian velocity c = Vifi. If the canal was terminated by a wall at one 
end, standing waves occurred. If the canal had the finite length L, the period of the 
oscillations could only be an integral multiple of a fundamental period L I c, as in closed 

59Kelvin's later tide-predicting machine was based on the same principle. 
6"¥oung [1823] p. 307. 
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organ pipes. Further assuming that the sea was equivalent to a canal along its greatest 

length, Young replaced it with a set of pendulums that had the same periods. He was thus 

left with the elementary problem of determining the response of a damped harmonic 

oscillator to a sinusoidal excitation. 61 
As is now known to any physics undergraduate, the general solution to this problem is 

the sum of a free oscillation that exponentially decreases in time owing to the damping 

force, and a forced oscillation whose amplitude varies as ( w5 - w2)-1 if the eigenfrequency 

wo is not too close to the excitation frequency w. When the former frequency exceeds the 
latter, the forced oscillations are in phase with the exciting ones. In the opposite case, the 

two oscillations are in opposition. This result has an immediate, fruitful application: for 

the known order of magnitude of the depth and size of the oceans, their fundamental 

period of oscillation is much larger than half a day, so that the phase of tidal oscillations is 

opposed to the phase of the inducing luminary (as in Fig. 2.1 8(b)). Through equally 

elementary reasoning, Young explained several other well-known properties of the tides. 

Russell was apparently unaware of Young's insights when he proposed his wave 

conception of tides, but he knew about Whewell's successful program of tide observation 

and prediction. As befits the author of The history of inductive sciences, Whewell's 

approach was inductive: 

I believe the instances are comparatively few in the history of philosophy, in which 

the general laws of the phenomena have been pointed out by the theory before they 

had been gathered by observation. The law of the tides, thus empirically obtained, 
may be used either as tests of the extant theories, or as suggestions for the improve

ment of those portions of mathematical hydraulics on which the true theory must 

depend. · 

Like a Ptolemean astronomer, Whewell tried to fit the results of measurements into simple 

harmonic formulas. Such was the basis for his reduction of tides in a given port. 62 
In order to connect tides observed in different locations, Whewell followed Young's 

suggestion to draw 'cotidal maps' that represented lines of high water at successive hours 

on a day of full Moon (see Fig. 2.19). According to Young, 'these lines would indicate . . .  
the directions of the great waves, to which that of the progress of the tides in succession 

must be perpendicular.' Although Whewell did not refer to Young and doubted the 

possibility of theoretically deriving these lines, he allowed himself to identify the cotidal 

line at a given time with 'the summit or ridge of the tide-wave at that time.' He described 

the global. forced wave that followed the motion of the Moon and the Sun, as well as the 

freely-propagating waves in smaller open seas, basins, channels, and rivers. These waves 

progressed with the depth-dependent velocity that Lagrange had derived and the Weber 

brothers had verified. 63 

2.3.3 Airy's wave theory of tides 
The Astronomer Royal, George Biddell Airy, was also unaware of Young's wave theory 

when he wrote the article 'Tides and waves' for an 1845 volume of the Encyclopaedia 

61Young [1813], [1823]. 62Whewell [1834] p. 19. 
63Whewell [1833] pp. 148 (cotidal maps), 149 (tidewave), 212 (Lagrangian velocity); Young [1823] p. 293. 
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Fig. 2.19. A portion ofWhewell's first cotidal map ([1833] plate). 

metropolitana. However, he was familiar with Whewell's and Russell's tide studies. He did 
not cite Russell as a stimulus for his own theory, presumably because he had a poor 
opinion of Russell's theories in general. After noting the 'great value' of Russell's experi
ments, he warned the reader 'against attaching any importance to the theoretical expres
sions which are mingled with them in the original account.'64 

64 Airy [1845] p. 350. 
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As an eminent representative of the new generation of British natural philosophers who 
had thoroughly assimilated the methods of French mathematical physics, Airy was not 
only able to condemn Russell's loose theorizing but also to precisely assess the merits of 
Laplace's formidable calculations. While he found obscurities and even mistakes in this 
theory, his overall judgment was admiring:65 

We must allow [Laplace's theory] to be one of the most splendid works of the greatest 

mathematician of the past age. To appreciate this, the reader must consider, first, the 

boldness of the writer who, having a clear understanding of the gross imperfection of 

the methods of his predecessors, had also the courage deliberately to take up the 
problem on grounds fundamentally correct . . .  ; secondly, the general difficulty of 

treating the motions of fluids; thirdly, the peculiar difficulty of treating the motions 

when the fluid covers an area which is not plane but convex; and, fourthly, the 

sagacity of perceiving that it was necessary to consider the Earth as a revolving 

body, and the skill of correctly introducing this consideration. This last point alone, 

in our opinion, gives the greater claim for reputation than the boasted explanation of 

the long inequality of Jupiter and Saturn. 

Airy's main reason for abandoning Laplace's theory was not its mathematical difficulty 
nor any fundamental incorrectness in its assumptions, but the practical impossibility of 
solving the tidal equations for the actual form of the bottom of the sea. His own approach 
was based on the properties of canal waves. These directly concerned the behavior of river 
tides. They also shed light on oceanic tides, as far as an ocean could be replaced by a series 
of adjacent canals. Accordingly, Airy began with a thorough analysis of wave propagation 
in a canal. Lagrange's theory was too restrictive since it only applied to small, long waves. 
Cauchy's and Poisson's theories were even less relevant, since they supposed a mode of 
production of the waves that was never encountered in tide theory. 66 

Airy's analysis was based on the Lagrangian picture of fluid motion, as was La place's 
theory of 1776. Denote by X and Y the coordinates of the fluid particles when the fluid is at 
rest, and X +  g and Y + 7J their coordinates when the fluid is in motion. As before, the X
axis lies along the bottom of the canal, and the Y-axis is vertical. Like Laplace, though 
with more elementary methods, Airy proved that the harmonic expressions 

g = 8 Cosh k Y  coskX coswt, 7J = 8 sinh k Y  sin kX coswt, (2.49) 

with w2 = gk tanh kh, satisfied the continuity equation, the equations of motion, and the 
boundary conditions as long as the motion was small. Unlike Laplace, he combined this 
solution with the other solution 

g = -8cosh k Y sinkX sinwt, 7J = 8 Sinh k Y cos kXsinwt 

to get the solution 

g = 8 cosh k Y cos (kX - wt), 7J = 8 sinh k Y sin (kX - wt), 

65Airy [1845] p. 279. 66Jbid. pp. 280-1 . 

(2.50) 

(2.51) 
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which propagates with the velocity c = wjk such that 

c2 = � tanh kh. (2.52) 

In this state of motion, the fluid particles perform elliptical oscillations that tend to 
circular ones for infinite depth. As Airy noted, this result agrees with the earlier observa
tions of suspended solid particles made by the Webers and by Russell. 67 

2.3.4 From river tides to ocean tides 
In the case of tides, the wavelength is much larger than the depth. Then the previous 
equations imply that the horizontal motion is sensibly the same from the surface to the 
bottom, and the vertical motion is comparatively very small. 68 Airy assumed this property 
to hold even in the case of river tides, for which the elevation of the water was no longer 
negligible compared to the depth. This enabled him to reach more exact, nonlinear 
equations of motion. He reasoned as follows. 

The volume of the vertical slice of fluid lying between the planes X and X +  8X is h8X in 
the undisturbed condition, and (h + o")[X + 8X + 4'(X + 8X) - X - 4'(X)] in the disturbed 
condition (CTdenotes the elevation of the surface above its original height h). Therefore, the 
continuity of the fluid implies 

(2.53) 

The pressure on each side of the slice varies hydrostatically, since the vertical acceleration 
is neglected. Therefore, its longitudinal gradient only depends on the slope of the surface: 

fJP fJu 
ax = pg 8X " 

Newton's second law applied to the fluid slice then gives 

&g f)p 00" ph 8X fJt2 = - f) X 8X(h + CT) = -pg 8X(h + u) ax . 

Eliminating CT through the continuity equation, Airy fmally obtained 

(2.54) 

(2.55) 

(2.56) 

Airy solved this equation perturbatively. The motion being 4'0 = e cos (wt - kX) in the 
lowest approximation, he obtained the next approximation 4'1 by integrating the equation 

67Airy [1845] pp. 290 (solution), 344 (Weber), 347 (Rnssell). 68 Ibid. p. 294. 

(2.57) 
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with the condition that for X = 0 the oscillation should still be s cos wt. This gives, for the 
corresponding elevation of the surface, 

. 3 a2
k . ( k ) O"t = -a sm (wt - kx) + 4 h  xsm2  wt - x ,  (2.58) 

with a =  khs and x = X + g1 •69 
This solution represents the evolution of a tidal wave as it propagates from the mouth 

x = 0 along a flat, prismatic river without intrinsic current. 70 As is seen from Fig. 2.20, the 
front of the waves becomes steeper than the rear. This explains why the rise of the water 
takes more time than its descent at a station far from the mouth. Airy further derived the 
velocity of the wave crests (for which dut / dx = 0) at the same approximation: 

c =  hk( l +H) . (2.59) 

He found this formula to be compatible with the velocity measurement of high waves by 
the Webers and Russell, despite Russell's claim that the velocity of a solitary wave of 
height u obeyed the formula c = )g(h + u).71 

In the case of oceanic tides, the height of the waves is negligible compared to the depth, 
so that the continuity equation (2.53) and the equation of motion (2.55) can be linearized. 
However, the direct action of the Moon and the Sun is no longer negligible. The vertical 
component of this action amounts to a negligible modification of gravity. However, the 
equation of motion now includes the horizontal component F of this action: 

JS JJ""".tU.z/, I'Omr. r:r·tUU.,;A¥1! u ... a. .rJ..Jk,., rirr.t.o tirinl. npp�n-.widr. .rm4Jl, t;i..Uf2.ll!J 

....... � .c::::::::-... � �� �� ��-<"" 
Fig. 2.20. The evolution of a sine wave along a canal to second and third order in its amplitude (Airy [1845] 

plate). 

69 Airy [1845] pp. 297, 300. 

70 Airy believed the solution to be still valid far from the mouth. In reality, the consistency of the approxima
tion requires that x < < h / ka. 

71 Airy [1845] pp. 300-l .  As Stokes, Saint-Venant, and Boussinesq later made clear, Airy's formula applies to the 
crest of long, non-permanent waves, whereas Russelfs formula applies to permanent waves whose length is 
comparable to the depth of water. Simple derivations of Airy's formula are found in Lamb [1932] pp. 261-2, 278-80. 
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(2.60) 

Here Fis the superposition of harmonic components with a latitude-dependent phase and 

amplitude. Airy determined the resulting forced oscillations for circular canals running 

along a parallel and along a meridian, and for canals closed at both ends. In each case, 

there are free oscillations at frequencies that are integral multiples of a fundamental 

frequency. The amplitude of the forced oscillations depends on how close these eigenfre

quencies are to the frequencies of the tidal force F. Airy also introduced friction propor

tional to the velocity, and discussed the consecutive damping of free oscillations. 72 

In conclusion to this analysis, Airy admitted that his assumption of tidal canals of 

uniform depth and breadth was no more realistic than Laplace's assumption of an Earth

covering ocean with a special law of depth. The main advantage he saw in his method was 

that it permitted a more detailed consideration of the interplay of the lunar, solar, and 

frictional forces, since all the equations could be solved in finite terms through elementary 

analysis. In brief, his theory failed as much as Lap lace in quantitative tide prediction, but it 

offered more qualitative insights.73 

2.3.5 The inverse method, for and against Russell 
Airy did not confine his study of waves to aspects relevant to tide theory. He also 

explained commonly-known properties of water waves, and some of Russell's more 

surprising results. As he was generally unable to integrate his hydrodynamic equations 

for the actual forces that produced the wave motion, he ingeniously inverted this proced

ure: he sought to compute, for a hypothetical form of fluid motion, the forces that would 

maintain this motion. This is much easier to do, since differentiations are involved instead 

of integrations. From the knowledge of these forces, he then inferred what the actual 

motion would be in their absence, or what additional action on the water could produce 

the hypothetical motion. 

As a first example, consider the breaking of waves on a sloping shore. Airy computed 

the forces necessary to maintain a constant shape of the waves when they approach the 

shore. The result is forces that pull the tip of each wave in the direction opposite to that of 

their progression. Since in reality these forces do not act, the tips of the waves must bend 

forward, as should happen at the beginning of the breaking process. Another example is 

the swelling of waves under wind. Airy injected a swelling motion in the equations of 

motion. The resulting forces turn out to be pressures applied to the rear of tl;te waves, as 

would naturally be expected for waves before the wind.74 

A third example is the 'great primary wave', or forced wave that accompanies a canal 

boat in its motion. In this case, the horizontal disturbance g and the surface disturbance u 
are functions of x - vt only, where v is the velocity of the boat. In the small-long-wave 

approximation, the equation of motion (2.60) gives F = (if - gh)g", while the continuity 

equation (2.53) gives u = -hg'. Therefore, the force that is necessary to maintain this 

motion has the same sign as the slope of the surface when the velocity of the boat is inferior 

72Airy [1845] pp. 310-39. For a concise account of Airy's theory of oceanic tides, cf. Lamb [1932] pp. 267-73. 

73Jbid. p. 363. 14Ibid. p. 314. 
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to that of free waves; it has the opposite sign in the reverse case, and it vanishes when the 
two velocities are equal. This conclusion agrees with the relative position of a canal boat 
and its forced wave, and with the drop in resistance in the critical case.75 

Airy thus explained Russell's observations, but implicitly rejected his intuitive theory of 
solitary-wave riding. Through the same kind of argument, he dismissed Russell's solitary 
wave. For waves of finite height, the equation of motion is the nonlinear equation (2.56). 
Without additional force and for a disturbance propagating without any change of shape, 
it can only hold if the slope I;' of the disturbance is a constant. As this slope must vanish at 
infmity, there is no such disturbance. Airy concluded that the solitary wave was math
ematically impossible. What Russell had observed was a wave small enough for 
Lagrange's theory to apply approximately:76 

We are not disposed to recognize this wave [Russell's] as deserving the epithets 'great' 

or 'primary' . . . and we conceive that, ever since it was known that the theory of 

shallow waves of great length was contained in the equation 82t;/8t2 = gh82t;j8x2 
. . . the theory of the solitary wave has been perfectly well known. 

As we have already seen, this authoritative judgment failed to disturb Russell's belief in the 
novelty of his solitary waves. 

2.4 Finite waves 

2.4.1 Stokes's BA report 
In 1 846 a new leader of British hydrodynamics, the Cambridge professor George Gabriel 
Stokes, reviewed the state ofthis field for the British Association. Since the previous report by 
Challis, there had been much British work on waves, in a good part stimulated by Russell's 
experiments. Stokes played down the importance ofPoisson's and Cauchy's memoir: 'The 
mathematical treatment of such cases [waves produced by emersion] is extremely difficult; 
and, after all, motions of this kind are not those which it is most interesting to investigate.'  In 
the wake of Russell's and Airy's works on waves, tides, and navigation, what had become 
most important was the study of 'simpler cases of wave motion, and those which are more 
nearly connected with the phenomena which it is most desirable to explain. m 

Among the simpler cases of motion, Stokes retained waves with a length much longer 
than the depth. As Lagrange, George Green, Philip Kelland, and Airy had shown, these 
waves propagated without deformation in a canal of constant section as long as their 
height was much smaller than the depth. Their velocity obeyed a simple formula. Green 
and Airy had computed their deformation for a slowly-varying canal depth or breadth. 

75 Ibid. pp. 349-50. 
76 Ibid. p. 346. As Stokes later noted, Airy overlooked the fact that his equation of motion applied to waves 

longer than those observed by Russell. 
77Stokes [1846a] p. 161. This opinion echoed an earlier remark by Kelland ([1840] p. 497): 'I doubt much . . .  

whether such men as Laplace and Lagrange would have been induced, with the expectation of joining experiment 
on her lower and more trodden fields, to reconsider and remodel their investigations; nor have I any reason to 
hope, that such men as Poisson and Cauchy will quit the delectable atmosphere in which they are involved, of 
abstruse analysis, for the more humble, but not less important task of endeavouring to treat the simpler problems 
in a manner not made general arbitrarily to lead to the most elegant formulae, but general to that extent, and in 
that mode, in which the problem in nature is so. • 
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Airy had shown how finite height affected their propagation. Stokes also dwelled on the 
fruitful application that Airy had given of this sort of wave to the theory of tides. 78 

Another case of special interest was given by 'waves which are propagated with a 
constant velocity and without change of form, in a fluid of uniform depth, the motion 
being in two dimensions and periodical.' By implicit analogy with monochromatic plane 
waves in optics, he regarded these waves as 'the type of oscillatory waves in general'. Green 
had given the expression Vi/k for the velocity of such waves in the case of infinite depth, 
and Kelland had anticipated Airy's results in the case of finite depth. 79 

Stokes then turned to the controversial issue of solitary waves. Stokes admitted that 
Russell's experiments made the sui generis character of solitary waves probable, but he 
denied that friction was the only cause of the decay of such waves. To sustain this opinion 
he did not use Airy's objection, which only excluded solitary waves of arbitrarily long 
length. Rather, he referred to recent calculations by Samuel Earnshaw. The Reverend 
mathematician had integrated the equations of motion for a wave of permanent shape that 
met a condition experimentally verified by Russell, namely, that fluid particles originally 
in the same vertical plane remained so during the passage of the wave. In Earnshaw's 
opinion, this result confirmed the existence of solitary waves. Stokes drew the opposite 
conclusion from the same calculation, for he noted that Earnshaw waves could not be 
connected to the surrounding fluid at rest without an absurd discontinuity of the velocity. 
As Stokes did not question the experimental truth of parallel-plane motion, he concluded 
that there was a necessary non-frictional decay of solitary waves.80 

Not only did Stokes deny the properties of solitary waves that Russell judged most 
essential, but he also condemned-without naming Russell-applications of solitary 
waves to tides and to sound:81 

With respect to the importance of this peculiar wave . . .  it must be remarked that the 

term solitary wave, as so defmed (as a phenomenon sui generis] must not be extended 

to the tide wave, which is nothing more . . .  than a very long wave, of which the form 

may be arbitrary. It is hardly necessary to remark that the mechanical theories of the 

solitary wave and the aerial sound wave are altogether different. 

2.4.2 Stokes on finite oscillatory waves 
In 1 846, Stokes believed permanent, solitary waves of finite height to be impossible. But 
the existence of permanent, oscillatory waves of finite height remained plausible. Also, 
Russell had found that the (phase) velocity of oscillatory waves obeyed the Kelland-Airy 
formula (2.52) (for infinitely-small waves) even when the waves were no long!!r small with 
respect to the depth. Stimulated by this result and its apparent contradiction with Airy's 
velocity formula (2.59) for finite waves, Stokes sought a perturbative solution of Euler's 

78Stokes [1846a] pp. 16 1-4 Oong waves), 171-5 (tides); Lagrange [1781]; Green [1838]; Kelland [1840]; Airy 
[1845]. On early British wave theory, cf. Craik [2004] 8-24. 

79Stokes [1846a] p. 1 64; Green [1839]; Kelland [1840]. Kelland believed the motion to have a form independent 
of the height of the waves, for he used erroneous boundary conditions. 

80Stokes (1846a]: pp. 168--70; Earnshaw (1849] (read in Dec. 1 845). Cf. Craik [2004] pp. 17-18. 
81Stokes (1846a] p. 170. 
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equations that made the fluid velocity the gradient of a potential and a function of x - et 
and y only.82 

As in Lagrange's theory of waves, the potential must satisfy eqn (2.14), namely 

The equation of the surface is 

[)2cp 82cp 
8x2 

+ 
By2 

= 0. 

a ('V )2 _! + _'P_ + g(y - h) = 0. 
Bt 2 

(2.61) 

The boundary condition at the bottom of the channel is 8cpf8y = 0 when y = 0. The 
condition that a particle on the surface should remain on the surface is 

(2.62) 

at any point of the surface. The general integral of eqn (2. 14) that meets the first boundary 
condition is 

cp = Cx + L cosh ky(Ak cos kx + Bk sinkx). 
k 

(2.63) 

The first term may be dropped as it represents a constant velocity. To first order in cp, the 
second boundary condition (2.62) and the condition that the velocity is a function of x - et 
and y only imply eqn (2.52), namely 

2 = � tanh kh, 

for every term of the sum over k. Since there is only one value of k that meets this 
condition, the sum is reduced to a sine wave. 83 

As a corollary, the propagation of a solitary wave without change of form is impossible 
at frrst order. In modem terms, we would say that the dispersion (dependency of celerity 
on wavelength) of infinitely-small monochromatic water waves implies the spreading of 
wave packets. Stokes concluded:84 

Thus the degradation in the height of such waves, which Mr. Russell observed, is not 

to be attributed wholly, (nor I believe chiefly,) to the imperfect fluidity of the fluid . . .  
but is an essential characteristic of a solitary wave. It is true that this conclusion 

depends on an investigation which applies strictly to indefinitely small motions only: 

but if it were true in general that a solitary wave could be propagated uniformly, 

without degradation, it would be true in the limiting case of indefinitely small 
motions; and to disprove a general proposition it is sufficient to disprove a particular 

case. 

82Stokes [1 847a]. Cf. Craik [2005]. 83 Ibid. [1847a]. pp. 199-204. 
84Ibid. 204. This objection is invalid, because it assumes that the length of the waves is kept constant in the 

zero-amplitude limit, whereas for a solitary wave the length grows indefinitely when the amplitude tends to zero. 



72 WORLDS OF FLOW 

After this new blow to Russell's interpretation of the solitary wave, Stokes proceeded to 
give a theoretical justification of Russell's experimental results on oscillatory waves. 85 To 
second order in the amplitude a of the wave, the celerity of the waves still obeys the 
Kelland-Airy formula (2.52), in conformity with Russell's measurements. This result does 
not contradict Airy's formula (2.59), Stokes explained, because the latter assumes waves 
much longer than the depth, whereas the smallness of Stokes's perturbations is easily seen 
to contradict this condition. 86 The equation of the surface is 

h k 
[cosh kh(2 cosh2 kh + 1 )] k 2 2k y = + a  cos x - 3 a cos x. 

4 sinh kh 

For infinite depth and to third order, it is 

1 3 
y = h + a coskx - :zka2 cos2kx + 8�a3 cos 3kx, 

(2.64) 

(2.65) 

in fair agreement with the trochoids that Russell had inferred from observations of high 
sea waves (see Fig. 2.21) .  To the same order, the deep-water celerity becomes 

c = !i. (l + ��aZ) V "k 2 (2.66) 

Lastly, Stokes found that, for high waves, the propagation of the waves was accompanied 
by a net flux of water. He even recommended taking into account this flux in the dead 
reckoning of the position of ships. 87 

2.4.3 Gerstner 's waves and ship rolling 
Stokes returned to water waves in the 1 870s, when he had to write a memorandum on the 
measurement of waves for the Meteorological Council.88 A good knowledge of the height 

(a) 

(b) 

Fig. 2.21 . Wave of finite height according to Stokes's theory ([1847a] p. 212) (a); according to Russell's 

cycloidal interpretation of ocean waves (b).too pale? 

85Stokes [1847a] pp. 205-8. To second order, Stokes also gave finite-depth results. 
86 Ibid. p. 209. Moreover, Airy dealt with a different problem, namely, the deformation of a wave that has a sine 

shape near the origin. 
87Stokes (1847a] pp. 198-9, 208-9. 88Cf. Froude to Stokes, 17 Jan. 1 873, in Stokes ( 1907]. 
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and length of sea waves, he argued, was necessary for a proper control of ship rolling. This 
preoccupation and discussions with William Thomson-who was involved in similar 
questions-probably led him to improve his theory of high waves and to reflect on the 
highest possible wave. In 1880, he used the publication of the first volume of his collected 
papers as an opportunity to update his views on this topic. 89 

In the first place, Stokes expressed his opinion on an old theory of finite, oscillatory 
waves on infmitely-deep water that had become popular among naval engineers. This 
theory, published in 1 802 by the Prague mathematics professor, engineer, and knight, 
Franz Joseph von Gerstner, assumed a circular motion of the fluid particles with a radius 
diminishing with the distance from the surface:90 

x = X + k-1ekY cosk(X - et), y = Y - k-1ekY sink( X - et), (2.67) 

where x and y are the coordinates at time t of the particle that has the mean coordinates X 
and Y, 27T /k is the wavelength, and e is the celerity of the wave. This motion is easily seen 
to satisfy the continuity condition and the equations of motion. The pressure for a given 
fluid particle is independent oftime if and only if e = Vi/k. It is then a function of l' only, 
so that the wave surface can be any of the lines for which Yis a negative constant. Fig. 2.22 
illustrates the resulting waves for different values of this constant. The highest waves, for 
which the constant vanishes, have an infinitely-sharp edge. Their surface is a cycloid 
generated by a circle of radius k-1 rolling on the underside of the line y = k-1 •  The 
other waves are trochoids with an eccentricity decreasing with their amplitude. Gerstner 
believed his waves to be the only ones compatible with the general principles of mechanics. 
In fact, as the Leipzig mathematician Ferdinand Moebius noted some twenty years later, 
Gerstner's derivation relies on the specific assumption that the pressure around any 
particle of the fluid remains the same in the course of time (whereas general principles 
require this to be true only for the particles at the free surface of the fluid).91 

The Webers' Wellenlehre included a detailed analysis of Gerstner's waves. They found 
reasonable agreement with the observed motion of suspended particles, although the 
radius of the circular motions did not quite vary as Gerstner predicted. Their overall 
judgment was laudatory: 'Even if these conditions [for Gerstner's calculation to apply] are 
not completely met in reality, Gerstner's investigation remains not only interesting but 
also useful.' Russell, who became acquainted with Gerstner's waves through the Webers' 
book, found even better agreement with observation than the Webers had. His judgment 
was enthusiastic: 'Gerstner's theory is characterized by simplicity of hypothesis, precision 
of application, its conformity with the phaenomena, and the elegance of its results. m 

89Both Stokes and Thomson implicitly assumed a simple relation between observed ocean waves and the 
theory of finite waves of permanent shape. The modem, statistical theory of ocean waves contradicts this view: cf. 
Kinsman [1965]. 

· 

90Gerstner [1802], [1804]. This motion has the same form as the large-depth limit of Airy's equations (2.51) for 
infinitesimal oscillatory waves. The only difference is that for Airy the surface of the water could only correspond 
to a large negative value of Y, whereas for Gerstner any negative value would do. 

91Cf. Stokes [1880a] Lamb [1932] pp. 421-3; Weber and Weber [1825] p. 368 (for Moebius's remark). In 
Gerstner's original reasoning [1802], steady waves are investigated first, and a uniform translation is superposed 
onto these waves to yield progressive waves. 

92Weber and Weber [1825] pp. 338-72, 368 (quote); Russell [1845] p. 368n. 



Ay. I. �... r1 · N, , 

� - l: n�s:iJJ 
, A I 

" 

la 

'D----------------------------

1-i\' U< 

• A. • 

I "-

1-----

Fig. 2.22. Gerstner's waves ([1802] plate). The lines A'B1C1 • • •  represent possible wave profiles; the circles represent the orbits of fluid particles; the remaining lines 

represent the successive forms of a line of particles that is vertical when passed by a crest or a through. 



WATER WAVES 75 

In the 1860s, British and French interest in ship rolling led to three rediscoveries of 
Gerstner's waves, by the Edinburgh engineering professor William Rankine, by the naval 
engineer William Froude, and by the Director of the Ecole du Genie Maritime Ferdinand 
Reech. When, in the early 1 870s, the French leader in applied mechanics Adhemar Barre 
de Saint-Venant and his disciple Joseph Boussinesq became aware of Gerstner's theory, 
they fully endorsed it. As they noted, Gerstner's waves imply a rotational motion of the 
water and therefore cannot be regarded as being generated by pressures acting on a perfect 
liquid originally at rest. In their eyes, this fact did not preclude the application to sea 
waves, for the latter usually have a long history in which the imperfect fluidity of water 
plausibly plays a role. Stokes judged differently: in his view, only irrotational waves could 
be produced by natural causes. Consequently, these waves were worth analytical efforts, 
despite the much greater simplicity of Gerstner's waves.93 

2.4.4 From wedge-shaped waves to solitary waves 
Next to his dismissal of Gerstner's waves, Stokes inserted a supremely elegant proof that, 
if the crest of an irrotational wave has a sharp edge, then this edge necessarily makes an 
angle of 120°. As a fluid particle travels along the surface, its velocity (in a reference system 
in which the wave is stationary) must vanish at the angular points. At a short distance r 
from such a point, the velocity must vary as .fi according to Bemoulli's law. The 
irrotational character of the wave implies the existence of a velocity potential. As this 
potential is harmonic, it is the real part of a function of the complex variable x + iy that 
can be developed in whole powers of this variable. Taking the origin of coordinates at the 
angular point, the potential behaves as the real part of a power of x + iy. In polar 
coordinates, this gives the form <p ex T' cos ne. On the vertex, the normal velocity o<pjoe 
must vanish, and the tangential velocity o<pjor must be proportional to .fi. The latter 
condition implies n = 3/2. The former then requires that the angle of the vertex should 
be 120°.94 

By 1 880, Stokes believed that the highest possible wave (for a given wavelength) had this 
120° cusped shape. Yet his correspondence with Thomson shows that a few months earlier 
he still hesitated. It also shows that he sought opportunities to verify this prediction: 

I have in mind when I have occasion to go to London to take a run down to Brighton 

if a rough sea should be telegraphed, that I may study the forms of waves about to 

break. I have a sort of imperfect memory that swells breaking on a sandy beach 

became at one phase very approximately wedge-shapes. 

During the next summer, Thomson invited him 'to see and feel the waves' on his yacht. In 
the fall, Stokes wrote to his friend: 

You ask if I have done anything more ab6ut the greatest possible wave. I cannot say 

that I have, at least anything to mention mathematically. For it is not a very 
mathematical process taking off my shoes and stockings, tucking up my trousers as 

93Rankinc [1862]; Froude [ 1862]; Reech [ 1869]; Saint-Venant [1871b] Boussinesq [1877]: pp. 345-6; Stokes 
[1880a]. In principle, wind could exert a shear stress on the water surface and thus induce vorticity of the water. In 
reality1 however, the normal pressures are more important and observed waves are very nearly irrotational, as 
Stokes expected; cf. Kinsman [1965]. 

94Stokes [1880b]. Twentieth-century experiments have confirmed the 120" cusps, cf. Kinsman [1965]. 
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high as I could, and wading out into the sea to get in line with the crest of some small 
waves that were breaking on a sandy beach. 

These adventurous observations seemed to confirm the 120° edge for the highest possible 
waves.95 

From a theoretical point of view, what convinced Stokes of the existence of wedge
shaped waves was a new perturbation method that enabled him, in the fall of 1 879, to push 
the calculation of finite oscillatory (and irrotational) waves to third order for fmite depth 
and to fifth order for infinite depth. The trick was to simplify the expression of the 
boundary conditions by using the potential 'P and Lagrange's stream function 1/J (the 
harmonic conjugate of <p) as independent variables instead of the coordinates x and y. 
The calculations indicated that, for large amplitudes, the tip of the waves came closer to 
the 120o -cusp shape when the order of perturbation increased. For the exact oscillatory 
solutions, Stokes expected the cusp shape and divergent series to occur for a definite value 
of the amplitude/wavelength ratio in the case of infinite depth, and for a definite value of 
the amplitude/depth ratio in the case of finite depth. In the latter case he realized that the 
waves 'tend[ ed] to assume the character of a series of disconnected solitary waves.'96 

In October 1 879, the latter finding prompted him to write to Thomson: 'Contrary to an 
opinion expressed in my [BA] report [of 1 846], I am now disposed to think there is such a 
thing as a solitary wave that can be theoretically propagated without degradation.' 
Thomson disagreed: 'The more I think of it the more I am disposed to conclude that 
there is no such thing as a steady free periodic series of waves in water of any depth. I can't 
believe in the solitary wave. '  This divergence of opinion came from Thomson's suspicion 
that Stokes's series for fmite waves never converged and only indicated approximately 
steady waves. In the following years, there was indeed much controversy about the 
convergence of these series. The story only ended in 1925, with Tullio Levi-Civita's 
rigorous proof of the existence of finite waves of permanent shape.97 

2.4.5 Boussinesq on solitary waves 
Unknown to Stokes and Thomson, the mathematical existence of solitary waves had 
already been argued twice-in 1 871 by a remote French theorist, and in 1 876 by a rising 
star of British natural philosophy. The French investigator, Joseph Boussinesq, had been 
working on open-channel theory for some time. In the steps of his mentor Saint-Venant, 
he tried to subject every aspect of the motion of water in rivers and canals to mathematical 
analysis.98 He was aware of Russell's observations, and also of the more precise measure
ments of solitary waves performed by the French hydraulician Henry Bkin. He had 
already written a long memoir on water waves of small height on water of constant 
depth. In addition to results that could be found in earlier memoirs by Green, Kelland, 

95Stokes to Thomson, 20 Sept. 1 879, 1 1  Oct. 1 879, 1 5  Sept. 1880, ST; Thomson to Stokes, 14 July 1880, ST. 
96Stokes [1880c] pp. 320, 325. Stokes probably borrowed this method from Helmholtz [1868dj, discussed later 

on pp. 1 64-5. 
97Stokes to Thomson, 6 Oct. 1 879, ST; Thomson to Stokes, 10 Oct. 1879, ST; Levi-Civita [1925]. Cf. Lamb 

[1932] p. 420. 
98See Chapter 6, pp. 233-8. 
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and Airy (of which he was unaware), he offered a few preliminary considerations on waves 
of finite height that may have led him to reflect on Russell's wave.99 

In his first derivation of the solitary wave, published in 1 871  in the Comptes rendus, 
Boussinesq sought an approximate solution of Euler's equations that propagated at the 
constant speed c without deformation in a rectangular channel. His success in this difficult 
task depended on his special flair in estimating the relative importance of the various terms 
of his developments. His basic strategy was to develop the velocity components u and v in 
powers of the vertical distance y from the bottom of the channel, and to determine the 
coefficients of this development through the boundary conditions. Lagrange had already 
tried this route and written the resulting series of differential equations, but had found 
their integration to exceed the possibilities of contemporary analysis unless nonlinear 
terms were dropped. A century later, Boussinesq managed to include these terms.100 

To second order in y, Lagrange's expression (2. 1 5) of the velocity potential implies the 
form 

I If 2 I u = a - 2a y , v = -a y {2.68) 

of the velocity components, where a is a function of x only and the primes denote 
derivation with respect to x. Denote by u the elevation of the surface above its original 
height. The conservation of flux in a reference system bound to the wave implies 

J
lt+cr 
0 

udy = cu. (2.69) 

The resulting constraint on the unknown function a is 

1 
a(h + u) - 6a"(h + ui = cu. (2.70) 

Boussinesq solved this equation perturbatively. At the lowest order of approximation, the 
cubic term is dropped on the left-hand side, and u is neglected with respect to h, so that 
a = cjh. At the next order of approximation, the latter value of a is substituted into the 
cubic term, and u is neglected with respect to h in this term only. This gives 

and 

a u 1 11h - = -- + -u 
c h + u  6 

u u 1 u'' 2 2 
- = -- + - - (h - 3y ) , 
c h + u  6 h 

(2.71) 

(2.72) 

Boussinesq then obtained the equation of the surface by substituting these expressions into 
the boundary condition 101 

99Bazin [1865]; Boussinesq [1872a]. 100Boussinesq [1871a]; Lagrange [1781]. 
101The other boundary condition, that a particle of the surface should remain on the surface, is a consequence 

of eqn. (2.69). 
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zil + if  - 2�� + 2g(y h) = 0 for y = h + cr. (2.73) 

As the potential cp is a function of x - et only, 8cpl8t is the same as -cu. 
In order to clarify subsequent approximations, it is convenient to introduce the dimen

sionless variables e = crlh, e' = er, and e" = her'. Boussinesq assumed the wave to be 
small and gently sloped, and therefore treated e, e' I e, and e" I e as small quantities. He 
thus obtained the equation of the surface 

2 = gh 1 + - - + - -( 3 er 1 h2er') 
2 h  3 (T ' (2.74) 

where terms in e2, e12 I e, and e" and all smaller terms are neglected.102 This equation may 
be rewritten as 

(2.75) 

A first integration yields 

(2.76) 

The maximum e' = 0 of the corresponding curve is reached when e = K. Consequently, 
the velocity of the wave is related to the height CTM of its summit through 

which is Russell's formula. Boussinesq then integrated a second time to reach 

er 2K 
h 1 + cosh [VJK(x - ct)lh] · 

His plot of this curve is presented in Fig. 2.23. 

(2.77) 

(2.78) 

A couple of months later, Boussinesq submitted to the French Academy a more general 
theory that gave the deformation of a small, gently-sloped, but otherwise arbitrary wave 
during its progression in a channel of constant depth.103 His calcnlation was still based on 
Lagrange's development of the velocity potential in powers of y. To fourth order, this 
development has the form104 

(2.79) 

102Boussinesq kept the s'2 / s terms, but neglected them when he integrated the equations. 

103Boussinesq [1871c]; [1872b]. For a brief but accurate discussion of this memoir, cf. Miles [1981]. Miles notes 
that thememoir implicitly contains the Korteweg-<le Vries (KdV) equation, but does not mention that Boussinesq 
[1877] explicity contains it (see later on pp. 83-4). 

1<>+r'he reader may wonder why Boussinesq now includes the fourth-order term, which he seems to have 
neglected in his earlier determination of the solitary profile. The reason is that the use of the differential condition 
(2.81) instead of the integral condition (2.69) requires a higher approximation of the potential. 
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Fig. 2.23. The profile of a solitary wave (curved solid line) according to Boussinesq ([1872b] p. 90). 

The vanishing of the pressure at the free surface gives 

ocp 1 2 g£T + ot +z-('Vcp) = 0 for y = £T(x,t). (2.80) 

The condition that a particle originally on the surface should remain on the surface gives 

ocp o£T ocp o£T - = - + - - if y = <l>(x,t). oy ot ox ox (2.81) 

At the lowest order of approximation, using dots for time derivatives and primes for 
derivatives with respect to x, these two conditions yield (in the reverse order) 

(r = -f3"h, /3 = -glT. 

The elimination of {3 gives Lagrange's wave equation 

6" = gh£T". 

(2.82) 

(2.83) 

Consequently, at this order cp is the sum of a function of x - c0t and a function of x + c0t, 
with eo = ,fi!i. Boussinesq retained only the first component, which represents a perturb
ation traveling at the constant speed eo in the direction of increasing x. 

At the next order of approximation, the two conditions give 

(r = -{3" h - {3"£T - {3' £T' + � {3"" h\ /3 = -glT + � /3" h2 - � {3'2' (2.84) 

where h + <l> has been replaced by h in terms that have a derivative of third order or higher 
in factor. In order to eliminate {3, Boussinesq derived the first equation with respect to time 
and the second equation twice with respect to x. This gives 
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(2.85) 

In the terms that follow the first, dominant term in each of these equations, & and {3 can be 
replaced by their first approximation (2.82), and the operators 8l8t and -co8l8x are 
interchangeable. This gives 

er = -{3"h + g(c?)" - �gh3a'111, {3" = -gcr -�gh2a'111 - �gh-1 (cr2)". 

Hence follows Boussinesq's equation for the evolution of the perturbation:105 

<J = ghcr" + �g(c?)'l + lgh3a'm. 

(2.86) 

(2.87) 

In order to ease the integration of this equation, Boussinesq imagined a series of fictitious 
vertical planes moving in such a manner that the volume ofliquid between two consecutive 
planes remains constant. The velocity w of these planes is easily seen to depend on their 
abscissa x in such a way that 

With the notation 

eqn (2.87) leads to 

In terms of the auxiliary quantity 

this equation can be rewritten as 

& = -(crw)'. 

8crw �2 1 _1 8t + cocr + y = 0. 

'Y x = cr(w - co) --2 ' eo 

. I x =  cox , 

(2.88) 

(2.89) 

(2.90) 

(2.91) 

(2.92) 

provided that the operator 8 I at can be replaced by -c08 I ox when applied to the small 
quantity y. This means that x is a function of x + cot only. As it is also a combination of 
quantities that are functions of x - cot which vanish at infinity, it must vanish. This 
implies 

105Boussinesq [187lc], [1872b] p. 74. 

'Y w = co + -2-, cocr (2.93) 
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( 3 CT 1 h2cr'') w2 = gh 1 + - - + -- . 
2 h  3 CT 

8 1  

(2.94) 

Boussinesq then substituted his expression for w into eqn (2.88) to get the convective 
variation of the height of the fluid slices as 

1 (3 CT 1 h2cr") 1 & + wcr = -eo 2 h + 3 --;;:- . (2.95) 

He also verified that the volume, momentum, and energy of a swell evolving according to 
this equation were invariable. Most importantly, he identified a fourth invariant of the 
motion, namely the 'moment of instability' 

+oo 

M = J (era _ 3�n dx. (2.96) 

He probably came to suspect its existence while studying the condition of permanent shape 
as follows.106 

Remembering that w is the velocity of constant-volume slices of the swell, the shape of a 
swell is permanent if and only if w is a constant c which represents the celerity of the wave: 

This condition is identical to that reached earlier by Boussinesq using a more direct 
method (see eqn (2.74)). For anyone familiar with the calculus of variations, this equation 
obviously derives from the condition that the integral M should be a minimum for a fixed 

+oo 
value of the integral J pgu2dx that approximately gives the energy of the wave. This 
remarkable property oTthe quantity M presumably prompted Boussinesq to examine its 
time evolution for arbitrary swells. He found it to be a constant of motion. From the latter 
property, he inferred that M measured the departure of a swell from a solitary wave, or the 
speed at which its shape varied in time. This remark justified the name 'moment d'insta
bilite'. It also explained the ease with which Russell and Bazin had produced solitary 
waves:107 

If the moment of instability of a wave slightly exceeds the minimum value, the shape 

of the swell will oscillate about that of a solitary wave with the same energy, without 

ever differing much from the latter wave: indeed a notable difference would imply an 

increase of the moment of instability, which is impossible, since this moment does not 

106/bid. pp. 76 (slices), 78 (eqn. 2.94), 79 (eqn. 2.95), 87 (moment). Equations (2.88) and (2.93) give 
er =  -(o-w)' = -coa' - y' f2co (KdV). The latter equation, time derivation under the integral sign of eqn (2.96), 
andeqn. (2.89) give M =  -6 J -ycrdx = 6co J -ya'dx + (3/co) J -yy'dx = 0, since the integral ofthe derivative ofany 
function that vanishes at infinity is zero. 

107 Ibid. p. I 00. 



82 WORLDS OF FLOW 

vary in time; or, rather, a solitary wave will soon be formed; because frictional forces, 
which we have neglected so far, damp the oscillations of the effective form of the swell 

about its limiting form . . . .  And we may even conceive, in the absence of any stable 
form about which a wave might oscillate, that any swell susceptible, by its positive 

and moderate volume, to form a solitary wave with a height small enough not to 

break, should assume this form after a certain time. Thus is explained the ease with 

which solitary waves are produced. 

2.4.6 Torrents and tidal bores 
Lastly, Boussinesq used the expression (2.93) for the velocity w of constant-volume slices 
to determine the evolution of an arbitrary swell. Wherever the c re u" is small 
compared to c? j h3, this velocity is given by Airy's formula w = g(h + � u ). This applies, 
for instance, to the case of the flat horizontal part of a swell produced by the continuous 
injection of fluid at one end of a canal. Boussinesq's interest in this case was concerned 
with the distinction between river and torrents and with the theory of river tides. 108 

In 1 870, by elementary reasoning based on momentum conservation, Saint-Venant had 
shown that a step-shaped swell propagated in a prismatic canal at the Lagrangian velocity 
Vifi in a first approximation, and at the velocity j g(h + �u) in a second approximation 
(u being the height of the step). On this occasion, he proposed to call the velocity of wave 
propagation 'celerity' in order to distinguish it from the fluid velocity. Superposing a 
uniform flow at the velocity -Vi/i onto this wave motion, he then synthesized a hydraulic 
jump (ressaut), that is, a sudden variation of the height of water on a constant stream. In a 
stream of velocity inferior to the critical value Vi/i, any such jump must drift in the 
downstream direction; in a stream of velocity superior to this critical value, jumps recede 
in the upstream direction. Therefore, when the water encounters an obstacle in the bed of 
the stream, it tends to accumulate upstream from the obstacle in the subcritical case (the 
accumulating water forms an upstream moving step); it tends to jump over the obstacle in 
the supracritical case. The former case defines a river, and the latter a torrent according to 
Saint-Venant. 109 

A few months later, the Ponts et Chaussees engineer Henri Partiot gave a theory otriver 
tides based on Bazin's idea that the tidal flux entered the river through a succession of 
small step-swells propagating at the Lagrangian velocity for the height of the water they 
encountered during their progression.1 1° Following Bazin, Partiot explained the tidal bore 
or mascaret by the fact that successive step-swells encountered higher and higher levels of 
water, and therefore propagated at higher and higher velocities. In this process, the later 
laminas of water catch up with the earlier ones, so that the front of the tidal ;ave becomes 
steeper and steeper. For strong tides or rapidly-narrowing beds, it can reach the vertical 
slope for which breaking occurs. 1 1 1  

108Boussinesq [187lc], [1872b] pp. 1 00-3. 
109Saint-Venant [1870]. See also Chapter 6, pp. 227-9. The connection between gravity waves and the torrent/ 

river distinction is roughly expressed in Darcy and Bazin [1865a] p. 34. 

1 10Bazin was himself inspired by Tbeodore Bremontier, who, in 1809, analyzed river tides in terms of snccessive 
laminas of water (though without recourse to Lagrange's formula). 

'"Partiot [1871]; Bazin [1865] pp. 633-5. 
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Mter reading Partiot, Saint-Venant showed that the same evolution ofthe level of water 
along the river resulted from the general equation of non-permanent, gradually-varying 

flow that he had obtained by applying the e turn law.112 For small step-swells, this 
equation retrieves the celerity formula g(h + �u), in apparent contradiction with Rus
sell's and Bazin's v g(h + u) formula. ereas in his former communication Saint-Venant 
held friction responsible for the discrepancy, he now understood that the formula of 

Russell and Bazin applied to situations in which his approximation of gradually-varying 

flow was not allowed. For Russell, CT represented the height of a solitary wave. For Bazin, 
it represented the height of the surging head of a step-swell, which happened to be fifty per 

cent higher than the step itself. 

When Boussinesq wrote on solitary waves, he made clear that Saint-Venant's formula 
only applied to a portion of a wave in which the curvature could be neglected. In the 
curved part of the swell, convexity implies a decrease of the velocity w, and concavity an 
increase. Through this simple remark, Boussinesq managed to justify the oscillatory shape 

of the front ofBazin's swell, as well as the oscillations behind Russell's negative waves. In 

the end, there was nothing in the multifarious wave phenomena observed by Bazin that 
Boussinesq could not explain through his powerful analysis. Saint-Venant applauded:1 13 

These numerous results of high analysis, founded on a detailed discussion and on 
judicious comparisons of quantities of various orders of smallness, sometimes to be 

kept, sometimes to be neglected or abstracted, and their constant conformity with the 

results obtained by the most careful experimenters and observers, appear most 

remarkable to me. 

2.4. 7 Rayleigh on the solitary wave 
Five years after Boussinesq's note in the Comptes rendus, Lord Rayleigh independently 
reached the solitary wave equation and profile. With Lagrange and Boussinesq, he shared 

the idea of developing the fluid velocity in powers of the vertical coordinate y. His 
implementation of this idea was remarkably elegant, thanks to two subterfuges: he 
analyzed the fluid motion in a reference system bound to the wave; and he conjointly 

used Lagrange's potential <p and the stream function 1/J such that -v dx + u dy = di/J. The 

required power developments are 

(2.97) 

The stream line 1/J = 0 forms the bottom of the channel. In Rayleigh's reference system, the 
motion is stationary, and the condition that a particle of the fluid surface should remain on 

this surface is replaced by the condition that this surface should be the stream line 
1/J(x, y) = -eh. The condition of uniform pressure at the free surface is 

z? + v2 = Cl - 2g(y - h). 

msaint-Venant [1871a]. Saint-Venant was apparently unaware of Airy's earlier theory. 
1 13Boussinesq [1872b] pp. 103-8; Saint-Venant [1873] p. XXI. 

(2.98) 
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Rayleigh then inserted the power developments of <p and 1/J into these two conditions, and 
neglected terms that involved orders of derivation higher than two. This led him to the 
differential equation 

1 2 y" 1 y12 1 2g(y - h) 
- + - - - - - = - - ---y2 3 y 3 y2 h2 c2h2 (2.99) 

for the function y(x) = u(x) +h. The first integral of this equation is the same as Boussi
nesq's equation (2.76). Rayleigh discussed it and integrated it, and obtained results 
equivalent to those ofBoussinesq.1 14 

2.4.8 The so-called KdV equation 
In a note to his monumental Eaux courantes, Boussinesq remarked that his second-order 
equation (see eqn (2.87)) 

d - c5u" = y" ( with c� = gh and y = � gu2 + � gh3 u") 

for the deformation of a swell during its propagation could be integrated without recourse 
to the constant slice-motion, by rewriting it as 

(� - eo !_) (� +  co!-.)u = y" � _ __!__ (�- co!-.) y '. at ox at ox 2co at ox (2. 100) 

A reasoning similar to that given for the vanishing of the quantity x of eqn (2.91) leads to 
the first-order equation 

(2. 101) 

or 

(2.102) 

This is the so-called KdV equation, which Boussinesq wrote some twenty years before its 
Dutch rediscovery. Rather than this equation, Boussinesq used the equivalent equations 
(2.93) for w and (2.95) for the convective variation of height, because they represented the 
deformation of the swell in a more direct mannerY5 " 

In 1 895, the Dutch mathematician Diederik Johannes Korteweg and his doctoral 
student Gustav de Vries extended Rayleigh's method of 1 876 to include oscillatory 
waves, arbitrary long waves of evolving shape, the effect of capillarity, and an investiga
tion of higher-order terms in the Lagrange-Rayleigh expansion. They thus rediscovered 
the 'very important equation' that now bears their name, apparently unaware of Boussi
nesq's relevant study.U6 

1 14Rayleigh [1876a] pp. 256-61. Cf. Lamb [1932] pp. 424-6. l 1 5Boussinesq [1877] p. 360n. 

1 16Korteweg and de Vries [1895] p. 428. These authors gave the evolution of the wave in a reference system 
moving together with the wave. Hence their equation involved an undetermined constant depending on the celerity 
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Korteweg and de Vries also extended Rayleigh's derivation to periodic waves of per
manent shape, not knowing that Boussinesq had already solved this problem in his Eaux 
courantes. In this case, the condition of constant pressure at the surface involves an 
undetermined constant, since the disturbance no longer vanishes at infinity. Consequently, 
the equation (2. 76) for the slope of the wave is replaced by 

tP. = 3(s - a)(s - b)(k - s), (2.103) 

where a, b, and k are three positive constants. The integral can be expressed in terms of the 
elliptic function 'en', which prompted Korteweg and de Vries to call these periodic waves 
'cnoidal'. As they showed, Stokes's finite oscillatory waves are large-depth approxima
tions of the cnoidal waves. Solitary waves correspond to the limit of infinite period. 1 17 

Korteweg and de Vries believed that the permanence of the shape of their cnoidal waves 
was preserved at large orders, and gave a tentative proof of this long-debated fact. They 
thus sided with Stokes, who had believed since 1879 in the existence of waves of permanent 
type, both solitary and oscillatory. In 1891 ,  Stokes identified the false step which had 
earlier led to the widespread belief in the impossibility of permanent solitary waves, 
namely, the assumption that, for a given height, a solitary wave could be so long that 
the horizontal velocity was the same on a vertical line. This was indeed the starting-point 
of Airy's theory of the nonlinear deformation of waves. The assumption is wrong, since the 
length of a solitary wave is determined by its height. Stokes could have added that an 
argument of his own, according to which, for a given wavelength, the height of a solitary 
wave could be so small as to undergo finite-depth dispersion, similarly fails. As modern 
soliton theorists know, the possibility of solitary waves rests on the exact compensation 
between a linear dispersive term and a nonlinear term in the equation of motion. For a 
given height of the wave, this compensation only occurs for a definite shape and length.118 

2.5 The principle of interference 

2.5.1 Group velocity 
In his report on waves of 1 844, Russell wrote: 

One observation which I have made is curious. It is that in the case of oscillating 

waves of the second order, I have found that the motion of propagation of the whole 

group is different from the apparent motion of wave translation along the surface. 

The remark went largely unnoticed, until William Froude privately communicated a 
similar observation to Stokes and to Rayleigh in the early 1 870s. 1 19  

o f  the wave. Strictly speaking, they did not write Boussinesq's equation (2. I 02), which i s  now called the KdV 
equation. On the precise connection between their equation and the KdV equation, cf. Miles [1981]. 

1 17Korteweg and de Vries [1 895] p. 424; Boussinesq [1877] pp. 390-6. Cf. Lamb [1932] p. 426-7, Miles [1981] 
p. 137, who notes that Korteweg and de Vries's expression for the relation between cnoidal waves and Stokes's 

waves is not quite correct. 
1 18Korteweg and de Vries [1895] pp. 438-43; Levi-Civita [1925]; Stokes [1880c], [1891]. 
"9Russell [1845] p. 67. 
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At that time, Stokes was working on the measurement of sea waves for the Meteoro
logical Council. In particular, he was asked to determine the origin of the strong swells 
sometimes observed in fine weather. Stokes immediately explained these swells by wave 
propagation from distant storms, and commented: 'It is curious to see that captains seem 
to have so little idea of the propagation of waves excited in a stormy region into a region 
where as regards the wind, it is comparatively calm.' According to the formula 
c = w/k = Vi/k of small deep-water waves, Stokes explained, the velocity c of a periodic 
wave is related to its time period r = 27T / w through c = gr /27T. A measurement of r would 
thus provide information on the location of the storm.120 

In 1 873, William Froude read the relevant section of Stokes's memorandum. He 
commented to the author: 

Primdfacie, the speed of such waves would determine the duration of their passage 
over a given distance. But this is not really so: because the foremost waves are 
perpetually dying out, as they invade the undisturbed water, and are undergoing 
metempsychosis in the ranks behind them. 

For example, FJ;"oude went on, if the wheels of a paddle ship are stopped while its speed is 
kept constant by other means, the waves remain stationary with respect to the ship but 
their front moves away from the ship. From the perspective of an observer at rest, this 
means that the undulations within the train of waves advance faster than the front of the 
train. Froude had seen a lot of that in his towing tanks. 121 

In January 1876, Stokes reported to Airy: 

I have lately perceived a result of theory which I believe is new-that the velocity 
of propagation of roughness on water is, if the water be deep, only half of the 
velocity of propagation of the individual waves. This is of importance in connecting 
records of long swells which may be found in ships' logs with records like those of 
Ascension or St. Helena. 

The following month he proposed the following problem for the Smith prize examination 
papers at Cambridge University: 122 

Find the expression for the velocity of propagation of a series of simple periodic 
waves in water of uniform depth, the motion being small and in two dimensions.-If 
two such series, of equal amplitude and nearly equal wavelength, travel in the same 
direction, so as to form alternate lulls and roughness, prove that in deep water these 
are propagated with half the velocity of the waves; and that as the ratio of the depth 
to the wavelength decreases from oo to 0, the ratio of the two velocities increas6's from 
� to 1 .  

Denoting by k and k + dk the wave numbers o f  the two superposed waves, and w and 
w + dw the corresponding pulsations, the amplitude of the superposition varies as 
cos! (xdk - tdw). The resulting modulation travels with the velocity dw/dk. For small 

120Stokes to Captain Toynbee, 5 Sept. 1878, in Stokes [1907] vol. 2, p. 141; Stokes to Colonel Sabine, 22 Sept. 
1870, ibid. p. 136. 

121Froude to Stokes, 17 Jan. 1873, ibid. pp. 1 56-7. 
122Stokes to Airy, 5 Jan. 1876, ibid. p. 177; Stokes (1876]. 
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waves in water of depth h, according to Kelland and Airy, w2 = gktanh kh. The corre
sponding ratio between the group and phase velocities, 

dwldk 1 1 
wlk 

= z (l + kh tanh- kh - kh tanh kh), (2.104) 

varies from� to 1 when kh varies from oo to 0, as Stokes asked the Smith prize competitors 
to demonstrate.123 

The following year, the Manchester engineering professor Osbome Reynolds reported 
his own observations of wave groups produced by throwing a stone into a pond, by the 
interference of sea waves, or by the motion of a ship. Like Russell and Froude, he noted that 
groups of waves in deep water traveled slower than the individual waves of which they were 
made. To explain this result, he first noted that the velocity of a wave group obviously 
represented the velocity of propagation of energy. He then showed that the latter velocity 
differed from the phase velocity. For instance, the waves produced by wind in a corn field 
obviously do not propagate any energy, since the motions of the individual corn stert;J.s are 
independent. In the more complex case of a sine wave on deep water, the particles of water 
move on circles with constant velocity, so that no kinetic energy is transmitted by the wave. 
In contrast, the potential energy is transmitted at the phase velocity. Since the potential 
energy of such waves is half their total energy, the speed of energy propagation is half the 
phase velocity. Therefore, the group velocity is half the phase velocity.124 

In his influential Theory of sound of 1877, Rayleigh included Stokes's derivation of the 
group velocity, which he had independently obtained under Froude's stimulus. In a 
contemporary article, he proved Reynolds's equality between energy and group velocity 
in a precise mathematical manner. In the case of small waves on water of finite depth, he 
did this by computing the ratio between the work of pressure forces on a transverse section 
of the water and the energy density of the waves. In the general case of waves in an 
arbitrary dispersive medium, he astutely introduced a fictitious friction proportional to the 
absolute velocity of the parts of the medium. Assuming vibrational energy to be created at 
x = 0 and to propagate in the direction of increasing x, he computed the damping effect of 
the frictional force by noting that it turned the operator EP 1 at2 into 82 I ot2 + J.LO 1 ot, 
wherein f.L is the friction coefficient divided by the fluid density p. This is nearly equivalent 
to changing the pulsation w into w - ! iJ.L. The corresponding change of k is - � iJ.Ldkldw. 
Consequently, the oscillating factor ei(.,t-kx) of a forced oscillation at the pulsation w is 
turned into e-!JLXdk/d"'ei(wt-kx) . The dissipated energy in the region x > 0 is the integral of 
J.Lr:nl-. It is therefore equal to 2J.L times the kinetic energy, or else J.L times the total energy in 
this region (according to a well-known theorem for harmonic oscillations). Denoting by E 
the energy per unit length near the sou;rce, this remark leads to the expression 
J.LE fo"" e-!'-Xdkfdwdx = Edwldk for the dissipated energy. By energy conservation, this 
dissipation must be compensated for by the energy flux EcE through the section x = 0 of 
the water. Therefore, the velocity cE of energy propagation must be identical to the group 
velocity dwldk.125 

123 A more general argument with a continuous distribution of k is found in Rayleigh [1881]. 

124Reynolds [1877b]. 125Rayleigh [1877], [1877-78]. 
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The concept of group velocity could plausibly have emerged in the fields of physics 
where dispersion was first known, namely optics and acoustics.126 In reality it did not. As 
we have just seen, observations made on deep-water waves played a crucial role. They 
motivated Stokes's and Rayleigh's theoretical considerations, although these assumed 
familiarity with interference and beat phenomena in optics and acoustics. As for Froude's 
understanding of group velocity, it derived from his engineering concern with the energy 
carried by the waves. 

2.5.2 Thomson 's fishing line 
In early 1 871 ,  the catastrophic sinking of the HMS Captain prompted the British Admir
alty to name a 'Committee on designs for Ships of War'. On behalf of this committee, 
William Thomson asked his friend Stokes a few questions about waves: 'The longest waves 
that have been observed?-by whom?-their length from crest to crest?-and height from 
hollow to crest?' The following summer, while sailing on his personal yacht the Lalla 
Rookh, he observed a gentler but no less interesting phenomenon: a fishing line hanging 
from the slowly-cruising yacht caused very short waves or 'ripples' directly in front of the 
line, and much longer waves in its wake. The whole pattern was steady with respect to the 
line, so that the celerity of both kinds of waves was equal to the velocity of the line's 
progression through the water. Unknown to Thomson, the French military engineer
mathematician Jean Victor Poncelet had already described this phenomenon with his 
colleague Joseph Aime Lesbros, and Scott Russell had already identified capillarity as 
the cause of the ripples. Thomson was the first, however, to solve the hydrodynamic 
equations in this case.127 

In a similar manner to Poisson, Thomson sought solutions of the form cos (kx - wt) for 
the linearized equations of motion. The only difference with the Lagrange-Poisson con
ditions for the velocity potential is the substitution of ga- - Ta'' for ga- in the pressure 
equation at the free surface, where T denotes the superficial tension per unit density. 
Consequently, g must be replaced by g + � T in the dispersion formula w2 = gk for waves 
on deep water. The corresponding celerity is 

(2.105) 

Hence, for a given value of the celerity there are two possible values of the wavelength 
27Tjk, as observed at the front and rear of the fishing line. When Cl is larg�compared to 
@, the smaller waves approximately obey c = VTk as capillarity waves would exactly 
do, and the larger waves approximately obey c = ViJk as gravity waves would exactly do. 
The formula (2. 105) further indicates the existence of a minimum velocity, @, below 
which the waves can no longer be formed. Thomson verified this last point on his yacht 
with the help of an eminent guest, Hermann Helmholtz. 128 

1260n a possible anticipation in William Rowan Hamilton's optics, cf. Lamb (1932] p. 381n. 

127Thomson to Stokes, 3 March 1871, ST; Thomson (1871b]; Ponce1et [1831]. In the same papers, Thomson 
treated the wave-generating instability of a water surface under wind, see Chapter 5, pp. 188-90. 

128Thomson [1871a], (1871c] p. 88 (He1mho1tz). 
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2.5.3 Rayleigh's solution 
Thomson only reasoned on free waves and did not try to analyze the process through 
which the fishing line caused the waves. Rayleigh accomplished this much more difficult 
task in 1 883. Using a favorite stratagem, he first turned the problem of progressive waves 
into a steady-wave problem by selecting the reference system bound to the perturbing 
cause (the fishing line). Then he computed the distribution of surface pressure that 
corresponds to a sine wave in the restricted two-dimensional problem. Although he only 
treated the case of infinite depth, the fmite-depth formulas are given here to allow a 
parallel discussion of later related works. 129 

The assumed expressions of the potential cp and the stream function if! are 

:!'. = x + a cosh ky eikx, 
c 

'f. = y + ia sinh ky eikx, 
c 

(2.106) 

where a is a small constant (the extraction of the real part of complex expressions is 
understood). The unperturbed motion (a = O) is a uniform flow at the velocity c in the 
direction of increasing X. The stream line if! = 0 corresponds to the bottom y = 0 of the 
water. The free surface fits the stream line if! = eh. The corresponding surface deformation is 

u = -ia sinh kh eikx. (2.107) 

The pressure P applied on the free surface differs from the fluid pressure by the capillary 
force pTa". As the latter pressure obeys Bernoulli's law, we have 

P " I ( 2 2 _2 ; = -gu + Tu - 2 u + v- - c--). 

To first order in the small quantity a, this gives 

!!_ = ia[(g + T�) sinh kh - !?k cosh kh)]eikx. p 

Consequently, the surface deformation that corresponds to the pressure point 

of intensity F is 

with 

129Rayleigh [I883b]. 

- F +Joo "kx P = F8(x) = - e' dx 21T 

c� = (�+ Tk) tanh kh. 

(2.108) 

(2.109) 

(2.1 10) 

(2. 1 1 1) 

(2.1 12) 



90 WORLDS OF FLOW 

When the wave number k is such that the velocity of the corresponding free wave is equal 
to the velocity c of the stream, this integral is ill-defmed. In order to circumvent this 
difficulty, Rayleigh introduced a small, fictitious frictional force J.L(c - v) that damped any 
free oscillation of the uniform stream. As he had already shown in his Theory of sound, 
Lagrange's theorem for the existence of the potential remains true in the presence of this 
force. Its only effect on the previous calculation is an additional term JL(cx - q;) in the 
pressure equation. 130 

From a formal point of view, Rayleigh thus anticipated the adiabatic turning on of the 
perturbing force that is commonly used in modem scattering theory. Indeed, a slow 
variation of the coefficient a implies an additional term -fJq;jfJt = (ixja)(cx q;) in the 
pressure equation (2. 1 08). This term has exactly the same form as Rayleigh's frictional term. 

Taking into account the frictional term, Rayleigh replaced eqn (2. 1 1 1) by 

F +Joo eikx 

er = 27Tpg (I + Tk2jg)(c2/q - 1 - iek) dk, (2.1 1 3) 
-oo 

where Bk is a small quantity that has the same sign as k. In the case of infinite depth, 
Rayleigh expressed this integral in terms of elementary or already tabulated functions (the 
sine integral 'Si'). It is more convenient, however, to retain a large but finite depth (for the 
integrand to be meromorphic) and to make use of Cauchy's theorem of residues. 131 For 
positive x, the integration path can be closed in the complex k-plane by the upper half of 
an infinite circle centered on the origin, as shown in Fig. 2. 24. Hence the integral is given 
by the sum of the residues in the upper half of the complex k-plane. Symmetrically, for 

• 

Fig. 2.24. Integration curve and poles in the complex k-plane for evaluating a certain integral. 

130Rayleigh [1877n8] par. 239. 131Cf. Lamb [1895] pp. 396-7; [ 1932] pp. 406-10. 
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negative x the integral is given by the sum of the residues in the lower half of the complex 
k-plane. The poles of the integrand are represented in the figure. The four poles close to the 
real axis correspond to the two wavelengths for which the celerity of free waves is equal to 
the velocity of the stream. Two of the poles marked on the imaginary axis correspond 
to the wavelength for which the free waves have minimum celerity in deep water. The 
remaining poles on the imaginary axis correspond to the infmite sequence of imaginary 
wavelengths for which the celerity of free waves is equal to the velocity of the stream. Their 
distance lkl from the origin is approximately given by the successive zeros of the function 
tan lklh - (Cl jgh)lklh. 

The contribution of the imaginary poles is a series of terms that decrease exponentially 
with x. The physically important terms are the oscillatory terms given by the quasi-real 
poles. For positive x, the two symmetric poles of larger wavelength contribute an oscilla
tion at this wavelength; for negative x, the contributing poles are those of smaller 
wavelength. Concretely, the pressure point induces shorter capillary waves upstream, 
and longer gravity waves downstream, in conformance with Thomsen's observations. 

A fuller analysis of the wave pattern created by a fishing line requires a three-dimen
sional analysis. For this purpose, Rayleigh superposed the disturbances produced by 
pressures constantly applied on straight horizontal lines passing through a fixed point of 
the water surface, the direction of the line being uniformly distributed. The individual 
wave patterns are those of the two-dimensional problem. Their wavelengths 21rjk are such 
that the corresponding celerity Ck is equal to the projection c cos !fr of the velocity of the 
stream on their wave normal. The crests of the various component waves thus form 
continuous families of straight lines whose distance from the origin is a given function 
of their orientation. Presumably inspired by an analogy with caustic surfaces in optics, 
Rayleigh obtained the crests of the combined disturbance as the envelopes of the succes
sive families of straight lines (see Fig. 2.25). 132 

Fig. 2.25. Rayleigh's construction of the waves created by a drifting fishing-line ([1883b] p. 267). The plane of 

the figure represents the water surface, the point 0 the upwards drifting trace of the line. The two families 

of straight lines represent the first crest of the capillarity (in front ofO) and gravity (behind 0) waves caused by 

straight lines of pressure passing through 0. Their curved envelope represents the first waves created by the line. 
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2.5.4 Houston 's paradox solved 
Three years later, Thomson studied the similar problem of the waves produced by a 
uniformly-moving boat. As he eloquently argued:133 

Of all the beautiful forms of water waves that of Ship Waves is perhaps most 
beautiful, if you can compare the beauty of such beautiful things. The subject of 

ship waves is certainly one of the most interesting in mathematical science. It 

possesses a special and intense interest, partly from the difficulty of the problem, 

and partly from the peculiar complexity of the circumstances concerned in the 

configuration of the waves. 

In the two-dimensional canal case, Thomson pushed the analysis far enough to explain 
Houston's old towing paradox. He enthusiastically reported to StokesY4 

I have been getting out some very curious things about waves (water), among 

them complete confirmation of Scott Russell's doctrine of sudden diminution of 

force, in towing a boat in a canal, when the velocity is got to exceed ,fili. I find 

(which is now quite obvious) that if water were in viscid, zero force would suffice to 

keep a boat moving at any constant speed > ,fili, whether in a canal or in open 

water. 

As Thomson explained in an evening lecture for a popular audience, his theory relied on 
the group-velocity concept, and on balancing the work produced by the towing force and 
the energy emitted by the boat in the form of waves. The procession of waves behind a 
boat, he began, is known to be steady with respect to the boat. Therefore, the phase 
velocity of this procession must be equal to the velocity of the boat. According to the 
Kelland-Airy formula (2.52), the former velocity cannot be larger than the velocity y'gJi of 
infinitely-long waves. Therefore, the procession can only exist if the boat moves slower 
than this critical velocity, in conformity with Russell's 'accurate observations and well
devised experiments.' 135 

As the boat must have started from rest, the wave procession necessarily has a finite 
length. Its end moves with the group velocity, which is smaller than the phase velocity. 
Therefore, the length and the global energy of the procession increase in time, and an 
equivalent work must be spent to propel the boat. If the boat moves faster, the procession 
lengthens at a slower rate but the waves are much higher, so that the resistance grows. 
A crisis occurs when the velocity of the boat approaches that of infinitely-long waves. 
'Once that crisis has been reached,' Thomson asserted, 'away the boat goes merrily.' 
Thomson then recalled how 'the discovery [had been] made by a horse' and 'had permitted 
for a few years a system of fly-boats between Edinburgh and Glasgow on the Forth and 
Clyde Canal, until, in the early 1 840s, the development of railways had rendered this 
poetical notion of speed obsolete. 136 

In the previous year Thomson had published abundant, complex calculations that 
justified this theory. The basic mathematical problem was to determine the disturbance 

132Rayleigh (!883b]. 133Thomson (1887./] p. 410. 

135Thomson (1887./] pp. 415-20. 136Jbid. pp. 418-19. 

13"Thomson to Stokes, 8 Nov. 1886, ST. 
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of a uniform flow caused by a local pressure on the water surface of a canal. Thomson first 
solved the similar problem. of the waves produced by a bump at the bottom of the canal 
when water flows at constant velocity. These two problems resemble Rayleigh's fishing
line problem, except that capillarity is now neglected and the depth is finite. Like Rayleigh, 
Thomson obtained the desired solution by the superposition of sinusoidal solutions. His 
execution of this plan seems awkward to a modern reader. Instead of generating the 
pressure peak by the direct superposition of sine functions, he used the mathematical 
intermediate of a periodic succession of Lorentzian peaks, and then let the distance 
between too successive peaks tend to infinity. He encountered enormous difficulties in 
evaluating the resulting integral for the surface disturbance. His results were, nonetheless, 
the same as those of the following calculation based on the method of residues.137 

For the two-dimensional problem of a local pressure disturbing a uniform flow, the 
disturbance is given by the vanishing-capillarity limit of eqn (2. 1 1 3): 

F +Ioo eikx 
er = -- dk 27rpg c2jef - 1 - isk ' -oo 

(2.1 14) 

in which C£ = (gjk) tanh kh. The lowest possible value of C£ is its infinite-wavelength limit 
gh. Therefore, when c exceeds Vi/i, the integrand only has imaginary poles, and the integral 
is an exponentially-decreasing function of x. There is no wave production, and the boat can 
'travel merrily'. In the opposite case, the integrand has two symmetric, quasi-real poles 
±kg + is in the upper half of the complex k-plane that yield a downstream undulation of the 
water surface, with a period equal to the length 27r /kg of free waves traveling at the speed c. 
This explains why waves are produced by a boat at subcritical speed, and why these waves 
always follow the boat. When the speed c is slightly below the critical velocity Vifi, the two 
residues are (3 /2kgh2)e±ik,. The amplitude of the resulting oscillations diverges together 
with their period 27r/kg when the pressure point reaches the critical velocity, in conform
ance with the 'crisis' described in Thomson's popular lecture. In the limit of infinite depth, 
the two residues are kge±ik,x, so that the amplitude of the oscillations is inversely propor
tional to the wavelength. Lastly, Thomson computed the necessary propelling force by 
balancing the energy flux of the waves with the work done by this force. 

2.5.5 Echelon waves 
Thomson's greatest achievement in this area was to derive the ship-wave pattern in the 
three-dimensional case.138 Like Rayleigh, Thomson superposed the disturbances pro
duced by pressures constantly applied on straight horizontal lines passing through a 
fixed point 0 of the water surface, to be identified with the location of the boat. Had he 
followed Rayleigh even further, he could have obtained the wave pattern geometrically, by 

137Thomson [1886]. 
138Thomson [1887/], [1906]. In 1887, Thomson only gave the formulas for the configuration of the wave crests, 

which he claimed to have obtained by Stokes's principle of group velocity ([1887f] p. 423). In the following it is 
assumed that the relevant calculations were similar to those of Thomson [1906]. One could speculate that 
Thomson reasoned in the more elementary manner given at the end of this chapter. That manner, however, 
does not seem to yield the height of the waves, which Thomson claimed to have computed in 1887. 
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tracing the envelopes of the component wave crests.139 However, he preferred a more 
analytical method that also yielded the intensity of the waves. 

Denote by r and () the polar coordinates of the point P of the wake with respect to the 
origin 0 and to the trajectory of the boat, and by if! the angle that the rearward normal of 
one of the pressure lines makes with the axis () = 0. The distance 8 of the point P from this 
line is r cos (if! 0). The wave number k of the resulting wave component must be such that 
the corresponding wave velocity Vi[k is equal to the projection V cos if! of the velocity V 
of the boat on the wave normal. Hence the phase 4> of this component at the point P is 

</> = kB =  
gr cos(f/1 - 0)

. 
V2 cos2 f/! 

(2.1 15) 

Its amplitude is proportional to k = gj V2 cos2 if!. The angle if! is uniformly distributed 
between 0 - 'IT/2 and 0 + 'IT/2, since P must belong to the wake of the if! line. The resultant 
disturbance has the form140 

B+rr/2 

I cos </> 
u r:x.  --2-df/1. 

cos "' 
e-,./2 

(2. 1 1 6) 

In order to evaluate this integral, Thomson appealed to 'the principle of interference, as set 
forth by Prof. Stokes and Lord Rayleigh in their theory of group-velocity and wave
velocity.' 141 At a distance from the boat much larger than the characteristic wavelength 
A =  gj V2, the phase 4> is very large and therefore cos </> oscillates very quickly between 
positive and negative values when if! varies. This oscillation implies destrUctive interference, 
unless there are particular values of if! for which the phase is stationary, that is, d<f> / df/1 = 0. 

If x and y denote the Cartesian coordinates of the point P, and T is the tangent of the 
angle if!, we have 

(2.1 1 7) 

The condition of stationary phase then gives 

XT + y(1 + 2�) = 0. (2.1 1 8) 

This quadratic equation has real roots only if (yjx)2 < 1/8. Hence the .llisturbance is 
confined between the two half-lines that originate in the (point-like) boat and make an 
angle oftan-1 JI78 � 19°28' with the mid-wake of the boat. The curves of constant phase 
obey the parametric equations142 

(2. 1 19) 

139Lamb did so in the 1895 edition of his treatise. The equation of the envelope is easily seen to be identical to 
the condition of stationary phase that Thomson presumably used in 1887. 

14"Thomson [1906] p. 409. 141Thomson [1887g] p. 303. 
142The formulas of Thomson [1887f] have a different parameter, w = (I - 2i')/(l + 2i'), but represent the 

same curves, despite Larmor's contrary statement ([1907] p. 413n). 
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Fig. 2.26. Kelvin's ship-waves (Thomson [1887f1 plate; perspective view borrowed by Kelvin from R.E. 

Froude: Thomson must have considered that the impulse of the prow of the long barge approximately 

determined the wave pattern). 
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where a =  (A.j27rr)<f>. They have the 'beautiful' shape represented in Fig. 2.26. Thomson 
further determined the amplitude of the waves by summing the contributions of the two 
roots of eqn (2. 1 1 8) to the integral (2.1 16). He even had a clay model made to represent the 
wave pattern.143 

2.5.6 The stationary-phase method 
Thomson's success in completing the theoretical analysis of ship waves crucially depended 
on the stationary-phase method. An anticipation of this method is found in a mathemat
ical paper of 1 850 by Stokes, in the context of Airy's spurious rainbows. 144 Stokes did not 
explain why the procedure worked, and did not provide a clear criterion for judging which 
integral was amenable to it. In contrast, Thomson imagined the destructive interference of 
the rapidly-oscillating integrand, and showed that the method applied to the integral of 
any rapidly-oscillating function. In 1 887, he published a striking application of this 
method to the Poisson-Cauchy integral given in eqn (2.30), namely 

+oo 
u = � I dkcoskxcos wkt, 

0 

that represents, in two dimensions, the water-surface disturbance caused by a local 
deformation around x = 0. 145 

The progressive part of this disturbance is the real part of the integral 

(2.120) 

The phase is stationary when x dk - t dwk = 0, that is, when the group velocity dwk/ dk is 
equal to xjt. For gravity waves on infinitely-deep water, Wk = ..fik. The phase is station
ary for k =  K = gt2 j4x2. Its value around this stationary point is 

gt2 4> """ -
4x 

+ (3(k - K)2, (2.121) 

where (3 = x3 jgt2 is the value of fd2<f>/dk2 for k =  K. The resulting approximation of the 
integral for large values of gt2 j 4x is 

+oo 
u = �e-igfl(4x I dkeifl(k-•)' = �e-igt2(4x f!leirr/4 = At fg e-i(gt2(4x":..rr/4) (2. 122) + 27r 27r V f3 2 V -;;;;;; ' 

-oo 

in conformance with Poisson's equation (2.36). 
In the same spirit, Horace Lamb later noted that, in the large-phase approximation and 

for relatively small variations of the distance x from the origin, the disturbance at a given 

143Thomson [1906] p. 413; [1887/] p. 424. 

144Stokes [1850a]; Airy [1838]. Cf. Darrigo1 [2003] pp. 85-6. 

145Thomson [1887g]. 
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time differs very little from a sine wave with the wave number k = gfl / 4x2. Therefore, the 
disturbance created by a non-local deformation with the profile f (a) results from the 
interference of a system of sine waves with an amplitude proportional to f(a) and a phase 
shifted by -ka. As in diffraction theory, this picture leads to replacing the coefficient A by 
the F ourier transform of the profile in the expression (2.122) of the disturbance created by 
a point-like perturbation. Lamb thus short-circuited Poisson's delicate and lengthy deriv
ation of eqn (2.38). 146 

In summary, Thomson and Lamb substituted a physico-mathematical analysis for the 
purely formal developments of Poisson, Cauchy, and Stokes. The gain was enormous: 
whereas the anterior treatment rested on formal tricks that required much ingenuity and 
worked only in particular cases, the stationary-phase method offered an intuitive strategy 
that automatically gave the asymptotic behavior of large-phase integrals. Under Thorn
son's magic wand, much of the enormous memoirs of Cauchy and Poisson collapsed into a 
few lines of physico-mathematical common sense. Moreover, the formidable problem of 
ship waves received a strikingly simple solution. 

2.5.7 After-math 
This solution was not quite definitive. Although Thomson gave the result and the method 
of stationary phase in 1887, he only published the calculations in 1906, at age 83. As he 
knew, the pressure obtained by isotropic superposition of pressures localized on straight 
lines passing through a fixed point varies as the inverse of the distance from this point. In 
modem notation, this results from the identity Jg" o(rcos e)de = 2/r. Such a slowly
decreasing function cannot realistically represent the pressure exerted by a boat on the 
water surface. In the year of his death, Thomson was still working on an improved version 
of his theory in which the perturbation was more sharply localized.147 

In his conference of 1 887, Thomson suggested a more direct approach. The disturbance 
produced by the ship, he noted, may be regarded as the superposition of the distur
bances produced by a succession of impulses along its path. A Newcastle lecturer in applied 
mathematics, Thomas Havelock, managed to do the corresponding calculations in 1908, 
thanks to a repeated application of the method of stationary phase. At a point P in the wake 
of the ship A (see Fig. 2.27), the wave created by an individual impulse is the superposition 
of monochromatic, circular waves with the phase wr - kd (up to a constant), where k is the 
wave number, d is the distance EP between the impulse and the point P, w is the deep-water 
pulsation yg!{, and t is the time that has elapsed since the ship was at E.148 

E 

� . () ' 
- - - > 

"' . '" - - -
A 

d - - - - - - -
p r 

Fig. 2.27. Diagram for Havelock's calculation of Kelvin's ship-wave pattern. 

146Lamb [1932] pp. 392-4. 147Thomson [1907]. 

148Thomson [1887fl; Havelock [1908]. See also Lamb [1916] and Lamb [1932] pp. 433-7. 
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In order to avoid destructive interference between the waves created by successive 
impulses, this phase must be stationary with respect to a variation of the time t. Hence 
the phase velocity wjk must be equal to i1 = V cos a, where V is the velocity of the boat 
and a is the angle that EP makes with the direction of motion of the ship. Furthermore, the 
phase must be stationary with respect to a variation of k. This implies that the group 
velocity dwjdk must be equal to the ratio djt. 

The first condition of stationarity and some trigonometry lead to the expression 

<P 
= 

gr cos (a - 0) 
V2 cos2 a 

(2.123) 

for the phase, where r is the distance from P to the ship's present location A, and e is the 
angle that AP makes with the direction of motion of the ship. This expression is the same 
as Thomson's equation (2.1 1 5), although the angles a and 1/J have different interpretations. 
As the variation with respect to k is equivalent to a variation with respect to a, Havelock's 
calculation yields the same lines of constant phase as Kelvin's. Only the height of the wave 
crests differs, because the amplitude of Havelock's spherical component waves differs 
from the amplitude of Kelvin's straight-line component waves.149 This correction does not 
really improve the comparison with the experimental pattern, because the latter depends 
on the form of the ship, and because at the cusps of the curves of constant phase the 
theory leads to a divergent amplitude that is incompatible with the original small-wave 
assumption. 150 

In Kelvin's and Havelock's derivations of the echelon shape of ship waves, there seems 
to be a disproportion between the simplicity of the results and the complexity of the 
calculations. In his popular lecture of 1 887, Thomson hinted at a more elementary 
derivation. After noting that the disturbance produced by the ship could be regarded as 
the superposition of the disturbances produced by a succession of impulses along its path, 
he declared that the point E in Fig. 2.26(top) (such that EC = CA) represented the position 
of the ship at the time when it caused the impulse responsible for the disturbance around 
C. His justification holds in one sentence: 'Calculate out the result from the law that 
the group-velocity is half the wave-velocity-the velocity of a group of waves at sea is 
half the velocity of the individual waves.' Indeed, if the disturbance travels from E to C at 
the group velocity, and if the phase velocity along the x-axis is equal to the velocity of the 
ship, this law implies that the ship must move twice as fast as the disturbance. Thomson 
seems to have grasped these two conditions intuitively, through the picture of a train of 
waves made of individual waves that are steady with respect to the ship. As we have just 
seen, they can be justified through the method of stationary phase. 151 

Thomson's consideration may now be extended to the disturbance around a point P that 
is no longer on the x-axis. This disturbance has traveled from E with the group velocity in 
the direction EP. For steadiness with respect to the ship, the phase velocity in this direction 
must be equal to the projection of the ship velocity on this direction. Hence the angle EPC 

149This agreement should be expected, because the disturbance created by a diffuse pressure is the superpos
ition of geometrically-similar echelon patterns created by symmetrically-distributed pressure points. 

"00n more realistic theories of ship waves, cf. Lamb [1932] pp. 437-9. 
"'Thomson [1887/] p. 426. 
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Fig. 2.28. Diagram for elementary calculation of Kelvin's ship-wave pattern. 

is a right angle, and the point P must be located on the circle of diameter EC (see Fig. 2.28). 
The significantly disturbed part of the water surface is therefore confmed between the 
tangents AH and AH', which make the angle sin-1 (OH/OA) = sin-1 1 /3 = tan-1 .JI78 
with the axis.152 

Denoting by X the diameter EC and a the angle that the emission line EP makes with the 
axis, the Cartesian coordinates of the point P are (see Fig. 2.28) 

x = X(2 - cos2 a), y = X  sin a cos a (2. 124) 

On a given curve of constant phase, y is a function of x; or, equivalently, X is a function of 
a. This function can be determined through the condition dy/dx = cot a, which means 
that the curve of constant phase that goes through P is normal to the direction EP of 
propagation. Computing dy/dx from the previous expressions for x and y, we obtain 

dX = -X tan a 
da 

The integral X =  a cos a of this equation then gives 

x = a cos a(2 - cos2 a), y = a sin a cos2 a, 

which are the same as eqns (2. 1 19) with r = tan a.153 

(2. 125) 

(2.126) 

The extreme simplicity of this derivation strikingly illustrates the transformation of 
mathematical physics announced in the introduction to this chapter. In 1775, Laplace 
already knew the equations of hydrodynamics that are needed to formulate the ship-wave 
problem mathematically. Had he dared to approach this problem, he would probably have 

15"This reasoning is from Lighthill [1957] pp. [21-2, [1978] pp. 269-79. See also Billingham and King [2000] pp. 
99-105. Thomson ([1887fl pp. 425-7) gives this geometrical construction of the characteristic angle, without the 
physical interpretation. 

153The form X = a cos rx of the constant-phase condition also derives from </> = wt - kd (with 
t =  2X/V, d = Xcosrx, V cos a =  wfk = .,fijk), which leads to </> = gXfV2 coso:. 
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fallen into the same error as in the waves-by-emersion problem, for he did not know how 
to synthesize local perturbations from sinusoidal ones. Some forty years later, Poisson and 
Cauchy could have written the multiple integral that yields the water disturbance behind 
the ship. But they lacked efficient means to evaluate this integral. Ninety years later, 
Thomson succeeded in this task thanks to 'the principle of interference'. Through the 
related intuition of wave groups, he even suggested a way to circumvent the integral and 
reason in geometric terms. 

This story exemplifies a symbiotic evolution of mathematical analysis and physical inter
pretation in the nineteenth century. The need to solve the differential equations of physics 
problems such as the propagation of heat inspired new mathematical tools such as Fourier 
analysis. In turn, the application of these tools to a broad array of physical phenomena 
provided them with physical interpretations that suggested more efficient ways of hand
ling them. From raw, algebraic procedures for combining and transforming mathematical 
expressions, they became genuine physico-mathematical tools. Whereas in their more 
primitive guise they often generated impenetrable integrals, in their mature form they 
revealed the behavior of the integrals. 

This evolution largely explains the success of nineteenth-century theorists in dealing 
with complex wave patterns in the linear approximation. That Stokes, Boussinesq, and 
Rayleigh could also solve an important class of nonlinear problems depended on another 
quality, namely, their ability to develop methods of approximation that combined two 
different small parameters, the slope and the elevation of the waves. In both cases, a 
century elapsed between the basic formulation of the problem in Lagrange's memoir of 
1781 and a fairly complete mastery of the observed wave behaviors. Although this may 
seem a long time, it is less than what was needed for a fragmentary answer to other 
hydrodynamic questions. 

With hindsight, there are three peculiarities of water-wave motion that make it more 
easily amenable to mathematical analysis than other forms of fluid motion. Firstly, it can 
be studied with reasonable accuracy without taking into account the small viscosity of 
water. Secondly, in the same approximation it can be regarded as irrotational (except for 
Gerstner's waves) and therefore admits a harmonic velocity potential. Thirdly, it is stable 
and non-turbulent, except in the limit of breaking waves. We will now leave this relatively 
simple domain and enter more troubled waters. 



3 

VISCOSITY 

M. Navier himself only gives his starting principle as a hypothesis that can be 

verified solely by experiment. If, however, the ordinary formulas of hydro
dynamics resist analysis so strongly, what should we expect from new, far 

more complicated formulas?1 (Antoine Coumot, 1828) 

As far as I can see, there is today no reason not to regard the hydrodynamic 

equations [ofNavier and Stokes] as the exact expression of the laws that rule the 
motions of real fluids. 2 (Hermann Helmholtz, 1 873) 

In the early nineteenth century, the rational fluid mechanics of d'Alembert, Euler, and 
Lagrange remained irrelevant to the mundane problems of pipe flow and ship resistance. 
Engineers had their own empirical formulas, and mathematicians their own paper theory 
of perfectly unresisted flow. A similar contrast existed in the case of elasticity: the formulas 
established by mathematicians for the flexion of prisms were oflittle help in evaluating the 
limits of rupture in physical constructions. In the 1820s and 1830s, a new breed of French 
engineer-mathematicians trained at the Ecole Polytechnique, mainly Navier, Cauchy, and 
Saint-Venant, struggled to fill this gap between theory and practice. As a preliminary step 
toward a more realistic theory of elasticity, in 1 821 Navier announced the general equa
tions of equilibrium and motion for an (isotropic, one-constant) elastic body. Transposing 
his reasoning to fluids, he soon obtained a new hydrodynamic equation for viscous flow, 
namely the Navier-Stokes equation. 

Navier'slattertheoryreceivedlittlecontemporaryattention. TheNavier-Stokes equation 
was rediscovered or rederived at least four times, by Cauchy in 1823, by Poisson in 1 829, by 
Saint-Venant in 1837, and by Stokes in 1 845. Each new discoverer either ignored or deni
grated his predecessors' contribution. Each had his own way to justify the equation, although 
they all exploited the analogy between elasticity and viscous flow. Each judged differently the 
kind of motion and the nature of the system to which it applied. The comparison between the 
various derivations of this equation-or of the equations of motion of an elastic body
brings forth important characteristics of mathematical physics in the period 1820-1 850. 

A basic methodological and ontological issue was the recourse to molecular reasoning. 
Historians have often perceived an opposition between Laplacian molecular physics on 
the one hand, and macroscopic continuum physics on the other, with Poisson being the 
champion of the former physics, and Fourier the champion of the latter. Closer studies of 
Fourier's heat theory have shown that the opposition pertains more to the British reading 
of this work than to its actual content. Fourier actually combined molecular intuitions 

1Cournot [1828] p. 13. 

2Helmholtz [1 873] p. 158. 
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with more phenomenological reasoning. Viscous-fluid and elastic-body theorists similarly 
hybridized molecular and continuum physics. Be they engineers or mathematicians, they 
all agreed that the properties of real, concrete bodies required the existence of non
contiguous molecules. However, they differed considerably over the extent to which 
their derivations materially involved molecular assumptions. 

At one extreme was Poisson, who insisted on the necessity of discrete sums over 
molecules. At the other extreme was Cauchy, who combined infmitesimal geometry and 
spatial symmetry arguments to defme strains and stresses and to derive equations of 
motion without referring to molecules. Yet the opposition was not radical. Poisson relied 
on Cauchy's stress concept, and Cauchy eventually provided his own molecular deriv
ations. Others compromised between the molecular and the molar approach. Navier 
started with molecular forces, but quickly jumped to the macroscopic lev!!l by considering 
virtual works. Saint-Venant insisted that a clear definition of the concept of stress could 
only be molecular, but nevertheless provided a purely macroscopic derivation of the 
Navier-Stokes equation. Stokes obtained the general form of the stresses in a fluid by a 
Cauchy type of argument, but he justified the linearity of the stresses with respect to 
deformations by reasoning on hard-sphere molecules. 

These methodological differences largely explain why Navier's successors ignored 
or criticized his derivation of the Navier--Stokes equation. His short cuts from the molecu
lar to the macroscopic levels seemed arbitrary or even contradictory. Cauchy and Poisson 
simply ignored Navier's contribution to fluid dynamics. Saint-Venant and Stokes both 
gave credit to Navier for the equation, but believed an alternative derivation to be neces
sary. To this day, Navier's contribution has been constantly belittled, even though his 
approach was far more consistent than a superficial reading may suggest. 

This wide spectrum of methodological attitudes, both in fluid mechanics and in elasti
city theory, corresponds to different views of mathematical rigor and different degrees of 
concern with engineering problems. Navier's way of injecting physical intuition into 
mathematical derivations was alien to Cauchy and Poisson, who were the least involved 
in engineering and the most versed in higher mathematics. Yet many engineers judged 
Navier's approach too mathematical and too idealized. Personal ambitions and priority 
controversies enhanced, and at times even determined, the disagreements. Acutely aware 
of these tensions, Saint-Venant developed innovative strategies that combined the de
mands of mathematical rigor and practical usefulness. 

The many fathers of the Navier--Stokes equation also differed in the types of application 
they envisioned. Navier and Saint-Venant had pipe and channel flow in mihd. Cauchy's 
and Poisson's interests were more philosophical than practical. Cauchy did not even 
intend the equation to be applied to real fluids; he derived it for 'perfectly inelastic solids', 
and noted its identity with Fourier's heat equation in the limiting case of slow motion. 
Stokes was motivated by British geodesic measurements that required aerodynamic cor
rections to pendulum oscillations. 

To Navier's disappointment, his equation worked well only for slow, regular motions, 
as occurs around pendulums and within capillary tubes. In most hydraulic cases, there 
seemed to be no alternative to the empirical approach of engineers. It was not even clear 
whether the Navier-Stokes equation could be maintained. Many years elapsed before this 
equation acquired the fundamental status that we now ascribe to it. 
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The first section of this chapter is devoted to the hydraulic failure ofEuler's hydrodynam
ics, and to Girard's study of flow in capillary tubes, on which Navier relied. Section 3.2 
describes Navier's achievements in the theory of elasticity, their transposition to fluids, and 
the application to Girard's tubes. Section 3.3 discusses Cauchy's stress-strain approach to 
elasticity and its adaptation to a 'perfectly inelastic solid'. Section 3.4 recounts Poisson's 
struggle for rigor in the molecular approach, Cauchy's own implementation of the same 
approach, and Navier's response to Poisson's attacks. Section 3.5 concerns Saint-Venant's 
unique brand of applied mechanics, and his contributions to elasticity and hydraulics. The 
Final Section, Section 3.6, deals with Hagen's and Poiseuille's experiments on narrow-pipe 
discharge, and their long-delayed explanation by the Navier-8tokes equation. 

3.1 Mathematicians' versus engineers' fluids 

3 . 1 . 1  Resistance and retardation 
As we saw in Chapter 1 ,  d' Alembert regarded the vanishing of fluid resistance in his theory 
as a challenge for future geometers. As a possible clue to this paradox, he evoked an 
asymmetry of the fluid motion (around a rear-front symmetric body) owing to 'the 
tenacity and the adherence of the fluid particles'. However, he did not try to formalize 
this effect, presumably because he regarded the molecular interactions as too complex to 
yield well-defined mathematical laws at the macroscopic level. 3 

Euler similarly predicted zero resistance to the motion of an arbitrarily-shaped body, 
even before he had the fundamental equations of fluid motion. He reasoned through an 
inspired, though non-rigorous, use of momentum conservation. Roughly speaking, the 
momentum gained by the immersed body (whatever its shape may be) in a unit of time 
should be equal to the difference of momentum fluxes across normal plane surfaces 
situated far ahead and far behind the body; this difference vanishes because ofthe equality 
of velocity and mass flux on the two surfaces.4 

Euler knew of no better escape from this paradox than a partial return to Edme 
Mariotte's and Isaac Newton's old theories of fluid resistance. According to these pioneers 
of fluid mechanics, the impact of fluid particles on the front of the immersed body 
completely determined the resistance. Similarly, Euler cut off the rear part of the tubes of 
flow to which he applied his momentum balance. The true form ofthe flow and the shape of 
the rear of the body did not matter in such theories. Although their experimental inexacti
tude and their ad hoc character were already recognized in Euler's day, they remained 
popular until the beginning of the nineteenth century for the lack of any better theory. 5 

3D'Alembert [ 1780] p. 211 .  Cf. Saint-Venant [1887b] p. 10. The fluid resistance data used in 1 877 by the 
Academic Commission for the Picardie Canal, to whlch ·d, Alembert belonged, were purely empirical, cf. Redondi 
[1997]. 

4Euler [1745] chap. 2, prop. I, rem. 3 (French transl. pp. 316-17). Cf. Saint-Venant [1887b] pp. 29-31 .  A more 
rigorous reasoning would have required a cylindrical wall to limit the flow laterally, together with a proof that the 
works of pressure forces on the two plane faces of the cylinder are equal and opposite. Thls cancellation results 
from the equality of pressures on the two faces, whlch itself derives from Bernoulli's theorem or from the 
conservation of live force. Compare with Saint-Venant's proof of 1837, discussed on p. 1 34. 

5Cf. Saint-Venant [1887b] pp. 34--6. On Newtons' theory, cf. ibid. pp. 15-29, G. Smith [1998], Chapter 7, 
pp. 265-6. 
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The great geometers of the eighteenth century were even less concerned with the 
hydraulic problems of pipe and channel flow than with fluid resistance. Available know
ledge in this field was mostly empirical. Since Mariotte's Traite du mouvement des eaux 
(1686), hydraulic engineers assumed a friction between running water and walls, propor
tional to the wetted perimeter, and increasing faster than the velocity of the water. This 
velocity was taken to be roughly uniform in a given cross-section of the pipe or channel, in 
conformance with common observation. Claude Couplet, the engineer who designed the 
elaborate water system of the Versailles castle, performed the first measurements of the 
loss of head in long pipes of various sections. Some fifty years later, Charles Bossut, a 
Jesuit who taught mathematics at the engineering school of Mezieres, performed more 
precise and extensive measurements of the same kind. 6 

So did his contemporary Pierre Du Buat, an engineer with much experience in canal and 
harbor development, and the author of a very influential hydraulic treatise. Du Buat's 
superiority rested on a sound mechanical interpretation of his measurements. He was the 
first, in print, to give the condition for steady flow by balancing the pressure gradient (in 
the case of a horizontal pipe) or the paraiiel component of fluid weight (in the case of an 
open channel) with the retarding frictional force. He took into account the loss of head at 
the entrance of pipes (due to the sudden increase in velocity), whose neglect had flawed his 
predecessors' results for short pipes. Lastly, he proved that fluid friction, unlike solid 
friction, did not depend on pressure. 7 

Bossut found the retarding force to be proportional to the square of the velocity, and Du 
Buat found it to increase somewhat slower than that with velocity. Until the mid-nineteenth 
century, German and French retardation formulas were usuaily based on the data accu
mulated by Couplet, Bossut, and Du Buat. In 1804, the Directeur of the Ecole des Pants et 
Chaussees, Gaspard de Prony, provided the most popular formula, which made the friction 
proportional to the sum of a quadratic and a smaii linear term. The inspiration for this form 
came from Coulomb's study of fluid coherence, to be discussed shortly. 8 

3 . 1 .2 Fluid coherence 
For Du Buat's predecessors, the relevant friction occurred between the fluid and the wails 
of the tube or channel. In contrast, Du Buat mentioned that viscosity was needed to check 
the acceleration of internal fluid filaments. He observed that the average fluid velocity 
used in the retardation formulas was only imaginary, that the real flow velocity increased 
with the distance from the wails, and even vanished at the wails in the case of a very smail 
flux. The molecular mechanism he suggested for the resistance implied the•adherence of 
fluid molecules to the wails, so that the retardation truly depended on internal fluid 
processes. Specificaily, Du Buat imagined that the adhering fluid layer impeded the 
motion of the rest of the fluid, partly as a consequence of molecular cohesion, and mostly 

6Mariotte [1686] part 5, discourse I. Cf. Saint-Venaut [1887b] pp. 39-40, Rouse and Ince [1957] pp. 1 14 
(Couplet), 126-1l (Bossut). 

7Du Buat [1786], vol. 1, pp. xvii, 14-15, 40. Cf. Saint-Venant [1866], Rouse aud Ince [1957] pp. 129-34. In 1775, 
Antoine Chezy had already given the condition of steady motion in an unpublished report for the Yvette Caual (cf. 
ibid. pp. 1 1 7-20). More will be said on Bossut and Du Buat in Chapter 6, pp. 221-2. 

8Cf. Rouse and Ince [1957] pp. 141-43. In 1803, Girard had used a non-homogenous v+if formula, also 
inspired by Coulomb. 
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because of the granular structure of this layer. This structure implied a 'gearing' of 
traveling-along molecules (engrenage des molecules), through which they lost a fraction 
of their momentum proportional to their average velocity, at a rate itself proportional to 
this velocity. Whence came the quadratic behavior of the resistance.9 

In 1 800, the military engineer Charles Coulomb used his celebrated torsional-balance 
technique to study the 'coherence of fluids and the laws of their resistance in very slow 
motion'. The experiments consisted of measuring the damping of the torsional oscillations 
of a disk suspended by a wire through its center and immersed in various fluids. Their 
interpretation depended on Coulomb's intuition that the coherence of fluid molecules 
implied a friction proportional to the velocity, and that surface irregularities implied an 
inertial retardation proportional to the square of the velocity. In conformance with this 
view, Coulomb found that the quadratic component depended only on density and that 
the total friction became linear for small velocities. From his further observation that 
greasing or sanding the disk did not alter the linear component, he concluded:10 

The part of the resistance which we found to be proportional to the velocity is due to 

the mutual adherence of the molecules, not to the adherence of these molecules with 

the surface of the body. Indeed, whatever be the nature of the plane, it is strewn with 

an infinite number of irregularities wherein fluid molecules take permanent residence. 

Although Du Buat's and Coulomb's emphasis on internal fluid friction or viscosity was 
exceptional in their day, the notion was far from new. Newton had made it the cause of the 
vortices induced by the rotation of an immersed cylinder, and he had even provided a 
derivation (later considered to be flawed) of the velocity field around the cylinder. He 
assumed (in conformance with later views) that the friction between two consecutive, 
coaxial layers of the fluid was proportional to their velocity difference. After a century 
during which this issue was virtually ignored, in 1799 the Italian hydraulic engineer 
Giovanni Battista Venturi offered experiments that displayed important effects of internal 
fluid friction. 1 1  • 

Venturi intended to prove 'the lateral communication of motion in fluids' and to show 
its consequences for various kinds of flow. Some of the effects he described, such as the 
increase of efflux obtained by adding a divergent conical end to the discharging pipe, were 
purely inertial effects already known to Daniel Bernoulli. Others, such as the formation of 
eddies, genuinely depended on internal friction. The eddies that Leonardo da Vinci had 
beautifully drawn for the flow past immersed bodies, those evoked by Daniel Bernoulli for 
sudden pipe enlargement, or those commonly seen in the smoke from chinmeys or in rivers 
behind bridge pillars, were all due, Venturi explained, to 'motion communicated from the 
more rapid parts of the stream to less rapidly moving lateral parts' (see Fig. 3.1). 

9Du Buat [1786) vol. I ,  pp. 22, 39-41, 58-59, 89-90. Du Buat's notion of fluid viscosity or cohesion was not 
quite identical with internal friction as we now understand it. Du Buat meant an 'adhesion' of the molecules that 
needed to be overcome to separate them, the resistance to this separation being proportional to its suddenness. He 
believed (ibid. p. 41) that the microscopic structure of the surface of the pipe or channel had no effect on the 
retardation, for it was hidden by the adhering layer of fluid. 

1°Coulomb [1800] pp. 261 (two kinds of resistance), 287 (quote). Cf. Gillmor [1971] pp. 165-74. 

1 1Newton [1687] book 2, prop. 51; Venturi [1797]. Cf. Saint-Venant [1887b] pp. 41-4 and Dobson [ 1999] 
(Newton), Rouse and Ince [1957] pp. 134-37 (Venturi). 
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(a) 

(b) 

Fig. 3 . 1 .  Eddy formation according to (a) da Vinci and (b) Venturi (from Rouse and Ince [1957] p. 46 and 

V enturi [1797] plate). 

Accordingly, Venturi made eddy formation one of the principal causes of retardation in 
rivers, which current wisdom attributed to friction against banks and the bottom. 12 

Venturi prudently avoided deciding whether the lateral communication of motion was 
occasioned 'by the viscidity or mutual adhesion of the parts of the fluids, or their mutual 
engagement or intermixture, or the divergence of those parts which are in motion.' Nor did 
he venture to suggest new equations of fluid motion. As he explained in his introduction, 

The wisest philosophers have their doubts with regard to every abstract theory 

concerning the motion of fluids: and even the greatest geometers avow that those 

methods which have afforded them such surprising advances in the mechanics of 

solid bodies, do not afford any conclusions with regards to hydraulics, but such as are 

too general and uncertain for the greater number of particular cases. 

Venturi's memoir enjoyed a favorable review by the French Academicians Bossut, Cou
lomb, and Prony. Together with Du Buat's and Coulomb's works on fluid friction, it 
contributed to revive the old Newtonian notion of friction between two contiguous layers 
of fluidY 

3 . 1 .3 Girard's capillary tubes 
In 1816, the Paris water commissioner and freshly-elected Academician Pierre-Sirnon 
Girard applied Newton's notion to a six-month-long study of the motion of fluids in 
capillary tubes. While his prominent role in the construction of the Canal de l'Ourcq and 
his contribution to several hydraulic projects amply justified his interest in flow retard
ation, Girard had the more philosophical ambition of participating in Laplace's novel 
molecular physics. He believed the same molecular cohesion forces to be responsible for 
the capillarity phenomena analyzed by Laplace and for retardation in pipe flow. By 

12Venturi [1797] transl. in Tredgold [1826] p. 1 65. 

13Ibid. pp. 1 32-33, 129; Prony, Bossut, and Coulomb [1799]. 
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experimenting on fluid discharge through capillary tubes, he hoped to contribute both to 
the theory of molecular forces and to the improvement of hydraulic practice. 14 

In conformance with Du Buat's observations of reduced flows, Girard assumed that a 
layer of fluid adhered to the walls of the tube, and that the rest of the fluid moved with a 
roughly uniform velocity. Flow retardation then resulted from friction between the 
moving column of fluid and the adherent layer. Girard favored experiments on capillary 
tubes, no doubt because measurements were easier in this case, but also because he 
believed (incorrectly by later views) that the uniformity of the velocity of the central 
column would apply better to narrower tubes (because of a presumably higher cohesion 
of the fluid). He operated with copper tubes of two different diameters (D) of around 
2 mm and 3 mm and lengths (L) varying between 20 cm and 2.20 m. The tubes were 
horizontal and fed by a large water vessel under a constant height H (see Fig. 3.2). Girard 
took the pressure gradient in the tube to be equal to pghjL, where g is the acceleration of 
gravity and p is the density of water. Following Coulomb and Prony, he assumed the form 

av + bt} for the retarding force on the unit surface of the tube, where v is the flow velocity 
and a and b are two tentative constants. The balance of the forces acting on a cylindrical 
slice of fluid then gives15 

pgDH -
bv2 

4L - av+ · 
(3. 1) 

Girard measured the rate of discharge 7rD2v/4 for various lengths and charges, at a 
temperature varying with the season or controlled artificially. His first conclusion was 
that the quadratic friction term disappeared for tubes of sufficient length. Consequently, he 

Fig. 3.2. Girard's apparatus for measuring discharge through narrow tubes (from Girard [1816] plate). The 

water from the tank D is maintained at a constant level in the tank A and flows through the horizontal tube 

(lying on xy) into the bucket T. 

14Girard [1816]. Cf. Grattan-Guinness [1990] vol. I, pp. 563-65. 
15Girard [1816] pp. 257-58, 265. 
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assumed the friction to be fundamentally linear, and the quadratic contribution to be due to 
the lack of (recti)linearity of the flow near the entrance of the tube (involving Newton's vena 
contracta and its subsequent oscillations). He then focused on the linear behavior, appar
ently forgetting the engineer's interest in the quadratic contribution (which dominates in 
the case oflarge pipes of any length). He found that the 'constant' a significantly decreased 
when the temperature rose, and that it varied with the diameter of the tube.16 

Girard produced a nice molecular explanation for these effects. A temperature increase, 
he reasoned, implies a dilation of the fluid and therefore a decrease in the mutual adhesion 
of the fluid molecules expressed in the constant a. As for the dependence of a on the tube's 
diameter, Girard evoked the fmite thickness e of the adherent layer of fluid, which implies 
the substitution of D - 2e for D in eqn (3.1). For high temperatures the thickness e should 
be negligible since there is little adhesion between the fluid and wall molecules. Then the 
original formula (3.1)  (with b = 0) and the proportionality of the discharge to the cube of 
the diameter hold approximately, as Girard's measurements with heated water seemed to 
confirm. In a sequel to this memoir, Girard used glass tubes instead of copper and various 
liquids instead of water, meaning to confirm his view that the thickness of the adhering 
layer depended on molecular forces between the layer and the walL 17 

As he had little to offer to the hydraulic engineer, Girard wrote something for the 
physiologist. The capillary dimensions of vessels and the wetting of their walls, he noted, 
was essential to explain blood or sap circulation in animals and plants. Otherwise, body 
temperature could not control the circulation, and friction would wear the vessels. Girard 
expressed his amazement at the 'simplicity of the means of Nature and the perfection of 
her works' when seen in the light of his own research. His self-confident tone and his 
professional authority easily convinced his contemporaries, including the Academicians 
who welcomed him. Yet his experimental method and his theoretical reasoning falter when 
compared with those of the best French experimenters of the day.18 

In the absence of contemporary criticism, we may only imagine what flaws a more 
careful contemporary could have detected in Girard's work. While estimating the charge 
H of the tube, Girard did not include the loss of head due to the entrance in the tube, even 
though Du Buat had noted the importance of this correction for short pipes. In consider
ing the variation of the discharge rate with the diameter of the tube, he used only two 
different diameters and did not indicate how he had measured them. Judging from 
Gotthilf Hagen's later measurements, the numbers provided by the manufacturer or a 
simple external measurement could not be tmsted. 

These circumstances may in part explain why Girard did not obtain the D4 law for the 
discharge, which we know to be quite accurate, why he found glass to provide a stronger 
discharge than copper, and why he believed that retardation would be linear for any 
diameter and velocity if the tube were long enough. On the theoretical side, he conflated 

16Girard [1816] p. 285. Girard insisted (ibid. p. 287) that, contrary to Coulomb's case, the velocity did not need 
to be small for the quadratic term to disappear. Girard borrowed the expression for the accelerating force and the 
expression 'linear motion' from Euler (ibid. p. 307). 

17/bid. pp. 315-21, 328-29; Girard [1817] p. 235. In thls second memoir, Girard used and praised the graphic 
method that Prony had used for channel flow; he found that the linear term did not exist for mercury, as he 
expected from the fact that mercury does not wet glass. 

18Girard [1817] p. 259. 



VISCOSITY 109 

adhesion with friction, and therefore did not appreciate the circumstances that determine 
the velocity profile. Girard nevertheless obtained the linear behavior in HIL for the 
discharge through narrow tubes, which is as well known today as it was surprising to 
contemporary hydraulicians. 

3 . 1 .4 The rational and the practical 
In summary, at the beginning of the nineteenth century no one expected rational fluid 
dynamics to explain the practically important phenomena of fluid resistance and flow 
retardation. Most knowledge of these phenomena was empirical and derived from the 
observations and measurements accumulated by hydraulic engineers. Although some 
notion of internal friction had been available since Newton, and although Du Buat, 
Venturi, Coulomb, and Girard somewhat revived it at the turn of the century, there was 
no attempt to apply this insight to the mathematical determination of fluid motion. 

It may seem surprising that no one before Navier tried to insert new terms into Euler's 
hydrodynamic equations. A first explanation is that the new hydrodynamics was part of a 
rational mechanics that valued clarity, formal generality, and rigor above empirical 
adequacy. Another is that Euler's equations were complex enough to saturate contempor
ary mathematical capability. They were among the first partial differential equations ever 
written, and they involved the nonlinearity that has troubled mathematical physicists to 
this day. Even if someone had been willing to modify Euler's equations, he would have 
lacked empirical clues about the structure of the new terms, because the concept of internal 
friction was as yet immature. 

Last, but perhaps most important, the French mathematicians who were the most 
competent at inventing new partial differential equations all accepted d'Alembert's fun
damental principle of dynamics, according to which the equations of motion of a mech
anical system can be obtained from the equilibrium condition between impressed forces 
and inertial forces. From this point of view, the hydrodynamic equations should result 
directly from the laws of hydrostatics. Since the latter were solidly established, Euler's 
equations seemed unavoidable.19 

3.2 Navier: molecular mechanics of solids and fluids 

3.2. 1 X+Ponts 
In the jargon of the Grandes Ecoles, Claude-Louis Navier was an 'X+Ponts', that is, an 
engineer trained first at the Ecole Polytechnique and then at the Ecole des Ponts et 
Chaussees. He embodied a new style of engineering that combined the analytical skills 
acquired at the Polytechnique with the practical bent of the Ecoles d'application. Through 
his theoretical research and his teaching he contributed to a renewal of the science of 
mechanics that made it fit much better to the needs of engineers. Navier famously 
promoted considerations of 'live force' (kinetic energy) and 'quantity ·of action' (work) 
in the theory of machines, thus following Lazare Carnot's pioneering treatise and facili
tating Gaspard Coriolis's and Jean-Victor Poncelet's later developments.20 

19Cournot expressed this view in his comment on Navier's equation, discussed later on p. 1 18. 
2°Cf. McKeon [1974] pp. 2-5. On the new style of engineering, cf. Belhoste [1994], Picon [1992] chaps 8-10. On 

the concept of work, cf. Grattan-Guinness [1984]. 
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Orphaned at fourteen, Navier was educated by his uncle Emiland Gauthey, a renowned 
engineer of bridges and canals. He later expressed his gratitude through a careful edition of 
Gauthey's works, published in 1 809-18 16. His competence in hydraulic architecture then 
led him to edit Bemard Forest de Belidor's voluminous treatise, which had been a 
canonical reference on this subject since its first publication in 1737. In this new edition, 
published in 1819, Navier left Belidor's text intact but denounced numerous theoretical 
misconceptions that still affected engineering practice in France and elsewhere. His 
footnotes and appendices constituted a virtual book within the book, including a new 
presentation of mechanics and a theory of machines based on live forces.Z1 

Navier found Belidor's treatment ofhydraulic problems most defective, as appears from 
his judgment of the included theory of efflux: 

The preceding theory, with which the author seems so pleased, now appears to be one 

of the most defective of his work. In truth one had not, at the time he was writing, 

gathered a sufficient amount of experiments so as to establish the exact measure of 

phenomena; but this does not justify the totally vicious theory that he gives of it, nor 

the trust with which he presents it. 

In order to correct Belidor on this subject, Navier only had to return to Daniel Bemoulli 
and to refer to Venturi's relevant experiments.22 

Fluid resistance was harder to rectify. As Navier well knew, numerous experiments by 
Jean-Charles de Borda in the 1760s and by Bossut and Du Buat in the 1780s and 1 790s had 
disproved the old impact theory recalled by Belidor. In his notes, Navier could only 
deplore that contemporary hydrodynamics did not permit a definitive solution to this 
problem. He agreed with Euler that momentum balance applied to the tubes of flow 
around the immersed body should yield the value of the resistance. No more than Euler, 
however, could he justifY the truncation of the tubes that allowed for a nonzero resistance 
proportional to the squared velocity. Nor could he account for the negative pressure that 
Du Buat had found to exist at the rear of the body.23 

From Coulomb, Navier also knew that the resistance became proportional to the 
velocity for very slow motion. He agreed with Coulomb that in this case the retarding 
force resulted from 'the mutual adhesion of the fluid molecules among themselves or at the 
surface of the immersed bodies.' In summary, he considered two causes of fluid resistance, 
namely, a non-balanced distribution of pressure around the immersed body owing to some 
particularity in the shape of the lines of flow around the body, and friction occurring 
between the body and the successive layers of fluid owing to 'molecular adhesion'. He 
respected Belidor's omission of pipe flow. 24 

• 

3.2.2 Laplacian physics 
Another novelty of Navier's edition was the respect he paid to Laplace's new molecular 
physics. Imitating Newton's gravitation theory and some of his queries, the French 

21Cf. McKeon [1974], Prony [1864], Grattan-Guinness [1990] vol. 2, pp. 969-74. 
22Navier, note to Belidor [1819] p. 285n. 

23 Ibid. pp. 339n-356n. On the fluid-resistance experiments by Borda, Bossut, and Du Buat, cf. Dugas [1950] 
pp. 297-305, Rouse and !nee [1957] pp. 124, 128, 133-4. 

2"Navier, note to Belidor [1819] p. 345n. Navier briefly mentioned (ibid. p. 292n) 'friction of the fluid on the 
[pipe] walls' (but not the internal adhesion in this case). 
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astronomer sought to  explain the properties of  matter by central forces acting between 
molecules. His first successful attempt in this direction was a theory of capillarity pub
lished in 1805/06. In the third edition of his Systeme du monde, published in 1808, he also 
indicated how optical refraction, elasticity, hardness, and viscosity could all be reduced to 
short-range forces between molecules. In an appendix to the fifth volume of the Mecanique 
celeste, published in 1821, he gave a detailed molecular theory of sound propagation, 
based on his and Claude-Louis Berthollet's idea that molecular repulsion depended on the 
compression of elastic atmospheres of caloric.Z5 

In the foreword to his edition of Belidor, Navier approved Laplace's idea of the 
constitution of solids: 

Even though the intimate constitution of bodies is unknown, the phenomena which 

they show allow us to clearly perceive a few features of this constitution .. From the 

faculty that solid bodies have to dilate under heating, to contract under cooling, and 

to change their figure under effort, it cannot be doubted that they are made of parts 

which do not touch each other and which are maintained in equilibrium at very small 

distances from each other by the opposite actions of two forces, one of which is an 

attraction inherent in the nature of matter, and the other a repulsion due to the 

principle of heat. 

At that time, Navier used this conception of solids only to banish the ideally-hard bodies 
of rational mechanics from collision theory. He referred to La place's theory of capillarity 
in a footnote. The conditions of equilibrium of fluids, he emphasized, could not be 
rigorously established without the molecular viewpoint. A fortiori, fluid motion had to 
depend on molecular processes, as he argued in his discussion of Coulomb's fluid-friction 
experirnents.Z6 

3.2.3 Elastic beams and plates 
In his engineering role, Navier acted mostly as an expert on bridge construction. In the 
1810s, he designed three new bridges on the River Seine, and oversaw an important bridge 
and embankment project in Rome. This work, as well as his edition of Gauthey's works, 
brought to his attention the empirical inadequacies of the existing theoretical treatments of 
the elasticity of solid bodies. Previous calculations of the compression, extension, and 
flexion of beams had assumed the existence of mutually-independent longitudinal fibers 
that resisted extension or compression by a proportional tension or pressure; otherwise, 
they relied on an even cruder idealization in which the beam was replaced by a line or blade 
with a curvature-driven elastic response. Navier worked to improve the fiber-based 
reasoning in order to address the practically essential question of rupture. He still taught 
this point of view in the course he began to teach at the Ponts et Chaussees in 
18 19, although he also told his students that the true foundation of elasticity should be 
molecular. 27 

25Cf. Heilbron [1993] pp. 1-16, Fox [1971], [1974], Crosland [1967], Grattan-Guinness [1990] chap. 7. 
26Navier, in Belidor [1819] pp. x-xi, 208n. Ibid. on p. 215n Navier rejected Daniel Bernoulli's and Belidor's 

kinetic interpretation of pressure. 
27Cf. Prony [1864] pp. xliii-xliv, Saint-Venant [1864b] pp. civ-dx. On the history of elasticity, see also 

Truesdell [1960], Todhunter and Pearson [1886-1893], Timoshenko [1953], Benvenuto [1991]. On Navier's course, 
cf. Picon [1992] pp. 482-495. 
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In August 1 820, Navier submitted to the Academy of Sciences a memoir on vibrating 
plates in which he still reasoned in terms of continuous deformations. The problem of 
vibrating plates had occupied several excellent minds since the German acoustician Ernst 
Chladni, with fme sand and a violin bow, had revealed their nodal lines to French 
Academicians in 1 808. Whereas Sophie Germain and Lagrange still reasoned on the 
basis of presumptive relations between curvature and restoring force, in 1 8 14 Laplace's 
close disciple Simeon Denis Poisson offered a first molecular theory. He considered a two
dimensional array of molecules, and computed the restoring force acting on a given 
molecule by summing the forces exerted by the surrounding displaced molecules. To 
perform this sum, Poisson assumed, as Laplace had done in his theory of capillarity, 
that the sphere of action of a molecule was very small compared to a macroscopic 
deformation and nevertheless contained a very large number of molecules. Consequently, 
he replaced the molecular sums with integrals and retained only low-order terms in the 
Taylor expansion of the deformation?8 

Poisson's analysis confirmed the differential equation used by Lagrange and Germain. 
Navier, nonetheless, sought another derivation, because he believed that the boundary 
conditions were still in doubt. In his memoir of 1820, he applied Lagrange's method of 
moments, which has the advantage of simultaneously yielding the equation of motion and 
the boundary conditions. As we saw in Chapter 1, in his seminal memoir on fluid motion, 
Lagrange had used this method to derive Euler's equations and the appropriate boundary 
conditions. In his Mechanique analitique, he had also introduced the moment (virtual 
work) JJ F8dS of the elastic tension F that arises in response to the stretching of an elastic 
membrane.29 

For simplicity, Navier assumed that the local deformation of a plate could be decom
posed into flexion and isotropic stretching. To Lagrange's expression for the moment of 
the tension caused by the stretching, he added the moment of the elastic tensions and 
pressures that arise in response to the flexion of a plate of finite thickness (the fibers on one 
side of the plate are compressed while those on the other side are extended). Lastly, he 
obtained the equation of equilibrium and the boundary conditions balancing the total 
moment of a virtual deformation with the moment of the external forces.30 

3.2.4 The general equations of elasticity 
On the one hand, Navier admired Lagrange's method for its power to yield the boundary 
conditions. On the other, he approved of La place's and Poisson's molecular program. A 
few months after submitting his memoir on elastic plates, he managed to combine these 
two approaches. Presumably, he first rederived the moments for the elastic plate by 
summing molecular moments. Having done so, he realized that this procedure could easily 
be extended to an arbitrary, small deforniation of a three-dimensional body. He thereby 
obtained the general equations of elasticity for an isotropic body (with one elastic constant 
only). In the memoir he read on 14 May 1 821 ,  he gave two different derivations of these 

28Poisson [1814]. Cf. Saint-Venant [1864b] pp. ccliii-<:clviii, Dahan [1992] chap. 4, Grattan-Guinness [1990] 
vol. 1, pp. 462-5. 

29Navier [1820], [1823a]; Lagrange [1788] pp. 139-45, 158--62 (membrane), 438-41. Cf. Dahan [1992] pp. 50-1. 

3°Cf. Saint-Venant [1864b] pp. cclix-<:elx, Grattan-Guinness, [1990] vol. 2, pp. 977-83. 



VISCOSITY 1 13 

Fig. 3.3. Diagram for displacements in an elastic body. 

equations. The first derivation was by a direct summation of the forces acting on the given 
molecules, and the second was by the balance of virtual moments. This second route, 
Navier's favorite, goes as followsY 

For a solid in its natural state of equilibrium, the moment of molecular forces vanishes. 
After a macroscopic deformation such that a particle (i.e., a small portion of the solid) 
originally located at r goes to the point r + u(r), the vector R",e joining the two molecules 
a and f3 alters by 8R",e = u(r,e) - u(r") (see Fig. 3.3). To first order in u, the corresponding 
change of distance 8Ra,e is given by the projection uR of the vector u(r,e) - u(r") onto the 
line joining the two molecules. Navier assumed that, for small deformations, the force 
between two molecules varied by an amount proportional to the change in their distance, 
the proportionality coefficient being a rapidly-decreasing function ,P(Ra,e) of their dis
tance. This restoring force must be attractive for an increase of distance, and repulsive for 
a decrease of distance. 

Now consider a virtual displacement w(r) of the particles of the solid. To first order in u, 
the deformation u implies a change of moment -<P8RwR for the forces between the 
molecules a and {3, where WR is the projection of the difference w(r,e) - w(r") onto the 
line joining these two molecules (the indices a and f3 affecting R are dropped to simplify 
the notation; an attraction is understood to be positive). Consequently, the total moment 
of molecular forces after the deformation is 

(3.2) 

Exploiting the rapid decrease of the function ,P(R), Navier replaced uR with its first-order 
Taylor approximation R-1 x;xjaiuj(r"). In this tensor notation, x; denotes the ith coordin
ate ofR, 8; is the partial derivation with respect to the ith coordinate ofr, and summation 
over repeated indices is understood. With a similar substitution for WR, we have 

(3.3) 

31Navier [1827] (read on 14 May 1821), [1823b]. Cf. Saint-Venant [1864b] pp. cxlvii-cxlix, Dahan [1992] chap. 
8, Grattan-Guinness [1990] pp. 983-5. In the extract of his memoir on elastic plates (Navier [1823a]), Navier 
assumed a molecular foundation for the flexion moment. 
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Navier then replaced the sum over {3 in eqn (3.2) by a volume integral weighted by the 
number N of molecules per unit volume (since his calculation of the moment M was 
limited to first order in u, he could neglect the variation of N caused by the deformation). 
Separating the integration over R and that over angular variables yields 

with 

L cfJuRWR = 2NK(8;Uj0iWj + O;U;OjWj + a;ujajw;), 
f3 

K = �� I cp(R)KidR. 

(3.4) 

(3.5) 

In order to obtain the total molecular moment M, Navier then performed the sum over a, 
which he also replaced by an integraL The result can be put in the form 

M = I Ty8iWjdT, (3.6) 

with 

(3.7) 

where By is the unit tensor. 
By analogy with Lagrange's hydrodynamic reasoning, Navier then integrated by parts 

to obtain 

(3.8) 

The deformed solid is in equilibrium if and only if this moment is balanced by the moment of 
the applied forces, which may include an internal force density f (such as gravity) and an 
oblique pressure P on the surface of the solid. For virtual displacements that occur entirely 
within the body, the balance requires thatjj - 8;Tif = 0 or, in vector notation, 

f + KN2[ilu + 2\7(17 · u)] = 0. (3.9) 

The second term represents the restoring force that acts on a volume element of the 
deformed solid. According to d' Alembert's principle, the equations of motion of the elastic 
solid are simply obtained by equating this force to the acceleration times the mass of the 
element. For virtual displacements at the surface of the body, the balance of the surface 
term of eqn (3.8) with the moment J-P ·  w dS of the oblique external pressure gives the 
boundary condition 

(3.10) 

Navier, of course, used Cartesian notation, which gives a forbidding appearance to his 
calculation. However, the basic structure of his reasoning was as simple as the above 
rendering suggests. The only step in the tensor calculation that may imply more than 
Navier had in mind is the introduction of the tensor Tif to prepare for the partial 
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integration of eqn (3.6). Navier treated each term of this equation separately. He none
theless wrote the following Cartesian version of eqn (3.10): 

X' = e [cos l(3� + :�> �) + cos m(:, + �:) + cos n(� +�) l 
1 [ (dx' dy') (dx' dy' d.z') (dy1 d.z')] Y = e cos l 

db' + da' + cos m da' + 3 db' + de' + cos n de' + db' , 

Z' = e [cos z(� + �) + cos m(:+ �) + cos n(�+ ::+ 3�) ] , 
which gives the local response of the solid to an oblique external pressure. 32 

3.2.5 A new hydrodynamic equation 

(3 . 1 1) 

Soon after presenting this memoir on elasticity, Navier thought of adapting his new 
molecular technique to fluid mechanics. First considering a fluid in equilibrium, he 
assumed a force j(R) that acted between every pair of molecules and which decreased 
rapidly with the distance R (an attraction being understood as positive). Denoting by w(r) 
a virtual displacement of the particles of the fluid, and using the notation of the previous 
section, the corresponding moment is 

(3.12) 

Replacing the sums by integrals, and separating angular variables in the first integration 
yields 

M = - J N27II\l · w d-r, (3.13) 

with 

(3.14) 

When the fluid is subjected to an internal force density f and to an external pressure P, the 
equilibrium condition reads: 

J (f · w + 7IIN2\l · w) d'J" - J w · P dS = 0, (3.15) 

which has the same form as eqn (1 .44) that Lagrange gave for the equilibrium of an 
incompressible fluid. 

In conformance with this analogy, Navier took the density N to be nearly constant (he 
gave it the value one) but made the parameter 'UI vary from one particle of the fluid 
to another. This odd assumption (it seems incompatible with the expression for 7II), of 
which more will be said later, brought him back to the Euler-Lagrange conditions of 

32Navier [1827] p. 390. 
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equilibrium, namely f + \J(N2w) = 0 within the fluid, and ]5 = -N2w on its surface, so 
that P = -N2w plays the role of internal pressure. In Navier's words, w 'measures the 
resistance opposed to the pressure that tends to bring the fluid parts closer to each other. m 

Navier then turned to the case of a fluid moving with a velocity v(r), and he assumed 
that 'the repulsive actions of the molecules increased or diminished by a quantity propor
tional to the velocity with which the distance of the molecules decreased or increased.' 
Denoting by !f;(R) the proportionality coefficient, this intuition implies a new contribution 
of the form 

(3. 16) 

to the moment of the molecular forces. By analogy with the corresponding formula (3.2) 
for elastic solids, this leads to an additional force �/!;.v in the equation of motion of an 
incompressible fluid, with 

(3. 17) 

The new equation of motion reads 

p[�; + (v · \J)v] = f - \JP + �/!;.v, (3.18) 

which is now known as the 'Navier-Stokes equation' (for an incompressible fluid).34 

3.2.6 Boundary conditions 
Navier gave this equation in a memoir read on 1 8  March 1822 at the Academy of Sciences 
and published it in summary form in the Annates de chimie et de physique. There he assumed, 
as Girard had, that the velocity v vanished at the wall, in which case the balance of moments 
gives no additional boundary condition.35 Under this hypothesis, Navier calculated the 
uniform flow in a pipe of rectangular section and found a discharge proportional to the 
pressure gradient, as Girard had observed for 'linear motions' (that is, laminar flow). 
According to the same calculation, the average fluid velocity in a square tube should be 
proportional to the square of its perimeter (as it is according to Poiseuille's later law for 
circular tubes). Navier (wrongly) believed this result to agree with Girard's observation of a 
departure from the expected proportionality to the perimeter (in the case of circular tubes). 36 

At the same time, Navier deplored a contradiction with another of Girard's results, 
namely, the difference between the discharge in glass and copper tubes. He now faced the 
following dilemma: either he maintained the boundary condition v = 0 and thus contra
dicted Girard's experimental finding, or he gave up this condition and contradicted the most 

3'Navier [1823c] p. 395. Cf. Saint-Venant [1864b) pp. lxii-lxiv, Dugas [1950) pp. 393-401,  Grattan-Guinness 
[1990) pp. 986-92 (with questionable chronology), Belhoste [1997). 

34Navier [1823c] p. 414. 
35However, the tangential stress must vanish at the free surface of the fluid. 
36Navier [1822) p. 259. 
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essential assumption of Girard's theory. As he indicated toward the end of his memoir, he 
preferred the second alternative. On 16 December 1822, he read a second memoir in which he 
proposed a new boundary condition based on an evaluation of the moment of the forces 
between the molecules of the fluid and those of the wall. The form of this moment is 

M" = E I V .  w dS, (3.19) 

where E is a molecular constant. This is to be cancelled by the surface term 

TJ.L(8;vj + Bjv;)w; dSj (3.20) 

of the moment M', for any displacement w that is parallel to the wall. The resulting 
condition is 

(3.21) 

where 81_ is the normal derivative and v11 is the component of the fluid velocity parallel to 
the surface. 37 

With this new boundary condition, Navier redid his calculation of uniform square-pipe 
flow, and also treated the circular pipe by Fourier series. Taking the limit of narrow tubes, 
he found the average flow velocity to be proportional to the surface coefficient E, to the 
pressure gradient, and to the diameter of the tube, in rough agreement with Girard's data. 
Note that he no longer·believed Girard's data to support a quadratic dependence of the 
velocity on the diameter. In fact, Girard's theoretical formula assumed a linear depend
ence, and his experimental results indicated an even slower increase with diameter. As he 
had no reason to distrust Girard's experiments on the differences between glass and copper 
tubes, Navier built the old idea of fluid-solid slip into the theory of a viscous fluid.38 

3.2.7 A useless equation 
For large pipes, Navier's theory no longer implies a significant surface-slip effect, but still 
makes the loss of head proportional to the average fluid velocity. Since Navier knew that 
in most practical cases the loss of head was nearly quadratic, he did not bother taking the 
large-section limit of his resistance formulas. He only noted that, in this limit, the flow 
obviously did not have the (recti)linearity assumed in his calculations. Probably discour
aged by this circumstance, he. never returned to his theory of fluid motion. In the hydraulic 
section of his course at the Pouts et Chaussees, he only mentioned his formula for capillary 
tubes, which agreed with 'M. Girard's very curious experiments'. The theory on which this 
formula is based, he immediately noted, 'cannot suit the ordinary cases of application. 
Since the more complicated motion that the fluid takes in these cases has not been 
submitted to calculation, the results of experience are our only guide.'39 

37Navier [1823c]. In Cauchy's stress language, the condition means that the tangential stress is parallel and 
proportional to the sliding velocity. 

38Navier [1823c] pp. 432"'40. 39/bid. p. 439; Navier [1838] pp. 88-9. 
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The two commissioners for Navier's first memoir, Poisson and Joseph Fourier, and the 
three for his second memoir, Girard, Fourier, and Charles Dupin, never wrote their 
reports, perhaps because Navier was elected to the Academy in 1824, weii before the 
publication of his second memoir. However, the mathematician Antoine Cournot wrote a 
review for Ferussac's Bulletin that may reflect the general impression that Navier's memoir 
made at the French Academy. Being Laplace's admirer and Poisson's protege, Coumot 
welcomed Navier's theory as a new contribution to the then prosperous molecular physics. 
Yet he suspected a few inconsistencies in Navier's basic assumptions.40 

In his derivation of hydrostatic pressure, Cournot noted, Navier assumed incompress
ibility, which seemed incompatible with the molecular interpretation of pressure as a 
reaction to a closer packing of the molecules. In fact, according to Navier's formula 
(3.14) the coefficient w should be a constant, which excludes a variable pressure if the 
density N is also a constant. Upon closer inspection, Navier's procedure is more coherent 
than Coumot believed. Here and elsewhere, Navier's formulas did not quite reflect his 
basic intuition. In his mind, the distance R in the force functionf(R) did not represent the 
distance of the molecules in the actual state of the fluid, but their distance before 
compression. For a real substance, which can only be approximately incompressible, the 
difference between those two distances is extremely smaii but fmite, so that Navier's 
/function could vary with the local state of the fluid.41 

Another worry of Cournot's was that Navier admitted the same equations of equilib
rium of a fluid as Euler and Lagrange, and yet obtained different equations of motion, 
against d' Alembert's principle. 'The matter', Cournot deplored, 'does not seem to be free 
from obscurity.' Today we would solve this apparent paradox by noting that dissipative 
forces, such as those expressing fluid viscosity or the viscous friction between two solids, 
are to be treated, in the application of d' Alembert's principle, as additional, motion
dependent forces that are impressed on the system. At the molecular level, where Navier 
reasoned, the difficulty is that his calculation seems to rely on velocity-dependent forces 
unknown to Laplacian physics. 42 

Even here Navier's formulas did not directly reflect his intentions. As a close reading of 
his text shows, he meant that the macroscopic motion of the fluid modified the distribution 
of intermolecular distances: 'If the fluid is moving', he wrote, 'which implies, in general that 
the neighboring molecules come closer to or further from one another, it seems natural to 
assume that the [intermolecular] repulsions are modified by this circumstance.' This occurs 
in the Laplacian conception of fluids, because the trajectory of an individual molecule 
undulates around the path that is imposed overall by the macroscopic motion. At any 
instant, the molecules of a fluid are in positions that slightly deviate from an equilibrium 
configuration that continuaily changes over time. Thus, the molecular force function 1/JVR 
in Navier's moment formula (3. I 6) does not refer to the actual distance of the molecules, 
but to the distance that they have in the nearest equilibrium configuration; and the 

4°Coumot [1828] pp. 1 1-14. 

41Ibid. pp. 1 1-12; Navier [1823c] p. 392: 'La force repulsive qui s'etablit entre les deux molecules depend de la 
situation du point M [lieu de la premiere molecule], puisqu'elle doit balancer la pression, qui peut varier dansles 
diverses parties du fluide.' 

42Coumot [1828] p. 12. 
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difference between these two distances obviously depends o n  the macroscopically-im
pressed motion. This is how the fluid velocity enters the expression of Navier's molecular 
forces, even though the true forces depend only on the distances between the molecules.43 

Unfortunately, Navier never explained as much-so that none of his successors (except 
Saint-Venant) could make sense of his calculation. In Cournot's eyes, the premises of 
Navier's equation seemed as arbitrary as its applicability to concrete problems was 
difficult to judge:44 

M. Navier himself only gives his starting principle as a hypothesis that can be solely 
verified by experiment. However, if the ordinary formulas of hydrodynamics resist 

analysis so strongly, what should we expect from new, far more complicated formu

las? The author can only arrive at numerical applications after a large number of 

simplifications and particular suppositions. The applications no doubt show great 

analytical skill; but can we judge a physical theory and the truth of a principle after 

accumulating so many approximations? In one word, will the new theory of M. 

Navier make the science of the distribution and expense of waters less empirical? I 

do not feel able to answer such a question. I can only recommend the reading of this 

memoir to all who are interested in this kind of application. 

3.3 Cauchy: stress and strain 

3.3.1 The stress system 
Like Navier, Augustin Cauchy was an 'X+ Pouts' with superior mathematical training and 
with engineering experience. However, his poor health and mathematical genius soon 
confined him to purely academic activities. In 1822, his study of Navier's memoir on 
elastic plates led him to new considerations that still constitute the basis of elasticity 
theory. If we are to trust Cauchy's own account, then what triggered his main inspiration 
was Navier's appeal to two kinds of restoring forces produced by extension and flexion.45 

The second kind of force, Cauchy surmised, could be avoided if forces of the first kind 
were no longer assumed to be perpendicular to the sections on which they acted. With this 
insight, he then imitated Euler's hydrodynamics and reduced all elastic actions to pressures 
acting on the surface of portions of the body: The only difference was the non-normality of 
the pressure. Previous students of elasticity, in particular Coulomb and Young, had 
already considered tangential pressures (our shearing stresses) in specific problems such 
as the rupture of beams. In his memoir of May 1821 on a molecular derivation of the 
general equations of elasticity, Navier had introduced oblique external pressures and 
boundary conditions that entailed the Cauchy stress system. Whether or not Cauchy relied 
on such anticipations, he was the first to base the theory of elasticity on a general 
definition of internal stresses.46 

43Navier [1823c] p. 390. 44Cournot [1828] pp. 13-14. 

45Cauchy [1823]. Cf. Belhoste [1991] pp. 93-102; Grattan-Guinness [1990] pp. 1005-13. 

46Cauchy [1823], [1827b]. Cf. Truesdell [1968], Dahan [1992] chap. 9. In his memoir on elastic plates [1820], 
Navier noted that in general the pressures would not be parallel to the faces of the element. Fresnel's theory oflight 
was perhaps another source ofCauchy's inspiration, cf. Belhoste [1991] pp. 94-5. The stress-strain ternrinology is 
William Rankine's. Cauchy and contemporary French writers used the words pressionltension and condensation/ 
dilatation. 
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As in hydrodynamics, Cauchy introduced the pressures (or tensions) that act on a 
volume element by recourse to the forces that would act on its surface after an imaginary 
solidification of the element. For a unit surface element normal to thejth axis, denote by Tij 
the ith component of the force acting on the negative side (xj < 0) of the element. Note 
that, with this convention, adopted by most ofCauchy's followers, a tension is understood 
to be positive. Cauchy proved three basic theorems in a manner that is still used in modem 
texts on elasticity. 

The first theorem stipulates that the pressure on an arbitrary surface element dS is given 
by the sum TifdSi. In modem words, the stress system Tij is a tensor of second rank. 
This results from the fact that the resultant of the pressures acting on the pyramidal 
volume element { x, y, z, > 0; ax + {3y + yz < e} would be of second order in the small 
quantity e, and therefore could not be balanced by the resultant of a volume force (which 
is of third order) if the theorem were not true. Cauchy's second theorem states the 
symmetry of the stress system, namely Tij = Tj;, without which the resultant of the pressure 
torques on a cubic element of the solid would be of third order and therefore could not be 
balanced by the torque of any volume force, which is of fourth order. Thirdly, and most 
obviously, the resultant of the pressures acting on a (cubic) volume element is OjTij per unit 
volume.47 

3.3.2 Strain and motion 
As Cauchy knew from the theory of quadratic forms (which he had recently applied to 
inertial moments), the symmetry of the pressure system implies the existence of three 
principal axes for which the pressures are normal (in modem terins, the stress tensor is 
then diagonal). Cauchy used this property to relate the pressure system to the local 
deformations of the system. If u(r) is the displacement of a solid particle at the point of 
space r, he showed, then the first-order variation in the distance between two points whose 
coordinate differences have the very small values dx; is given by dx; dxj O;Uj. In modem 
terms, this quadratic form is associated with the symmetric tensor eif = 8;uj + OjU;. This 
tensor has three principal axes, which means that the local deformation is reducible to 
three dilations or contractions along three orthogonal axes. 48 

Cauchy then argued that, for an isotropic body, the principal axes of the tensors Tij and 
eij were necessarily identical. He further assumed that the pressure ratios between two such 
axes were equal to the dilation ratios. This implies that the two tensors are proportional. 
Lastly, Cauchy assumed that the proportionality coefficient was a constant independent of 
the deformation, which is a generalization of Hooke's Jaw. He thus obtained an equation 
of equilibrium similar to Navier's equation (3.9), though without the factor 2 in the 
"V("V · u) term. The boundary conditions immediately result from the balance of internal 
and external pressures.49 

47Cauchy [1827b], [1827dj. 48Cauchy [1823], [1827c]. 
49Cauchy [1823], [1828a]. Cauchy introduced the word 'isotrope' in 1839/40, for example in Cauchy [1840]. 
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3.3.3 The perfectly inelastic body 
In a last section, Cauchy considered the case of a 'non-elastic body', defined as a body 

for which the stresses at a given instant only depend on the change of form experienced by the 

body in a very small time interval preceding this instant. He found it natural to assume that 
the stress tensor was proportional to the tensor representing the velocity of deformation 

(again reasoning with respect to principal axes). For an incompressible body, the resulting 
equation of motion is the one Navier had given for viscous fluids, save for the pressure term. 

Cauchy, however, mentioned neither Navier's result nor any similarity between a real fluid 
and his 'non-elastic body'. Instead, he noted that, for very slow motion, the linearized 

equation of motion was identical to Fourier's equation for the motion of heat, and claimed 
'a remarkable analogy between the propagation of caloric and the propagation of vibrations 
in a body entirely deprived of elasticity.'50 

3.3.4 Finalfoundations? 
Cauchy announced his theory of elasticity on 30 September 1 822, and published it in 

summary form the following year. He waited six more years before complete publication 

in his own, self-serving journal, the Exercices de mathematiques. The reason for this delay 
may have been the courtesy of waiting for Navier's memoir of 1821 to be published. In the 
final version of his theory, Cauchy proposed the more general, two-constant relation 

(3.22) 

between stress and deformation. This allowed him to retrieve Navier's equation of equi

librium as the particular case for which K' = K". The two-constant theory is the one now 

accepted for isotropic elasticity.51 

Cauchy's memoirs on elasticity were written with incomparable elegance and rigor. For 
this reason, and also because of their strikingly modem appearance, they have often been 

regarded as the first and final foundation of this part of physics. Cauchy's contemporaries 

thought differently. In the years following his publication, theorists of elasticity were not 
satisfied with this purely macroscopic-continuum approach, even though they all adopted 

· Cauchy's stress. In their eyes, the true foundation of elasticity had to remain molecular, as 

it should be in La place's grand unification of physics. 52 

It would also be wrong to regard Cauchy's stress-strain approach as an indication that he 

supported a continuist view of matter. For theological reasons, he was a finitist 

in mathematics and an atornist in physics. That he first derived the equations of elasticity 
without reference to the molecular level only proves that he possessed the geometrical and 

algebraic skills that make this route natural and easy. He in fact provided the most complete 
and rigorous molecular theory of elasticity, even before his first theory of elasticity was 

published. On this ground, he found himself again in competition with Poisson, undoubt
edly the most aggressive supporter of the molecular approach. 53 

5°Cauchy [1823], [1828a] par. 3. 51Cauchy [1828a]. 52Cf. Saint-Venant [1864b], pp. cliv-clv. 
53In his Torino lectures of 1833, Cauchy argued that extended molecules would be indefinitely divisible, 

against the principle that 'only God is infinite, everything is finite except him' (Cauchy [1833] pp. 36-7). However, 
he never used molecular considerations in print before his molecular theory of elasticity (I thank Bruno Belhoste 
for this information). 
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3.4 Poisson: the rigors of discontinuity 

3.4.1 Laplacian motivations 
Unlike Navier and Cauchy, Poisson did not have engineering training and experience, for 
he settled at the Polytechnique as a n!petiteur and then as a professor. His interest in 
elasticity came from his enthusiastic embrace of Laplace's molecular program. His 1814 
theory of elastic plates was already molecular. Presumably stimulated by Navier's publi
cations of 1 820/21 ,  he returned to this subject in the late 1820s. His memoir read on 14 
April 1 828 contains his famous plea for a mecanique physique:54 

It would be desirable that geometers reconsider the main questions of mechanics 
under this physical point of view which better agrees with nature. In order to discover 
the general laws of equilibrium and motion, one had to treat these questions in a quite 
abstract manner; in this kind of generality and abstraction, Lagrange went as far as 
can be conceived when he replaced the physical connections of bodies with equations 

between the coordinates of their various points: this is what analytical mechanics is 
about; but next to this admirable conception, one could now erect a physical mech
anics, whose unique principle would be to reduce everything to molecular actions that 
transmit from one point to another the given action of forces and mediate their 

equilibrium. 

Poisson's memoir of 1 828 can, to some extent, be seen as a reworking of Navier's 
memoir of 1821 on the molecular derivation of the general equations of elasticity. Both 
authors aimed at a derivation of the general equations and boundary conditions of 
elasticity by the superposition of short-range molecular actions. However, there were 
significant differences in their assumptions and methods. Whereas the only molecular 
forces in Navier's calculations were those produced by the deformation of the solid, 
Poisson retained the total force j(R) between two molecules. Also, Poisson avoided 
Navier's method of moments and instead directly summed the molecular forces acting 
on a given molecule. 

Cauchy worked on a similar molecnlar theory in the same period. Competition was 
so intense that Cauchy decided to deposit a draft of his calculation as a pli cachete at 
the Academy, and Poisson decided to read his memoir in a still unripe form. Cauchy's 
assumptions and methods were essentially the same as Poisson's; this should not surprise 
us as they were both following Laplacian precepts without Navier's personal touch. Yet 
Cauchy's execution surpassed Poisson's in rigor, elegance, and compactness. 55 

By summation of the forces acting from one side of a given surface element to the other 
side, the molecular theory leads to the stress system 

(3.23} 

where N is the original number of molecules per unit volume, 

S4Poisson [1829a] p. 361 . Cf. Amo1d [1983], Grattan-Guinness [1990] pp. 1015-25, Dahan [1992] chap. 10. 

55Cf. Belhoste [1991] pp. 99-100. 
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(3.24) 

and 

(3.25) 

(R is the length, and x; is the ith coordinate of the vector joining a molecule a situated at 
the point at which the stress is computed and an arbitrary molecule {3). For an isotropic 
solid, there are only two independent constants A and A', in terms of which the stress 
system reads 

(3.26) 

This result agrees with Cauchy's earlier macroscopic theory, except for the pressure A in 
the original state. 56 

3.4.2 Sums versus integrals 
Poisson and Cauchy both investigated the limiting case of a continuous medium, in which 
the sums (3.24) and (3.25) expressing the coefficientsAii and A�k/ can be rigorously replaced 
by integrals. As Cauchy (but not Poisson) saw, isotropy follows without further assump
tion, and the coefficients A and A' are given by 

and 

00 

A =  
2; N JtR3dR 

0 

oo I 
A' = 

27T N J Rs dfK dR 
15 dR 

. 
0 

Integrating the latter expression by parts yields the relation 

A + A' = lim R'i(R). 
R-0 

(3.27) 

(3.28) 

(3.29) 

Poisson and Cauchy both assumed the limit to be zero. Then the medium loses its rigidity 
since the transverse pressures disappear. As Cauchy further observed, the continuous limit 
of the stress has the form 

(3.30) 

56Cauchy [1828b], [1829]; Poisson [1829a]. Cf. Saint-Venant [1864b] pp. clv-clxi, [1868a], Dahan [1992] chap. 
1 1 ,  Darrigol [2002a] pp. 121-4. Regarding the molecular definition of stress, see Saint-Venant's intervention 
mentioned later on p. 130. 
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where p is the density in the deformed state. This means that the body is an elastic fluid 
whose pressure varies as the square of the density.57 

In his own manner, Poisson also obtained the absence of transverse pressures in the 
continuum limit. He used this conclusion to dismiss Navier's theory and to denounce the 
general impossibility of substituting integrals for molecular sums in the new physical 
mechanics. He also claimed to be the first to have offered a genuinely molecular theory 
of elasticity. 58 

3.4.3 Navier's defense 
There followed a long, bitter polemic in the Annales de chimie et de physique. Navier first 
recalled that Poisson and La place had had no quahns replacing sums with integrals in their 
past works. The newer emphasis on a supposed rigor could only betray a desire to belittle 
his own achievement. It was he, Navier, who in 1 821 'conceived the idea of a new question, 
one necessary to the computation of numerous phenomena that interest artists and 
physicists.' It was he who 'recognized the principle on which this solution had to rest.' 
This principle, however, was not what Poisson thought it should be; it made the variation 
of intermolecular forces during a deformation of a solid body depend linearly on the 
variation of molecular distances, but did not require that the molecules should interact 
through central forces only. Consequently, Navier believed that his theory was immune to 
Poisson's arguments on sums versus integrals. 59 

Navier then counter-attacked Poisson for failing to provide a description of the force 
function j(R) that would account for the stability and elastic behavior of solids. For 
example, in order that the internal pressure vanishes in an unstrained solid Poisson 
required the vanishing of the sum I: Rf(R), without exhibiting a choice for f that met 
this condition. If Poisson were willing to presuppose so much about the function/, Navier 
argued, why did he not consider a nonzero value of the limit of it'j when R reaches zero? 
This would avoid the fatal A + A1 = 0, and allow the use of integrals instead of sums. 60 

From this extract ofNavier's defense, one may judge that he was hesitating between two 
strategies. The first option was to deny the general applicability of the Laplacian doctrine 
of central forces, and to deal only with the forces that arise when an equilibrium of 
unknown nature is disturbed. This option agreed with Navier's positivist sympathies and 
with the style of applied physics that he embodied at the Ponts et Chaussees; and it could 
accommodate later, unforeseen changes in molecular theory.61 

The second option was to admit the Laplacian reduction to central forces and to show 
that appropriate results could nevertheless be obtained by substituting integrals for sums. 
Here Navier erred, because a Laplacian continuum, that is, a continuous set of material ' 

57Cauchy [1828b] p. 266. 58Poisson [1829a] pp. 397-8, 403-4. 
"'Navier [1828a], [1828b], [1829a], [1829b]; Poisson [1828a], [1828b]. Cf. Saint-Venant [1864b] pp. clxi-dxvii, 

Arnold [1983] parts 6 and 8. 
60Navier [1829a], [1829b]. Poisson also objected to Navier's occasional assumption that in the natural state of 

the body the forces between any two molecules vanished. Navier, however, did not regard this assumption as 
necessary to his derivations. 

61Physicists today regard the existence of the equilibrium state of a solid as a quantum property, but they 

nevertheless allow a classical treatment of small perturbations of this state. 
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points subjected to central forces acting in pairs, cannot have rigidity. The subterfuge of a 
nonzero limit of R'+f is unavailable, because that would imply the divergence of the 
integral f R3f dR. More fundamentally, the lack of rigidity is an immediate consequence 
of the symmetry properties of a central-force continuum. Neither Cauchy nor Poisson saw 
this fact, which is only evident to modem physicists trained to exploit symmetries. It was 
Saint-Venant who first remarked that the lack of shear stress in a perfectly continuous 
body resulted from the perfect invariance of the central forces acting in such a body for a 
large class of internal, shearing deformations. As a simple example, take a global shift of 
the half of an (infinite) body situated on one side of a fixed plane. 62 

Another of Poisson's objections to Navier was that the method of moments, which 
Lagrange had su=ssfully used for continuous media, did not apply to molecular systems. 
This is a surprising statement, since the principle of virtual velocities does not presuppose 
the continuity of the material system to which it is applied. Poisson probably meant that 
Navier's estimate of the total moment did not properly include the contribution of 
molecules whose sphere of action intersects the surface of the body. Indeed, the moments 
of the forces between such a molecule and all other molecules of the body do not sum up to 
the full value given in eqn (3.4). Nevertheless, the contribution of these bordering mol
ecules is negligible, because their moment is to the total moment what the radius of action 
is to the average radius of the body. Although Navier never gave this justification, his 
intuitive estimate of the total moment was correct.63 

Navier's methods were more coherent than Poisson believed, and they had considerable 
advantages. They minimized assumptions concerning the nature of molecular forces, and 
they provided a direct link between these assumptions and macroscopic properties. For 
this reason, several modern commentators have seen in Navier's theory an anticipation of 
George Green's potential-based theory of elasticity of 1 837. Regarding the necessity of 
preserving discrete sums, Poisson was essentially correct. However, he exaggerated the 
difficulty; in the isotropic case the substitution of integrals for sums does not affect the 
structure of the equations of motion as long as the integration over distance is not 
explicitly performed.64 

3.4.4 Fluids as temporary solids 
In 1 829, Poisson, the champion of molecular rigor, had to correct several flaws in his 1 828 
memoir that Cauchy's memoir had made apparent. He took this opportunity to offer a 
theory of fluid motion based on the following assumption: a fluid, like a solid, experiences 
stresses during its motion, but these stresses spontaneously relax in a very short time. In 
this picture, the liquid goes through a rapid alternation of stressed and relaxed states. 

62Saint-Venant [1834] sect. 2, [1844]. The remark on the limit of R"J is mine. By varying Poisson's central 
forces around equilibrium, Navier's elastic force q, is easily seen to be related to Poisson's f (in my notation) by 
q, = R-1! + R d(R-1f)jdR, which implies that the integral of K'q, and Navier's elastic constant vanish. Saint
Venant's argument may have been inspired by Fresnel's remark, in his molecular ether-model of 1821, that 
resistance to the shift of a slice of ether required molecular constitution with intermolecular distances much 
smaller than this shift (Fresnel [1821] pp. 630-2). 

63Poisson [1829a] p. 400. 

64Reference to Green is found, e.g., in Dahan [1992]. One way to save Navier's procedure is to introduce a 
finite lower limit in his integrals, see Clausius [1849] pp. 56-8. 
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Poisson further assumed that the average stress system of the fluid was to the fluid's rate of 
deformation what the stress system of an isotropic solid was to its strain. This hypothesis 
leads to the Navier-Stokes equation, with some additions to the pressure gradient term 
that depend on the compressibility of the fluid. 65 

Poisson did not refer to Navier's memoir on fluid motion, which he must have judged 
incompatible with sound Laplacian reasoning. Nor did he mention Cauchy's 'perfectly 
inelastic solid', despite the similarity between his and Cauchy's ways of relating the fluid 
stresses to those in an isotropic elastic solid. 

3.5 Saint-Venant: slides and shears 

3.5.1 Le Pant des Invalides 
Navier's and other Polytechnicians' efforts to reconcile theoretical and applied mechanics 
had no clear effect on French engineering practice. Industry prospered much faster in 
Britain, despite the lesser mathematical training of its engineers. Some of Navier's col
leagues saw this and ridiculed the use of transcendental mathematics in concrete problems 
of construction.66 In the mid-1820s, a spectacular incident apparently justified their 
disdain. Navier's chef-d'oeuvre, a magnificent suspended bridge at the Invalides, had to 
be dismantled in the fmal stage of its construction. 

N a vier had learnt the newer technique of suspension during official missions to England 
and Scotland in 1820 and 1823. At the end of his ministerial report, he argued in favor of a 
new suspended bridge of unprecedented scale across the River Seine and facing the 
Invalides (see Fig. 3.4). In Prony's and Saint-Venant's well-informed opinion, Navier's 
innovative design was based on sound experience and calculation. Yet, as the bridge was 
nearly finished, an accidental flood caused the displacement of one of the rounded stones 
on which the suspending chains changed direction before anchoring (see Fig. 3.4(b) ). As 
Saint-Venant later explained, Navier had mis-estimated the direction of the force exerted 
by the chain on the stone-a kind of oversight that frequently occurs in engineering 
construction and that is easily corrected on the spot. Hostile municipal authorities never-
theless obtained the dismantlement of Navier's bridge.67 · 

According to Saint-Venant, the incident meant more than a local administrative 
deficiency: 

At that time there already was a surge of the spirit of denigration, not only of the 

savants, but also of science, disparaged under the name of theory opposed to practice; 
' 

65Pois�on [1831a] pp. 139-74. Stokes showed that, for small compressions, Poisson's additional gradient term 
is (.)J,/3)\lC:V · v), as in Stokes's own molecular fluid model. 

66Cf. Belhoste (1994] pp. 24-5. Belhoste explains how this state of affairs prompted reforms at the Ecole 
Polytechnique and at the Ecoles d'applications. 

67Navier (1823d), (1830]. Cf. Prony [1864] pp. xlv-xlvii, Saint-Venant (1864a] pp. lxv-lxix, Grattan-Guinness 
[1990] pp. 994-1000, Picon [1992] pp. 372-84, Kranalds [1997], Cannone and Friedlander [2003]. The popuiar 
perception of this event differed from Saint-Venant's, as shown by this extract from Honore de Balzac's Le cure de 
village: 'All France knew of the disaster which happened in the heart of Paris to the first suspension bridge built by 
an engineer, a member of the Academy of Sciences; a melancholy collapse caused by blunders such as none of the 
ancient engineers-the man who cut the canal at Briare in Henri IV's time, or the monk who built the Pant 
Royal-wonld have made; but our administration consoled its engineer for his blunder by making him a member 
of the Council-general' (transl. by K. P. Wormeley, quoted in Cannone and Frielander [2003] p. 7). 



(a) 

(b) 

Fig. 3.4. (a) Navier's projected Pant des Invalides on the River Seine and (b), the anchoring system for the chains. From Navier [1830] plates. 
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one henceforth exalted practice in its most material aspects, and pretended that 

higher mathematics could not help, as if, when it comes to results, it made sense to 
distinguish between the more or less elementary or transcendent procedures that led 
to them in an equally logical manner. Some savants supported or echoed these 
unfounded criticisms. 

Some engineers were indeed fighting the theoretical approach that Navier embodied. In 
I 833, the Ingenieur en chef des Ponts et Chaussees, Louis Vi cat, already acclaimed for his 
improvement of hydraulic limes, cements, and mortars, performed a number of experi
ments on the rupture of solids. His declared aim was 'to determine the causes of the 
imperfection of known theories, and to point out the dangers of these theories to the 
constructors who, having had no opportunity to verify them, would be inclined to lend 
them some confidence.' He measured the deformations and the critical charge for various 
kinds of loading, and observed the shapes of the broken parts. He believed to have refuted 
Coulomb's and Navier's formulas for the collapse of pillars, as well as Navier's formulas 
for the flexion and the torsion of prisms. Moreover, he charged Coulomb and Navier with 
erroneous conceptions of the mode of rupture. 68 

3.5.2 Vicat's ruptures 
Vicat distinguished three ways in which the aggregation of a solid could be destroyed: pull 
(tirage), pressure (pression), and sliding (glissement). He called the corresponding forces 
pulling force (force tirante), sustaining force (force portante), and transverse force (force 
transverse). This last force (our shearing stress) he defined as 'the effort which tends to 
divide a body by making one of its parts slide on the other (so to say), without exerting any 
pressure nor pull outside the face of rupture.' The usual theories of sustaining beams, Vi cat 
deplored, ignored the slides and transverse forces, even though they controlled the rupture 
of short beams under transvers load. A important exception was Charles Augustin 
Coulomb, of whose theory Vicat however disapproved. 69 

Vicat published his memoir in the Annales des Ponts et Chaussees, but also ventured to 
send a copy for review to the Academy of Sciences. The reviewers, Prony and Girard, 
defended their friends Coulomb and Navier, arguing that Vicat had used granular, 
inflexible materials and short beams for which the incriminated formulas were not in
tended. They judged that Vicat's measurements otherwise confirmed existing theories. 
They also emphasized that only Coulomb's theory could justify the use of reduced-scale 
models, on which Vicat's conclusions partly depended. 70 

In his response, Vi cat compared the two Academicians to geometers who' would declare 
the law 'surface equals half-product of two side lengths' to apply to any triangle because 
they had found it to hold for rectangular triangles. In a less ironic tone, he showed that 
some of his measurements did contradict the existing theories in their alleged domain of 
validity. Navier himself did not respond to Vicat's aggression. However, some modifica
tions in his course at the Ponts et Chaussees suggest that he took Vicat's conclusions on the 

68Saint-Venant [1864a] p. 1xviii; Vicat [1833] p. 202. On Vicat, his work on limes, cements, and mortars, and his 
implicit criticism ofNavier's conception of suspended bridges, cf. Picon [1992] pp. 364-71, 384-5. 

69Vicat [1833] p. 201. Cf. Benvenuto [1998] pp. 18-19. 
70Prony and Girard [1834]. 
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importance of slides and transverse forces seriously. His former student Saint-Venant 
certainly did.71 

3.5.3 Molecules, slides, and approximations 
Adh6mar BarnS de Saint-Venant had an 'X+Ponts' training, and an exceptional deter
mination to reconcile engineering with academic science. His mathematical fluency and his 
religious dedication to the improvement of his fellow citizens' material life determined this 
attitude. He rejected both the narrow empiricism ofVicat and the arbitrary idealizations of 
French rational mechanics. His own sophisticated strategy may be summarized in the 
following five steps. 72 

,c 

(i) Start with the general mechanics of bodies as they are in nature, which is to be based 
on the molecular conceptions of Laplace, Poisson, and Navier. 

(ii) Determine the macroscopic kinematics of the system, and seek molecular definitions 
for the corresponding macroscopic dynamics. 

(iii) Find macroscopic equations of motion, if possible, by summing over molecul�s, or 
else by macroscopic symmetry arguments. The molecular level is thus black-boxed in 
adjustable parameters. 

(iv) Develop analytical techniques and methods of approximation to solve these equa
tions in concrete situations. 

(v) Test consequences and specify adjustable parameters by experimental means. 

Saint-Venant developed this methodology while working on elasticity and trying 
to improve on Navier's methods. He regarded the first, molecular step as essential for 
a clear definition of the basic concepts of mechanics and for an understanding of 
the concrete properties of matter. In his mind, the most elementary interaction was the 
direct attraction or repulsion of two mass points. Consequently, there could be no 
continuous solid (as Poisson and Cauchy had proved in 1 828). Matter had to be discon
tinuous, and all physics had to be reduced to central forces acting between non-contiguous 
point-atoms. 73 

In the second, kinematic step Saint-Venant characterized the macroscopic deformations 
of a quasi-continuum in harmony with Vicat's analysis of rupture. Cauchy had introduced 
the quantities eif = 8;uj + OjU;, but only to determine the dilation or contraction 
(1 /2)eijdx;dxj of a segment dr of the body. While studying a carpentry bridge on the 
River Creuze in 1 823, and later in his lectures at the Pouts et Chaussees, Saint-Venant gave 
a precise geometrical definition of Vicat's slides and took them into account in a compu
tation of the flexion of beams. According to this definition, the jth component of slide 
(glissement) in a plane perpendicular to the ith axis is, at a given point of the body, the 
cosine of the angle that two concrete lines of the body intersecting at this point and 
originally parallel to the ith and jth axes make after the deformation (see Fig. 3.5). To 
first order in u, this is the same as Cauchy's eif. Saint-Venant used the slides not only to 

71Vicat [1834]. 72Cf. Boussinesq and Flamant (1886], Melucci [1996], Darrigol (2001]. 
73Saint-Venant [1834], [1844]. 
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Fig. 3.5. Geometrical meaning of Saint-Venant's slide ey with respects to the orthogonal axes i and} (in the 

plane of the figure). 

investigate the limits of rupture, but also to develop a better intuition of the internal 
deformations in a bent or twisted prism.74 

Saint-Venant defined the pressure on a surface element dS as the resultant of the forces 
between any two molecules such that the line joining them crosses the surface element. 
This pressure has the form rii dSj, which defines the stress system rii. Saint-Venant then 
determined the relation between these stresses and the strains eii, in one of Cauchy's two 
manners. Although the first manner, based on symmetry only, was simpler, he believed 
that only the second, molecular manner could give the correct number of independent 
elastic constants (one constant instead of two in the isotropic case). 75 

On this very theoretical basis, Saint-Venant struggled to solve concrete problems of 
engineering. He was aware of the great variety of available strategies of approximation 
that could help in this task: 

Between mere groping and pure analysis, there are many intermediaries: the methods 
of false position, the variation of arbitrary constants, the solutions by series or 

continuous fractions, the methods of successive approximations, integration by the 
computation of areas or by the formulas of Legendre and Thomas Simpson, the 

reduction of the equations to more easily soluble ones by the choice of an unknown of 
which one may neglect a few powers or some fuoction in a first approximation, 

graphical' procedures, figurative curves drawn on squared paper, the use of curvilin
ear coordinates, etc. etc. 

None of these methods, however, sufficed to solve the outstanding problem of the engineer 
of wood and iron structures, namely the flexion and torsion of prisms. For some twenty 
years, Saint-Venant worked hard to avoid the simplifications used in previous solutions, 
such as the absence of slides, small deformation, perpendicularity of longitudinal fibers 
and transverse sections, flatness of transverse sections, etc. 76 

74Saint-Venant (1837], [!843a] p. 943: 'Je fais entrer dans le calcul les effets de glissement lateral dus a ces 
composantes traosversales dont I' omission a ete l'objet principal d'une sorte d'accusation portee par M. Vicat 
contre toute la theorie de la resistaoce des solides.' Cf. Boussinesq and Flamaot (1886] p. 560 (bridge on the River 
Creuze), Todhunter aod Pearson (1886-1893] vol. I, pp. 834--6, 843, vol. 2, pp. 394-5, Benvenuto [1998] pp. 20-4. 

75Saint-Venaot (1843b], (1834/35]. In their molecular theories, Cauchy and Poisson used a less consistent 
definition of pressure that makes it the resultant of the forces between all the molecules on one side of the plane of 
the surface element and the molecules belonging to a straight cylinder based on the other side of the element. 
Cauchy [1845] approved Saint-Venaot's defmition. Cf. Darrigol (2002a] pp. 122-3. 

76Saint-Venaot (1834/35]. For the successive steps ofSaint-Venant's work on the flexion aod torsion of prisms, 
see Saint-Venaot (1864c]. 



VISCOSITY 131  

His most impressive achievement was the 'semi-inverse' method he developed in the 
1830s. The 'direct' problem of elasticity, which is the determination of impressed forces 
knowing the deformation, is easily solved by applying the stress-strain relation. In con
trast, the practically important 'inverse' problem, which is the determination of deform
ations under given impressed forces, leads to differential equations whose integration in 
fmite terms is usually impossible. Saint-Venant's important idea was to replace the inverse 
problem with a solvable, mixed problem in which the deformation and the impressed forces 
were both partly given. He then showed that the exact solutions of the latter problem did 
not significantly differ from the practically needed solution of the inverse problem. 77 

3.5.4 On fluid motion 
Although Saint-Venant is best known for his work on elasticity, he also had a constant 
interest in hydraulics. Early in his career, he reflected on waterwheels and the channels and 
weirs that fed them. He also began to think about the scientific control of waters in rural 
areas, which he later called hydraulique agricole. In this field, as for elasticity, Saint-Venant 
avoided narrow empiricism. He wanted to base the determination of channel and pipe flow 
on fundamental hydrodynamics. Navier's failed attempt in this direction no doubt stimu
lated him.78 

In 1834, Saint-Venant submitted to the Academy of Sciences a substantial, though never 
published, memoir on the dynamics of fluids. To start with, he expressed his approbation 
of the mecanique physique by citing Poisson: 'It is important for the progress of sciences 
that rational mechanics should no longer be an abstract science, founded on definitions 
referring to an imaginary state of bodies.' He rejected ideal solids, argued for central forces 
and point-atoms, and proved the discontinuity of matter in the earlier-mentioned manner. 
He defined the average 'translatory' motion observed in hydraulic experiments and the 
invisible 'non-translatory' motion that molecular interactions necessarily implied. Then he 
gave his molecular definition of internal pressures (which he called 'impulsions'), and 
showed the existence of transverse pressures in moving fluids by a detailed consideration 
of the perturbation of the translatory motion by molecular encounters. In harmony with 
his kinematics of elastic bodies, he characterized the transverse pressure as being opposed 
to the sliding of successive layers of the fluid on one another.79 

This transverse pressure depends on the microscopic non-translatory motion of the 
molecules, which propagates through the whole fluid mass 'and gets lost to the outside by 
producing, in the walls and in the exterior air foreign agitation and other effects foreign to 
the translatory motion of the fluid.' The live force of the macroscopic motion thus 
diminishes at the price of hidden microscopic motion. Later, in the 1 840s, Saint-Venant 
identified the non-translatory motions with heat. 80 

77Saint-Venant introduced this method in 1847 and 1853. His fullest study of the torsion and flexion of prisms 
is Saint-Venant [1855]. 

78Cf. Melucci [1996], Darrigol [2001]. 
79Saint-Venant [1834] sects 1 (molecular mechanics), 2 (no continuous matter), 4 (undulated motion of 

molecules), 5 (definition of impulsions), 6-7 (transverse pressures); Poisson [1831a] p. 130. 
80Saint-Venant [1834] sect. 7. For the identification with heat, cf. Saint-Venant [1887b] p. 73 n. 
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Deterred by the complexity he saw in the friction-related molecular motions, Saint
Venant renounced a purely molecular derivation of the pressure system. Instead, he 
appealed to a symmetry argument in the spirit of Cauchy's first theory of elasticity. He 
assumed that the transverse pressure on a face was parallel to the fluid slide on this face, 
and (erroneously, he later realized) took the slide itself to be parallel to the projection of 
the fluid velocity on the face. This led him to an equation of motion far more complicated 
than Navier's, with five parameters instead of one, and with variations of these parameters 
depending on the internal, microscopic commotions of the fluid. Saint-Venant applied this 
equation to flow in rectangular or semi-circular open channels and described a new 
method of fluid-velocity measurement. He thus wanted to prepare the experimental 
determination of the unknown functions that entered his equations.81  

3.5.5 A first-class burial 
The commissioners Ampere, Navier, and Felix Savary approved Saint-Venant's memoir. 
Yet Savary, who was supposed to write the report, never did so and instead expressed 
disagreements in letters to the author. From Saint-Venant's extant replies, we may infer 
that Savary did not know of the contradiction between Du Buat's measurements and 
Navier's equation and that he condemned the recourse to adjustable parameters in 
fundamental questions of hydrodynamics. In his defense, Saint-Venant clarified the 
purpose of his memoir: 'My principal goal is all practical: it is the solution of the open
channel problem for a bed of variable and arbitrary figure.' He then formulated an 
interesting plea for a semi-inductive method:82 

My equations contain indeterminate quantities and even indeterminate functions; 
but is it not good to show how far, in fluid dynamics, we may proceed with a theory 
that is free of hypotheses (save for continuity, at least on average), that brings forth 
the unknown and prepares its experimental determination? A bolder march may 
sometimes quickly lead to the truth . . . .  However, you will no doubt admit that in 
such an important matter it may be advantageous to consider things from another 
point of view, to avoid every supposition and to appeal to experimenters to fix the 
values of indeterminate quantities by means of special experiments prepared so as to 
isolate the effects that the theory will later try to explain with much more assurance 
and to represent by expressions that are as free of empiricism as possible. 

3.5.6 Re-founding Navier's equation 
Three years later, Saint-Venant discovered his error about the direction, of slides, and 
ceased to request a report from Savary. Instead, he inserted a more cogent argument in the 
manuscript deposited at the Academy. He still assumed that the transverse pressure on a 
face was parallel to the slide on this face, or, equivalently and even more naturally, that the 
transverse pressure was zero in the direction of the face for which the slide vanished. 
However, he now used the correct expression o;vj + OjVi for the slides (per unit time) 
corresponding to the fluid velocity v and the orthogonal directions i and j. He further 

81Saint-Venant [1834] sects 1 1  (hypothesis), 15  (equation), 1 8-24 (consequences), 25-8 (suggested experi
ments). 

82Saint-Venant to Savary, 25 Aug. 1 834, Bibliotheque de l'Institut de France, MS 4226; see also the letters of 
27 July and 10 Sept. 1 834, ibid. 
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noted that ru - Tjj represented twice the transverse pressure along the line bisecting 
the angle i}, and 8;v; - OjVj represented the slide along the same line. Granted that the 
components of slide must be proportional to the components of transverse pressure, 
the ratios Tif/(o;vj + Gjv;) and (ru - Tjj)/2(8;v; - Ojvj) are all equal for every choice of i 
and j. Denoting by s their common value at a given point of the fluid and w an 
undetermined isotropic pressure, this implies that 

(3.31) 

As Saint-Venant noted, this stress system yields the Navier-Cauchy-Poisson equation in 
the special case of a constant s, with a gradient term contributing to the normal pressure. 83 

For a modern reader familiar with tensor calculus, Saint-Venant's reasoning looks like 
another proof of the fact that the expression (3 .31) is the most general symmetrical second
rank tensor that depends linearly and isotropically on the tensor eif. Yet this is not the case, 
because Saint-Venant did not assume the linearity. Admittedly, his hypothesis of the 
parallelism of slides and tangential pressures implies more than mere isotropy; for 
instance, it excludes terms proportional to eikekj· However, it allows for an s that varies 
from one particle of the fluid to another, and from one case of motion to another. 84 

Saint-Venant believed that Du Buat's and others' experiments on pipe and channel flow 
required a variable s, which expressed the effects of local 'irregularities of motion' on 
internal friction. The velocity v in his reasoning referred to the average, smooth, large-scale 
motion. Smaller-scale motions only entered the final equation as a contribution to tan
gential pressures defmed at the larger scale. Whether or not Saint-Venant regarded 
Navier's equation with constant s as valid at a sufficiently small scale is not clear. In 
any case, he believed that the value of s should be determined experimentally without 
prejudging its constancy from place to place or from one case of motion to another. 85 

In the mid-1840s, the military engineer Pierre Boileau undertook a series of experiments 
on channel and pipe flow. Unlike most hydraulicians, who were only interested in the 
global discharge, Boileau planned measurements of the velocity profile of the flow. Saint
Venant congratulated him for this intention, because such knowledge was necessary to 
estimate the friction between successive fluid filaments, or the variable s of his equation of 
fluid motion. He advised Boileau on the most suitable channel and pipe shapes and on the 
technique of velocity measurement. As we will see in Chapter 6, this sort of experiment and 
the correlative idea of an effective, eddy-related viscosity had a future. 86 

83Saint-Venant to Savary, 13 Jan. 1837, ibid.; Saint-Venant [1834] new version (later than 1837) of sect. 1 5; 
Saint-Venant [1843c]. 

84Saint-Venant [1843c] p. 1243 for variable e. Ibid. p. 1242n, Saint-Venant noted that Cauchy's pressure 
theorems were valid to second order in the dimensions of the volume elements, 'which allows us to extend their 
application to the case when partial irregularities of the fluid motion forces us to take faces of a certain extension 
so as to have regularly varying averages.' 

85Saint-Venant [1843c]; Saint-Venant to Savary (ref. 82), 27 July 1834 (on Du Buat); Saint-Venant [1834] new 
sect. 15: 'It is experiment that should determine whether e is constant or variable.' Perhaps Saint-Venant did not 
believe in a constant e, even at the small scale, because, for the tumultuous flows observed in rivers channels and 
occurring in pipes of not too small diameter, Saint-Venant believed that any irregularity of motion cascaded to a 
smaller and smaHer scale by 'molecular gearing'. 

86Boileau [1847], [ 1854]. Saint-Venant to Boileau, 29 Mar. 1846, Fond Saint-Venant, reproduced and discussed 
in Melucci [1996] pp. 65-71.  



134 WORLDS OF FLOW 

Fig. 3.6. Drawing for Saint-Venant's proof of d'Aiembert's paradox (from Saint-Venant [1887b] p. 50). 

3.5.7 Fluid resistance 
In 1 846, Saint-Venant tackled the old, difficult problem of fluid resistance. He first showed 
that the introduction of internal friction solved d' Alembert's paradox. For this purpose, 
he borrowed from Du Buat and Poncelet the idea of placing the immersed body inside a 
cylindrical pipe (see Fig. 3.6), from Euler the balance of momentum, and from Borda the 
balance of live forces. If the body is sufficiently far from the walls of the pipe, the action of 
the fluid on the body should be the same as for an unlimited flow. If the body is fixed, the 
flow is steady, and the fluid is incompressible, then the momentum which the fluid conveys 
to the body in unit time is equal to the difference P0S - P1 S between the pressures on the 
faces of a column of fluid extending far before and after the body, because the momentum 
of the fluid column remains unchanged. For an ideal fluid, the work (PoS - P1 S)vo of 
these pressures in unit time must vanish, because the live force of the fluid column is also 
unchanged. Hence the two pressures are equal, and the fluid resistance vanishes. This is 
d'Alembert's paradox, as proved by Saint-Venant.87 

In a molecular fluid, the (negative) work of internal friction must be added to the work 
of the pressures Po and P�, or, equivalently, the live force ofnon-translatory motions must 
be taken into account. Hence the pressure falls when the fluid passes the body, and the 
resistance no longer vanishes. The larger the amount of non-translatory motion induced 
by the body, then the higher is the resistance. When tumultuous, whirling motion occurs at 
the rear of the body, the resistance largely exceeds the value it would have for a perfectly 
smooth flow. After drawing these conclusions, Saint-Venant improved· on a method 
invented by Poncelet to estimate the magnitude of the resistance and based on the 
assumption that the pressure P1 at the rear of the body does not differ much from the 
value that Bernoulli's law gives in the most contracted section of the flow (see Fig. 3.7).88 

In summary, Saint-Venant did not accept the dichotomy between a hydrodynamic 
equation for ideally smooth flow on the one hand, and completely empirical retardation 
and resistance formulas for hydraulic engineers on the other. He sought a via media that 

87Saint-Venant [1846b], [!887b] pp. 45-9. In Borda [1766] p. 605, the Chevalier de Borda had derived the 
paradox in an even simpler manner, by applying the conservation oflive forces to a body pulled uniformly through 
a calm fluid. For a modern derivation, see Appendix A. 

88Saint-Venant [1846b] pp. 28, 72-8, 120--1, [1887b] pp. 56-192. 
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Fig. 3. 7. Drawing for Poncclet's and Saint-Venant's evaluation of fluid resistance (from Saint-Venant [1887b] 

p. 89). 

would bring theoretical constraints to bear on practical flows and yet would allow for 
some experimental input. One of his

. 
strategies, later pursued by Joseph Boussinesq and 

successfully applied to turbulent flow to this day, consisted of reinterpreting Navier's 
hydrodynamic equation as controlling the average, smoothed-out flow with a variable 
viscosity coefficient. Another was the astute combination of momentum and energy 
balances with empirically-known features of the investigated flow. For hydraulics, as for 
elasticity, Saint-Venant was a most persevering and imaginative conciliator of fundamen
tal and practical aims. 

3.6 Stokes: the pendulum 

3.6.1 A swimming mathematician 
Until the 1 830s at least, the production of advanced mathematical physics in an engineer
ing context remained a uniquely French phenomenon, largely depending on the creation 
of the Ecole Polytechnique. The main British contributors to elasticity theory and hydro
dynamics in this period had little or no connection with engineering. Typically, they were 
astronomers like Airy and Challis, or mathematicians like Green and Kelland. Their work 
on elasticity was subordinate to their interest in the new wave optics, and the aspects 
of hydrodynamics that captured their attention tended to be wave and tide theory. 
A Cambridge-trained mathematician, and the first Wrangler and Smith prize winner 
(1841), George Gabriel Stokes was not much closer to the world of engineers. He none
theless was a keen observer of nature, a first-rate swimmer, and a naturally gifted 
experimenter. He was quick to note the gaps between idealized theories and real processes, 
and sometimes eager to fill them. 89 

During the two decades preceding Stokes's student years, British mathematical physics 
had undergone deep reforms that eliminated archaic Newtonian methods in favor of the 
newer French ones. While Fourier's theory of heat and Fresnel's theory of light were most 

89Cf. Stokes [1846a], Parkinson [1976], Wilson [1987]. 
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admired for their daring novelty, the hydrodynamics of Euler and Lagrange provided the 
simplest illustration of the necessary mathematics of partial differential equations. The 
famous Cambridge coach William Hopkins made it a basic part of the Tripos examin
ation, and persuaded Stokes to choose it as his first research topic. In his first papers, 
published in the early 1 840s, Stokes already noted discrepancies between real and ideal 
flows and suggested a few remedies, including the introduction of viscosity.90 

3.6.2 The pendulum 
Stokes's interest in imperfect fluidity derived from the pendulum experiments performed 
by Edward Sabine in 1 829. This artillery officer had led a number of geodesic projects, one 
of which, in 1821122, dealt with the pendulum determination of the figure of the Earth. In 
1 828, the German astronomer Friedrich Bessel published a memoir on the seconds' 
pendulum that brought pendulum studies, and quantitative experiment in general, to an 
unprecedented level of sophistication. Bessel not only improved experimental procedures 
and data analysis, but he also brought new theoretical insights into the various effects that 
altered the ideal pendulum motion. Most importantly, he was the first to take into account 
the inertia of the air moved by the pendulum. His study played a paradigmatic role in 
defining a Konigsberg style of physics. It also induced further experimental and theoretical 
pendulum studies in Britain and France.91 

While investigating Bessel's inertial effect, Captain Sabine found that the mass correc
tion of a pendulum oscillating in hydrogen was much higher than the density ratio between 
hydrogen and air would imply. Sabine suggested that gas viscosity could be responsible for 
this anomaly. The remark prompted Stokes to study the way viscosity affected fluid 
motion. His first strategy, implemented in a memoir of 1 843, was to study special cases 
of perfect-fluid motion in order to appreciate departures from reality:92 

The only way by which to estimate the extent to which the imperfect fluidity of fluids 
may modify the laws of their motion, without making any hypothesis on the mo
lecular constitution of fluids, appears to be, to calculate according to the hypothesis 
of perfect fluidity some cases of fluid motion, which are of such a nature as to be 
capable of being accurately compared with experiment. 

900n the transformation of British physics, cf. Smith and Wise [1989] chap. 6. On Hopkins's role, cf. Wilson 
[1987] p. 132. Henry Moseley's hydrodynamic treatise [1830], written for the students of Cambridge University 
under Challis's advice, marked a transition between older Newtonian methods and Euler's hydrodynamics: it only 
introduced the fundamental equations (in integral form) at a very late stage, and based most reasoning on pre
Eulerian techniques such as Bernoulli's Jaw or d' Alembert's principle; it gave a Newtonian treatment of fluid 
resistance, ignored d'Alembert's paradox, and failed to mention Navier's equations of fluid motion. 

910n Stokes and pendulums, cf. Stokes [1850b] pp. 1-7. On Sabine, cf. Reingold [1975] pp. 49-53. On Bessel's 
work, cf. Olesko [1991] pp. 67-73. On pendulum studies in general, cf. Wolf [1889]. Bessel's inertial effect was 
already known to Du Buat [1786] vol. 3, in a hydraulic contexi. Poisson [1832] gave the theoretical value of the 
inertial mass correction for a sphere as half of the mass of the displaced fluid, in conformance with Du Buat's result 
for water. 

92Sabine [1829], commentary to his eighth experiment; Stokes [1850b] p. 2 (Sabine); Stokes [1843] pp. 17-18 
(quote). Stokes assumed that the motion started from rest, which implies the existence of a velocity potential for a 
perfect liquid. Stokes hoped that this property would still hold approximately for the small oscillations of a real 
fluid (ibid. p. 30; this turned out to be wrong in the pendulum case). 
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Among his cases of motion Stokes included oscillating spheres and cylinders that could 
represent the bulb and the suspending thread of a pendulum. In the spherical case, he 
found the mass correction to be equal to half the mass of the fluid expelled by the sphere, in 
conformance with a calculation made by Poisson in 1831,  but only five-ninths of Bessel's 
experimental result of 1828. Stokes also transposed Thomsen's method of electrical 
images to show that a rigid wall placed near the oscillating sphere modified the mass 
correction. Lastly, he addressed the most evident contradiction with observation, namely, 
that a perfect fluid does not have any more damping effect on oscillatory motion than it 
would have on a uniform translational motion.93 

Stokes evoked three possible causes of the observed resistance, namely, fluid friction, 
discontinuous flow, and instability leading to a turbulent wake. As he did not yet feel ready 
to explore any of these options by means of theory, he looked for further experimental 
results. He was not himself planning pendulum measurements, presumably because the 
required apparatus and protocol were too complex for his taste; he usually favored 
experiments that could be performed with the minimum equipment and time consumption. 
For testing the departure of real fluids from perfect ones, he judged that the moments of 
inertia of water-filled boxes offered a better opportunity. Unfortunately, the experiments 
he soon performed with suspended water boxes could only confirm the perfect-fluid theory. 
They were not accurate enough to show any effect of imperfect fluidity.94 

3.6.3 Fluidfriction 
Having exhausted the possibilities of his first strategy for studying the imperfection of 
fluids, Stokes tried another approach. In 1 845, he sought to include internal fluid friction 
in the fundamental equations of hydrodynamics. To Du Buat's arguments for the exist
ence of internal friction he added pendulum damping and a typically British observation: 
'The subsidence of the motion in a cup of tea which has been stirred may be mentioned 
as a familiar instance of friction, or, which is the same, of a deviation from the law of 
normal pressure.' From Cauchy he borrowed the notion of transverse pressure, as well 
as the general idea of combining symmetry arguments and the geometry of infinitesimal 
deformations.95 

Stokes's first step was the decomposition of the rate of change o;vjdx; of an infinitesimal 
fluid segment dr into a symmetric and an antisymmetric part: 

1 I o;vjdx; = 2(o;vj + Ojv;)dx; + 2(o;vj - Ojv;)dx;. (3. 32) 

Then he showed that the antisymmetric part corresponded to a rotation of the vector dr, 
and the symmetric part to the superposition of three dilations (or contractions) along three 
orthogonal axes. That O;Uj - OjU; represents the rotation of an element of a continuum for 
a small deformation u was known to Cauchy. No one,

. 
however, had explicitly given 

93Stokes [1843] pp. 36, 38-49, 53; Poisson [1832]. Stokes made his calculation in the incompressible case, 
knowing from Poisson that the effects of compressibility were negligible in the pendulum problem. 

94Ibid. pp. 60-8; Stokes [1846b] p. 196. On Stokes' experimental style, cf. Liveing [ 1907]. 

95Stokes [1849a] pp. 75-6; [!848a] p. 3 (cup of tea). Stokes ([1849a] p. 1 1 8) refers to Cauchy as follows: 'The 
method which I have employed is different from [Cauchy's], although in some respects it much resembles it.' 
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Stokes's decomposition and its geometrical interpretation. Cauchy and other theorists of 
elasticity directly studied the quadratic form (112)egdx;dxj that gives the change in the 
squared length of the segment dr.96 

Stokes then required, as Cauchy had done, the principal axes of pressure to be identical 
with those of deformation. He decomposed the three principal dilations into an 
isotropic dilation and three 'shifting motions' along the diagonals of these axes. To the 
isotropic dilation he associated an isotropic normal pressure, and to each shift a parallel 
transverse pressure. In order to get the complete pressure system, he superposed these four 
components and transformed the result back to the original system of axes. So far, 
Stokes's procedure was similar to Saint-Venant's, except that Saint-Venant dealt directly 
with slides in the original system of axes and did not require any superposition of principal 
pressures nor any transformation of axes.97 

The analogy with Saint-Venant-whose connunication Stokes was probably unaware 
of-ends here. Stokes wanted the pressures to depend linearly on the instantaneous 
deformations. He justified this linearity (including the above-mentioned superposition), 
as well as the zero value he chose for the pressure implied by an isotropic compression, by 
means of a somewhat obscure model of 'smooth molecules acting by contact'. His previous 
approach to the imperfect fluid had been deliberately non-molecular. The new, internal
friction approach was explicitly molecular. Undoubtedly Stokes grew to be an overcau
tious physicist who avoided microphysical speculation as much as he could. Yet, no more 
than his French predecessors could he conceive of internal friction without transverse 
molecular actions.98 

3.6.4 Elastic bodies, ether, and pipes 
Stokes's reasoning of course led to the Navier-stokes equation, since this is the only 
hydrodynamic equation that is compatible with local isotropy and a linear dependence 
between stress and distortion rate. After reading Poisson's memoir of 1829, which pro
ceeded from the equations of elastic bodies to those of real fluids, Stokes tried the reverse 
course and transposed his hydrodynamic reasoning to elastic bodies. From the 'principle 
of superposition of small quantities', he derived the linearity of the stress-strain relation. 
He then exploited isotropy in the principal-axis system to introduce two elastic constants, 
one for the shifts, and the other for isotropic compression. 

Stokes thus retrieved the two-constant stress system that Cauchy had obtained for 
isotropic elastic bodies in his non-molecular theory of 1828. He imputed Poisson's single-

96Stokes [1849a] pp. 80--4; Cauchy [1841] p. 321 (cf. Dugas [1950] pp. 402--6). Stokes's reasoning did not seem 
too clear to Saint-Venant; see his letter to Stokes, 22 Jan. 1862, in Larmor [1907] vol. I, pp. 156-159. Larmor's 
comment, 'The practical British method of development in mathematical physics, by fusing analysis with direct 
physical perception or intuition, still occasionally present similar difficulties to minds trained in a more formal 
mathematical discipline', does not seem to apply well to Saint-Venant, although it certainly applies to the 
continental perception of Larmor's own work. 

97Stokes [1849a] pp. 83-4. 

98Ibid. pp. 84--6. Cf. Yamalidou [1998]. Stokes mentioned Saint-Venant's proof in his [1846a] pp. 183-4, with 
the observation: 'This method does not reqnire the consideration of ultimate molecules at all.' Stokes's model 
implies a zero trace for the viscous stress tensor, so that his equation includes the term (p,/3)\1(\1 · v) (besides the 
p.Av term) in the case of a compressible fluid. 
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constant result to the assumption that the sphere of action of a given molecule contained 
many other molecules-which only shows that he had not read the memoir in which 
Cauchy proved this assumption to be unnecessary. More pertinently, Stokes argued that 
soft solids such as India rubber or jelly required two elastic constants, for they had a much 
smaller resistance to shifts than to compression. He also suggested that the optical ether 
might correspond to the case of infi�ite resistance to compression, for which longitudinal 
waves no longer exist. In summary, Stokes had both down-to-earth and ethereal reasons to 
require two elastic constants instead of one. With George Green, whose works he praised, 
he inaugurated the British preference for the multi-constant theory.99 

Stokes's immediate purpose was, however, a study of the role of internal friction in fluid 
resistance and flow retardation. Here boundary conditions are essential. When, in 1 845, 
Stokes read his memoir on fluid friction, he was already inclined to assume a vanishing 
relative velocity at a rigid wall. He worried, however, about the resulting pipe retardation 
law, which contradicted Bossut's and Du Buat's results. Navier's and Poisson's condition 
that the tangential pressure at the wall should be proportional to the slip did not work any 
better, except for a very small velocity, in which case the measured retardation became 
proportional to the velocity. Girard's measurements, as interpreted by Navier, seemed to 
require a finite slip in this case, although Du Buat had found a zero velocity near the walls 
of a very reduced flow. In this perplexing situation, Stokes refrained from publishing 
discharge calculations. He only gave the parabolic velocity profile for cylindrical pipes 
with zero velocity at the walls. 100 

3.6.5 Back to the pendulum 
In the pendulum case Stokes knew the retardation to be proportional to velocity, in 
conformance with both the Navier-Poisson boundary condition and the zero-slip condi
tion. He also knew, from a certain James South, that a tiny piece of gold leaf attached 
perpendicularly to the surface of a pendulum's globe remained perpendicular during 
oscillation. This observation, together with Du Buat's and Coulomb's small-velocity 
results, brought him to try the analytically simpler zero-slip condition. The success of 
this choice required justification. In his major memoir of 1 850 on the pendulum, Stokes 
argued that it was 'extremely improbable' that the forces called into play by an infinitesi
mal internal shear and by a fmite wall shear would be of the same order of magnitude, as 
they should be for the dynamical equilibrium of the layer of fluid next to the wall. 101 

Neglecting the quadratic (v · \7)v terms in the Navier-Stokes equation, Stokes found an 
exact analytical solution for an oscillating sphere representing the globe of the pendulum, 
and a power-series solution for an oscillating cylinder representing the suspending thread 
of the pendulum. The results explained Sabine's mass-correction anomaly, and permitted 
a close fit with Francis Baily's extensive experiments of 1832. Ironically, Stokes obtained 
this impressive agreement with a wrong value for the viscosity coefficient. The explanation 
of this oddity is that his data analysis depended on the assumption that viscosity is 

99Stokes [1849a] sects 3-4. 

100/bid. pp. [93-9]; Stokes [1846a] l86. For large pipes, Stokes assumed a tangential pressure proportional to 
the velocity squared at the walls, jnstified in Du Buat's and Coulomb's manner by surface irregularities. 

101Stokes [l850b] pp. 7, 14-15. 
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Fig. 3.9. Poiseuille's apparatus to measure fluid discharge through capillary tubes (from Poiseuille (1844]). 

The reservoir P, originally ftlled with compressed air by the pump AXY, is connected to a barometric device 

(on the right), and to the flask M, which in turn feeds the elaborate glass part CABEFGD (enlarged above). 
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in a previous memoir, he focused on the behavior of capillary vessels and decided to 
examine experimentally the effects of pressure, length, diameter, and temperature on the 
motion of various liquids through capillary glass tubes. He judged Girard's anterior 
measurements to be irrelevant, because capillary blood vessels were about one hundred 
times narrower than Girard's tubes.108 

Poiseuille produced the flow-generating pressure with an airpump and reservoir, in 
vague analogy with the hearts of living organisms (see Fig. 3.9). He avoided the irregu
larities of open-air efflux and controlled temperature by immersing his capillary tubes in a 
thermostatic bath. He determined the discharge from the lowering of the fluid level in the 
feeding flask. The most delicate parts of the measurements were the optical and hydraulic 
control of the cylindricity of the capillary tubes, and the determination of the pressure 
head. Like Girard, Poiseuille overlooked the entrance effect, which is fortunately negli
gible for very narrow tubes. He properly took into account hydrostatic head, viscous 
retardation in the larger tube leading to the capillary tube, and the pressure shift in a given 
run. The description of his protocol was so meticulous as to include prescriptions for the 
filters he used to purify his liquids. His results compare excellently with modern theoretical 
expectations. They of course include the Poiseuille law Q = KP R4 I L, P being the fall of 
pressure and K a temperature-dependent constant. 109 

Poiseuille only mentioned Naviers theory to condemn it for leading to the wrong P R3 I L 
law. Unfortunately, Navier did not live long enough to know of Poiseuille's result. The 
Academicians who reviewed the physician's memoir (Arago, Babinet, and Piobert) did not 
know that Navier had already obtained the R4 dependence in the case of a square tube of 
side R with zero shift at the walls. It was left to Franz Neumann, who had probably known 
Hagen in Konigsberg, to give the first public derivation of the Hagen-Poiseuille law. 
Assuming zero velocity at the walls and making the internal friction proportional to the 
transverse velocity gradient, Neumann derived the quadratic velocity profile and inte
grated it to obtain the discharge. His student Heinrich Jacobson published this proof in 
1 860. The Base! physicist Eduard Hagenbach published a similar derivation in the same 
year, with an improved discussion of entrance effects and a mention of the Erschutter
ungswiderstand (agitation resistance) that occurred for larger pipes. Lastly, the French 
mathematician Emile Mathieu published a third similar proof in 1 863.110 

3.7.3 A slow integration 
It would be wrong to believe that these derivations of Poiseuille's law were meant to 
vindicate the Navier-Stokes equation. Neumann and Mathieu did not mention Navier's 
theory at all. Hagenbach did, but imitated Poiseuille in globally condemning Navier's 
approach. Newton's old law of the proportionality between friction and transverse vel
ocity gradient was all that these physicists needed. Hermann Helmholtz was probably the 
first physicist to link the Navier-Stokes equation to the Hagen-Poiseuille law. 

108Poiseuille [1844]; Arago, Babinet, and Piobert [1842]. Cf. Rouse and Ince [1957] pp. 160-1, Schiller [1933] 
p. 89, Pedersen [1975]. 

109Poiseuille [1844] p. 519. For a modern evaluation, cf. Schiller [1933] pp. 85-9. 
1 10Poiseuille [1844] p. 521; Jacobson [1860] Hagenbach [1860] Mathieu [1863]. 
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proportional to density, which is at variance with the approximate constancy later proved 
by James Clerk Maxwell. 102 

Stokes also considered the case of uniform translation, still in the linear approximation 
of the Navier-Stokes equation. For a sphere of radius R moving at the velocity V, he 
obtained the expression -67Tp,R V for the resistance, now called 'Stokes' formula'. En 
passant, he explained the suspension of clouds: according to his formula, the resistance 
experienced by a falling droplet decreases much more slowly with its radius than its weight 
does. In the case of a cylinder, he found that no steady solution existed, because the 
quantity of dragged fluid increased indefinitely. He speculated that this accumulation 
implied instability, a trail of eddies, and nonlinear resistance. 103 

At that time, Stokes did not discuss other cases of nonlinear resistance, such as the 
swiftly-moving sphere. In later writings, he adopted the view that the Navier-Stokes 
condition with the zero-shift boundary condition applied generally, and that the non
linearity of the resistance observed beyond a certain velocity corresponded to an instability 
of the regular solution of the equation, leading to energy dissipation through a trail of 
eddies. This is essentially the modem viewpoint.104 

3.7 The Hagen-Poiseuille law 

3.7.1 Hagen's pipes 
Stokes's pendulum memoir contains the first successful application of the Navier--Stokes 
equation with the boundary condition which is now regarded as correct. For narrow-pipe 
flow, Stokes (and previous discoverers of the Navier--Stokes equation) knew only of 
Girard's results, which seemed to confirm the Navier-Poisson boundary condition. Yet 

a different law of discharge through narrow tubes had been published twice before Stokes' 
study, in 1839 and in 1 841.  

The German hydraulic engineer Gotthilf Hagen was the first to discover this law, 
without knowledge of Girard's incompatible results. Hagen had learned precision meas
urement under Bessel and had traveled through Europe to study hydraulic constructions. 
As he had doubts about Prony's and Johann Eytelwein's widely-used formulas for pipe 
retardation, he performed his own experiments on this subject in 1839. In order to best 
appreciate the effect of friction, he selected pipes of small diameter, between 1 mm and 
3 mm. Although the principle of the experiment was similar to Girard's, Hagen eliminated 
important sources of error that had escaped Girard's attention. For example, he carefully 
measured the internal diameter of his pipes by weighing their water content. Also, he 
avoided the irregularities of open-air efflux by having the pipe end in a small tank with a 
constant water level (see Fig. 3.8).105 

To his surprise, Hagen observed that, beyond a critical pipe-flow velocity of order 
(2gh)112, with h being the pressure head, the flow became highly irregular. For better 

102Stokes [1850b] sects 2-3. On the wrong value of the viscosity coefficient, cf. Stokes, note appended to his 
[1850b], SMPP 3, pp. 137-41; Stokes to Wolf, undated (c. 1991), in Larmor [1907], vol. 2 pp. 323-4. 

103Stokes [1850b] 59, pp. 66-7. More on the cylinder case will be said in Chapter 5, pp. 186-7. 
104Cf. Stokes's letters of the 1870s and 1880s in Larmor [1907]. 
105Hagen [1839]. Cf. Schiller [1933] pp. 83-4, Rouse and Ince [1957] pp. 157--61.  
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Fig. 3.8. Hagen's apparatus for measuring fluid discharge (from Hagen [1839)). The tank F feeds the cylinder 

B through the regulating device H. The water level in the cylinder is determined by reading the scale C 

attached to the floating disk D. The discharging tube A ends in the overflowing tank K 

experimental control, he decided to operate below this threshold. His experimental results 
are summarized by the formula 

(3.33) 

where h is the pressure head, Q is the discharge, L is the length, a is a temperature
dependent constant, and {3 is a temperature-independent constant. In true Konigsberg 
style, Hagen determined the coefficients and exponents by the method of least squares and 
provided error estimates.106 

Hagen correctly interpreted the quadratic term as an entrance effect, corresponding to 
the Jive force acquired by the water when entering the tube. Assuming a conic velocity 
profile, he obtained a good theoretical estimate for the f3 coefficient. He attributed the 
linear term to friction, and justified the 1 / .K+ dependence by combining the conic velocity 
profile with an internal friction proportional to the squared relative velocity of successive 
fluid layers. Perhaps because this concept of friction later appeared to be mistaken, full 
credit for the discovery of the QL/ .K+ Jaw has often been given to Poiseuille. Yet Hagen's 
priority and the excellence of his experimental method are undeniable.107 

3.7.2 Dr Poiseuille 's capillary vessels 
Jean-Louis Poiseuille, a prominent physician with a Polytechnique education, performed 
his experiments on capillary-tube flow around 1 840, soon after Hagen. He had no 
particular interest in hydraulics, but wanted to understand 'the causes for which some 
organ received more blood than another.' Having eliminated a few received explanations 

106Hagen [1839] pp. 424, 442. 

101/bid. pp. 433, 437, 441. 
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Helmholtz's interest in fluid friction derived from his expectation that it would explain a 
leftover discrepancy between theoretical and measured resonance frequencies in organ 
pipes. In 1 859, he derived a hydrodynamic equation that included internal friction, and 
asked his friend William Thomson whether it was the same as Stokes's, of which he had 
heard but had not seen. The answer was yes. 1 1 1  

In order to determine the viscosity coefficients of liquids, Helmholtz asked his student 
Gustav von Piotrowski to measure the damping of the oscillations of a hollow metallic 
sphere filled with liquid and suspended by a torsion-resisting wire. Helmholtz integrated 
the Navier-Stokes equation so as to extract the viscosity coefficient from these measure
ments and also from Poiseuille's older experiments on capillary tubes. The two values 
disagreed, unless a finite slip of the fluid occurred on the walls of the metallic sphere. When 
he learned about this analysis, Stokes told Thomson that he inclined against the slip, but 
did not exclude it. 1 12 

This episode shows that, as late as 1 860, the Navier-Stokes equation did not yet belong to 
the physicist's standard toolbox. It could still be rediscovered. The boundary condition, 
which is crucial in judging consequences for fluid resistance and flow retardation, was still 
a matter of discussion. Nearly twenty years elapsed before Hor,ace Lamb judged the 
Navier-Stokes equation and Stokes's boundary condition to be worth a chapter a treatise 
on hydrodynamics. This evolution rested on the few successes met in the ideal circum
stances of slow or small-scale motion, and on the confirmation of the equation by 
Maxwell's kinetic theory of gases in 1 866. Until Reynolds's and Boussinesq's studies of 
turbulent flow in the 1 880s, described in Chapter 7, the equation remained completely 
irrelevant to hydraulics. 1 13  

Thus, the mere introduction of viscous terms in the equations of motion did not 
suffice to explain the flows most commonly encountered in natural and artificial circum
stances. This failure long confmed the Navier-Stokes equation to the department of 
physico-mathematical curiosities, despite the air of necessity that its multiple molecular 
and non-molecular derivations gave it. As we will see in the following two chapters, a few 
hydrodynamicists left this equation aside and speculated that much of the true behavior of 
slightly-viscous fluids such ·as air and water could be understood without leaving the 
perfect-liquid context. 

1 1 1Helmholtz to Thomson, 30 Aug. 1859, Kelvin Collection, Cambridge University Library; Thomson to 
Helmholtz, 6 Oct. 1859, HN. Cf. Darrigol [1998], and Chapter 4, pp. 148, 158-9. 

112Helmholtz and Piotrowski [1860] pp. 195-214 (calculations in the spherical case), 215-17 (calculation for 
the Poiseuille flow); Stokes to Thomson, 22 Feb. [1862], in Wilson [1990]. Helmholtz was aware of Girard's 
measurements (Helmholtz and Piotrowski [1860] pp. 217-19), which he unfortunately trusted, but not ofHagen's. 

1 1 3Lamb [1879] chap. 9. The verification of the consequences ofMaxwell's kinetic theory by viscous damping 
experiments required new, improved solutions of the Navier-Stokes equation, cf. Hicks [1882] pp. 61-70. 
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VORTICES 

I have been able to solve a few problems of mathematical physics on which the 
greatest mathematicians since Euler have struggled in vain . . .  But the pride I could 
have felt over the final results . . .  was considerably diminished by the fact that I 
knew well how the solutions had almost always come to me: by gradual general
ization of favorable examples, through a succession of felicitous ideas after many 
false trails. I should compare myself to a mountain climber who, without knowing 
the way, hikes up slowly and laboriously, often must return because he cannot go 
further, then, by reflection or by chance, discovers new trails that take him a little 
further, and who, when he finally reaches his aim, to his shame discovers a royal 
road on which he could have trodden up if he had been clever enough to find the 
right beginning. Naturally, in my publications I have not told the reader about the 
false trails and I have ouly described the smooth road by which he can now reach 
the summit without any effort.1 (Hermann Helmholtz, 1891) 

One way of addressing the practical failures of Euler's fluid mechanics was to introduce 
viscosity into the fundamental equations. This approach, described in the previous chap
ter, only helped in cases of Iaminar flow, such as the loss of head in capillary tubes or the 
damping of pendulum oscillations. In the 1 860s, Herrnann Helmholtz invented another 
approach based on vortex-like solutions of Euler's equations. 

Helmholtz arrived at this idea while studying a specific problem of acoustics, the 
sounding of organ pipes. In his efforts to improve the theory of this instrument, he came 
to consider the internal friction of the air and its damping effect. As he was unaware of the 
Navier-Stokes equation, he began by analyzing the solutions ofEuler's equation for which 
internal friction would play a role. This is the source of his famous memoir of 1 858 on 
vortex motion. 

In this study, Helmholtz included the simple case of a 'vortex sheet', that is, a continu
ous alignment of rectilinear vortices, and found it to be equivalent to a tangential 
discontinuity of the fluid velocity across the sheet. He later appealed to such discontinuous 
motions to explain another mystery of organ pipes, namely, the production of an alter
nating motion by a continuous stream of air through the mouth of the pipe. In I 868, he 
described the general properties of surfaces of discontinuity, the most essential one being 
their instability, whereby any protuberance of the surface tends to grow and to unroll 
spirally, as shown in Fig. 4. 1 .  

Helrnholtz reached these notions by focusing on the difficulties o f  a concrete application 
of Euler's equations to the specific system of organ pipes. By analogy, he believed that the 
neglection of surfaces of discontinuities or similar structures explained the failure of many 

1Helmholtz [1891] p. 14. 



146 WORLDS OF FLOW 

Fig. 4.1 .  Spiral unrolling of a protuberance on a surface of discontinuity. Courtesy of Greg Lawrence (in 

Fernando [1991] p. 475). 

other applications of theoretical fluid mechanics. The first three sections of this chapter, 
on acoustics, vortex motion, and vortex sheets, recount the emergence of the methods and 
concepts that justified this conviction. Section 4.4 documents Helmholtz's interest in 
meteorology and his understanding of cyclonic vortices. Section 4.5 shows how, inspired 
by a singular observation in the Swiss sky, he came to apply discontinuity surfaces to the 
general circulation of the atmosphere and to the theory of storms, thus foreshadowing 
some central notions of modem meteorology. As is explained in the final section, Section 
4.6, he predicted atmospheric waves resulting from the instability of such surfaces, and 
devoted much time and effort to the analogous waves induced by wind blowing over 
water. 

4.1 Sound the organ 

During his studies at the University of Berlin, Helmholtz read widely in physics, as is clear 
from the erudition displayed in the memoir of 1 847 on the conservation of force. After 
obtaining the Konigsberg chair of physiology, he specialized in the study of perception, at 
the intersection of his interests in physics, physiology, aesthetics, and philosophy. Al
though his first research in this field concerned vision, in the mid-1850s he began a parallel 
study of the perception of sound. Acoustics was then a developing branch of physics, and 
an ideal subject for someone who loved both music and mathematics. Here is Helmholtz's 
eloquent statement of his motivation:2 

I have always been attracted by this wonderful, highly interesting mystery: It is 
precisely in the doctrine of tones, in the physical and technical foundations of 
music, which of all arts appears to be the most immaterial, fleeting, and delicate 
source of incalculable and indescribable impressions on our mind, that the science of 
the purest and most consistent thought, mathematics, has proved so fruitful. 

4.1 . 1  From acoustics to mathematics 
The earliest trace of Helmholtz's interest in acoustics is a review of works 'concerning 
theoretical acoustics' that Helmholtz wrote for the Fortschritte der Physik of 1 848 and 
1849. They all dealt with the physics of sound, that is, the first of the three components 

2He1mho1tz [1857] pp . .  121-2. On Helmholtz's biography, cf. Koenigsberger [1902]. On his interest in tbe 
perception of sound, cf. Voge1 [1993], Hatfield [1993], Hiebert and Hiebert [1994]. 
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that Helmholtz distinguished in the study of sensations, namely physical, physiological, 
and psychological.3 

In particular, Helmholtz criticized Guillaume Wertheim's measurements of the velocity 
of sound with organ pipes. Following earlier theories by Daniel Bernoulli, Euler, and 
Lagrange, Wertheim assumed stationary air waves in the pipes, with a velocity node at the 
bottom of the pipe and an anti-node at the opening. He deduced the wavelength from the 
length of the tube, and multiplied it by the sound frequency to obtain the velocity. There 
was a difficulty in that the measured sounding frequency depended slightly on the intensity 
of the blowing. Also, the theoretical stationarity condition completely failed if air was 
replaced by water, as Wertheim demonstrated with a special water organ of his own 
invention. Helmholtz suggested that the boundary conditions assumed by previous the
orists were oversimplified. In particular, he pointed to the need for a more realistic 
treatment of the motion of the fluid near the opening of the tube.4 

Helmholtz's first publication in the field of acoustics, in 1 856, concerned another 
problem, belonging to the physiological register. Organists had long known that when 
two successive harmonics of the same tone are played together loudly, the base tone is 
heard. Acousticians verified and generalized this result, but disagreed on the exact com
bination rule. According to Wilhelm Weber and Georg Simon Ohm, the combination of 
the frequencies mf and nf, where m and n are two integers without a common divisor, 
yielded the frequency f According to Gustaf Hallstriim, it yielded frequencies of the form 
(pn - qm) f, where p and q are two other integers. In order to decide the issue experimen
tally, Helmholtz invented a clever monochromatic source by placing a tuning fork in a 
cavity resonator whose proper frequencies were mutually incommensurable. Playing 
together pure mf and nf sounds, he heard the combined frequency (m - n)f, and also 
(m + n) f after he had convinced himself that it should theoretically exist. His theory was 
that combination tones occurred when the mechanical response of the ear was no longer 
linear and involved a term proportional to the square of the sound amplitude. 5 

The nature of combination tones bore on a central issue of contemporary acoustics, 
namely, the relevance of Fourier analysis to the perception of sounds, on which Ohm and 
Thomas Seebeck famously disagreed. Helmholtz's main goal was to put an end to the 
controversy and to base the science of acoustics on non-controversial facts. However, the 
lack of experimental facilities at Bonn, where he had been recently appointed, prompted 
him to work on the more mathematical aspects. Among the acoustic systems in urgent 
need of a better theory were resonant cavities, which played a central role in the produc
tion and detection of monochromatic sounds, and organ pipes, which Helmholtz used to 
produce strong, sustained tones in his acoustic experiments. 6 

3Helmholtz [1 852/53]. On the tripartite structure, cf. Hehnholtz [1 863a] p. 7. 

4Hehnholtz [1852153] pp. 250 (Doppler), 242-6 (Wertheim); Wertheim [1 848]. 

5Helmholtz [1856] pp. 497-540. The quadratic terms include the cross-product cos 2=ft cos (2·mift + </J), 
which is the superposition of(1 /2)cos [27T(m + n)ft + </>] and (1/2) cos [Z1r(m - n)ft - </>]. 

60n Bonn, cf. Helmholtz to Du Bois-Reymond, 5 Mar. 1858, in Kirsten et al. [1986]. On the aims of 
Hehnholtz's work on combination tones, cf. Turner [1977], Vogel [1993]. 
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4.1 .2 Organ pipes 
In 1 859, Helmholtz published in Crelle's mathematical journal a major memoir 'On the 
motion of air in open-ended organ pipes', with an appendix on spherical resonators. In the 
introduction, he recalled that the 'most important mathematical physicists', including 
Daniel Bernoulli, Euler, Lagrange, and Poisson, had dealt with organ pipes. All of them 
had simplified the conditions at the opening of the pipe, generally assuming a compression 
node there, and complete rest for the air outside the tube. This procedure only gave a first 
approximation of the true motion, and neglected the damping of the vibrations through 
sound emission. Moreover, it disagreed with Wertheim's frequency measurements, and it 
contradicted recent experimental determinations of the locations of the nodes.7 

In order to remedy these defects, Helmholtz grappled with the daunting problem of the 
motion of the air near the opening of the tube. He managed to determine the empirically 
interesting parameters of the sounding pipe-position of the nodes, frequency and inten
sity of the emitted sound, and phase relations-without simplifying this motion. The secret 
of this mathematical feast was a multiple application of Green's theorem, which was well 
known to the Germans since the publication of Green's Essay in Crelle's journal. With this 
theorem and a number of analytical tricks, Helmholtz not only solved a particular 
problem of acoustic importance, but he also inaugurated a general strategy for determin
ing relations between controllable aspects of wave propagation when the explicit solution 
of the wave equation is inaccessible. Gustav Kirchhoff's diffraction theory is a direct 
descendent of Helmholtz's paper on organ pipes; modern scattering theory or wave-guide 
theory are more remote ones.8 

Hehnholtz compared his theoretical formulas for node location and sounding frequency 
with measurements made by Wertheim and by Friedrich Zamminer. The agreement was 
reasonably good for wide tubes, but poor for narrow tubes for which it should have been 
best (since the theory presupposed a wavelength much larger than the opening). When be 
published his memoir, in 1 859, Helmholtz believed that the discrepancy could be explained 
by the known difference between the sounding frequency of blown pipes and their 
resonance frequency.9 

As was well known, friction broadens the response of a resonator to periodic excita
tions. In an organ pipe there is friction due to the viscosity of the air. The width of the 
resonance should increase with this friction, and therefore with the narrowness ofthe pipe. 
Helmholtz probably had in mind this effect of viscosity when he faced the failure of his 
theory for narrow tubes. His improved theory of 1 863, which we will consider shortly, 
established that viscosity implied both a broadening and a shifting of the resonance 
frequency of organ pipes. 

4.2 Vortex motion 

Helmholtz studied the general effects of internal friction on fluid motion in the same 
period, 1858/59, probably because he had in mind an application to organ pipes. In any 

7Helmho1tz [1859] pp. 303-7. 'cr. Darrigo1 [1998] pp. 7-10. 

9He1mho1tz [1859] pp. 314-15; Wertheim [1851]; Zamminer [1856]. 
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case, he knew that the viscosity of fluids could cause considerable deviations of experiment 
from theory. Being unaware of previous mathematical studies of this problem by Poisson, 
Navier, Saint-Venant, and Stokes, he proceeded to 'define the influence [of friction] and to 
find methods for its measurement'. In his opinion, the most difficult aspect of this problem 
was to gain an 'intuition of the forms of motion that friction brings into the fluid'. Such 
was the motivation of his memoir of 1 858 on vortex motion. 10  

4.2.1 Fundamental theorems 
As Helmholtz knew from Lagrange, when an incompressible, non-viscous fluid is set into 
motion by forces that derive from a potential or by the motion of immersed solid bodies, a 
potential exists for the fluid velocity. Frictional forces never derive from a potential (for 
they are not conservative), and are therefore able to induce states of motion for which a 
potential does not exist. Helmholtz's first step was to study motions of this kind, inde
pendently of the forces that caused them. 

As Helmholtz explained without knowing of Stokes's earlier demonstration, the most 
general infinitesimal motion of the volume element of a continuous medium can be 
decomposed into a translation, three dilations along mutually-orthogonal axes, and a 
rotation around a fourth axis. In the case of a fluid, the infinitesimal rotation has the 
angular velocity oo/2, with 

00 = \7 X V. (4. 1 )  

Hence the mathematical condition for the existence of a velocity potential, 'V x v = 0,  can 
be interpreted as the absence of local rotation in the instantaneous motion of the fluid. 
Conversely, the absence of a velocity potential signals the existence of vortex motion in the 
fluid. 1 1  

Helmholtz next examined how the vortices evolved i n  time. For this purpose he wrote 
Euler's equation as 

8v I I - +  (v · 'V)v = - - 'VP - - 'V V, ar P P (4.2) 

where P is the pressure, p is the constant density, and V is the potential of external forces 
(for instance, gravitational forces). The continuity equation reads 

\7 · V =  0. (4.3) 

Applying the operation 'V x to Euler's equation, Helmholtz obtained the further equation 

000 er+ (v . 'V)oo = (oo . 'V)v, (4.4) 

10Helmholtz [1 858] p. 102. That this publication antedated that on organ pipes by a few months does not 
exclude the reverse chronology adopted here for their genesis. 

1 1Helmholtz [1858] pp. 104-8. In a letter he wrote to Moigno (quoted in Les mondes 17 (1868), pp. 577-8), 
Helmholtz named Kirchhoff [1882] (memoir on vibrating plates) as his source for the decomposition, Franz 
Neumann as Kirchhoff's source, and Cauchy as Neumann's probable source. Kirchhoff only used the principal 
dilations ([1882] pp. 246-7). Cauchy [1841] p. 321 introduced the 'rotation moyenne'. As was said in Chapter 3, 
Stokes [1849a] introduced the decomposition to prepare his derivation of the Navier-Stokes equation. 
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already known to d'Alembert and Euler. Helmholtz's brilliant innovation lay in the 
following kinematic interpretation.12 

The left-hand side of eqn (4.4) represents the rate of variation of the vector w for a given 
particle of the fluid moving with velocity v. Helmholtz first considered a particle for which 
the rotation w/2 vanishes at a given instant. Then eqn (4.4) implies that the rotation of this 
particle remains zero at any later time. In the general case, it may be rewritten as 

s dw = v(r + sw) dt - v(r) dt, (4.5) 

where dw is the variation of w on a given fluid particle during the time dt, and s is an 
arbitrary infinitesimal quantity of second order. In order to interpret this relation, Helm
holtz considered two fluid particles located at the points r and r + sw at time t. At time 
t + dt, the first particle has moved by v(r)dt and the second by v(r + sw) dt. According to 
eqn (4.5), the two new locations are separated by sw + sdw, which is parallel to the new 
rotation vector.13 

For a more intuitive grasp of this result, He!mholtz defined 'vortex lines' that are 
everywhere tangent to the rotation axis of the fluid particles through which they pass, 
and 'vortex filaments' that contain all the vortex lines crossing a given surface element of 
the fluid. As a first consequence of eqn ( 4.5), two particles of the fluid that belong to the 
same vortex line at a given instant still do so at any later time. In other words, vortex lines 
follow the motion of the fluid. Equation (4.5) also implies that, during the motion of the 
fluid, vortex filaments stretch in the same proportion as the rotational velocity varies. 
Since the fluid is incompressible, this longitudinal stretching implies a sectional shrinking 
in inverse proportion. In other words, the product w · dS of a section of the filament by 
twice the amount of rotation in this section remains the same during the motion of the 
fluid.14 

Lastly, this product is the same all along a given filament. In order to prove this, 
Helmholtz integrated the vector w across the closed tubular surface delimiting a piece of 
vortex filament. This integral is equal to the difference of the products w · dS taken at the 
two extremities of the piece; and it is also equal to the integral of 'l · w over the volume of 
the piece, which is zero following the definition of w.15 

In summary, vortex filaments are stable structures of the fluid. The product of the 
rotation by the section of a filament, which Helmholtz called 'intensity', does not vary in 
time, and is the same all along the filament. From the latter property, Helmholtz concluded 
that vortex filaments could only be closed on themselves or end at the limits of the liquid. 16 

A striking feature of Helmholtz's demonstration of these theorems is the intimate 
association of analytical relations with geometrical representations. In nineteenth-century 
physics, this quality seems more typically British. In fact, Stokes, Thomson, and James 

12Helmholtz [1858] pp. 1 1 0-11. For d'Aiembert's anticipation, see Chapter I, p. 20. 

13Ibid. pp. 1 1 1-12. 

14Ibid. pp. 1 02-3, 1 12-13. 'Vortex lines' and 'vortex filaments' are Tait's translations for ' Wirbellinien' and 
' Wirbelfaden', cf. Tait to Helmho1tz, 22 Apr. 1967, HN. 

15He1mholtz [1858] pp. 1 1 3-14. 

16Ibid. p. 1 14. The latter conclusion is only true in topologically-simple cases (cf. Epple [1998] pp. 313-14). 
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Clerk Maxwell anticipated some elements of Helmholtz's reasoning. In 1 845, Stokes 
introduced the decomposition of the instantaneous motion of an element of fluid into 
translation, dilations, and rotation, and gave the analytical expression for the rotation. In 
1 849 and for magnetism, Thomson defined 'solenoidal' distributions of the magnetic 
polarization M for which the relation \7 · M = 0 holds; and he decomposed the corre
sponding magnets into elementary tubes, as Helmholtz later decomposed vortex motion 
into vortex filaments. In his memoir 'On Faraday's lines of force', published in 1 855/56, 
Maxwell defined 'tubes of force' in a manner quite similar to Hehnholtz's definition of 
vortex filaments. As a friend ofThomson's, Helmholtz may have been partly aware of this 
British field geometry. 

4.2.2 The electromagnetic analogy 
The British outlook on Helmho1tz's paper is also evident in the next section concerned 
with the inverse problem of determining the velocity of the fluid when the distribution of 
the vorticity oo is known. Helmholtz sought the solutions of the equations V' x v = oo and 
\7 · v = 0 in the form 

V = V' <p + V' X A. (4.6) 

The potential <p satisfies the equation !!.cp = 0 in the fluid mass, and the vector A satisfies 

\7(\7 · A) - !!.A = oo. (4.7) 

Helmholtz wanted to retrieve the simpler equation !!.A = -oo, which makes the compon
ents of A the potentials of fictitious masses measured by the components of ooj41T. This is 
immediately possible if all the vortex filaments of the fluid are closed, since the vector 
potential 

1 J oo(r') , 
A(r) = 

41T lr - r' l 
dr (4.8) 

then satisfies \7 · A = 0. In the general case, for which some vortex filaments abut on the 
surface of the liquid, Hehnholtz prolonged the filaments beyond the real liquid so that they 
all became closed, which brought him back to the previous, simpler problem.17 

Applying the operation V'x to the expression (4.8) for the potential A, Hehnholtz 
recognized the Biot-Savart formula of electromagnetism: the fluid velocity corresponding 
to a given distribution of vorticity oo is exactly like the magnetic force produced by the 
electric-current distribution oo. Helmholtz abundantly exploited this analogy, which gave 
him a direct intuition for the fluid motion around vortices. 18 

Similar reasoning is easily identified in British sources. In his memoir on diffraction of 
1 849, Stokes introduced the decomposition ( 4.6) to determine a vector from its curl. In 'On 
Faraday's lines of force' (1 855), Maxwell applied this method to the determination of the 
magnetic field H generated by the current j. His starting-point was the equation 
\7 x H = j, which he had obtained by studying the geometry of the magnetic field around 
a current loop, and which corresponds to Helmholtz's \7 x v = oo. 

17Helmholtz [1 858] pp. l l4-1 17. 18/bid. pp. JJ7-[8. 
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The recourse to an analogy between electromagnetism and continuum mechanics was 
also a British specialty, inaugurated by Thomson. There is an interesting difference, 

however. Whereas Thomson and Maxwell used such analogies to shed light on electro
magnetic phenomena and structure their theories, Helmholtz did the reverse. He used 
electromagnetic action at a distance, which was most familiar to him, for a better under
standing of the motions of a mechanical continuum. This inversion explains why he did 

not mention that his analogy between electromagnetism and vortex motion led to the field 

equation V' x H = j, which was unknown on the Continent. 
Lastly, Helmholtz shared the British engagement in energetics, of which Thomson and 

himself were the main founders. For the ideal fluid on which Helmholtz reasoned, the 

kinetic energy 

(4.9) 

is invariable if the walls do not move, because external forces deriving from a potential 
cannot perform any work on an incompressible fluid. If, in addition, the vortex motion 

occurs very far from the walls, recourse to eqn (4.6) and integration by parts yield 

T = � J pw · A  dT. (4. 10) 

Helmholtz exploited the invariance of this integral in his subsequent discussion of the 

interactions between two vortices. 19 

4.2.3 Vortex sheets, lines, and rings 
In the last section of his memoir, Helmholtz applied his general theorems and analogies to 

simple cases of vortex motion in an infinite fluid. The most trivial case is that of a uniform, 
plane vortex sheet. The incompressibility of the fluid implies that the normal velocity of 
the fluid should be the same on both sides of the sheet, while the equation V' x v = w 
implies a discontinuity ew of the tangential velocity if w represents the average intensity of 

the vorticity within the sheet and e is the infinitesimal thickness of the sheet. Within the 

sheet the fluid moves at a velocity intermediate between the velocities on both sides. Since 
vortex lines follow the motion of the fluid of which they are made, the sheet must move at a 

velocity which is the average of the fluid velocities on both sides. 20 

As we will see shortly, this special example of vortex motion played an essential role in 
Helmholtz's later hydrodynamics, at least because it showed that tangential discontinuities 

of the fluid motion were compatible with Euler's equations. Earlier investigators usually 
assumed the existence of a velocity potential, and thus excluded finite slips in the flow. 

Helmholtz not only demonstrated the mathematical existence of such solutions, but also 
indicated a way to realize them, namely, by bringing together two masses of liquid moving 
at different, parallel velocities. 21 

19Helmholtz [1858] pp. 123-4. 20/bid. pp. 121-2. 

21/bid. p. 122. As will be shown in Chapter 5, pp. 185-6, Stokes repeatedly considered discontinuities of 
Helmholtz's type (already in Stokes [1 842]), but never developed their analysis very far. 
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The next simple case of vortex motion is that of a single, rectilinear vortex filament. For 
symmetry reasons the filament must remain in a constant position. According to the 
electromagnetic analogy, the fluid rotates around the filament at a linear velocity inversely 
proportional to the distance from the filament. The next case considered by Helmholtz is 
that of two parallel rectilinear filaments with the intensities i1 and i2. The corresponding 
fluid velocity is the superposition of the velocities due to each filament. The velocity of the 
fluid in the first filament is equal to the rotation due to the second, and vice versa. As the 
filaments must move with the velocity of the fluid of which they are made, their mutual 
influence results in a uniform rotation around their barycenter for the masses i1 and i2•22 

The case of a vortex ring is more complex, because the velocity imparted on the vortex 
by the vortex itself no longer vanishes. The rings must have a finite section for this self
interaction to remain finite. Using elliptic integrals, energy conservation, and barycentric 
properties, Helmholtz proved that a single circular ring must move along its axis without 
sensible change of size, in the direction of the flow at the center of the ring. When the 
section of the ring becomes infinitely thin, this velocity diverges logarithmically.23 

When two rings are present, they are also subjected to the fluid velocity imparted by the 
other ring. Let us start, for instance, with two identical rings that have the same axis. 
Initially, they travel along this axis with the same velocity. The front ring, however, must 
widen under the effect of the other ring, and the back ring must shrink. Since wider rings 
travel slower, the back ring catches up with the front ring after a while. Then the size 
variations are inverted, and the relative motion slows down until the two rings are again of 
the same size, which brings us back to the initial configuration. In summary, the rings pass 
alternately through each other (see Fig. 4.2).24 

Helmholtz indicated how to observe this dance of the vortex rings with a spoon and a 
calm surface of water. Immersing the spoon vertically and withdrawing it quickly creates a 
half vortex ring, whose two ends form small dips on the water surface. As anyone can 
verify, these rings do behave as Helmholtz says. Most impressive is the contrast between 
the simplicity of this experiment and the sophistication of the motivating physico
mathematical analysis.25 

4.2.4 German approbation, British enthusiasm, and French suspicion 
Helmholtz's memoir on vortex motion is now universally regarded as the historical 
foundation of this subject. It quickly captured the attention of eminent German math
ematicians and physicists. In 1 859, the Berlin mathematician Rudolph Clebsch recovered 
Helmholtz's theorems by variational methods. In 1 860, Bernhard Riemann noted the 
relation between Helmholtz's theorems and his and Dirichlet's solutions for the problem 
of the rotating-fluid ellipsoid. The Gottingen Ac�demy offered a prize for a Lagrangian 
deduction of these theorems, which Hermann Hankel won in 1861 .  Helmholtz's memoir 
provided the substance for two of Kirchhoff's famous lectures on mechanics.Z6 

22Helmholtz [1858] pp. 124-7. 23Jbid. pp. 127-33. 24Jbid. p. 133. 25Jbid. p. 134. 

26Clebsch [1859]; Riemann [1860]; Hankel [1861]; Kirchhoff [1876] lectures 15, 20. In manuscript fragments 
(HN, in #679 and #680), Helmholtz discussed various aspects of vortex motion, namely invariants, stability, and 
friction. 
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and Matsui [1978]. Courtesy of Prof. 
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In Britain, Thomson, Maxwell, and Peter Guthrie Tait found Helmholtz's reasoning 

highly congenial. Tait's enthusiasm for Hamilton's quatemions arose when he realized, at 

the end of I 858, how well suited they were to Helmholtz's decomposition of fluid motion. In 
1867, he published a translation of Helmholtz's memoir and built a 'smoke box' with an 

elastic membrane on one side and a hole on the other, with which he could produce 

spectacular shows of vortex rings and verify Helmholtz's predictions (see Fig. 4.3).27 In a 

letter to Helmholtz written in January 1 867, Thomson described his friend's smoke box and 

his own speculations on vortex-ring atoms, which were soon to be published in the 
Philosophical magazine. In July 1 868, Tait announced to Helmholtz that Maxwell, 'one 

of the most genuinely original men I have ever met', had taken up vortex motion and 

proved that 'two closed vortices act on one another so that the sum of the areas of their 
projections on any given plane remains constant.' He also mentioned that the forthcoming 

Transactions of the Royal Society of Edinburgh would be rich in papers on this subject.28 

The most important of these papers was a long, highly-mathematical memoir by 

William Thomson. There he developed Helmholtz's hints on topological aspects offluid 

motion, and provided alternative proofs of his theorems based on the invariance of the 

integral § v · dl over any circuit that follows the motion of the fluid. This invariance follows 

from the fact that the Lagrangian time derivative of the form v · dr, namely 

d dv (1 2) dP 
-(v · dr) = v · dv + - · dr = d -v + g · dr - 
dt dt 2 p ' ( 4. 1 1) 

is an exact differential for a perfect liquid in the gravity g. Through Stokes's theorem (of 
which Thomson was the true discoverer), this result contains the invariance of the product 
w · dS which is the essence of Helmholtz's laws of vortex motion. As Thomson knew, the 

reverse is not always true, because the volume occupied by the fluid may not be simply 

Fig. 4.3. Tail's smoke box. From Tait [1876] p. 292. 

27Tait to Hamilton, 7 Dec. 1858, quoted in Knott [1911] p. 127; He1mholtz [1867]; Tait [1876] p. 292 (smoke 
box). A similar device had already been described in Reusch [1860]. Beautiful experiments on vortices in air and in 
liquids are also found in Rogers [1858]. These experimenters were primarily interested in the production of vortices 
and were not aware of Helmholtz's predictions. 

28Thomson to Helmholtz, 22Jan. 1867, HN; Thomson [1867]; Tait to Helmholtz, 28 July 1868, HN. In a letter 
of2 May 1859 (HN), Thomson thanked Helmholtz for his memoir, which he had read 'with very great interest' 
before 'falling into the vortex of [his] winter's work'. In 1866, Maxwell set Hehnholtz's hydrodynamic theorems as 
a question to the Cambridge Mathematical Tripos (cf. Maxwell (1990] vol. 2, p. 241). On Thomsen's vortex atom, 
cf. Silliman [1963], Smith and Wise [1989] chap. 12, Kragh [2002], and the discussion in Chapter 5, pp. 191-7. 
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connected. Maxwell and Tait examined the topological issues raised by Thomson, and 
obtained important results of the theory of knots.29 

Thomson had long dreamt of a world made entirely of motions in a pervasive, ideal 
fluid. In this view, every form of energy was of kinetic origin. Every force had to be traced 
to dynamical effects, as fluid pressure had been reduced to molecular collisions. The 
rigidity of the ether with respect to light vibrations was to be explained in terms of the 
inertia of small-scale motions of the primitive fluid. The permanence of atoms and 
molecules was to be understood as the stability of special states of motion. Helmholtz's 
theorems, applied to vortex rings, and Thomson's further topological considerations 
seemed to offer a rigorous basis for developing this program.30 

Yet, in the middle of writing his memoir on vortex motion, Thomson went through a 
few weeks of despair: 'It is a pity', he then wrote to Tait, 'that H2 [Hermann Helmholtz in 
Maxwell's notation] is all wrong and that we all dragged so deep in the mud after him.' The 
cause of this lament was a criticism published by the eminent mathematician and acad
emician Joseph Bertrand in the Comptes rendus of the French Academy of Sciences.31 

Bertrand rejected Helmholtz's interpretation of (1/2)\7 x v as the rotation velocity of 
the elements of the fluid. Many cases of motion, Bertrand showed, could be reduced to 
three dilations of the fluid elements along three oblique axes. Although, intuitively, such 
motions involve no rotation, the corresponding \7 x v vanishes only when the three axes 
are orthogonal. From this remark, Bertrand concluded that the integrability of v · dl could 
not be identified with the absence of rotation. The consequences were devastating: 'Des
pite his very deep knowledge of mathematics, the author has committed a slight inadver
tence at the beginning of his memoir that mars all his results by making him attach a quite 
excessive importance to the integrability condition [\7 x v = 0].'32 

Helmholtz promptly replied that the rule according to which one decomposes a complex 
motion into simpler ones was to some extent arbitrary. The decomposition of the motion 
of a fluid element into three orthogonal dilations and a rotation (also a global translation) 
is one possibility; that into three oblique dilations (with real or imaginary axes) is another. 
Although the former choice seems to contradict the geometrical intuition of a rotation, it is 
the only one suited to fluid dynamics, because the angular momentum of the elements of 
fluid is determined by a rotation defmed in this sense. Helmholtz added that his usage of 
'rotation' was not new and could be found in Kirchhoff's memoir on vibrating plates.33 

The source of the conflict is clear. On one side, Helmholtz and Kirchhoff (also Stokes 
and Thomson) adjusted their geometrical and kinematic concepts to the needs of dynam
ics. On the other, Bertrand refused to let physical arguments control his geometrical 
intuition. His first reaction to Helmholtz's rebuttal was to give a 'decisive example' of 
fluid motion that allegedly contradicted Helmholtz's definition of rotation: the fluid 
moves uniformly in planes parallel to the Oxy plane, with a velocity increasing linearly 

29Thomson [1869]. On Thomson's, Tait's, and Maxwell's contributions to topology, cf. Epple [1998]. On the 
origin of Stokes's theorem, see SMPP 5, pp. 320-1. 

30Cf. Smith and Wise [1989] chap. 12. 
31Thomson to Tait, !I July 1868, quoted by Harman in Maxwell [1990] vol. 2, 399n; Bertrand [! 868a]. 

32Bertrand [1868a] p. 1227. 
33Helmholtz [1868a]. Helmholtz referred to Stokes's earlier analysis in his next reply to Bertrand. 
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with the coordinate z. According to Helmholtz's definition, this case involves a constant 
rotation of the fluid elements, against Bertrand's intuition of their motion. 34 

More came to irritate Bertrand. In a note to the Comptes rendus, Saint-Venant sided 
with Helmholtz and referred to Cauchy's earlier interpretation of (1/2)\7 x v as the 
'average rotation' of the fluid particles. In reaction, Bertrand insisted that Helmholtz's 
memoir contained false theorems as well as an aberrant definition of rotation. For 
example, he denied that the velocity field could be determined from the vorticity field in 
Helmholtz's manner, because the potential cp of eqn (4.6) indirectly depended on the 
vorticity, through the boundary conditions (for example, the tangential component of 
\7 cp along the fixed walls of the fluid must be opposed to the tangential component 
of \7 x A, which depends on the vorticity).35 

This criticism was slightly more embarrassing to Helmholtz, because he had not dis
cussed the nature of the \i'cp contribution to the velocity field. In his reply, he claimed that 
he had been aware that this contribution in general depended on the vorticity, but had 
nevertheless ignored it because the harmonic character of the function cp severely restricted 
its form. In particular, it vanished whenever the fluid mass could be regarded as infinite 
(and the fluid motion did not extend to infinity). All the special cases of motion treated in 
his paper were of that kind or could be brought back to it. 36 

In this second note, Helmholtz's tone was far less deferential than in the first; he accused 
Bertrand of disfiguring his theorems, and used mildly ironic phrases such as 'J'invite mon 
savant critique a se rappeler que . . .  '. To make things worse, in his journal Les mondes, 
the xenophilic Abbot Moigno ridiculed Bertrand's attitude: 'While M. Bertrand persists 
in his inconsiderate criticism, he now wraps it in so many polite words and insistent, 
eloquent praises that any intelligent reader can conclude that he is certainly wrong.' 
In his final note, Bertrand protested his sincerity and intellectual honesty. He accused 
Moigno of giving a poor idea of French manners and Helmholtz of believing him. In 
the next issue of Les mondes, Moigno retorted: 'We have perfectly felt the coups de griffe 
which [M. Bertrand) gave us in his bad mood. If he maintains his jest in the Comptes 
rendus, we will have no pain to prove that of the great Academician and the humble 
abbot, the most serious is not the one he thinks.' More diplomatically, Helmholtz 
apologized for having used phrases that could lead to misinterpretations of his true 
intentions. 37 

Bertrand's attack was only a minor and ephemeral threat to Helmholtz's theory. 
Thomson quickly regained his faith in it. Between Helmholtz's first reply and Bertrand's 
second assault, he suggested to Tait that they should together write a letter to the French 
Academy to support Helmholtz. Tait preferred to let Helmholtz 'smash [Bertrand] in his 
own way'. Maxwell, who heard of 'Bertrand's refutation' through Thomson, declared 
himself completely confident in the truth of Hehnholtz's theorems and continued explor
ing their consequences. In the following years, these theorems became standard knowledge 
and found applications to diverse cases of fluid motion, from Thomsen's primitive world-

34Bertrand [1 868b]. 

36Helmholtz [1868b]. 

35Saint-Venant [1868b]; Bertrand [1868c]. 
31lbid.; Moigno [J868b]; Bertrand [1868a]. Helmholtz [1868c]. 
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fluid to the atmosphere. Reviewing in 1881  the progress of hydrodynamics, the British 
theorist William Hicks wrote:38 

During the last forty years, without doubt, the most important addition to the theory 
of fluid motion has been in our knowledge of the properties of that kind of motion 
where the velocities cannot be expressed by means of a potential . . .  Helmholtz first 
gave us clear conceptions in his well-known paper [on vortex motion]. 

4.2.5 Friction 
As already mentioned, Helmholtz studied vortices in ideal fluids as a step toward including 
internal friction, which implies this kind of motion. We saw in the previous chapter how, in 
August 1 859, he rediscovered the Navier-Stokes equation and used it in the analysis of the 
experiments he conducted with his student Piotrowski on the damping of the oscillations 
of a hollow metallic sphere filled with a viscous fluid. 39 

In 1 869, Helmholtz returned to viscous fluids in a physiological context. Another of his 
students, Alexis Schklarewsky, had performed experiments on the motion of small sus
pended particles in capillary tubes, probably with blood circulation in mind. He found that 
the particles moved toward the axis of the tube, in contradiction with a theorem estab
lished by Thomson in the case of non-viscous fluids. The anomaly prompted Helmholtz to 
study stationary fluid motion for which the viscous term of the Navier-Stokes equation 
dominates the nonlinear term. Thus he derived the important theorem according to which 
the real motion is that for which the frictional energy loss is a minimum (for fixed 
boundary conditions). Although the result turned out to be irrelevant to Schklarewsky's 
experiments, for which the quadratic terms were non-negligible, the combination of 
energetic and variational principles became an important trait of Helmholtz's theoretical 
style, as it already was in recent British natural philosophy. The appeal of this method was 
that it determined general properties of physical systems without entering inaccessible or 
non-computable structural details.40 

From an empirical point of view, Helmholtz's most successful discussion of the effects 
of viscosity concerned organ pipes. In 1 863, he explained the leftover discrepancy between 
his earlier calculation of the resonance frequency of open pipes and Zamminer's wave
length measurements. The inclusion of the internal friction term in the equation of motion 
of the air diminished the propagation velocity in the required proportion. It also explained 
why the resonance of narrow tubes was not sharp, even though wave reflection at their 
open end was more perfect. Helmholtz further determined the radius of the tube for which 
the sum of viscous and radiation damping was minimal and the resonance was sharpest. 
This radius is a function of the length of the tube and the mode of resonance. As the 
excitation of a given mode of oscillation by the air from the bellows depends on the 
sharpness of the corresponding resonance, so does the timbre of the emitted sound. 'Most 
surprisingly', Helmholtz found that his condition of sharpest resonance justified an 
empirical rule discovered a century earlier by the celebrated organ-maker Andreas Si!ber-

38Tait to Helmholtz, 3 Sept. 1868, HN; Hicks [1882] 63 (quote), pp. 63-8 (detailed review of works on vortex 
motion until l 881). 

39See Chapter 3, p. 144. ""Helmholtz [1869]. 
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mann, namely, that, for the timbre of a stop to be uniform, the width of the pipes has to 
decrease with their length, by one-half for the ninth.41 

4.3 Vortex sheets 

Helmholtz had not yet exhausted the problem of organ pipes. In a real organ pipe, such as 
that shown in Fig. 4.4, the sound is produced by blowing air through the slit cd against the 

Fig. 4.4. Organ pipes. From Helmholtz [1877] p. 149. 

41Helmholtz [1863b]. Helmholtz only published the results. The full reasoning and calculations are in a long, 
difficult manuscript ('Die Bewegungsgleichungen der Luft', HN, #582) which Helmholtz intended for publication 
in JRAM. 
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'lip' ab. Helmholtz wondered by what mechanism this continuous air stream could 
produce an oscillatory motion in the tube. If, he reasoned, the motion of the air in the 
mouth of the tube admits a velocity potential, then this motion should be the same as the 
flow of an electric current in a uniformly-conducting medium that replaces the air. 
However, the latter motion is known to be smooth, steady, and progressive, without the 
oscillations observed in the acoustic case.42 

Helmholtz knew other cases of fluid motions that looked very different from electric flow. 
As he had seen while expelling smoke with a bellow or by blowing air across a candle flame, 
when air flows into a wider space through a sharply-delimited opening, it forms a compact 
jet that gradually spreads into vortices (see Fig. 4.5), whereas electricity would flow in every 
direction. He did not regard internal friction as a plausible explanation for this phenom
enon, for he believed it could only smooth out the flow. Instead, he turned his attention to the 
tangential discontinuities of motion that he knew to be possible in a non-viscous fluid.43 

4.3 .1  Discontinuous motion 
Hydrodynamicists had generally assumed the continuity of velocity, which the differential 
character of Euler's equations seemed to require. The only exception was Stokes, in brief 
suggestions for solving paradoxes of fluid motion (see Chapter 5). Helmholtz arrived at his 
concept of discontinuity surfaces independently, through his study of vortex motion. As 

Fig. 4.5. Smoke jets, with (a) spontaneous instability, and (b) sound-triggered instability. From Becker and 
Massaro [1968]; plate 1. Courtesy of Henry Becker. 

42Helmholtz [1868dj p. 147. 43 Ibid. pp. 146-50. 



VORTICES 161  

we saw earlier, a thin vortex sheet implies a discontinuity of the parallel component of the 
velocity. Conversely, any possible discontinuity is reducible to a vortex sheet. Helmholtz 
used this representation to derive some basic properties of discontinuity surfaces.44 

According to one of Helmholtz's theorems on vortex motion, the vortex filaments of the 
sheet must move together with the fluid particles. Let, for instance, the fluid move with the 
velocity v on one side of a plane and be at rest on the other side. Within the sheet the fluid 
moves on average with the velocity v/2. Therefore the sheet must move paraUel to itself 
with the velocity vj2. The vortex-sheet picture also gives an immediate intuition of the 
effects of viscosity on a discontinuity surface. By internal friction, the rotating particles of 
each vortex filament gradually set into rotation the neigh boring particles. Consequently, 
the sheet grows into a row of finite-size whirls.45 

Most importantly, surfaces of discontinuity are highly unstable. Helmholtz referred to 
experiments by his friend John Tyndall that showed the astonishing sensitivity of a jet of 
smoky air to sound waves. 'Theory', Helmholtz went on, 'allows us to recognize that 
wherever an irregularity is formed on the surface of an otherwise stationary jet, this 
irrregularity must lead to a progressive spiral unrolling of the corresponding portion of 
the surface, which portion, moreover, slides along the jet.' This peculiar instability of 
discontinuity surfaces was essential to Helmholtz's uses of them. Yet Helmholtz never 
explained how it resulted from theory. The behavior of discontinuity surfaces under small 
perturbations is a difficult problem which is still the object of mathematical research. As 
can be judged from manuscript sources, Helmholtz probably used qualitative reasoning of 
the following kind.46 

Consider a plane surface of discontinuity, with opposite flows on each side. In this case, 
the velocity field is completely determined by the corresponding vortex sheet. Let a small 
irrotational velocity perturbation cause a protrusion of the surface. The distribution of 
vorticity on the deformed surface is assumed to be approximately uniform. Then the 
curvature of the vortex sheet implies a drift of vorticity along it, at a rate proportional 
to the algebraic value of the curvature. Indeed, at a given point of the vortex sheet the 
velocity induced by the neighboring vortex filaments is the vector sum of the velocities 
induced by symmetric pairs ofneighboring filaments, and each pair contributes a tangen
tial velocity as shown in Fig. 4.6(a). Consequently, vorticity grows around the inflection 
point on the right-hand side of the protrusion, and diminishes around the inflection point 
on the left-hand side of the protrusion (see Fig. 4.6(b) ). The excess of vorticity on the 
right-hand slope induces a clockwise, rotating motion of the tip of the protrusion (see 
Fig. 4.6(c)). The upward component of this motion implies instability. The rightward 

44Discontinuous motions are not possible in the (stationary) electric case because the current is irrotational in a 
uniform conductor. Helmholtz may already have been working on discontinuous fluid motion in 1862, for at that 
time he asked Thomson about the potential near a 'Kante', which was relevant to Helmholtz's argument for the 
formation of discontintuities (Thomson to Helmholtz, 29 Nov. 1862, HN). 

45Helmholtz [1868d] pp. 15 1-2. 
46Ibid. pp. 152-3. For a recent, mathematically advanced study of this problem, cf. Caflisch [1990]. Helm

holtz's relevant manuscripts are 'Stabilitiit einer circulierenden Trennungsfliiche auf der Kugel' (HN, in #681), 
'Wirbelwellen' (HN, in #684), and calculations regarding a vortex sheet in the shape of a logarithmic spiral (HN, 
in #680). 
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Fig. 4.6. The growth of a protuberance on a vortex sheet. 

component initiates the spiraling motion observed in actual experiments (see Fig. 
4.6(d,e)).47 

Helmholtz described physical circumstances under which the discontinuous motion 
necessarily occurred. According to Bemoulli's theorem, the pressure of a fluid particle 
diminishes when its velocity increases, by an amount proportional to the variation of its 
kinetic energy. Therefore, wherever the velocity of the fluid exceeds a certain upper limit, 
the pressure becomes negative and, according to Helmholtz, the fluid must be 'tom off'. 
This necessarily happens when the fluid passes a sharp edge, for the velocity of a continu
ous flow would be infinite at the edge. For a smoother edge, the discontinuity occurs above 
a certain velocity threshold. 48 

4.3.2 Coriformal mapping 
In the final section of his paper, Helmholtz managed to solve exactly a case of two
dimensional, discontinuous motion. The complex-variable method he used in this context 
was so influential that a digression on its origins is in order. 

As we saw in Chapter I, in his memoir of 1749 on the resistance of winds, d'Alembert 
ingeniously noted that for a two-dimensional flow the two conditions 

and 

fJu &v 
- +- = 0 (incompressible flow) ox oy 

&v 
-

ou = 0 (irrotational flow) ox oy 

(4. 12) 

(4. 13) 
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were equivalent to the condition that (u - iv)(dx + i dy) be an exact differential. In an 
Opuscule of 1761 ,  he introduced the complex potential cp + i!fr such that 

(u - iv)(dx + i dy) = d(rp + i!fr). (4. 14) 

The real part cp of this potential is the velocity potential introduced by Euler in 1 752. As 
d' Alembert noted, its imaginary part if! verifies 

d!fr = -V dx + U dy, (4.1 5) 

and is therefore a constant on any line of current. This is why it is now called the 'stream 
function'. 49 

The first beneficiary of d' Alembert's remarks was Lagrange, in a theory of the con
struction of geographical maps. In order that infinitesimal figures drawn on a map (x, y) 
should be similar to their representation on another map ( u, v ), an infinitesimal displace
ment on one map must be related to an infinitesimal displacement on the other through 
relations of the form 

du = a  dx - f3 dy, dv = f3 dx + a  dy. (4. 16) 

In this stipulation, Lagrange recognized d' Alembert's conditions ( 4.12) and ( 4. 13) for 
(u - iv)( dx + i dy) to be an exact differential, and thus reduced the problem of conformal 
mapping to taking the real part of any regular function of the complex variable. This is 
why such functions are now called 'conformal transformations'.50 

In general, d'Alembert's remarks indicate that a function (x, y) -> (u, - v) can be 
expressed as a regular function of the complex variable if and only if it satisfies the 
conditions (4. 12) and (4.13). These conditions are in turn equivalent to the existence of a 
(holomorphic) complex potential 'P + i.p such that u = ocpjox = oif!Joy and 
v = ocpjoy = -8.pjox. They are now called the Cauchy-Riemann conditions, because 
Augustin Cauchy and Bernhard Riemann exploited them in their beautiful theories of 
functions in the complex plane. Physicists were initially less receptive. In a mathematical 
study of incompressible fluids of 1 838, Samuel Earnshaw gave the general integral of 
Acp = 0 as cp = f(ax + {3y) + g(ax -{3y) with a2 + {32 = 0, and cp = In r and cp = e as 
particular solutions; but he did not introduce the stream function or the complex potential. 
In 1 842, Stokes introduced the stream function as a way of solving the incompressibility 
condition ( 4.12), but he did not appeal to complex functionsY 

Helmholtz was the first hydrodynamicist to take full advantage of d' Alembert's mar
velous discovery. His reading of Riemann's dissertation of 1861 may have alerted him to 
the tremendous power of the theory of complex functions. In his lectures on deformable 

47 A more precise argument of the same kind is given in Batchelor [1967] pp. 51 1-17. 
48Helmholtz [1868d] pp. 149-50. Negative pressure, or tension, is in fact possible as a metastable condition of 

an adequately prepared fluid: cf. Reynolds [1878] and earlier references therein. 
49D'Alembert [1752] pp. 60--2, [1761] p. 139. See Chapter I, pp. 21-2. 
50Lagrange [17791. 
51Earnshaw [1838] pp. 207-12; Stokes [1842] p. 4. Lagrange ([1781] p. 720) also introduced t/J, but without the 

geometrical interpretation. 
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media, Amold Sommerfeld reports that, during a vacation in the Swiss Alps, the Berlin 
mathematician Karl Weierstrass asked Helmholtz to take a look at Riemann's disserta
tion, for he could not make sense of it. Helmholtz found it very congenial, presumably 
because Riemann's considerations had their roots in the study of physics problems. Also, 
Hehnholtz's idea of characterizing potential flow through singular surfaces of discontinu
ity has some similarity with Riemann's program of characterizing analytic functions 
through their singularities in the complex plane. 52 

As suggested by d'Alembert, Helmholtz reduced the solution of his problem of two
dimensional flow to the search for a complex potential that was a holomorphic function of 
the variable x + iy. This potential (unlike its derivative u iv) satisfies a simple boundary 
condition, namely that its imaginary part, the stream function, must be a constant along 
the frontier of an immersed solid and along a line of discontinuity. It must, of course, be 
singular on the lines of discontinuity, the form of which is not a priori given. Helmholtz 
astutely started with a simple analytic form of the inverse function cp + ilj! -+ x + iy, so that 
geometricaily simple boundary conditions could be imposed on the flow. 53 

Helmholtz first tried the simple form 

(4. 17) 

with z = x + iy and w = cp + iifr. This gives x = A(cp e") and y = ±A7T for ifr = ±7T, so 
that the two parailel, interrupted straight lines defined by x :S - A and y = ±A7T can be 
regarded as wails along which the fluid is constrained to run. Consequently, eqn (4. 17) 
expresses the motion of a liquid flowing from an open space into a canal bounded by two 
thin parallel walls. At the extremities of these walls, for which cp = 0, the fluid velocity is 
easily seen to diverge. Helmholtz modified the expression ( 4.17) so that the lines of current 
ifr = ±7T run along the outer walls of the canal (from the left) and become discontinuity 
surfaces after passing the extremity of the walls. The condition of constant pressure on 
these surfaces led him to the not-so-simple expression 

z = A(w + ew) + A J )2ew + e2w dw, (4. 18) 

which gives the flow shown in Fig. 4.7. As Kirchhoff later remarked, the dead water may 
be replaced by air without altering the boundary solutions. With this modification, 
Helmholtz's flow represents the jet formed by water issuing from a large container through 
a so-called Borda mouthpiece. The contraction of the fluid vein is exactly one-half, as 
Charles de Borda had proved a century earlier by balancing the momentum flux of the jet 
with the resultant of the pressures on the wails of the container. 54 

Helmholtz's amazing exploitation of complex numbers quickly attracted the attention 
of contemporary physicists. Gustav Kirchhoff and Lord Rayleigh soon derived other 
cases of discontinuous, two-dimensional motion by Helmholtz's method. Kirchhoff 
dealt with free fluid jets, such as those emerging from a water nozzle. He also solved the 

52Sommerfeld [1949] p. 135 (Sommerfeld got the anecdote from Adolf Wiillner). 
53Helmholtz [1 868d] pp. 153-7. 

54 Ibid.; Kirchhoff [1869]; Borda [1766]. On Borda's reasoning, cf. Truesdell [1955] pp. LXXIII-LXXV. 
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-

-

Fig. 4.7. Helmholtz's discontinuity surface (thin line) for the flow (arrows) from an infinite container into a 

pipe (thick lines). From Kirchhoff [1869] p. 423. 

problem of a plane blade immersed obliquely in a uniform flow. Rayleigh did the same and 
calculated the dragging force of the fluid on the blade. Between the lines of discontinuity 
issuing from the edges of the blade, the fluid remains at rest, so that the pressure on the 
rear side of the plate is smaller than that on the front. Rayleigh thus offered a new escape 
from d' Alembert's paradox. 55 

Helmholtz believed his short paper on discontinuous fluid motion to be 'of great 
importance,' no doubt because it filled some of the gap between the fundamental equa
tions of hydrodynamics and the fluid motions observed in nature. He regarded the 
surfaces of discontinuity and their spiral unrolling as basic features of flow around solid 
obstacles. His contemporaries were divided on this issue. As we will see in the next chapter, 
Stokes shared Helmholtz's view that discontinuous flows correctly schematized the be
havior ofnearly-inviscid fluids. William Thomson, despite his friendship with Helmholtz, 
believed that they contradicted basic dynamical principles. 56 

4.3.3 Pipe blowing 
Helmholtz's most immediate concern was the blowing of organ pipes (see Fig. 4.4). 
According to the three first editions of the Tonempfindungen, the air stream from the 
mouth cd of the pipe produces a hissing noise while breaking on its lip ab, and the Fourier 
components of this noise near the resonance frequency of the tube excite the vibrations of 
the air column. In his hydrodynamic paper of 1 868, Helmholtz mentioned that the true 
explanation of the blowing of organ pipes should instead be based on discontinuous air 
motion. The details are found in the fourth edition (1 877) of the Tonempfindungen.57 

The mouth of the pipe, Helmholtz explained, produces an air blade that would hit the 
lip ab if no additional motion intervened. Now suppose that the air in the tube is already 
oscillating, with alternating compression and expansion. Owing to this motion, air streams 
back and forth perpendicular to the blade and forces it alternately in and out of the tube 

55Kirchhoff [1869]; Rayleigh [1 876a] (resistance), [1876b] (vena contracta). Works on discontinuous fluid 
motion are reviewed in Hicks [1 882] pp. 68-71 and Lamb [1895] pp. 100-l l .  For a recent assessment of Rayleigh's 
solution to the blade problem, cf. Anderson [1997] pp. 100-6. 

56Helmholtz to Du Bois-Reymond, 20 Apr. 1868 ('Grundgedanken . . .  von grosser Tragweite'), in Kirsten 
et al. [1986]. See Chapter 5, pp. 197-207. 

57Helmholtz [1 863a] p. 150; Helmholtz [1877] pp. 1 54-7, 629-3 1 .  
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(since the corresponding vortex sheets must follow the motion of the air). Owing to the 

instability of vortex sheets, the air of the blade 'mixes with the oscillating air of the pipe'. 

The air from the bellows is thus fed into the tube during the compression phase, whereas 
this air avoids the tube during the expansion phase. For a strong supply of air from the 
bellows, the blade moves suddenly from one side of the lip to the other because of the high 

intensity of the deflecting stream. Consequently, the driving force is a crenellated function 
of time. If the tube is narrow enough not to suppress higher harmonics, the resulting 

vibrations of the air column are a saw-shaped function of time, as is the case in bowed
string instruments. This is how Helmholtz justified the names Geigenprincipal, Viola di 
Gamba, Violoncell, and Violonbass, that German organ-builders had given to the stops 
made of strongly-blown, narrow tubes.58 

We have now gone full circle through Helmholtz's hydrodynamic studies. Schematic
ally, the insufficiencies of his theory of organ pipes led him to investigate internal friction 
and vortex motion, the latter study being a preliminary of the former. One simple case 
of vortex motion brought him to discontinuous motions, which turned out to be relevant 
to the blowing of organ pipes. Here we find the thematic interconnectivity, and the 
oscillation between the theoretical and the practical that characterized much of Helm
holtz's work. 

4.4 Foehn, cyclones, and storms 

4.4.1 Outdoor thermodynamics 
Organ pipes are a simple, small-scale, and man-made device that can be manipulated in the 
laboratory and subjected to physico-mathematical analysis. The emergence of modem 

physics largely depended on the focus on systems of this kind; so did the later progress of 
hydrodynamics. Yet the study of complex, large-scale, natural systems never came to a 
halt. It constituted what Wolfgang Goethe called the 'morphological sciences', including 

botany, comparative anatomy, geology, and meteorology. In these sciences, the applica

tion of general physical laws was rarely attempted and the approach was mostly descrip

tive and non-mathematical. 59 

Toward the mid-nineteenth century, the methodological gap between small- and large
scale physics became smaller, mainly thanks to the efforts of British natural philosophers. 
One important novelty was the introduction of mimetic experimentation, the imitation in 
the laboratory of natural phenomena such as clouds, rain, and thunder. Another was the 

new thermodynamics, which controlled the global evolution of complex macro-systems 

independently of their detailed constitution. Meteorology nevertheless retained its descrip

tive, empirical character. Attempts to subject it to general physical principles were rare. 

58He!rnholtz [1877] pp. 155-6, 629-30. On p. 630n Helmholtz referred to several anticipations of his notion of 
blattformiger Luftstrom-by Heinrich Schneebeli (Luftlamme/le), by Herrnann Smith (air reed), and by W. Sonrek 
(Anb/asestrom). Schneebeli [1874] demonstrated the air blade experimentally, by means of movable lips, smoked 
air, and silk paper, and theoretically justified it through Helmholtz's discontinuous surfaces. Helmholtz did not 
explain how the motion in the tube was started. Schneebeli and Smith did so in two different manners (cf. Ellis 
[1885] pp. 396-7). Ellis mentions that the famous French organ-builder .Aristide Cavaille Coli had presented the 
notion of anche fibre aerienne to the French Academy of Science in 1840. 

59 Cf. Mertz [1965] pp. 200-26. 
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As late as 1 890, the American meteorologist Cleveland Abbe still deplored this state of 

affairs: 'Hitherto, the professional meteorologist has too frequently been only an observer, 

a statistician, an empiricist-rather than a mechanician, mathematician and physicist.'60 

Helmholtz loved mountaineering and boating, and was a keen observer of natural 

phenomena. From Thomson's yacht, he watched and measured the waves on the sea. In 

the Alps, he scrutinized cloud and storm formations and admired the Mer de glace: 'A 

truly magnificent show, this motion, so slow, so constant, and so powerful and irresistible.' 

Like his British friends Thomson and Tyndall, in these beautiful, sometimes strange 
phenomena he saw an opportunity to demonstrate the powerful generality of physical 

laws. The Italian physicist Pietro Blasema, who often accompanied Helmholtz on his 

hikes, recalled:61 

He loved to climb mountains and glaciers and to enjoy the wonderful views that 
nature generously offers from their heights. He was a strong and confident climber, 
for whom four to six hours climbing was nothing . . .  It was very interesting to walk 
a glacier with him. His eyes were everywhere, and he immediately turned any 
remarkable phenomenon or formation that ice could offer into an object of investi
gation. 

In 1 865, Helmholtz lectured on 'Ice and glaciers', elaborating on James Forbes's and 
John Tyndall's studies. At the beginning of his talk, he discussed the temperature gradient 

of the atmosphere, which determines the existence and height of the snow line. This led 

him to a brief thermodynamic explanation of a peculiar meteorological phenomenon, the 
foehn. In the first step of this explanation, warm, humid air from the Mediterranean Sea 

expands adiabatically while rising over the Alps and thus cools down. Owing to the 

precipitations occurring around the summits, the air becomes warmer and drier. Then it 

flows down the northern side of the Alps, and the resulting adiabatic compression makes it 
even warmer and drier. At that stage it is experienced as the foehn wind.62 

This explanation of the foehn was original at the time Helmholtz proposed it. Since 

about 1 850, Swiss meteorologists believed in a Saharan origin of the foehn. More recently, 
the leading German meteorologist, Heinrich Dove, had proposed an equatorial origin of 

this wind, against the Swiss evidence for its dryness. The controversy between Dove and 
the Swiss lasted even after the publication of Helmholtz's theory, which was apparently 
ignored. Only after Julius Hann independently proposed and powerfully defended the 
same theory did meteorologists change their mind.63 

Even though the foehn is a minor meteorological phenomenon, the Helmholtz-Hann 

explanation of it has broader historical significance, as one of the first successful applica

tions of thermodynamics to the atmosphere. Although the meteorological importance of 

60 Abbe [1 890] p. 77. On mimetic experimentation, cf. Galison [1997] pp. 80-1, Schaffer [1995]. On the state of 
meteorology, cf. Garber pp. [ 1976] pp. 52-3, Kutzbach [1979] pp. 1-3, a book on which I heavily rely. Other useful 
sources are Khrgian [1970], Schneider-Carius [1955], Brush and Landsberg [1985]. 

61Helmholtz [1865] p. 1 1 1; Blaserna, quoted in Koenigsberger [1 902] vol. 2, p. 66. 

62Hehnholtz [1865] p. 97. On Helmholtz's glacier theory, cf. Darrigo! [ 1998] pp. 31-3. 

63Cf. Kutzbach [1979] pp. 58-62. James Espy had proposed a theory of the foehn similar to Helmholtz's 
around 1 840, without success, cf. Khrgian [1970] pp. 1 65-6. 
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adiabatic convection had been known since the 1840s, the process was then analyzed in 
terms of the caloric theory of heat. The first applications of the new thermodynamics to 
adiabatic convection in the atmosphere occurred in the mid-1860s.64 

In 1 862, William Thomson first applied thermodynamics to the rate of temperature 
decline in the atmosphere, and showed that the adiabatic convection of saturated air 
would result in a smaller rate than for dry air, in conformance with observations. In 
1 864, the German mathematician Theodor Reye independently published a thorough 
analysis of the role of the adiabatic expansion of saturated air in the formation of 
ascending currents, to which we will return shortly. Originally, these considerations 
attracted even less attention than the Helmholtz-Hann theory of the foehn. They became 
standard meteorological knowledge after Reye included them in his influential Die 
Wirbelstiirme, Tornados und Wettersiiulen, published in 1872.65 

4.4.2 General circulation 
Helmholtz returned to meteorology in 1875, in a popular lecture on 'cyclones and storms'. 
The incentive was probably Reye's book, which he admired for its insights into the role of 
adiabatic processes. He may also have been struck by the magnificent pictures of atmos
pheric vortices that Reye provided (see Fig. 4.8). 66 

At the beginning of his lecture, Helmholtz briefly discussed the difficulty of applying the 
general laws of physics to atmospheric phenomena. The beholder of a cloudy sky, he 
noted, could not help feeling that 'the rebellious and absolutely unscientific demon of 
chance' was at work. Yet physicists did not doubt that meteorological phenomena obeyed 
the laws of hydrodynamics and thermodynamics. The true difficulty, Hehnholtz 
explained, was that the very nature of the system forbade detailed predictions: 

The only natural phenomena that we can pre-calculate and understand in all their 
observable details, are those for which small errors in the input of the calculation 
bring only small errors in the final result. As soon as unstable equilibrium interferes, 
this condition is no longer met. Hence chance still exists in our [predictive] horizon; 
but in reality chance only is a way of expressing the defective character of our 
knowledge and the 'roughness of our combining power.' 

As an example of an unstable system with high sensitivity to the initial conditions (as 
today's physicists would put it), Helmholtz gave a vertical, rigid bar that can freely rotate 
around its lower, fixed extremity. Clearly, the smallest departure from the vertical position 
has dramatic consequences on the future of this system. Helmholtz judged that many 
meteorological situations led to such instabilities.67 

There already existed, however, successful applications of mechanical and thermal 
principles to the atmosphere. The most trivial that Helmholtz mentioned was the seasonal 

64Cf. Garber [1976] pp. 53-7, Kutzbach [1979] pp. 22-7 (on Espy in the 1840s), 45-58 (on Thorn son, Reihe, and 
Pes1in in the 1 860s). 

65Thomson [1865]; Reye [1864], [1872]. Cf. McDona1d [1963a], Garber [1976] pp. 56-7, Kutzbach [1979] 
pp. 46-58. 

66He1mho1tz [1876]. 
61Ibid. pp. 140, 162, 151.  Hehnho1tz borrowed the bar on a fingertip from Reye [1872] p. 40. 
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Fig. 4.8. Whirling winds over burning reed bushes. From Reye [1872]. 

variation of average temperature, obviously a consequence of the average height of the 
Sun over the horizon. More generally, meteorologists could hope to explain regularities in 

spatial and temporal averages. For instance, it was known that trade winds arise from the 
combined effect of the heating of equatorial air and the rotation of the Earth. According to 

George Hadley's theory of 1735, the hot air around the equator rises into the upper 

atmosphere and the resulting rarefaction of the lower atmosphere induces low-altitude 

winds converging toward the equator. During the latter motion, the air moves toward 

lower latitudes for which the linear velocity of the surface of the Earth is larger. Conse
quently, the air flow relative to the Earth is shifted toward the west. The resulting winds 
are NE above, and SE below the equator. Hadley further noted that the effect of the 

rotation of the Earth would be much too large were it not diminished by friction on the 
ground. Lastly, he described the inverse effects in the upper atmosphere, resulting in SW 
winds in the northern hemisphere and NW winds in the southern hemisphere. Beyond the 

trade-wind belt, these upper trade winds cool down and fall back on the Earth, which 

explains the dominance of western winds in mid-latitudes.68 

Helmholtz improved this theory by taking into account a mechanical effect overlooked 

by Hadley, namely that, when air moves toward the equator, its angular momentum is 
conserved, and therefore its absolute linear velocity diminishes as the inverse of its distance 

from the axis of the Earth. This effect adds to Hadley's relative velocity. Helrnholtz also 
offered an explanation of equatorial calms: the lower trade-wind air can only rise after its 

relative westward motion has been halted by friction, so that its centrifugal force becomes 

68Helmholtz [1876] p. 142; Hadley [1735]. For a critical assessment of this theory, cf. Lorenz [1967] pp. 1-3. 
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as high as possible (for a relative westward motion, the absolute rotation of the air is 
smaller than that of the Earth).69 

Helmholtz described similar effects around the poles. The descent of cold air at the poles 
implies a diverging flow of air in the lower atmosphere and a converging one in the upper 
atmosphere. Owing to the rotation of the Earth, the resulting winds are NE around the 
North Pole and SE around the South Pole. Helmholtz thereby explained Dove's observa
tion that Germany was alternately exposed to these dry cold winds and to warm, humid 
SW winds from the equator.70 

4.4.3 Tropical storms 
Having described this global circulation system, Helmholtz turned to its perturbations. 
Those were easiest to explain, he judged, where they were the rarest, that is, in the tropical 
zone. He borrowed from Reye the basic scenario for the formation of these storms.71 

Reye himself owed the basic idea of a thermal origin of storms to an American 
meteorologist, James Espy, who developed his views in the 1830s. According to Espy, 
hot saturated air at the ground level is in an unstable equilibrium. Any local perturbation 
induces an ascending motion of this air in a column. In this process the air expands and 
cools down, so that water is condensed. The formation of clouds is thus explained. 
Moreover, the condensation frees the caloric of the vapor and thus prevents the rising 
air from cooling too fast. As Espy could determine from his own experiments on the 
adiabatic expansion of saturated air, this heating of the air column by condensation was 
sufficient to keep the density of the rising air smaller than that of the surrounding air and 
thus sufficient to sustain the rising motion.72 

This ascending convection of warm, saturated air not only accounted for the formation 
of clouds, but it also provided an explanation of storms. The warm column of ascending 
air, Espy noted, needed to be fed at its base by converging air. The corresponding 
horizontal winds were those observed in storms. Their radial pattern was still acceptable 
in Espy's times, owing to the imprecision and confusion of data. In around 1 860, another 
American meteorologist, William Ferrel, recognized the importance of the effects of the 
Earth's rotation on atmospheric motion, gave its precise mathematical expression, and 
modified Espy's theory accordingly. Espy's converging winds had to be deflected, in a 
counterclockwise manner in the northern hemisphere. The resulting motion was a whirl 
with growing rotation toward the center of the storm.73 

69Helmholtz [1876] pp. 142-5. In the late 1850s, the American meteorologist William Ferrel had already given 
a correct mathematical formulation of the effect of the Earth's rotation on the motion of the atmosphere 
(Kutzbach [1979] pp. 35-41). As his works were largely unknown in Europe, Hehnholtz's use of the conservation 
of angular momentum in this context may have been original. 

70Helmholtz [1876] p. 146. In the 1 850s, Ferrel had already described the 'cold polar vortex' (Kutzbach [1979] 
pp. 39-40; Khrgian [1970] pp. 239-40). James Thomsen's general-circulation system of 1857 was similar to 
Helmholtz's (Khrgian [1970] pp. 239, 242). For a critical history of general-circulation systems, cf. Lorenz 
[1967] pp. 59-78. 

71Helmholtz [1876] p. 148. 
72Espy [1841]. Cf. McDonald [1963b], Garber [1976] pp. 53-5, Kutzbach [1979] pp. 22-7. 
73Ferrel [1860]. Cf. Kutzbach [1979] pp. 35-41, and p. 37n for literature on the introduction of the Coriolis 

force. 



VORTICES 171 

Reye's theory of whirling storms was a modernized version of Espy's theory, based on a 
thermodynamic analysis of the saturated adiabatic process and on a major insight by the 
Australian-based meteorologist Thomas Belt. According to Belt, the cause of storms was 
the unstable accumulation of hot, low-density air near the ground. Similarly, the first step 
of Reye's theory of storms was the formation of an inferior layer of hot, saturated air, 
owing to solar heating. The hydrostatic equilibrium of this air with the upper, dry air is 
unstable because saturated air is more expandable than dry air: if some saturated air 
begins rising through drier air, then it will continue to do so, because its density diminishes 
faster for the same decrease in pressure. When the equilibrium is broken at a given place, 
the hot humid air rises in a vertical column. The corresponding depression induces a radial 
converging motion of the lower air. Due to the rotation of the Earth, this air whirls around 
the center. 74 

Helmholtz reproduced this theory with a superior understanding of the relevant dy
namics. For example, he explained the whirling motion by the conservation of angular 
momentum. A ring of air entering the depression without initial rotational velocity with 
respect to the Earth has an absolute rotational velocity (increasing with the latitude) and 
a corresponding angular momentum. When the ring converges, its angular momentum 
is a constant, so that its absolute angular velocity must grow. Consequently, it gains 
a rotational velocity with respect to the Earth. In the northern hemisphere, the rotation 
seen from the sky is counterclockwise. 75 

Most originally, Helrnholtz deduced the direction of motion of a tornado. In his paper on 
vortex motion, he had shown that a linear vortex parallel to a plane wall moved in a parallel 
plane in the direction of the fluid flow between the vortex and the wall. The reason is that 
the velocity field is the same as it would be if the fluid were unlimited and had another 
vortex, the mirror image of the real vortex with respect to the wall (the flow in the median 
plane of the fictitious two-vortex system is parallel to this plane, in conformance with the 
boundary condition of the real system). According to one ofHelmholtz's theorems, the real 
vortex must move with the velocity induced by its inirror image. A similar reasoning applies 
to the case when the vortex is no longer parallel to the wall. Then the vortex moves in the 
direction of the fluid motion in the sharp angle made by its axis and the wall (of course, 
there is no motion when the vortex is perpendicular to the wall).76 

For a tornado in the northern hemisphere, the lower and upper trade winds tilt the 
whirling axis: the upper part of the tornado is dragged NE and the lower part SW. 
Consequently, the flow in the sharp angle made by the vortex and the surface of the 
Earth is directed NW. In the absence of external winds, the tornado must move in the same 
direction. 

Lastly, Helmholtz offered some vague considerations on the more complex storms in 
the temperate zone. Here he departed from Reye, who believed in a subtropical origin of 
all storms, independent of the general circulation system. Instead, Helmholtz shared 
Dove's opinion that mid-latitude perturbations were due to the encounter of polar air 

74Reihe [1872] pp. 40-6 (instability and weather columns), 137-8 (rotation of the Earth); Belt [1859]. Cf. 
Kutzbach [1979] pp. 88-96. Reihe was unaware of Ferrel's works. 

75Helmho1tz [1876] pp. 151-7. Cf. Kutzbach [1979] pp. 96-9. 
76Helmholtz [1858] p. 127, [1876] p. 159. 
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and equatorial air. This is not to say that he followed Dove in every respect. The patriarch 
of German meteorology still believed that the mechanical conflict between the two air 
currents was the cause of mid-latitude storms, whereas Helmholtz knew well that only 
the thermal contrast between the two air masses could account for the energy of the 
storms.77 

He!mholtz proposed that the equatorial air rose over the polar air, cooled down 
adiabatically, and thus precipitated rain. Wherever air rose, a depression occurred and 
induced whirling winds. The modem reader may recognize here some elements of the 
polar-front theory of mid-latitude storms.78 

4.5 Trade winds 

4.5.1 A revelation 
Ten years elapsed before Helmholtz returned to meteorology. The incentive was an 
observation he made during a vacation in the Swiss Alps. His short report for the Berlin 
Akademie began as follows: 

Clouds and thunderstorm formation. 

On one day of the first half of September this year Mount Rigi offered a clear 
perspective toward Jura. At a height somewhat lower than the viewing point-the 
Rigi's Kanzli-there was the quite regular, upper horizontal limit of a heavier and 
more turbid air layer; this limit was indicated by a thin layer of small clouds which 
went from North to South in narrow stripes, and which revealed the whirls formed by 
perturbation and rolling up of the limiting surface. 

Where the average mountaineer would only have seen one more pretty scene of nature, 
Helniholtz registered a concrete realization of a central hydrodynamic concept, namely, a 
vortex sheet in the sky! (compare with Fig. 4.9).79 

From this observation, Helmholtz conceived that discontinuous motion played an 
important role in atmospheric phenomena. He could thus explain a paradox that must 
have been on his mind for some time. Hadley's theory of trade winds made friction 
responsible for the moderate value of the eastern or western component of these winds 
in comparison to the exceedingly high values that the Earth's rotation would by itself 
imply. This explanation seemed plausible for the lower trade winds, which experience 
friction on the surface of the Earth. However, it failed for the upper trade winds, which are 
exposed only to internal friction. As Helmholtz confirmed by an application of the 
principle of mechanical similarity, the effects of the viscosity of the air on atmospheric 

77Helmholtz [1876] p. 160. On Dove's views, cf. Khrgian [1970] pp. 168-71, Kutzbach [1979] pp. 1 1-16, 
81-2. 

78Helmholtz [1876] p. 160. In 1841, the American meteorologist Elias Loomis had proposed a similar 
mechanism, without the whirling and without the connection between the two currents and the general circulation. 
In the 1 870s, the Norwegian meteorologist Henrik Mohn also used a two-current thermal mechanism, but without 
the cold front; Mohn assumed that the opposite cold and warm air currents mixed before the latter could rise. 
Cf. Kutzbach [1979] pp. 27-35 (on Loomis), 76-80 (on Mohn). 

79Helmholtz [1886]. 
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Fig. 4.9. A rare cloud formation at Denver, Colorado, on 14 February 1953. Photograph by P.E. Branstine, in 

Colson [1954] p. 34. 

motion are extremely small or confined to the surface of the Earth. Yet, undamped upper 
trade winds would give western winds as impossibly high as 1 30 m I s at a latitude of 30°.80 

The key to the paradox, Helmholtz realized after contemplating a vortex sheet in the Swiss 
sky, was discontinuous motion. The boundary between the upper and lower tradewinds had 
to be a surface of discontinuity, analogous to those occurring in the mouth of an organ pipe. 
This unstable surface waved and eventually unrolled into a series 'of vortices. The two 
different air strata thus became thoroughly mixed. In the case of organ pipes, the mixing 
allowed the transfer of momentum from the blown air to the oscillating air column. In the 
atmospheric case, it produced the required damping of the upper trade winds, as well as heat 
exchange between the upper and the lower air. In Helmholtz's words:81 

The principal obstacle to the circulation of our atmosphere, which prevents the 
development of far more violent winds than are actually experienced, is to be found 
not so much in the friction on the Earth's surface as in the mixing of differently 
moving strata of air by means of whirls that originate in the unrolling of surfaces of 
discontinuity. In the interior of such whirls the originally separate strata of air are 
wound in continually more numerous and therefore thinner layers spiraling about 
each other; the enormously extended surfaces of contact allow a more rapid exchange 
of temperature and the equalization of their movement by friction. 

80Helmholtz [1888] pp. 290-3. If the spatial variations of velocity are smooth, the large scale of atmospheric 
motions implies a negligible effect of viscosity. However, when there are abrupt variations of velocity (on the 
surface of the Earth, or between two strata of air), the surface friction does not depend on the scale and can have 
a non�negligible damping effect. 

81Helmholtz [1888] p. 308. In modern terms, the discontinuity surface evolves into a fractal object. 
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4.5.2 The thermal genesis of discontinuity surfaces 
In order to establish this conclusion, Helmholtz needed 'to show how by means of 
continually effective forces [owing to gravitation, solar heat, rotation of the Earth, and 
friction on the Earth's surface] surfaces of discontinuity were formed in the atmosphere.' 
For this purpose, he introduced two idealizations. Firstly, he ignored the longitudinal 
variations of the state of the atmosphere. Secondly, he assumed that, within sufficiently 
thin layers of the atmosphere, the air was in (dry) adiabatic equilibrium and had a uniform 
motion. Accordingly, the basic concept of his analysis was that of ring-shaped air layers 
rotating around the axis of the Earth with a uniform angular momentum u per unit mass 
and a 'heat content' e.82 

By the latter quantity, Helmholtz meant the temperature that a sample of the air would 
take when brought adiabatically to the normal pressure. At least since his theory of the 
foehn, and even more since his reading of Reihe, Helmholtz was aware of the importance 
of adiabatic processes in atmospheric phenomena. Perhaps he also knew of Thomson's 
paper on adiabatic convection and rate of temperature decrease with elevation. By an 
argument similar to the one used for viscosity, he showed that ordinary thermal conduc
tion was negligible in smooth, continuous atmospheric motions, so that only Thomson's 
convective equilibrium, and not ordinary thermal equilibrium, applied to homogenous air 
layers. For the former kind of equilibrium, the 'heat content', and not the ordinary 
temperature, is uniform. This concept, under a different name, quickly became central in 
meteorological thermodynamics. Dove's successor at the head of the Prussian Meteoro
logical Institute, Wilhelm von Bezold, called it 'potential temperature', which had no 
overtones of the old caloric theory. 83 

From Euler's equation of motion and the law of adiabatic compression applied within a 
given layer, Hehnholtz derived the relation 

( l)/ 1 u2 G 1 2 2 aOP "- " = 2 d2 + r - 2!1 d + {3 (4.19) 

between the pressure P at a point of the layer, the distance r of this point from the center of 
the Earth, and its distance d from the axis of the Earth (a and {3 are two constants, y is the 
ratio of the specific heats at constant pressure and constant volume, G is the gravitational 
constant, and !1 is the rotational velocity of the Earth). For two such layers to be in 
equilibrium the pressures at their contact surface must be the same. This condition yields a 
relation between r and d which defines the trace of this surface on a meridian plane.84 

Helmholtz required this equilibrium to be stable in the sense that the imbalance of 
pressure caused by a protrusion of the surface must counteract this protrusion. This 
condition implies that the potential temperature must be higher in the layer that is closer 
to the celestial pole. When the rate c? / e is an increasing function of the distance p from 

82Helmholtz [ 1888] pp. 308 (quote), 298 (rings). 

83Ibid. p. 293; Bezold [1888] p. 1 1 89. Cf. Garber [1976] pp. 59-62, Kutzbach, [1979] pp. 143-4. Helmholtz 
corresponded with Bezold and supported him for the Buys-Ballot medal ofmeteological merits in 1893 (Julius 
Hann won), cf. Horz [1997] pp. 201-24. 

84Helmholtz [1888] p. 298. 
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the axis, which is true in the normal state of the atmosphere, stability also implies that the 
separating surface should depart from the ground at an angle between the horizon and 

the polar direction (see Fig. 4.10). Hence, thin layers, or strata of homogenous air, lean to 
such an extent that their lower part is further from the Earth's axis than their higher part. 
From this simple rule, Helmholtz drew essential conclusions. 85 

Suppose that the stratum appears on Earth as an easterly wind. Then its rotation is 

slower than that of the Earth. Friction on the Earth's surface therefore increases the 

absolute rotation of the lower part of the stratum. This part of the stratum being also 
the furthest from the axis, the effect of friction will remain confined to it, because the 

excess of centrifugal force pulls the air away from the axis (and because internal friction is 

negligible). 86 Consequently, the stratum slides toward the equator and its velocity becomes 
more and more heterogeneous: whereas the momentum of the upper part remains un

changed and corresponds to higher and higher easterlies, that of the lower part, near the 

ground, increases until the wind vanishes. According to Helmholtz, this process feeds 
high-momentum air into the zone of calms, which consequently grows to touch the upper 

part of the converging easterly strata (see Fig. 4.1 1). Since momentum is conserved for the 

two kinds of air thus coming into contact (internal friction again being negligible), a 
surface of discontinuity is born.87 · 

4.5.3 Corrections and additions 
Helmholtz expressed himself in so condensed a manner that his arguments are sometimes 
difficult to follow. For example, he claims to be explaining the formation of a surface 

of discontinuity from an initial, continuous state of motion, whereas in fact he starts 

s 

Fig. 4.1  0. Permitted inclination of an air stratum 

(thick line) according to Helmholtz's atmos

pheric circulation theory. 

85 Ibid. pp. 299-301. 

s :  

Fig. 4.1 1 .  Formation of a discontinuity surface 

(thick line) bordering the zone of calms. 

86Helmholtz compared this process with the heating of a volume of air from its top, which affects only the 
upper air layer because of the lack of convection. 

87Helmholtz [1888] pp. 304-5. 
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with a state of contiguous air layers with different angular momenta. At first glance, 
it would seem that he has only proved that existing discontinuities can be amplified. 
In reality, his stronger claim for the genesis of discontinuities holds. As he made clear at 
some point, he included the case of infinitely-thin strata in his analysis. The above 
reasoning extends to this case, and still leads to the discontinuity at the upper limit of 
the calm zone. 

Another difficulty of Helmholtz's memoir is that it blurs the distinction between 
intuitive arguments, empirical data, and strict dynamical deduction. For example, should 
the existence of the zone of cahns be regarded as empirically given, or does it result from 
dynamical reasoning? In this paper, with its emphasis on the formation of discontinuities, 
Helmholtz seems to be taking the first option, whereas in his earlier discussion of trade 
winds in 1 875 he explained the calm zone as an indirect consequence of the centrifugal 
force. 

At least in one case, Helmholtz dangerously confused intuition and deduction. 
He argued that the mixed air produced by instability at the border between the lower 
and upper trade winds had to move toward the equator, because its intermediate tem
perature and velocity belonged to lower altitudes and latitudes. As he admitted the 
following year, this conclusion was wrong. A rigorous treatment of the conditions 
of equilibrium of the mixed air with the two mixing layers implies an ascending motion 
of this air. 88 

During this upwards expulsion of the mixed air, originally-remote parts of the two 
mixing layers come into contact. Owing to the conservation of momentum, the shifted 
parts of the polar-side layer lose velocity, whereas those on the equatorial side gain 
velocity. Hence the discontinuity surface is renewed, even if the remote parts of the layers 
were originally at rest with respect to the Earth. As Helmholtz explained, in his first paper 
he had shown how and where discontinuities were formed in an originally continuously
moving atmosphere. He could now show that the mixing process at a surface of discon
tinuity renewed this surface instead of destroying it. 89 

A short section of the 1 888 memoir sketched the production of surfaces of discontinuity 
around the poles. Due to the cooling of the Earth near the poles, cold air strata diverge 
from the pole at low altitude. Owing to the rotation of the Earth, these strata appear as 
north-easterlies. As was shown for the lower trade winds, their inferior parts experience 
friction on the Earth's surface and the resulting increase of the centrifugal force drags 
them further south. Owing to the inclination of the strata, this cold air remains close to 
the surface of the Earth, in conformance with the fact that in northern Germany the 
north-east winter winds do not reach the summits of mountains. 'At the front border of 
these easterlies advancing into warmer zones,' Helmholtz went on, 'the same circumstan
ces that produce discontinuities of motion between upper and lower currents in the 
advancing trade winds are effective, bringing about a new cause for the formation of 
vortices.'90 

88He1mho1tz [1888] p. 306; He1mho1tz [1889] pp. 312-15. 

89He1mho1tz [1889] p. 315n. 90He1mho1tz [1888] pp. 307-8. 
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4.5.4 Anticipations 
Reading these lines, modem meteorologists could speculate that Helmholtz introduced the 
now fundamental notion of the polar front. The extreme concision of his statement does 
not allow any such judgment. The main purpose of his paper was to find a mechanism for 
damping the winds induced by the rotation of the Earth. Unlike some of his followers, he 
did not have in mind a theory of storms based on surface discontinuities. Most likely, 
he still believed that mid-latitude storms were too complex to be subjected to dynamical 
analysis. 

Yet there is no doubt that Helmholtz was the first to realize the essential importance of 
surface discontinuities in meteorology, before horizontal and vertical field measurements 
made them clearly visible toward the end of the century. With some delay, his 1 888 paper 
was a major source of inspiration for the meteorologists who applied the concept to the 
theory of storms. Early in this century, the Austrian Max Margules integrated Helmholtz's 
discontinuity surfaces in his atmospheric energetics and generalized Helmholtz's formula 
for the slope of surfaces of discontinuity. Subsequently, Felix Exner and his Viennese 
school of meteorological dynamics heavily relied on Margules's extensions ofHelmholtz's 
meteorological concepts.91 

The Norwegian meteorologist Vilhelm Bjerknes also owed much to Helmholtz. This is 
true for two of his breakthroughs in dynamical meteorology and weather forecasting. His 
circulation theorem, giving the rate of variation of the vorticity for a compressible fluid, 
was a simple extension of Helmholtz's theorem on the conservation of the vorticity in 
incompressible fluids. His atmospheric kinematics emphasized the singularities of the 
velocity field that Helmholtz first discovered. The concept of a 'cold front', which is so 
central to modem meteorological forecasting, occurred to him while studying Helmholtz's 
1888 paper in his Leipzig seminar.92 

Helmholtz's works were not the only resources exploited by Margules, Bjerknes, and 
other founders of modem meteorology. As Kutzbach has shown, the various thermal 
theories of cyclones, their late-nineteenth-century difficulties, the enormous improvement 
of the quality and quantity of weather data, and observations of the higher atmosphere 
were all important factors of progress. Against this view, later meteorologists have usually 
regarded the polar-front theory as a sharp break from the past and ignored the many 
continuities with the past, including its Helmholtzian roots.93 They may have been blinded 
by the spectacular progress in weather forecasting that this theory brought about. Or 

91Margules [1906]; Exner [1925] has many references to Helmholtz's works, on pp. 92 (mechanical similarity), 
203-10 (air rings), 214n (general circulation), 234-5 (empirical verification of Hehnholtz's stability conditions), 
334 (Helmholtzian origin of Bjerknes's polar front). On the observation of surface discontinuities, cf. Kutzbach 
[1979] pp. 175 (Bigelow), 1 81-3 (Shaw), 194-7 (Margules). On Margules's extensions of Helmholtz's results, 
cf. ibid. pp. 197-9. 

92Bjerknes [1898] for the circulation theorem; Bjerknes et al. [1910] for the kinematics; Bjerknes et al. [1933] pp. 
784 (reading Helmholtz and the polar front), 785 (reading Helmholtz and the wave theory of cyclones). The first 
frontal cyclone model was published by Bjerknes's son Jacob, who used Margules's generalization ofHelmholtz's 
slope formula for the surface of discontinuity. Cf. Kutzbach [1979] pp. 158-71 (circulation theorem), 206-18 
(J. Bjerknes's model), Khrgian [1970] pp. 215-16, Friedman [1989]. 

93Cf. Kutzbach [1979] pp. 218-20. Two notable exceptions are Wenger [1922] and Bernhardt [1973], who gave 
competent reviews of Helmholtz's meteorological works. 
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perhaps they wished to glorify the founders of the newer schools of meteorology, especially 
the Bergen school, at the expense of earlier investigators. Yet there is no doubt that 
Helmholtz anticipated some central concepts of modem meteorology.94 

4.6 Wave formation 

4.6.1 From atmospheric waves to water waves 
Both for organ pipes and for the general circulation of the atmosphere, an essential 
property of Helmholtz's surfaces of discontinuity is their instability, which allows mixing 
of the layers in contact. In the atmospheric case, the two layers usually have different 
temperatures, and therefore different densities. Consequently, Helmholtz noted in his 
memoir of 1 888, the instability is similar to the one induced by wind blowing on a quiet 
sea. For moderate winds, the surface of the sea oscillates periodically. For larger velocities, 
whirls are formed and the tips of the waves break into foam and droplets. Helmholtz 
imagined similar turbulence to occur at the contact surface between two atmospheric 
layers and to permit intimate mixing of their contents.95 

From Mount Rigi, Helmholtz had seen stratified and whirling clouds that directly 
suggested the analogy between atmospheric and sea waves. He justified this analogy in 
1 889, in a sequel to his paper on atmospheric motion. By a similarity argument, he showed 
that the scale of the waves varied as the square of the wind velocity, and that similar 
waveforms occurred when the ratio of the kinetic-energy densities of the two media was 
the same in the reference system for which the waves are stationary. These rules imply that 
typical waves in the atmosphere are much larger than waves on the ocean, since the density 
ratios are much smaller in the atmospheric case. For example, waves of one meter in length 
on the ocean correspond to waves of about two kilometers in length between two layers of 
the atmosphere under the same wind (relative velocity) and with a temperature difference 
of 10° Celsius. 96 

Helmholtz thus related waves in the sky to the better-known waves on the sea. The 
theory of the latter kind of waves was fairly developed, thanks to the efforts of British 
physicists. For example, in 1871 William Thomson had given a theory of small waves on a 
calm sea, including the influence of capillarity. He1mholtz must have been aware of part of 
this work, since he helped Thomson measure the minimum velocity of such waves during 
a yacht trip. Thomson's calculations included the effect of a horizontal wind, and showed 
that in the linear approximation initially-small waves grew indefinitely when the wind 
velocity exceeded a certain, small limit. In other words, a plane water surface became 
unstable under a sufficiently strong wind.97 

94ln K.brgian's words, 'Helmholtz's works . . . are referred to only quite rarely now, but it should be 
remembered that these studies helped lay the basis for present day synoptic meteorology' (K.brgian [1970] p. 208). 

95Helmholtz [1889] pp. 305-6. 

96/bid. pp. 3 16-22. As Helmholtz noted on p. 310n, Luvini [1888] pp. 370-1 independently introduced 
atmospheric waves and billows. 

97See above, pp. 87-S, for the fishing line; see below, pp. 188-90, for the wind wave instability. 
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Helmholtz did not know the latter aspect of Thomson's ripple studies.98 He was, 
nevertheless, correct in regarding the production of finite waves by wind as an open 
mathematical question.99 With his usual analytical power, he attacked this formidable 
nonlinear problem. Confining himself to two-dimensional, periodic waves of steady form 
with irrotational flow, he applied the conformal method of his memoir on discontinuous 
fluid motion. He thus determined the profile and the velocity of the waves to third order in 
their relative height (height over wavelength), with the following results. 100 

Under a given wind, the wavelength can vary within certain limits that grow with 
the wind strength. For a given wavelength, the remaining characteristics of the wave 
are completely determined. The longest possible waves are slowly-propagating, low
amplitude sine waves. Shorter waves are higher, faster, and more abrupt. 101 At the lowest 
wavelength, the proftle of the waves becomes discontinuous. Around the resulting ridge, 
the infinite velocity results in violent projections of water. This is the frothing of waves. 

Under any given wind, an obvious solution of the equations of motion corresponds to 
flat, undisturbed water. If some of the steady waves under the same wind have a smaller 
energy, then this solution is unstable. Helmholtz proved that the instability occurred for 
arbitrarily-small winds and for all permitted wavelengths except those closest to the 
frothing point. 102 Hence the faintest wind can produce waves on calm water. If the wind 
grows, the height of these waves increases. The shortest ones break into foam, because they 
were already on the verge of instability. Another cause of breaking is the superposition of 
waves of different length and velocity. Remembering his old acoustic works, Helmholtz 
did not fail to notice that nonlinear superposition generated waves of longer wavelength, 
just as the ear generates combination tones.103 

4.6.2 A minimum principle 
In order to reach his two main conclusions, the instability of a plane water surface under a 
constant wind and the breaking for high waves, Helmholtz used truncated power series of 

98Cf. Rayleigh to Helmholtz, 29 Oct. 1889, HN. 

99 As was discussed in Chapter 2, pp. 70-2, 83, Stokes and Rayleigh studied water waves of fmite height, but 
only in the absence of wind. Stokes [1880c] used an analytical method somewhat intermediate between those of 
Helmholtz [1868dj and [1 889]. Helmholtz was probably aware of this paper, since he knew a result of Stokes 
[l&&Oc] published next to [1880c] in the same volume, namely, the 120 degrees of the highest possible wave 
(Helmholtz [1 889] p. 328, where Stokes, however, is not named). 

100Helmholtz [1889] pp. 323-8. There is some confusion in Helmholtz's notation (besides numerous typo
graphical errors). For example, in some formulas the letter b stands for the velocity potential, and in others for the 
velocity. Helmholtz published only an outline of his calculations. Details are found in manuscripts, as well as 
calculations for other types of wave (HN, #682, #884). 

101 By an unfortunate slip, Helmholtz stated the opposite on p. 328 of his paper [1889]; however, he gave the 
right variations on p. 331, in conformance with his equations. 

102Helmholtz [1889] pp. 329-32. This does not contradict Thomsen's earlier result, because Thomsen's wind 
threshold vanishes if capillarity is neglected. The existence of a lower limit for the wavelength seems to contradict 
the calculation in Thomson [187la], according to which (capillarity being neglected) the plane water surface is 
unstable under any perturbation of small wavelength. In fact, it does not, because the growth of these perturba
tions does not necessarily lead to stable finite-height waves of the same wavelength. 

103Helmholtz [1889] p. 332. 
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the relative height of the waves. Since breaking occurs precisely when these series diverge, 
the second conclusion was rather fragile. Moreover, Helrnholtz had only exhibited one 
class of steady solutions to the hydrodynamic equations. His conclusions did not neces
sarily apply to more general solutions. 104 The following year, he offered a more rigorous 
approach based on a new variational principle, akin to the principle of least action on 
which he was trying to base all physics in these years.105 

In the wind-over-water problem, the water surface is steady if and only if the pressure is 
the same on both sides of the surface. For irrotational flow, Helmholtz found this 
condition to be equivalent to the stationarity of the difference V - T between the potential 
and the kinetic energy of the motion under infinitesimal deformations of the surface, the 
total air and water fluxes being kept constant. This condition is similar to the condition of 
static equilibrium, whlch requires the stationarity of the potential energy. Helmholtz 
extended this analogy to the discussion of stability: while in the static case the equilibrium 
is stable if and only if V is a minimum, in the steady-wave case the motion is stable if and 
only if V - T is a minimum.106 

By ingenious qualitative reasoning, Helrnholtz determined how the shape of the surface 
representing the variations of V - T (with respect to the parameters of the waves) changed 
with the wind velocity. He found that, for a given wavelength, no minimum could occur if 
the wind velocity was too hlgh. In other words, stable, steady waves of a given length are 
only possible if the wind velocity does not exceed a certain limit. Nor can they occur if the 
wave velocity and the wind velocity with respect to the waves are both below certain limits. 
These theorems agreed with Helmholtz's earlier, less rigorous result about the finite range 
of wavelengths that corresponds to a given wind strength.107 

Lastly, Helrnholtz discussed the energy and momentum conditions for the initial for
mation and the growth of waves. He found that the initial small waves could only have a 
very short wavelength (about 10 cm for a wind of l O  m /  s). In order that higher and longer 
waves could be formed, the wind had to keep blowing in the same direction and to 
communicate (by some unspecified mechanism) some of its energy and momentum to 
the waves. Another cause of growth was the nonlinear superposition of different waves, 
as Helmholtz had already suggested in his previous paper.108 

10'1-he waves discussed in Helmholtz's paper are not the only possible steady waves, since in the no-wind case 
they do not include the Rayleigh-Stokes solution (which can have any wavelength). Helmholtz probably only 
meant to give the form of forced waves, although nowhere did he explain how free and forced solutions of the 
equations of motion should be discriminated. He soon became aware of the necessity of a broader class of waves, 
as is attested by a footnote in his collected paper (HWA 3, p. 325n); there he suggested to require the balance of 
pressure only to second order, so that the ratio between wind velocity and wave velocity could be freely chosen. 
Wilhelm Wien realized this program in Wien [1900] pp. 1 69-99. 

105Helmholtz [1890]. Ibid. p. 334, Hehnholtz noted a connection between the steady-wave problem and the 
theory of polycyclic systems that he was developing to give a Lagrangian form to thermodynamics and electro
dynamics. 

106Ibid. pp. 335-40. 107 Ibid. pp. 340-4. 

108 Ibid. pp. 349-55. Helmholtz's zero-momentum condition for the initial formation of waves excludes the 
waves discussed in his previous paper, which never have zero momentum for a finite height. This contradiction 
disappears for the more general waves considered later by Helmholtz (see footnote 1 04). 
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4.6.3 Dubious idealizations 
In March 1890, Helmholtz applied to the Staatsminister for a one-month journey to the 
French Riviera. He not only wished to bring back his family who had spent the winter there, 
but also 'to perform a few scientific observations on the behavior of sea waves . . .  in order 
to test the truth of a few new theoretical propositions on the interaction between wind and 
waves.' He spent a whole week of April at the tip of the Cap d' Antibes, measuring the wind 
with a portable anemometer and counting the number of approaching billows. His main 
purpose was to verify that these two quantities varied in inverse proportion, as resulted 
from the similitude argument of his first paper on wind and waves. The results were 
embarrassingly unconvincing. Helmholtz had to admit that the wave count on the shore 
mainly depended on the off-shore winds, with a delay corresponding to the propagation 
time. He nevertheless reported his measurements to the Berlin Academy in July 1 890, 
perhaps to justify the official character of his time on the Riviera. 109 

Unlike his other hydrodynamic works, Helmholtz's papers on wind and waves had little 
follow-up. Their historical impact was limited to the concept of atmospheric waves, which 
soon became a basic meteorological reality. Experts in hydrodynamics paid little attention 
to Helmholtz's theory of wave formation, as can be judged from the very brief and 
fragmentary mention in Lamb's otherwise thorough treatise. Wilhelm Wien seems to 
have been the only important physicist to pursue Helmholtz's line of thought, with no 
significant progress. Oceanographers only had a passing interest in it. The 19 1 1  edition of 
Otto Kriimmel's Handbuch der Ozeanographie included a praiseful summary of Helm
holtz's findings. Later treatises on water waves systematically ignored them.110 

The reasons for this neglect are not too difficult to guess. One may be that Helmholtz 
wrote his two papers on wind and waves in a hurry, neglected to provide intelligible 
summaries, and did not carefully read the proofs. In the long run, a more fundamental 
reason to ignore Helmholtz's conclusions was that they depended on a number of arbi
trary idealizations. He neglected capillarity forces, although they affect the energy and 
stability of short waves. He only considered steady waves, whereas more general waves 
could have a different range of stability. He took the air and water flows to be irrotational, 
whereas the actual air flow is always turbulent. Until the mid-twentieth century, ocean
ographers could only complain that no theory properly took into account this complexity 
of wind waves. Reasonable models later became available for the interaction between the 
turbulent air flow and the oscillatory water surface. Essential to their success was the 
consideration of the random nature of ocean waves, which nineteenth-century theorists 
completely ignored. All of this explains why Helmholtz's ingenious memoirs on waves and 
wind have fallen into oblivionY1 

109Helmholtz to Botticher, 9 Mar. 1890, i n  Koenigsberger [1902] vol. 3 ,  p .  27; Helmholtz [1890] pp. 353-5. 
Helmholtz planned a third paper on this topic, see the manuscript fragment 'Forme Sationiirer Wogen' (HN, 
#684). 

110Lamb [1895] 409n, pp. 421-3; Wien [1900], and previous papers listed therein; Kriirnmel [19 1 1] vol. 2, 
pp. 61-4. Cf. also Forchheimer [1905] pp. 429-32 for a summary ofHelmholtz's results, and Baschin [1899] p. 410 
for a generous assessment of Helmholtz's contribution: 'a theory . . .  which in a single blow explains all the 
circumstances of wave formation that are observed in nature.' 

1 1 10n older failures, cf. Russell and MacMillan [1952] pp. 61-2; on modern successes, cf. Kinsman [1965]. 
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Following Helmholtz's strange itinerary across worlds of fluid motion, we began with the 

pitch of organ pipes, spent a while on atmospheric motion, and ended with water waves. 

Helmholtz jumped from one domain to the next through an amazing series of conceptual 
innovations and analogies. Most importantly, he identified the vortex filament as a 
fundamental, invariant structure of inviscid incompressible flow, and inaugurated a 

powerful approach to hydrodynamics in which vortices and discontinuity surfaces con

trolled the flow. With this new perspective, he elucidated basic processes of jet formation, 

shear instability, and mixing. 

Although nineteenth-century physicists and mathematicians recognized the depth of 

Helmholtz's contributions to hydrodynamics, their practical importance only became 
apparent in the twentieth century. In Helmholtz's times, the vortex theorems offered 
more to British theorists of ether and matter than they did to hydraulic engineers. As we 

will see in the next chapter, Rayleigh's solution to d'Alembert's paradox in terms of 

Helmholtz's discontinuity surfaces turned out to be quantitatively inadequate; Rayleigh 
himself did not believe in it, and Kelvin completely dismissed it. As we will see in the last 

chapter, its connection to a practically useful treatment of fluid resistance was only 
understood in the early twentieth century. Although Helmholtz offered many new insights 
into the motion of perfect liquids, he did not know precisely how to relate such motions 

with those occurring in the slightly-viscous fluids of nature. 



5 

INSTABILITY 

There is scarcely any question in dynamics more important for Natural Philoso

phy than the stability of motion. 1 (William Thomson and Peter Guthrie Tait, 

1 867) 

In the previous chapter, we encountered a special kind of instability, now called the 
Kelvin-Helmholtz instability, which occurs when two fluid masses slide on each other, 
for instance along smoke jets or on a plane water surface under wind. Helmholtz arrived at 
this instability by reasoning on vortex sheets and used it to explain phenomena · that 
seemed to elude Eu1er's equations. He was neither the first nor the last theorist to 
emphasize the role of instabilities in fluid mechanics. The nineteenth-century interest in 
this question was for two reasons. Firstly, the discrepancy between actual fluid behavior 
and known solutions of the hydrodynamic equations suggested the instability of these 
solutions. Secondly, the British endeavor to reduce all physics to the motion of a perfect 
liquid presupposed the stability of the forms of motion used to describe matter and ether. 
Instability in the former case and stability in the latter case needed to be proved. 

In nineteenth-century parlance, kinetic instability broadly meant a departure from an 
expected regularity of motion. In hydrodynamics alone, this notion included unsteadiness 
of motion, non-uniqueness of the solutions of the fundamental equations under given 
boundary conditions, sensibility of these solutions to infinitesimal local perturbation, 
sensibility to infinitesimal harmonic perturbations, sensibility to finite perturbations, 
and sensibility to infinitely-small viscosity. Although this spectrum of meanings is much 
wider than a modern treatise on hydrodynamic stability would tolerate, it must be 
respected in a historical study that does not artificially separate issues that nineteenth
century writers conceived as a whole. 

The first section of this chapter is devoted to Stokes's pioneering emphasis on hydro
dynamic instability as the probable cause of the failure of Eulerian flows to reproduce the 
essential characteristics of the observed motions of slightly-viscous fluids (air and water). 
Stokes believed instability to occur whenever the lines of flow diverged too strongly, as 
happens in a suddenly-enlarged conduit or past a solid obstacle. Section 5.2 recounts how 
William Thomson, in 1871 ,  discussed the instability of a water surface under wind, 
independently of Helmholtz and with a different method. 

In this and Helmholtz's case, instability was derived from the hydrodynamic equations. 
In Stokes's case, it was only a conjecture. Yet the purpose was the same, namely, to explain 
observed departures from exact solutions of Euler's equations. In contrast, Thomson's 
vortex theory of matter required stability for the motions he imagined in the primitive 

1Thomson and Tail [1867] par. 346. 
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perfect liquid of the world. These considerations, which began in 1867, are discussed in 
Section 5.3. As Thomson could only prove the stability of motions simpler than those he 
needed, for many years he contented himself with an analogy with the observed stability of 
smoke rings. At last, in the late 1 880s, he became convinced that vortex rings were 
unstable. 

Owing to their different interests, Stokes and Thomson had opposite biases about 
hydrodynamic (in)stability. This is illustrated in Section 5.4 through an account of their 
long, witty exchange on the possibility of discontinuity surfaces in a perfect liquid. From 
his first paper (1842) to his last letter to Thomson (1901), Stokes argued that the formation 
of surfaces of discontinuity provided a basic mechanism of instability for the flow of a 
perfect liquid past a solid obstacle. Thomson repeatedly countered that such a process 
would violate fundamental hydrodynamic theorems and that viscosity played an essential 
role in Stokes's alleged instabilities. The two protagonists never came to an agreement, 
even though they shared many cultural values within and outside physics. 

Section 5.5 deals with the (in)stability of parallel flow. The most definite nineteenth
century result on this topic was Lord Rayleigh's criterion of 1 880 for the stability of two
dimensional parallel motion in a perfect liquid. The context was John Tyndall's amusing 
experiments on the sound-triggered instability of smoke jets. In 1883, Osbome Reynolds's 
p�ecise experimental account of the transition between laminar and turbulent flow in 
circular pipes motivated further theoretical inquiries into parallel-flow stability. Cambridge 
authorities, including Stokes and Rayleigh, selected this question for the Adams prize of 
1 889. This prompted Thomson to publish proofs of instability for two cases of parallel, 
two-dimensional viscous flow. Rayleigh soon challenged these proofs. William Orr proved 
their incompleteness in 1907, thus showing the daunting difficulty of the simplest questions 
of hydrodynamic stability. 

5.1. Divergent flows 

5. 1 . 1  Fluid jets 
Pioneering considerations of hydrodynamic stability are found in Stokes's first paper, 
published in 1 842 and devoted to two-dimensional and cylindrically-symmetric steady 
motions of a perfect liquid obeying Euler's equation. From an analytical point of view, 
most of Stokes's results could already be found in Lagrange's or J. M. C. Duhamel's 
writings. Stokes's discussion of their physical significance was, nonetheless, penetrating 
and innovative. Struck by the difference between computed and real flows, he suggested 
that the possibility of a given motion did not imply its necessity; there could be other 
motions compatible with the same boundary conditions, some of which could be stable 
and some others unstable. 'There may even be no stable steady mode of motion possible, 
in which case the fluid would continue perpetually eddying.'2 

As a first example of instability, Stokes cited the two-dimensional flow between two 
similar hyperbolas. An experiment of his own showed that the theoretical hyperbolic flow 
only held in the narrowing case. He compared this result with the fact that a fluid passing 
through a hole from a higher pressure vessel to a lower pressure vessel forms a jet, instead 

2Stokes [1842] pp. 10-1 1.  
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of streaming along the walls as the most obvious analytical solution would have it (see 
Fig. 5.1). Although Mariotte, Bemoulli, and Borda already knew of such effects, Stokes 
was the first to relate them to a fundamental instability of fluid motion and to enunciate a 
general tendency of a fluid 'to keep a canal of its own instead of spreading out'.3 

In the case represented in Fig. 5.1,  Stokes argued that, according to Bemoulli's theorem, 
the velocity of the fluid coming from the first vessel was completely determined by the 
pressure difference between the two vessels. This velocity was therefore homogeneous, and 
the moving fluid had to form a cylindrical jet in order to comply with flux conservation. 
Dubious though it may be (for it presupposes a uniform pressure in the second vessel), this 
reasoning documents Stokes's early conviction that nature sometimes preferred solutions 
ofEuler's equation that involved surfaces of discontinuity for the tangential component of 
the velocity. 

This conviction reappears in a mathematical paper that Stokes published four years 
later. There he considered the motion of an incompressible fluid enclosed in a rotating 
cylindrical container, a sector of which has been removed (see Fig. 5.2). For an acute 
sector, the computed velocity is infinite on the axis of the cylinder. Stokes judged that in 
this case the fluid particles running toward the axis along one side of the sector would 'take 

Fig. 5.1 .  The formation of a jet as a liquid is forced through a hole in a vessel A into another vessel B. From 

Stokes to Kelvin, 13 Feb. 1858, ST. 

c 

Fig. 5.2. The formation of a surface of discontinuity (Oe) during the rotation of a cylindrical container (section 

OABC). After sliding along OA, the fluid particle a shoots off at the edge 0. From Stokes [I 847b] p. 310. 

3Stokes [1842] p. 1 1. 



1 86 WORLDS OF FLOW 

off to form a surface of discontinuity. For the rest of his life, Stokes remained convinced 
of the importance of such surfaces for perfect-fluid motion. Yet he never offered a 
mathematical theory of their development. 4 

5.1 .2 The pendulum 
As we saw in Chapter 3, much of Stokes's early work was motivated by a more concrete 
problem of fluid motion, namely, the effect of the ambient air on the oscillations of a 
pendulum. When applied to the spherical bulb of the pendulum, Euler's hydrodynamics 
gave no damping at all. In 1 843, Stokes considered two kinds of instabilities that could 
explain the observed resistance. Firstly, he imagined that the fluid particles along the 
surface of the sphere would come off tangentially at some point, forming a surface of 
discontinuity. Secondly, he evoked his earlier conviction that divergent flow was unstable: 

It appears to me very probable that the spreading out motion of the fluid, which is 

supposed to take place behind the middle of the sphere or cylinder, though dynam
ically possible, nay, the only motion dynamically possible when the conditions which 

have been supposed are accurately satisfied, is unstable; so that the slightest cause 

produces a disturbance in the fluid, which accumulates as the solid moves on, till the 
motion is quite changed. Common observation seems to show that, when a solid 

moves rapidly through a fluid at some distance below the surface, it leaves behind it a 

succession of eddies in the fluid. 

Stokes went on to ascribe fluid resistance to the vis viva of the tail of eddies, as Poncelet 
and Saint-Venant had already done in France. To make this more concrete, he recalled 
that a ship had the least resistance when it left the least wake. 5 

In the following years, Stokes realized that these instabilities did not occur in the 
pendulum case. The true cause of damping was the air's internal friction. In 1845, Stokes 
solved the linearized Navier-Stokes equation for an oscillating sphere and cylinder, 
representing the bulb and thread, respectively, of a pendulum. The excellent agreement 
with experiments left no doubt about the correctness and stability of his solutions. 6 

For the sake of completeness, Stokes also examined the case of a uniform translation of 
the sphere and cylinder, which corresponds to the zero-frequency limit of the pendulum 
problem. In the case of the sphere, he derived the resistance law that bears his name. In the 
case of the cylinder, he encountered the paradox that the resulting equation does not have 
a steady solution (in a reference system bound to the cylinder) that satisfies the boundary 
conditions. Stokes explained: 

The pressure of the cylinder on the fluid continually tends to increase the quantity of 

fluid which it carries with it, while the friction of the fluid at a distance from the 

sphere continually tends to diminish it. In the case of the sphere, these two causes 

eventually counteract each other, and the motion becomes uniform. But in the case of 

a cylinder, the increase in the quantity of fluid carried continually gains on the 

decrease due to the friction of the surrounding fluid, and the quantity carried 

increases indefinitely as the cylinder moves on. 

4Stokes [1847b] pp. 305-13. 
6See Chapter 3, pp. 139-40. 

'Stokes [1843] pp. 53-4. See Chapter 3, pp. 136-7. 
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Therein Stokes saw a symptom of instability: 

When the quantity of fluid carried with the cylinder becomes considerable compared 
with the quantity displaced, it would seem that the motion must become unstable, in 

the sense in which the motion of a sphere rolling down the highest generating line of 
an inclined cylinder may be said to be unstable. 

187 

If the cylinder moved long enough in the same direction (as would be the case for the 
suspending wire of a very slow pendulum) then 'the quantity of fluid carried by the wire 
would be diminished, portions being continually left behind and forming eddies.' Stokes 
also mentioned that in such an extreme case the quadratic term of the Navier-Stokes 
equation might no longer be negligible. According to a much later study by Car! Wilhelm 
Oseen, this is the true key to the cylinder paradox.7 

5 .1 .3  Ether drag 
Air and water were not the only imperfect fluid that Stokes had in mind. In 1 846 and 1848, 
he discussed the motion of the ether in reference to the aberration of stars. In his view the 
ether behaved as a fluid for sufficiently slow motions, since the Earth and celestial bodies 
were able to move through it without appreciable resistance. However, its fluidity could 
only be imperfect, since it behaved as a solid for the very rapid vibrations implied in the 
propagation of light. Stokes explained the aberration of stars by combining these two 
properties in the following manner.8 

He first showed that the propagation of light remained rectilinear in a moving medium, 
the velocity of which derived from a potential. Hence any motion of the ether that met this 
condition would be compatible with the observed aberration. Stokes then invoked 
Lagrange's theorem, according to which the motion of a perfect liquid always meets this 
condition when it results from the motion of immersed solid bodies (starting from rest). 
For a nearly-spherical body like the Earth, Stokes believed the Lagrangian motion to be 
unstable (for it implies a diverging flow at the rear of the body). However, his ether was an 
imperfect fluid, with tangential stresses that quickly dissipated any departure from gradi
ent flow: 'Any nascent irregularity of motion, any nascent deviation from the motion for 
which [v · dr] is an exact differential, is carried off into space, with the velocity of light, by 
transversal vibrations. '9 

In the course of this discussion, Stokes noted that his solution of the (linearized) Navier
Stokes equation in the case of the uniformly-moving sphere did not depend on the value of 
the viscosity parameter and yet did not meet the gradient condition. Hence an arbitrarily
small viscous stress seemed sufficient to invalidate the gradient solution. Stokes regarded 
this peculiar behavior as a further symptom of the instability of the gradient flow. 

In summary, in the 1 840s Stokes evoked instability as a way to reconcile the solutions of 
Euler's equations with observed or desired properties of real fluids, including the ether. He 
regarded a divergence of the lines of flow (in the jet and sphere cases) and fluid inertia (in 
the cylinder case) as a destabilizing factor, and imperfect fluidity (viscosity or jelly-like 
behavior) as a stabilizing factor (explicitly in the ether case, and implicitly in the pendulum 

7Stokes [1850b] pp. 65-7. Cf. Lamb [1932] pp. 609-17. 

8Stokes [1846c], [1848b]. Cf., e.g., Wilson [1987] pp. 132-45. 

9Stokes [1848b] p. 9. 
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bulb case). His intuition of unstable behavior derived from common observations of real 
flows and from the implicit assumption that ideal flow behavior should be the limit of real 
fluid behavior for vanishing viscosity. 

Stokes did not attempt a mathematical investigation of the stability of flow. He did offer 
a few formal arguments, which today's physicist would judge faiiacious. His deduction of 
jet formation was based on an unwarranted assumption of uniform pressure in the 
receiving vessel. The steady flow around a cylinder, which he believed to be impossible, 
is in fact possible when the quadratic terms in the Navier-Stokes equation are no longer 
neglected. The argument based on the zero-viscosity limit of the flow around a sphere fails 
for a similar reason. Stokes's contemporaries did not formulate such criticisms. Rather, 
they noted his less speculative achievements, namely, new solutions of the hydrodynamic 
equations that bore on the pendulum problem, and rigorous, elegant proofs of important 
hydrodynamic theorems. 

5.2 Discontinuous flow 

In Chapter 4, we saw how Helmholtz made discontinuity surfaces a basic element of 
perfect-liquid dynamics and derived the spiral growth of any bump on such a surface in 
1868. This instability, to which Helmholtz attributed important physical consequences 
including fluid mixing, wave formation, and meteorological perturbations, is now caiied 
the 'Kelvin-Helmholtz' instability, owing to its similarity with another instability studied 
by Wiiiiam Thomson in 1 871 .  

Thomson's consideration is  related to the strange episode recounted in Chapter 2, that 
while slowly cruising on his personal yacht and fishing with a line, he observed a beautiful 
wave pattern and explained it by the combined action of gravity and capillarity. In a 
natural extension of this theory, he took into account the effect of wind over the water 
surface, and showed that the waves grew indefinitely when the wind velocity exceeded a 
certain, smaii limit that vanished with the surface tension. In other words, the plane water 
surface is unstable for such velocities. The calculation proceeds as follows.10 

A solution ofEuler's equation is sought for which the separating surface takes the plane 
monochromatic waveform 

y = 7](x,t) = aei(kx-wt), (5. 1 )  

the x-axis being in the plane o f  the undisturbed water surface, and the y-axis being normal 
to this plane and directed upwards. Neglecting the compressibility of the two fluids, and 
assuming irrotationality, their motions have harmonic velocity potentials cp and cp'. By 
analogy with Poisson's wave problem, Thomson guessed the form 

<p = Ceky+i(kx-wt) (5.2) 

for the water, and 

10Thomson [187Ja], [187Jb], [187lc]. See Chapter 2, pp. 87-8. Some commentators, including Lamb ([1932] 
p. 449), have Thomson say that the plane surface is stable for lower velocities, which leads to an absurdly high 
threshold for the production of waves (about twelve nautical miles per hour). Thomson did not and could not state 
as much, since he only considered irrotational perturbations of perfect fluids. 
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'P' = VX + C'e-ky+i(kx-wt) (5.3) 

for the air, where v is the wind velocity. 
A first boundary condition at the separating surface is that a particle of water originally 

belonging to this surface must retain this property. Denoting by x(t) and y(t) the coord
inates of this particle at time t, this gives 

y(t) = 'Tl(x(t),t) (5.4) 

at any t, or, differentiating with respect to time, 

o<p o<p O'T/ O'T/ - = - - + - when y = 'T/(x,t). oy ox OX ot (5.5) 

A similar condition must hold for the air. The third and last boundary condition is the 
relation between pressure difference, surface tension, and curvature. For simplicity, capil
larity is neglected in the following so that the pressure difference vanishes. The water 
pressure P is related to the velocity potential 'P by the equation 

1 2 o<p 
P + 2 p(\1 'P) + pgy + p Eft = constant, (5.6) 

obtained by the spatial integration of Euler's equation. A similar relation holds for the air. 
Substituting the harmonic expressions for <p, <p1, and 'T/ into the boundary conditions and 

retaining only first-order terms (with respect to a, C, and C') leads to the relations 

Ck = -iaw, C'k = ia(w - kv) 

and 

p(ga - iCw) = p'[ga - iC'(w - kv)]. 

Eliminating a, C, and C' gives 

pw2 + p1(w - kv)2 = gk(p - p'). 

The discriminant of this quadratic equation in w is negative if 

2 g p2 - p'2 
V > - --- . k pp' 

(5.7) 

(5.8) 

(5.9) 

(5.1 0) 

Hence there are exponentially-diverging perturbations of the separation surface for any 
value of the velocity v; and the water surface is unstable under any wind, no matter how 
sma11. 1 1  

1 1To every growing mode there corresponds a decaying mode by taking the complex�conjugate solution of eqn 
(5.9). This seems incompatible with the growth derived in the vortex-sheet consideration of Chapter 4, pp. 1 61-2. 
In fact. it is not, because Thomsen's harmonic perturbations imply an initially heterogeneous distribution of 
vorticity on the separating surface, whereas the vortex-sheet argument assumes an initially homogenous distribu
tion (to first order). For Thomsen's decaying modes, the initial distribution has an excess of vorticity on the left
hand side of every positive arch of the sine-shaped surface, and a defect on the right-hand side. 
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This conclusion only holds when capillarity is neglected. As Thomson showed, the 
surface tension implies a wind-velocity threshold for the exponential growth of short
wave, irrotational perturbations. Thomson did not discuss the limiting case of equal 
densities for the two fluids. This limit could not mean much to him: as will be seen shortly, 
he did not believe in the possibility of discontinuity surfaces in homogeneous fluids.12 
In 1879, Rayleigh examined this very limit and derived the existence of exponentially
growing perturbations at any wavelength. Thus, he showed the similarity of the instabil
ities discovered by Helmholtz and Thomson. The modern phrase 'Kelvin-Helmholtz 
instability' captures the same connection, with an unfortunate permutation of the names 
of the two foundersY 

5.3 Vortex atoms 

5.3.1 Hydrodynamic analogies 
Even though Thomson observed and measured waves while sailing and fishing, his main 
interest in hydrodynamics derived from his belief that the ultimate substance of the world 
was a perfect liquid. His earliest use ofhydrodynamics, in the 1 840s, was merely analogical: 
he developed formal analogies between electrostatics, magnetostatics, and the steady 
motion of a perfect liquid, mainly for the purpose of transferring theorems from one field 
to another. His correspondence of this period contains letters to Stokes in which he 
enquired about the hydrodynamic results he needed. In exchange, he offered new hydro
dynamic theorems that his development of the energetic aspects of electricity suggested.14 

One of these theorems is worth mentioning, for it played an important role in Thomson's 
later discussions of kinetic stability. Consider a perfect liquid limited by a closed surface 
that moves from rest in a prescribed manner. If the equation of this surface is F(r, t) = 0, 
then the condition that a fluid particle initially on this surface should remain on it reads 

(5. 1 1) 

According to a theorem by Lagrange, the motion v taken by the fluid derives from a 
potential cp. Now consider any other motion v' that satisfies the boundary condition at a 
given instant. The kinetic energy for the latter motion differs from the former by 

Partial integration of the second term gives 

J p\7 cp · (v' - v) d-r = J pcp\7 · (v - v') d-r - J pcp(v' - v) · dS. 

12See Helmholtz to Thomson, 3 Sept. 1868, quoted in Thompson [1910] p. 527. 
13Thomson [1871a] p. 79; Rayleigh [1879] pp. 365-71 .  

(5. 12) 

(5. 1 3) 

14See the letters of the period March...October 1 847, ST. Cf. Smith and Wise [1989] pp. 219-27, 263-75, 
Darrigol [2000] chap. 3. 
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The volume integral vanishes because the fluid is incompressible. The surface integral also 
vanishes because the surface element dS is parallel to \1 F and both motions satisfy 
condition (5. 1 1). Consequently, T' - T is always positive. The energy of the motion that 
the fluid takes at a given time owing to the motion impressed on its boundary is less than the 
energy of any motion that satisfies the boundary condition at the same time.15 

Even though in these early years Thomson constantly transposed such theorems to 
electricity and magnetism, he did not yet assume a hydrodynamic nature of electricity or 
magnetism. His attitude changed around 1 850, after he adopted Joule's conception of heat 
as a kind of motion. In this view, the elasticity of a gas results from hidden internal motion, 
so that an apparently potential form of energy turns out to be kinetic. Thomson and a few 
other British physicists speculated, for the rest of the century, that every energy might be of 
kinetic origin. The mechanical world view would thus take a seductively simple form. 16 

The kind of molecular motion that William Rankine and Thomson then contemplated 
was a whirling, fluid motion around contiguous molecules. Gas pressure resulted from the 
centrifugal force of molecular vortices. Thomson elaborated this picture to account for the 
rotation of the polarization of light when traveling through magnetized matter, for 
electromagnetic induction, and even for the rigidity of the optical ether. In private 
considerations, he imagined an ether made of 'rotating motes' in a perfect liquid. The 
gyrostatic inertia of the whirls induced by these motes provided the needed rigidity. In 
1857, Thomson confided these thoughts to his friend Stokes, with an enthusiastic plea for 
a hydrodynamic view of nature: 17 

I have changed my mind greatly since my freshman's years when I thought it so much 

more satisfying to have to do with electricity than with hydrodynamics, which only 

first seemed at all attractive when I learned how you had fulfilled such solutions as 

Fourier's by your boxes of water.18 Now I think hydrodynamics is to be the root of 
all physical science, and is at present second to none in the beauty of its mathematics. 

5.3.2 A new theory of matter 
A year after this pronouncement, Helmholtz published his memoir on vortex motion. In 
early 1867, Thomson saw the 'magnificent way' in which his friend Peter Guthrie Tait 
produced and manipulated smoke rings.19 He gathered that Hehnholtz's theorems offered 
a fantastic opportunity for a theory of matter based on the perfect liquid. Instead of 
rotating motes, he now considered vortex rings, and assimilated the molecules of matter 
with combinations of such rings. The permanence of matter then resulted from the 

15Thomson [1849]. Thomson stated two corollaries (already known to Cauchy): (i) the existence of a potential 
and the boundary condition completely determine the flow at a given instant; (ii) the motion at any given time is 
independent of the motion at earlier times. See also Thomson and Tait [1867] pp. 312, 317-19. 

16Cf. Smith and Wise [1989] chap. 12, Stein [1981]. 

17Thomson to Stokes, 20 Dec. 1857, ST. Cf. Smith and Wise [1989] pp. 402-12, Knudsen [1971]. As noted in 
Yamalidou [1998], the hydrodynamic view of nature implied a non-molecular idealization for the primitive fluid of 
the world. 

18This is an allusion to Stokes's calculation ([1843] pp. 60-8) of the inertial moments of boxes filled with perfect 
liquid and his subsequent experimental verification of the results by measuring the torsional oscillations of 
suspended boxes of this kind. Cf. Chapter 3, p. 136. 

19Thomson to Helmholtz, 22 Jan. 1 867, quoted in Thompson [1910] p. 513. 
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conservation of vorticity. The chemical identity of atoms became a topology of mutually
embracing or self-knotted rings. Molecular collisions appeared to be a purely kinetic effect 
resulting from the mutual convection of two vortices by their velocity fields. In a long, 
highly mathematical memoir, Thomson developed the energy and momentum aspects of 
the vortex motions required by this new theory ofmatter.20 

The most basic property of matter being stability, Thomson faced the question of 
the stability of vortex rings. Helmholtz's theorems only implied the permanence of the 
individual vortex filaments of which the rings were made. They did not exclude significant 
changes in the shape and arrangement of these filaments when subjected to external 
velocity perturbations. Thomson had no proof of stability, except in the case of a 
columnar vortex, that is, a circular-cylindric vortex of uniform vorticity. He showed that 
a periodic deformation of the surface of the column propagated itself along and around 
the vortex with a constant amplitude. An extrapolation of this behavior to thin vortex 
rings did not seem too adventurous to him. Moreover, Tait's smoke-ring experiments 
indicated stability as long as viscous diffusion did not hide the ideal behavior.21 

During the next ten years, Thomson had no decisive progress to report on his vortex 
theory of matter. The simplest, non-trivial problem he could imagine, that of a cylindric
ally-symmetric distribution of vorticity within a cylindrical container, proved to be quite 
difficult. In 1 872/73, he exchanged long letters with Stokes on this question, with no 
definite conclusion.22 Thomson's arguments were complex, elliptic, and non-rigorous. 
As he admitted to Stokes, 'This is an extremely difficult subject to write upon.' A 
benevolent and perspicacious Stokes had trouble guessing what his friend was hinting 
at. I have fared no better. 23 

A stimulus came in 1878 from Alfred Mayer's experiments on floating magnets. The 
American professor had shown that certain symmetric arrangements of the magnets were 
mechanically stable. Realizing that the theoretical stability criterion was similar to that of 
a system of vortex columns, Thomson exulted: 'Mr Mayer's beautiful experiments bring us 
very near an experimental solution of a problem which has for years been before me 
unsolved-of vital importance in the theory of vortex atoms: to find the greatest number 
of bars which a vortex mouse-mill can have.' Thomson claimed to be able to prove the 
steadiness and stability of simple regular configurations, mathematically in the triangle 
and square cases, and experimentally in the pentagon case.24 

These considerations only shed light on the stability of a mutual arrangement of vortices 
with respect to a disturbance of this arrangement, and not on their individual stability. 
They may have prompted Thomson's decision to complete his earlier, mostly unpublished 

20Thomson [1867], [1869]. Cf. Silliman [1963], Smith and Wise [1989] pp. 417-25, Kragh [2002]. See also 
Chapter 4, pp. 1 54-5. 

21Thomson [1867] p. 4, [1880a]. As John Hinch told me, the relevance of the latter observation is questionable; 
the smoke rings may not indicate the actual distribution ofvorticity, because the diffusivity ofvorticity is much 
more efficient than that of smoke particles. 

22-rhomson to Stokes, 1 9  Dec. 1 872, 1-2, 8, 1 1 ,  21-22 Jan. 1 873; Stokes to Thomson, 6, 18, 20 Jan. 1873, ST. 
Cf. Smith and Wise [1989] pp. 431-8. 

23Thomson to Stokes, 19 Dec. 1 872, ST. 
''Thomson [1878] p. 135. The subject was further discussed by Alfred Green hill in 1 878, J. J. Thomson in 1883, 

and William Hicks in 1882. Cf. Love [1901] pp. 122-5, Kragh [2002]. 
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considerations on the stability of cylindrical vortices. In harmony with the energy-based 
program developed in his and Tait's Treatise on natural philosophy, Thomson formulated 

an energetic criterion of stability. In problems of statics, stable equilibrium corresponds to 
a minimum of the potential energy. In any theory that reduces statics to kinetics, there 
should be a similar criterion for the stability of motion. For the motion of a perfect liquid 

of unlimited extension, Thomson stated the following theorem. If, with the vorticity and 
impulse given, the kinetic energy is stationary, then the motion is steady. If it is a (local) 
minimum or maximum, then the motion is not only steady but stable.25 

Some thinking is necessary to understand what Thomson had in mind, since he did not 

care to provide a proof. For simplicity, I only consider the case of a fluid confined in a rigid 

container with no particular symmetry. Then the condition of a given impulse must be 

dropped, and 'steadiness' has the ordinary meaning of constancy of the velocity field. The 

condition of a given vorticity, Thomson tells us, is the fixity of the number and intensity of 

the vortex filaments (it is not the steadiness of the vorticity field). In more rigorous terms, 

this means that the distribution of vorticity at any time can be obtained from the original 
distribution by pure convection. 

The variation ov = w x or, with \1 · or =  0, of the fluid velocity meets this condition, 

since it has the same effect on the vorticity distribution w as a displacement or of the fluid 
particles.26 Therefore, the integral 

oT = I pv . (w X or) d-r = I por . (v X w) d-r 

must vanish for any or such that \1 · or = 0. This implies that 

\1 x (v x w) = 0. 

Combined with the vorticity equation (the curl of Euler's equation) 

8w at - \1 x (v x w) = 0, 

(5. 14) 

(5. 1 5) 

(5. 1 6) 

this gives the steadiness of the vorticity distribution. The fluid being incompressible, this 

steadiness implies the permanence of the velocity field, as was to be proved. 
Thomson declared the other part of his theorem, the stability of the steady motion when 

the kinetic energy is a maximum or a minimum, to be 'obvious'. Any motion that differs 
little from an energy extremum at a given time, Thomson presumably reasoned, should 

retain this property in the course of time, for its energy, being a constant, should remain 

close to the extremum value. Metaphorically speaking, a hike at a constant elevation 

slightly below that of a summit cannot lead very far from the summit. Thomson did not 
worry that the proximity of two fluid motions was not as clearly defined as the proximity 

of two points of a mountain range.Z7 

25Thomson, letters to Stokes (1872-73), ST; Thomson [1876], [1880b] (energetic criterion); Thomson and Tait 
[1867] (cf. Smith and Wise [1989] chap. 1 1). For a modern interpretation of Thomsen's criterion, cf. Arnol'd 
[1966], Drazin and Reid [1981], pp. 432-5. 

26Rigorous1y, a gradient term must be added to "' x ar in order that av beparalle1 to the walls of the container. 
However, this gradient term does not contribute to the variation 8T of the kinetic energy. 

27Thomson [1876] p. 1 16. 
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At any rate, Thomson's energetic criterion helped little in determining the stability of 
vortex atoms. The energy of a vortex ring turned out to be a 'minimax' (saddle point), in 
which case the energy consideration does not suffice to decide stability.28 Presumably to 
prepare another attack on this difficult problem, he dwelt on the simpler problem of 
cylindrically-symmetric motions within a tubular container. In this case, a simple consid
eration of symmetry shows that a uniform distribution of vorticity within a cylinder 
coaxial to the container corresponds to a maximum energy in the above sense. Similarly, 
a uniform distribution ofvorticity in the space comprised between the walls and a coaxial 
cylinder has minimum energy. These two distributions are therefore steady and stable.29 

5.3.3 Labyrinthine degradation 
Thomson had already studied the perturbations of the former distribution, the columnar 
vortex, in the absence of walls. He now included a reciprocal action between the vortex 
vibration and a 'visco-elastic' wall. He thus seems to have temporarily left the ideal world 
of his earlier reasoning to consider what would happen to a vortex in concrete hydro
dynamic experiments for which the walls of the container necessarily dissipate part of the 
energy of the fluid motion. 30 

Thomson described how, owing to the interaction with the visco-elastic walls, 'the waves 
[of deformation of the surface of the vortex] of shorter length are indefinitely multiplied 
and exalted till their crests run out into fine laminas of liquid, and those of greater length 
are abated. ' The container thus becomes filled with a very fine, but heterogeneous mixture 
of rotational fluid with irrotational fluid, which Thomson called a 'vortex sponge'.31 At a 
later stage, the compression of the sponge leads to the minimum energy distribution for 
which the irrotational fluid is confmed in an annular space next to the wall. A few years 
later, George Francis FitzGerald and Thomson himself based a reputed theory of the ether 
on the intermediate vortex-sponge state. 32 

Some aspects of the dissipative evolution of a columnar vortex are relatively easy to 
understand. According to Helmholtz's vortex theorems, the rotational and irrotational 
parts of the fluid (which have, respectively, the vorticity w of the original vortex column and 
zero vorticity) behave like two incompressible, immiscible fluids. Since the original config
uration is that of maximum energy, the dissipative interaction with the visco-elastic wall 
leads to a lesser-energy configuration for which portions of the rotational fluid are closer to 
the walls. As the w-fluid is incompressible, this evolution implies a corrugation of the vortex 
surface. As Thomson proved in his study of columnar vortex vibrations, the corrugation 
rotates at a frequency that grows linearly with its inverse wavelength (and linearly with the 

28Thomson [1876] p. 124. For a given vorticity and a given impulse, the energy of a thin vortex ring (with quasi
circular cross�section) is decreased by making its cross-section oval; it is increased by making the ring thicker in 
one place than in another. 

29Thomson (1880b] p. 173. 

31'Thomson to Stokes, 19 Dec. 1872, ST; Thomson (1880b] pp. 176-SO. 

"Thomson [1880b] p. 177. In his correspondence of 1872, Thomson imagined a different process of 'labyrin
thine' and 'spiraling' penetration of the rotational fluid into the irrotational fluid. 

32Cf. Hunt [1991] pp. 96-104. FitzGera1d first wrote on the vortex-sponge ether in FitzGera1d [1885]. Thomson 
first wrote on this topic in Thomson [1887e]. See Chapter 6, pp. 242-3. 
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vorticity w ). Since the energy-damping effect of the walls is proportional to the frequency of 
their perturbation, the energy of the smaller corrugation waves diminishes faster. As for 
these special waves (unlike sea waves) a smaller energy corresponds to a higher amplitude, 
the shorter waves must grow until they reach the angular shape that implies frothing and 
mixing with the irrotational fluid.33 On the latter point, Thomson probably reasoned by 
analogy with the finite-height sea-wave problem, which he had been discussing with Stokes. 

Thomson expected a similar degradation to occur for any vortex in the presence of 
visco-elastic matter. 'An imperfectly elastic solid', he noted in 1 872, 'is slow but sure 
poison to a vortex. The minutest portion of such matter, would destroy all the atoms of 
any finite universe.' Yet Thomson did not regard this peculiar instability as a threat to his 
vortex theory of matter. Visco-elastic walls did not exist at the scale of his ideal world fluid: 
all matter, including container walls, was made of vortices in the same fluid. In Thomson's 
imagination, the interactions of a dense crowd of vortices only resembled visco-elastic 
degradation to the extent needed to explain the condensation of a gas on the walls of its 
container.34 

5.3.4 Delusion 
For a few more years, Thomson contented himself with the observed stability of smoke 
rings and with the demonstrated stability of the columnar vortex. By 1 889, however, he 
encountered difficulties that ruined his hope of a vortex theory of matter. This is attested 
by a letter he wrote to the vortex-sponge enthusiast FitzGerald: 'I have quite confirmed 
one thing I was going to write to you (in continuation with my letter of October 26), viz. 
that rotational vortex cores must be absolutely discarded, and we must have nothing but 
irrotational revolution around vacuous cores.' He adduced the following reason: 'Steady 
motion, with crossing lines of vortex columns, is impossible with rotational cores, but is 
possible with vacuous cores and purely irrotational circulations around them.'35 

Crossing lines of vortex columns occurred in FitzGerald's and Thomson's vortex ether. 
They were also a limiting case of the mutually-embracing vortex rings that Thomson 
contemplated in his theory of matter. Their unsteadiness was therefore doubly problem
atic. Thomson was pessimistic: 'I do not see much hope for chemistry and electromagnet
ism.' Although vacuous-core vortices with zero vorticity still remained possible, Thomson 
was much less eager to speculate on vortex atoms than he had been earlier. In subsequent 
letters, he tried to persuade FitzGerald to abandon the vortex ether. 36 

Considerations of stability also played a role in Thomson's renunciation. Since 1867, his 
friend Stokes had been warning him about possible instabilities: 'I confess', Stokes wrote 
in January 1873, 'I am skeptical about the stability of many of the motions which you 
appear to contemplate.' In a letter to Stokes of December 1 898, Thomson described the 
frittering and diffusion of an annular vortex, with the comment:37 

"According to Thomson [ 1880b] pp. 176-7, this process only occurs if the canister offers no resistance to 
rotation (so that the angular momentum of the fluid is constant). 

3"Thomson to Stokes, 1872, ST, pp. 378-9. 

35Thomson [1 889] p. 202. 

36Ibid. p. 204. Cf. Hunt [1991] p. 102. 

37Stokes to Thomson, 8 Jan. 1873; Thomson to Stokes, 27 Dec. 1898, ST. 
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I now believe that this is the fate of vortex rings, and of every kind of irrotational 
[rotational?] motion (with or without finite slips anywhere) in a limited portion of an 
in viscid mass of fluid, which is at rest at great distances from the moving parts. This 
puts me in mind of a thirty-year-old letter of yours with a drawing in black and red 
ink suggesting instability of the motion of a columnar vortex, which I did not then 
believe. I must see if l can find the letter. 

According to Thomson's later recollections, he became aware of the instability of vortex 
rings in unpublished work of 1 887:38 

It now seems to me certain that if any motion be given within a fmite portion of an 
infinite incompressible liquid originally at rest, its fate is necessarily dissipation to 
infinite distances with infinitely small velocities everywhere; while the total kinetic 
energy remains constant. After many years of failure to prove that the motion in the 
ordinary Helmholtz circular ring is stable, I came to the conclusion that it is essen
tially unstable, and that its fate must be to become dissipated as now described. 
I came to this conclusion by extensions not hitherto published of the considerations 
described in a short paper entitled: 'On the stability of steady and periodic fluid 
motion', in the Phi/. Mag. for May 1887. 

In this short paper, Thomson proved that the energy of any vortex motion of a fluid 
confined within deformable walls could be increased indefinitely by doing work on the 
walls in a systematic manner. More relevantly, he announced that the energy of the motion 
would gradually vanish if the walls were viscously elastic. It is not clear, however, why this 
result would have been more threatening to vortex atoms than the degradation of a vortex 
column surrounded by viscously-elastic walls already was.39 

Another paper of the same year seems more relevant. Therein Thomson considered the 
symmetric arrangement of vortex rings represented in Fig. 5.3 as a possible model of a 
rigid ether. He worried: 

( )  .. () • cr=i==-

.. { )  .. (} .. l {) 

0 T .. () r • () .. 

.. i () .. i () .. 1 () 

n f !t n f • () f • 

Fig. 5.3. Williarn Thomsen's arrangement of vortex rings as a tentative model of the optical ether. The arrows 

represent the axes of the rings, and the black and white dots their intersections with the plane of the fignre. 

From Thomson [1887e] p. 317. 

38Thomson [1905] pp. 370n-37ln. 39Thomson [1887b]. 
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It is exceedingly doubtful, so far as I can judge after much anxious consideration 

from time to time during these last twenty years, whether the configuration repre

sented [in Fig. 5.3] or any other symmetrical arrangement, is stable when the rigidity 

of the ideal partitions enclosing each ring separately is annulled through space . . .  

The symmetric motion is unstable, and the rings shuffle themselves into perpetually 

varying relative positions, with average homogeneousness, like the ultimate molecules 

of a homogeneous liquid. 
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This instability threatened not only the vortex theory of ether-on which Thomson 
pronounced 'the Scottish verdict of not proven'-but also any attempt at explaining 
chemical valence by symmetric arrangements of vortex rings. After twenty years of brood
ing, Thomsen's hope for a grand theory of ether and matter was turning into disbelief.40 

5.4 The Thomson-Stokes debate 

5.4.1 Conflicting ideals 
When, in 1857, Thomson was contemplating an ether made of a perfect liquid and rotating 
motes, his friend Stokes warned him about the instability of the motion of a perfect liquid 
around a solid body.41 Thomson confidently replied: 'Instability, or a tendency to run to 
eddies, or any kind of dissipation of energy, is impossible in a perfect fluid.' As he had 
learned from Stokes ten years earlier and as Cauchy had proved in 1827, the motion of 
solids through a perfect liquid completely determines the fluid motion if the solids and 
fluid are originally at rest. Following Lagrange's theorem, the latter motion is irrotational 
and devoid of eddying. Following Thomson's theorem of 1849, it is the motion that has at 
every instant the minimum energy compatible with the boundary conditions. Thomson 
believed these two results to imply stability.42 

Stokes disagreed. He insisted: 'I have always inclined to the belief that the motion of a 
perfect incompressible liquid, primitively at rest, about a solid which continually pro
gressed, was unstable. ' The theorems of Lagrange, Cauchy, and Poisson, he argued, only 
hold 'on the assumption of continuity, and I have always been rather inclined to believe that 
surfaces of discontinuity would be formed in the fluid.' The formation of such surfaces 
would imply a loss of vis viva in the wake of the solid and thus induce a finite resistance to its 
motion. A surface of discontinuity, he told Thomson, is surely formed when fluid passes 
from one vessel to another through a small opening (see Fig. 5.1 ), which implies the inst
ability of the irrotational, spreading-out motion. Similarly, Stokes went on, the spreading
out motion behind a moving sphere (see Fig. 5.4) should be unstable. Stokes was only repeat
ing the considerations he had used in 1842/43 to reconcile perfect- and real-fluid behaviors. 43 

40Thomson [1887e] pp. 318, 320. 

41This is inferred from the letter from Thomson to Stokes of! 7 June 1857, ST: 'I think the instability you speak 
of cannot exist in a perfect . . .  liquid.

, 

42Thomson to Stokes, 23 Dec. 1 857. Presumably, Thomson believed that a slightly-perturbed motion would 
remain close to the original motion because its energy would remain close to that of the minimum-energy solution. 
However, this is only true in a closed system for which there is no external energy input. As Stokes later argued, 
such an input may feed the perturbation. 

43Stokes to Thomson, 12-13 Feb. 1858, ST. 
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Fig. 5.4. The spreading motion of a fluid behind a sphere. From Stokes to Thomson, 13 Feb. 1 858, ST. 

In general, Stokes drew his ideas on the stability of perfect-liquid motion from the 
behavior of real fluids with small viscosity, typically water. In 1 880, while preparing the 
first volume of his collected papers, he reflected on the nature of the zero-viscosity limit. 
His remark of 1 849 on the discontinuity surface from an edge, he then noted, depended on 
the double idealization of a strictly inviscid fluid and an infinitely-sharp edge:44 

A perfect fluid is an ideal abstraction, representing something that does not exist in 

nature. All actual fluids are more or less viscous, and we arrive at the conception of a 

perfect fluid by starting with fluids such as we find them, and then in imagination 

making abstraction of the viscosity. Similarly, any edge we can mechanically form is 

more or less rounded off, but we have no difficulty in conceiving of an edge perfectly 

sharp. 

Stokes then considered the flow for a finite viscosity f.L and a finite curvature radius a of 
the edge, and argued that the limit of this flow when a and f.L reached zero depended on the 
order in which the two limits were taken. If the limit f.L -> 0 is taken first, then the resulting 
flow is continuous and irrotational, and it obviously remains so in the limit a -> 0. If the 
limit a -> 0 is taken first, then the resulting flow is that of a viscous fluid passing an 
infinitely-sharp edge. The viscous stress is easily seen to imply the formation of a trail of 
vorticity from the edge. In the limit f.L -> 0 this trail becomes infinitely narrow, and a vortex 
sheet or discontinuity surface is formed. Stokes believed the latter double limit to be the 
only one of physical interest, because the result of the former was unstable in the sense that 
an infinitely-small viscous stress was sufficient to turn it into a widely different motion.45 

Stokes returned to his idea of the double limit in several letters.46 In 1894, it led him to an 
instructive comment on the nature of his disagreement with Thomson: 'Your speculations 

44SMPP 1, pp. 31 1-12. 
45 Ibid. As Thomson later pointed out, in this alleged instability there is an apparent contradiction between tbe 

vanishing work of the viscous stress and the finite energy difference between the two compared motions. Stokes 
replied witb a metaphor (27 Oct. 1 894, STJ: 'Suppose there is a railway AB which at B branches off towards C and 
towards D. Suppose a train travels without stopping along AB and onwards. Will you admit that the muscular 
exertion of the pointsman at B is the merest trifle of the work required to propel the train along BC or CD? Now 
I look on viscosity in the neighborhood of a sharp, though not absolutely sharp, edge as performing the part of the 

pointsman at B.' 
461 Nov. 1 894, 22-23 Nov. 1898, 14 Feb. 1899, ST. In this last letter, Stokes considers the state of things at time 

t from the commencement of motion and at distance r from an edge, and argues that the limit t --).  0 gives the 
'mike' (minimum kinetic energy) solution, whereas the limit r --+  0 gives a discontinuity surface. 
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about vortex atoms led you to approach the limit in the first way [/.L -> 0 first]; my ideas, 
derived from what one sees in an actual fluid, led me to approach it in the other way [a --> 0 
first].' Indeed, Thomson's reflections on stability mostly occurred in the context of his 
theory of ether and matter. He was therefore prejudiced in favor of stability, and generally 
expected important qualitative differences between real- and perfect-fluid behavior. 

5.4.2 Careless vortices, goring, and dead water 
In 1 887, Thomson publicly rejected the possibility of surfaces of discontinuity, arguing 
that they could never be formed by any natural action. In his opinion, continuity of 
velocity was always obtained when two portions of fluid where brought into contact. He 
now agreed with Stokes and Helmholtz that the flow around a solid obstacle was unstable 
when the velocity exceeded a certain value, but denied that this instability had anything to 
do with surfaces of discontinuity. For a perfect liquid, the determining effect was the 
separation of the fluid from the solid surface. 47 

In the case of flow around a sphere, Thomson described the instability as follows. The 
fluid separates at the equator when the asymptotic velocity V of the fluid exceeds the value 
for which the pressure at the equator becomes negative Ci p V2 according to Bernoulli's law 
applied to the irrotational solution of Euler's equation).48 A careless vortex is formed, as 
indicated in Thomson's drawing (see Fig. 5.5). This vortex grows until it separates from 
the sphere and follows the flow. The whole process repeats itself indefinitely and results in 
a 'violently disturbed motion'.49 

Stokes did not comment on this cavitational instability, which was known to occur on 
the edges of swiftly-moving immersed solids, for instance ship propellers. He did, however, 

Fig. 5.5. The formation of a careless vortex H near the equator G of a sphere inunersed in a moving liquid. 

From Thomson [1887a] p. 151.  

47Thomson [1887a]. 

49 Ibid. p. 149. 

480n negative pressure. see Chapter 4, footnote 48, p. 163. 
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contest Thomson's assertion that discontinuity surfaces could not be formed by any 
natural process. In Stokes's view, a drop of perfect liquid falling on a calm surface of 
the same liquid led to discontinuous motions. So did the 'goring' of fluid on itself, as 
drawn in Fig. 5.6.50 

Thomson rejected these suggestions, as well as Helmholtz's idea of bringing into contact 
two parallel plane surfaces bounding two portions of liquid moving with different veloci
ties. In every case, he argued, the contact between the two different fluid portions always 
begins at an isolated point, and the boundary of the fluid evolves so that no finite slip ever 
occurs. The drawings of Fig. 5. 7 illustrate his understanding of the goring and raindrop 
cases. In Hehnholtz's plane-contact process, the imperfect flatness of the surfaces achieves 
the desired result. 51 

Seven years later, Thomson published another provocative article in Nature against the 
'doctrine of discontinuity'. This time his target was the alleged formation of a surface of 
discontinuity past a sharp edge. The relief from infinitely-negative pressure at the sharp 
edge, Thomson declared, never was the formation of a surface of discontinuity, which 
contradicted his minimum-kinetic-energy theorem. The true compensatory factors were 
finite viscosity, finite compressibility, or the yielding boundary of the fluid. Thomson 
illustrated the compensations using the example of a thin moving disc. When the first 
factor dominates, a layer of abrupt velocity change, or, equivalently, a vortex sheet with 
small thickness, is formed behind the moving solid. When the third factor dominates, a 
succession of thin hollow rings is created behind the disk in a manner similar to that which 

Fig. 5.6. The goring of a liquid on itself according to Stokes. 

A discontinuity surface is formed when fg meets cd. From 

Stokes to Thomson, 4-7 Feb. 1887, ST. 

� /t.J L 

(a) (b) 
Fig. 5. 7. (a) The goring of a liquid on itself and (b) the fall of a drop on a plane water surface, according to 

Thomson. From Thomson to Stokes, 6-9 Feb. 1 887, ST. 

50Stokes to Thomson, 4, 7 Feb. 1887, ST. For cavitation around ship propellers, as discussed in Reynolds 
[1873], see later on p. 246 (in real fluids vapor fills the cavities). 

51Thomson to Stokes, 6, 9 Feb. 1887, ST. 
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Fig. 5.8. Thomson's drawing for Rayleigh's 'dead water' 

theory of fluid resistance. A discontinuity surface ee' is 

formed at the edge of the disc A, the axis of which is in 

the plane of the figure. From Thomson [1894] p. 220. 

Thomson described in 1887 for the moving sphere. Both processes imitate a surface of 
discontinuity when the fluid is nearly perfect. However, the imitation is always 
imperfect. 52 

The strict doctrine of discontinuity, Thomson went on, leads to an absurd theory of 
resistance. His target was Rayleigh's 'dead-water' theory of resistance of 1 876, according 
to which the fluid remains at rest (with respect to the solid) in the space limited by a tubular 
surface of discontinuity extending from the edges to infinity (see Fig. 5.8). The pressure in 
the dead water immediately behind the solid is inferior to the pressure on the front of the 
body, so that a finite resistance results. Whereas Rayleigh offered this picture as a solution 
to d'Alembert's old paradox, Thomson denounced its gross incompatibility with experi
ment. The dead water, if any, could not realistically extend indefinitely rearwards. More
over, the resistance measured by William Dines for a rectangular blade under normal 
incidence was three times larger than that indicated by Rayleigh's calculation in this case. 
Truncation of the discontinuity surface, Thomson showed, did not remove this discrep
ancy. As a last blow to the dead-water theory, he conceived a special case in which it gave 
zero resistance (see Fig. 5.9). 53 

5.4.3 Birth of discontinuity surfaces 
Stokes's reaction was strong and immediate. He had never supported the dead-water 
theory, and believed instead that the main cause of resistance was the formation of eddies. 

52Thomson [1894]. Thomson had already expressed this opinion in a letter to Hehnholtz of 3 Sept. 1868, 
quoted in Thompson [1910] p. 527: 'Is it not possible that the real cause of the formation of a vortex-sheet may be 
viscosity which exists in every real liquid, and that the ideal case of a perfect liquid, perfect edge, and infinitely thin 
vortex sheet, may be looked upon as a limiting case of more and more perfect fluid, finer and finer edge of solid. 
and consequently thinner and thinner vortex-sheet?' 

53Thomson [1894]; Rayleigh [1876b]. See Chapter 4, p. 165. 
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Fig. 5.9. Case of motion for which the dead-water theory gives zero resistance. The hatched tube EA moves to 
the left through a perfect liquid, leaving a dead-water wake in its rear cavity and within the cylindrical surface 

of discontinuity which begins at LL. The longitudinal resultant of pressure on the front part E is very nearly 

equal to the pressure at infinity times the transverse section of the tube, because the cylindrical part of the 

tube is much larger than its curved front part. The same equality holds exactly at the rear of the tube, because 
the pressure is continuous across the discontinuity surface and constant within the dead water. Therefore, the 

net longitudinal pressure force on the tube vanishes. From Thomson [ 1894] p. 228. 

He nonetheless maintained that the continuous, irrotational, and steady motion of a 
perfect liquid around a solid body with sharp edges was unstable. After conceding to 
Thomson that this motion was that of minimum energy under the given boundary 
conditions, he interjected: 'But what follows from that? There is the rub.' Instability, he 
explained, was still possible:54 

What is meant by the motion being unstable? I should say, the motion is said to be 

stable when whatever small deviation from the phi motion [the minimum-energy 

motion, for which there exists a velocity potential [ cp] is supposed to be produced, and 

the fluid thenceforth not interfered with, the subsequent motion differs only by small 

quantities from the phi motion, and unstable when the small initial deviation goes on 

accumulating, so that presently it is no longer small.-! have a right to take for my 
small initial deviation one in which the fluid close to the edge shoots past the edge, 

forming a very minute surface of discontinuity. The question is, Will this always 

remain correspondingly minute, or will the deviation accumulate so that ultimately it 

is no longer small? I have practically satisfied myself that it will so accumulate, and 

the mode of subsequent motion presents interesting features. 

Thomson replied that the would-be surface of discontinuity would 'become instantly 
ruffled, and rolled up into an 'crvTJpL9fLOV "{EA<Y<TfL<Y' (by the last word I mean laughing at 
the doctrine of finite slip)'55 and would be washed away and left in the wake. Stokes 
declared himself undisturbed by this objection. He knew well the instability of discontinu
ity surfaces, but their spiral unrolling was not a priori incompatible with their continual 
formation at the edge of a body. 'The rub' was still Thomson's pretense to derive stability 
from his minimum-energy theorem. The theorem, Stokes explained, did not require that 
the actual motion should be that of minimum energy, because the additional energy 
needed to create the discontinuity surface could result from work done by the external 
pressures that sustained the flow. 56 

54Stokes to Thomson, 1 1  Oct. 1894, ST. 

55Cf. Aechylus, The Prometheus bound, verses 89-90, 'KUf.L<i:rwv &vf}pt.9j.LOV -yEX.a.O'J.Lct', which literally means 
'a smile of countless waves'. The whole strophe reads (in George Thomsen's translation, Cambridge, 1932, p. 55): 
'0 divine Sky, and swiftly-winging Breezes,/0 River-springs, and multitudinous gleam/Of smiling Ocean-to thee, 
All-Mother Earth,IAnd to the Sun's all-seeing orb I cry:/See what I suffer from the gods, a god!' 

";.rhomson to Stokes, 14 Oct. 1 894; Stokes to Thomson, 27 Oct. 1 894, ST. See also Stokes to Thomson, 22-23 
Nov. 1898, ST. 
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Perhaps, Stokes wondered, there was another 'Kelvinian theorem' that truly excluded 
the discontinuity. The only one that came out in later letters was the theorem that the 
angular momentum of every spherical portion of a liquid mass in motion, relative to the 
center of the sphere, is always zero, if it is so at any one instant for every spherical portion 
of the same mass. The theorem, Stokes judged, no more excluded the formation of a 
surface of discontinuity than Lagrange's and Cauchy's theorems (regarding fluid motion 
produced by moving immersed solids) already did, for its proof required the continuity of 
the fluid motion near the walls. 57 

After a pause of four years, Stokes resumed the discussion with some considerations on 
the growth of a 'baby surface of discontinuity' at a sharp edge. Presumably, Thomson had 
objected that the continuity of pressure across the baby surface was incompatible with the 
discontinuity of velocity. Stokes explained that the growth of the surface and the resulting 
unsteadiness of the flow implied an additional term ocpjot in the pressure equation 
(Bemoulli's law) that counterbalanced the discontinuity of �pif. He also repeated his 
conviction that Thomson's minimum-energy theorem was not incompatible with the 
formation of discontinuity surfaces. 58 

Thomson replied with a thought experiment (see Fig. 5 . 10): 

To keep as closely as possible to the point (edge!) of your letter of the 22nd, let E be an 

edge fixed to the interior of a cylinder, with two pistons clamped together by a 

connecting-rod as shewn in the diagram, and the space between them filled with 

incompressible inviscid liquid. Let the radius of curvature of the edge be I0-12 of a 

centimeter. 

The curvature still being finite, Thomson thought that Stokes would agree about the 
perfectly-determinate and continuous character of the fluid motion induced by pushing 
the double piston. A moderate velocity of the piston would then imply an enormous 
pressure, tending to break the connecting rod. Although Thomson did not say why, he 
probably reasoned by combining Bemoulli's law and the impossibility of negative pressure 
at the edge, as he had done earlier for the flow around a globe. In the real world, Thomson 
went on, the connecting rod would either break, or yield slightly, thus allowing the liquid 
to leave the solid wall before it comes to the edge. In neither case would there be a slip of 
liquid over liquid. 59 

The argument backfired. In his response (20-21 ,  26 Dec. 1 898, ST), Stokes placed the 
cylinder and pistons vertically, and counterpoised the double piston and liquid by means 
of a string, pulley, and weight (see Fig. 5.1 1). Then a housefly perching on the upper piston 
would suffice to break a connecting rod of large, but finite, resistance to traction. Stokes's 
solution to this paradox was the formation of a surface of discontinuity past the edge, 
despite the lack of a strict angular point.60 

57 Stokes to Thomson, 27 Oct. 1894, 26 Dec. 1898; Thomson to Stokes, 23 Dec. 1898, ST. See also their letters 
ofl3, 18-20 Dec. 1900, and 4 Jan. 1901, ST. 

"Stoke to Thomson, 22-23 Oct. 1898, ST. 59Thomson to Stokes, 25 Nov. 1898, ST. 
60Stokes to Thomson, 20-21, 26 Dec. 1898 (paradox), 14 Feb. 1899 (solution). Another escape from the 

paradox would be to note that the fly cannot communicate a finite velocity to the piston, and therefore cannot 
induce an infinite pressure of the fluid if the 'mike' solution still applies. 
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Fig. 5 . 1  0. Thomson's diagram for a thought experiment regarding flow around a sharp edge. From Thomson 

to Stokes, 25 Nov. 1898, ST. 

Fig. 5. 1 1 .  Stokes's device for his housefly paradox, from the description in Stokes to Thomson, 20-21, 26 Dec. 

1898, ST. 

5.4.4 Separation and boundary layer 
From the beginning, Stokes believed that surfaces of discontinuity were formed even 
behind smoothly-shaped obstacles. In previous letters, he had only focused on the infin
itely-sharp edge because the instability of the 'mike' (minimum kinetic energy) solution 
was the easiest to understand in this case. Two days after he enunciated the housefly 
paradox, he re-expressed his conviction that the 'mike' solution for a uniform flow around 
a cylinder was unstable at the rear of the cylinder and challenged Thomson for a proof of 
stability in this case. He referred to the turbulent flow behind the pillars of a bridge as an 
instance of this instability. 'It is hard to imagine', he reflected, 'that the instability which 
the commonest observation shows to exist is wholly due to viscosity, especially as an 
increase of viscosity seems to tend to increased stability, not the reverse.'61 

A week later, Stokes described how surfaces of discontinuity could be generated even 
without a sharp edge:62 

I can see in a general way how it is that it is towards the rear of a solid moving 

through a fluid that a surface of discontinuity is formed. I find that at the point of a 

solid which is the birthplace of such a surface . . .  the flowing fluid must go off at a 

61Stokes to Thomson, 22 Dec. 1898, ST. 62Stokes to Thomson, 27 Dec. 1898, ST. 
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tangent, and the fluid at the other side of the surface of discontinuity must just at the 

birthplace be at rest. 
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In a crossing letter, Thomson denied instability in the perfect-liquid case, and proceeded 
to explain the practical instability for a real fluid of small viscosity and negligible com
pressibility, such as water. He first considered the fluid motion induced by a sudden 
acceleration (from rest) of an immersed solid body:63 

The initial motion of the water will be exceedingly nearly that of an incompressible 

in viscid liquid (the motion of minimum kinetic energy). There will be an exceedingly 

thin stratum of fluid round the solid through which the velocity of the water varies 

continuously from the velocity of the solid to the velocity in the solution for in viscid 

fluid. It is in this layer that there is instability. The less the viscosity, the thinner is this 

layer for a given value ofthe initial acceleration; but the surer the instability. Not very 

logical this. 

Thomson did not say why he thought the thin layer ofvorticity to be unstable. He only 
alluded to his earlier argument about the practical instability of the plane Poiseuille flow 
(parallel flow between two fixed parallel plates), to be discussed shortly.64 He moved on to 
consider what would happen to the fluid if the acceleration ceased and the body (now a 
globe) was kept moving uniformly: 

If the velocity is sufficiently great, the motion of the fluid at small distances from its 

surface all round will always be very nearly the same as if the fluid were in viscid, and 

the difference will be smaller near the front part than near the rear of the globe. 

Here we have a description of what Ludwig Prandtl later called the boundary layer. The 
rest is more personal to Thomson: 

If now the whole fluid suddenly becomes inviscid and the globe be kept moving 

uniformly, the rotationally moving fluid will be washed off from it, and left moving 

turbulently in the wake, and mixing up irrotationally moving fluid among it. 

Thus, Thomson made viscosity responsible for the formation of an unstable state of 
motion, but regarded the instability of this state as unrelated to viscosity and therefore 
felt free to 'turn off' viscosity to discuss it. Although, for a given state of motion at a given 
instant, viscosity could only have a stabilizing effect, it could make a stable state evolve 
into an unstable one. 65 

In his reply to this letter, Stokes expressed his agreement with everything Thomson had 
said, except for what would happen if the viscosity were suddenly brought to zero. In his 
opinion, 

the streams of right-handedly revolving and left-handedly revolving fluid at the two 

sides would have the rotationally moving fluid washed away, at least in the side trails, 

and the streams would give place to streams bounded by surfaces of finite slip, 

commencing at the solid, and then being paid out from thence. The subsequent 

63Thomson to Stokes, 27 Dec. 1898, ST. 
65Thomson to Stokes, 27 Dec. 1898, ST. 

"'Thomson [1887c]. See later on pp. 211-3. 
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motion would doubtless be of a very complicated character [owing to the Helmholtz

Kelvin instability]. 

Again, Stokes wanted the inviscid behavior to be a limit of the low-viscosity behavior. If a 
discontinuity surface was formed in the ideal inviscid fluid case, then it had to play a role in 
the practical case of a slightly-viscous fluid. 66 

5.4.5 Epilogue 
The debate continued until Stokes's last letter to Thomson, dated 23 October 1901.  In this 
late period the two old friends stuck at their positions. They could not even agree on the 
(in)compatibility of Lagrange's theorem with the formation of discontinuity surfaces. 
Stokes refmed his picture of the formation of a discontinuity surface behind a moving solid 
sphere, so as to reach 'continuity in the setting of discontinuity'. In the new picture the 
contact line of the solid and surface began as a tiny circle around the rearward pole of the 
sphere, and then widened out until the surface took its final, steady shape. Stokes also made 
the spiral unrolling of the discontinuity surface the true cause of eddying behind a solid 
obstacle:67 

It seems evident that the mere viscosity of water would be utterly insufficient to 

account for [the eddies] when they are formed on a large scale, as in a mill pool or 

whirlpool . . .  Of course eddies are modified by viscosity, but except on quite a small 

scale I hold that viscosity is subordinate. Of course, it prevents a finite slip, which it 

converts into a rapid shear, but viscosity tends to stability, not to instability. 

Throughout their long, playful disagreement, Stokes and Thomson were driven by 
different interests. Whereas Stokes wanted to understand the behavior of real liquids, 
Thomson primarily reasoned on the ultimate perfect liquid of the world. Thus, they 
had opposite prejudices on the stability properties of the flow of a perfect liquid past 
a solid obstacle. As the intrinsic mathematical difficulty of the subject prevented a 
settling of issues by a rigorous argument, they relied on intuition and past experience. 
Stokes appealed to the natural world and conjectured that the behavior of perfect 
liquids should reflect that of real liquids with small viscosity and compressibility. 
Thomson instead appealed to the energy-based dynamics that founded his natural phil
osophy. Hence he promoted the minimum-energy flow and an energy-based criterion 
of stability. 

The Thomson-Stokes debate is not only instructive for the kind of theoretical prejudices 
it reveals, but also as an indication of the powers and limits of intuitive discussions of 
hydrodynamic instability. The modem reader may wonder which of the protagonists was 
right, and whether they anticipated later insights into low-viscosity fluid behavior. Here is 
a brief answer to these ahistorical questions. 

Consider first the formation of discontinuity surfaces. As Stokes correctly argued, none 
of the theorems invoked by Thomson prohibits the formation of such surfaces, even in the 

66Stokes to Thomson, 30 Dec. 1898, ST. The modern reader may recognize Prandtl's separation process for the 
boundary layer. 

67Stokes to Thomson, 5 Jan. 1 899, 19-20 Dec. 1900 (quote), ST. 
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absence of a sharp edge. These theorems presuppose the continuity of the motion. For 
example, the demonstration of Lagrange's theorem requires the finiteness of the term 
(w · \7)v in the vorticity equation and therefore the continuity of the velocity.68 If the flow 
is continuous at a given time, then it remains so at subsequent times. If, however, a tiny 
surface of discontinuity is grafted onto the wall, then Helmholtz's theorems and the 
electromagnetic analogy imply that it should grow at a rate given by the velocity discon
tinuity at its origin, with a spiral unrolling of its extremity. 69 

In order that the discontinuity be finite, the fluid should be stagnant at one side of the 
origin of the discontinuity surface, and move continuously on the other side. Conse
quently, the surface must depart tangentially from the wall (in the case of an edge, it is, 
at any time, tangent to one side of the edge). As far as Marcel Brillouin and Felix Klein 
could see, there is nothing in Euler's equations that contradicts this growth process. 
Neither is there anything in this equation that restricts the points from which an embry
onic surface would grow (at least in the two-dimensional case). In summary, in an Eulerian 
fluid surfaces of discontinuity can be formed as Stokes wished, but their departure point is 
more arbitrary than experiments on real fluids would suggest. 70 

Another important issue of the Stokes-Thomson debate is the connection between 
inviscid and viscous behavior. According to Ludwig Prandtl's later views, at high Rey
nolds numbers the flow of a real fluid along a solid obstacle is irrotational beyond a thin 
boundary layer of intense shear. Unless the solid is specially streamlined, this layer 
separates from the body at some point (line) of its profile. The resulting flow resembles 
the surfaces of discontinuity imagined by Stokes for the Eulerian fluid. However, the 
separation point can only be determined through the Navier-Stokes equation (even 
though it does not depend on the value of the viscosity parameter!). Hence Stokes was 
right to expect a resemblance between the low-viscosity limit of real flows and discontinu
ous Eulerian flow; but Thomson was also right to lend viscosity a decisive role in forming 
the thin vortex layers that imitate discontinuity surfaces.71 

68This is emphasized in Stokes [1849a] pp. 106-13. 
69Jacques Hadamard ([1903] pp. 355-61) gave a proof that surfaces of discontinuity could not be formed in a 

perfect fluid as long as cavitation is excluded. This proof, however, does not exclude the growth of a pre-existing, tiny 
surface of discontinuity. Marcel Brillouin [1911] made this point, described the growth process, and extended the 
conformal methods of Helmholtz, Kirchhoff, and Levi-Civita to curved obstacles devoid of angular points. Felix 
K1ein [1910] described the evolution of a surface of discontinuity formed by immersing an infinitely-thin blade 
(concretely, a rudder) perpendicularly to the liquid surface, pulling it at uniform speed in the direction of its normal, 
and suddenly withdrawing it. He resolved the apparent contradiction between Helmholtz's vorticity theorems 
and the formation of discontinuity processes as follows: 'Clearly the source of [the contradiction] is that we 
have now admitted the confluence of two originally separated fluid masses, whereas the usual foundation of the 
theorem presupposes that fluid particles that once belonged to the surface of the fluid must indefinitely belong to 
this surface.' 

70Brillouin [191 1]; Klein [1910]. According to Brillouin, in the two-dimensional case the departure point of a 
steady surface of discontinuity must be beyond a certain point of the surface of the body. 

71Prandtl [1905]. For a viscous fluid, separation is not an instability issue. However, it is so in the ideal fluid 
case according to Stokes. 
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5.5 Parallel flow 

5.5.1 From dancing flames to the inflection theorem 
In the course of his acoustic studies, the London professor John Tyndall heard about the 
sensitivity of flames to sound that his American colleague John Le Conte had observed at 
a gas-lit musical party. The flames from 'fish-tail' gas burners danced gracefully as the 
musicians played a Beethoven trio, so that 'a deaf man might have seen the harmony'. In 
1867, Tyndall displayed this strange phenomenon at the Royal Institution, as well as a 
similar effect with smoke jets, and published an account in the Philosophical magazine. 
When subjected to various sounds, the jet shortened to form a stem with a thick bushy 
head (see Fig. 5.12). The length of the stem depended on the pitch, and high-pitch notes 
were ineffective. Tyndall made this instability the true cause of the dancing of flames, but 
he did not propose any theoretical explanation.72 

Tyndall's work attracted Lord Rayleigh's attention. This country gentleman had an 
uncommon disposition for physics, both mathematical and experimental. Coached by 
Edward Routh and inspired by Stokes's lectures at Cambridge, he emerged as senior 
wrangler and Smith's Prizeman in 1 866. Until his appointment as Cavendish Professor on 
Maxwell's death (1879), his main research interests were in optics and acoustics. His 
elegant and masterful Theory of sound, first published in 1 877, became one of the funda
mental treatises of British physics, and remains an important reference to this day.73 

Rayleigh, the theorist of sound, was naturally interested in Tyndall's observations as 
well as in Felix Savart's and Joseph Plateau's earlier experiments on the sound-triggered 
instability of water jets. In the latter case, the determining factor is the capillarity of the 
water surface, which favors a varicose shape of the jet and its subsequent disintegration 
into detached masses whose aggregate surface is less than that of the original cylinder. In 
1879, Rayleigh determined the condition for the growth of an infinitesimal sinusoidal 
perturbation of the jet surface, as Thomson had done in the case of wind over water. He 
also gave a theory of smoke-jet instability, in even closer analogy to Thomson's wave 
theory. The relevant instability is that of a cylindrical surface of discontinuity for the air's 

irv 
Fig. 5. 12. Smoke jets subjected to sounds of various pitch. From Tyndall (1 867] p. 385. 

72Le Conte (1858] p. 235; Tyndall (1867]. 73Cf. Lindsay [1976]. 
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motion. Neglecting capillarity, Rayleigh showed that, on a jet of velocity V, a sinusoidal 
perturbation with the spatial period A grew as eVt/!t .74 

This result contradicted Tyndall's observation that short sound waves were ineffective. 
Rayleigh traced the discrepancy to the viscosity of the air. In the case of two-dimensional 
parallel motion, the Navier-Stokes equation implies that the vorticity w evolves according 
to the equation 

ow = !!:.6.w at P (5.17) 

(the convective terms vanish), so that vorticity is 'conducted' through the fluid according 
to the same laws as heat. Consequently, any vortex sheet or discontinuity surface evolves 
into a layer of vorticity of finite thickness. Rayleigh then examined the stability of a finite 
layer of uniform vorticity. Switching off viscosity, he found that the layer became stable 
when its thickness somewhat exceeded the wavelength of the perturbation. This result 
made it likely that viscosity, by smoothing out the velocity discontinuity, should stabilize a 
jet for high-pitched sounds. 75 

After thus resolving the discrepancy between fluid mechanics and Tyndall's experiments, 
Rayleigh proceeded to the theoretically similar problem of two-dimensional parallel flow 
between fixed walls. He first studied the stability of successive finite layers of uniform 
vorticity with perturbed separating surfaces, using Helmholtz's analogy between vorticity 
and electric current. The result suggested that, for a continuous variation of the vorticity w, 
stability would depend on the constancy of the sign of the variation dw / dy between the two 
walls. In other words, the curvature d2 U jdy2 of the velocity profile could not change sign. 76 

Rayleigh then offered the more direct approach to the stability problem that has now 
become standard. Let Ox denote an axis parallel to the flow, Oy the perpendicular axis, 
U(y) the original velocity, and u(x, y) and v(x, y) the components of a small velocity 
perturbation. The vorticity equation gives 

with 

ow ow ow 
fii + (U  + u) 

OX + v oy = 0, (5.18) 

(5.19) 

Retaining only first-order terms in u and v, assuming that u and v vary as ei(kx-m), and 
eliminating u by means of the continuity equation 8u/8x + 8vj8y = 0, Rayleigh reached 
the stability equation 

(U _?:_) (82v - k!v) - d2 U v = 0. k 8y2 dy2 

He derived his stability criterion in the following ingenious manner.77 

74Rayleigh [1879]. See also Rayleigh [1896] pp. 362-5. 
75Rayleigh [1880] pp. 474-83. 76Ibid. pp. 483-4. 17Ibid. pp. 484-7. 

(5.20) 
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The stability equation has the form v" + av = 0, with 

.., U" 
a =  -le- - --- . 

U - a"/k 
(5.21) 

Multiplying by the complex conjugate v* of v, and integrating from wall to wall gives 

J lv' l2 dy + J aivf dy = 0. 

Hence, the imaginary part of the function a must satisfy the condition 

J Im(a) lvl2 dy = 0, 

or 

Im(a") J lvl2 
U" dy = 0. 

I U - u/kl2 

(5.22) 

(5.23) 

(5.24) 

If the sign of U" is constant (and if the perturbation v does not uniformly vanish), then the 
integral is nonzero, so that the imaginary part of £T must vanish and the perturbation 
cannot grow exponentially. Rayleigh concluded that parallel flow without inflexion of the 
velocity profile was stable. As he noted, the criterion is of no help in the jet case for which 
U" changes sign. 78 

5.5.2 Reynolds's instabilities 
In this discussion of parallel flow between fixed walls, Rayleigh probably had in mind a 
two-dimensional approach to the stability of pipe flow.79 Yet he did not discuss this 
application, presumably because of the lack of relevant experiments. As we will see in 
the next chapter, Os borne Reynolds filled this gap in 1 883 with a thorough study of the 
transition between 'direct' and 'sinuous' flow in straight circular pipes. Reynolds had the 
turbulent eddying in his pipes depend on an excess of the inertial term of the Navier
Stokes equation over the viscous term. When the flow depends on only one characteristic 
length L (the pipe diameter) and on the average velocity V, the ratio between the two terms 
is governed by the ratio LV I v, where v is the kinematic viscosity J.k/ p. This ratio is now 
called the Reynolds number.80 

Through color-band experiments, Reynolds verified that the critical transition 
depended on this number. He thereby noticed the surprisingly sudden character of this 
transition: violent eddying occurred as soon as the critical Reynolds number was reached. 
Moreover, the flow appeared to be unstable with respect to finite perturbations well before 
the critical number was reached:81 

78Rayleigh [1880] p. 487. Rayleigh also gave (without proot) the criterion in the cylindrical case that 'the 
rotation either continually increases or continually decreases in passing outwards from the axis.' 

"Rayleigh states this in RSP 3, p. 576. 

80Reynolds [1883] pp. 54-5. A more detailed account will be given in Chapter 6, pp. 249-52. 
81/bid. p. 61. Also, ibidpp. 75-6: 'The fact that the steady motion breaks down suddenly, shows that the fluid is 

in a state of instability for disturbances of the magnitude which cause it to break down. But the fact that in some 
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The critical velocity was very sensitive to disturbance iu the water before entering the 

tubes . . . This showed that the steady motion was unstable for large disturbances 

long before the critical velocity was reached, a fact which agreed with the full-blown 

manner in which the eddies appeared. 

2 1 1  

From casual observations of  conflicting streams of water, Reynolds was aware of  the 
existence of another kind of instability for which the transition from direct to sinuous 
motion was gradual and independent of the size of the disturbances. In his memoir of 
1883, he recounted an elegant experiment in which he had a lighter fluid slide over a 
heavier one with a variable velocity difference. For a certain critical velocity, the separat
ing surface began to oscillate. The waves then grew with the sliding velocity, until they 
curled and broke. 82 

Reynolds was unaware of relevant theoretical considerations by Helmholtz, Kelvin, and 
Rayleigh. He was therefore 'anxious' to find a theoretical explanation of the two kinds of 
instabilities he had encountered. He first studied the stability of the solutions of Euler's 
equation, with the result that 'flow in one direction was stable, flow in opposite directions 
unstable.' As he could only imagine a stabilizing effect of viscosity, the instability of pipe 
flow puzzled him for a long time. At last, he attempted a similar study in the more difficult 
case of the Navier-Stokes equation. He then found that the boundary condition for viscous 
fluids (vanishing velocity at the walls) implied instability for sufficiently-small values of the 
viscosity: 'Although the tendency of internal viscosity of the fluid is to render direct or 
steady motion stable, yet owing to the boundary condition resulting from the friction at the 
solid surface, the motion of the fluid, irrespective of viscosity, would be unstable.'83 

Reynolds never published his stability calculations. He could conceivably have handled 
the inviscid case in a manner similar to Rayleigh's, although the roughness of his statement 
of the criterion suggests some erring. That he could derive a boundary-layer instability in 
the viscous case seems highly implausible, considering the subtlety of the later consider
ations of that sort by Prandtl, Heisenberg, and Tollmien.84 

5.5.3 Thomson 's proofs of stability in viscous cases 
In his presidential address to the British Association meeting of 1 884, Rayleigh praised 
Reynolds's contribution to the study of the transition between laminar and turbulent flow. 
His view of the future of the subject was singularly optimistic: 'In spite of the difficulties 
which beset both the theoretical and the experimental treatment, we may hope to attain 
before long to a better understanding of a subject which is certainly second to none in 
scientific as well as practical interest.' It is likely that he and Stokes were responsible for 
the subject of the Adams prize for 1889: 'On the criterion of the stability and instability of 

condition it will break down for a large disturbance, while it is stable for a smaller disturbance, shows that there is 
a certain residual stability, so long as the disturbances do not exceed a given amount . . .  It was a matter of surprise 
to me to see the sudden force with which the eddies sprang into existence, showing a highly unstable condition to 
have existed at the time the steady motion broke down.-This at once suggested the idea that the condition might 
be one of instability for disturbances of a certain magnitude, and stable for small disturbances.' 

82Jbid. pp. 61-2. 83/bid. pp. 62-3. 
840n the later considerations, cf. Drazin and Reid [1981] chap. 4, and Chapter 7, pp. 294-6. 



212 WORLDS OF FLOW 

the motion of a viscous fluid'. After a reference to Reynolds's work, the announcement of 
the prize read:85 

It is required either to determine generally the mathematical criterion of stability, or 
to find from theory the value [of the critical Reynolds number] in some simple case or 
cases. For instance, the case might be taken of steady motion in two dimensions 
between two fixed planes, or that of a simple shear between two planes, one at rest 
and one in motion. 

The only theorist to claim success in solving these two cases was no beginner in need of 
the £170 prize; it was Sir William Thomson.86 In the second case (plane Couette flow),87 
the simpler one because of its constant vorticity, Thomson provided a fairly explicit 
procedure for deriving the evolution of an arbitrary small perturbation of the flow. 
From the Navier-Stokes equation and the incompressibility condition, he first obtained 
the linearized equation 

(�+ u.!._- v!:>.)!:>.v = 0 
at ex • (5.25) 

which only contains the second component, v, of the velocity perturbation of the basic 
flow U = f3y (the y-axis being perpendicular to the plates, and the x-axis being parallel to 
the motion ofthe moving plate). As he astutely noted, this equation and those for the other 
components u and w can be solved explicitly for any initial value of the perturbed velocity 
which is compatible with the incompressibility condition, if only the real boundary 
condition (vanishing relative velocity on the plates) is replaced with the sole condition of 
vanishing normal velocity at the plates for t = 0. This may be called the relaxed solution. 

Thomson next used Fourier analysis to find the 'forced solution' of the linearized 
equations for which the velocity perturbation on the plates was a given function of time, 
vanishing for negative time and opposite to the velocity of the relaxed solution on the 
plates for positive time. As Thomson believed the latter solution to vanish identically for 
negative time, he regarded the sum of the relaxed and the forced solutions to be the 
requested solution of the real initial-value problem. The relaxed solution is easily seen to 
decrease exponentially in time. This implies the same behavior for the forced and the 
complete solutions. Thomson concluded that the simple shear flow of the prize question 
was stable. 

In the other case of the Adams prize (plane Poiseuille flow), Thomson could no longer 
obtain the relaxed solution. Instead, he directly applied Fourier analysis to the real initial-

"Rayleigh [1884b] p. 344; G. Taylor, G. H. Darwin, G. G. Stokes, and Lord Rayleigh (examiners), 'The 
Adams Prize, Cambridge University', PM 24 (1887), pp. 142-3. 

86Thomson [1887c]. According to The Cambridge review 9 (1889), p. 156, the prize was not adjudged in default 
of candidates. 

87The Couette flow is the steady viscous flow between two concentric parallel cylinders, one of which is 
rotating at a constant speed. Following a suggestion by Max Margules, in 1890 Maurice Couette measured the 
viscosity of various fluids from the torque exerted on a cylinder immersed in the fluid contained in a rotating, 
coaxial cylinder (Couette [1890a]). This method permitted a better control of pressure (in the gas case), better 
precision, and a wider range of velocity gradients than Coulomb's and Maxwell's earlier methods (thus permitting 
a more extensive confirmation of the Navier-Stokes equation). Couette [1890b] described the instability of this 
flow beyond a critical velocity of the rotating cylinder. 
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value problem. He seems to have believed that both the boundary condition and the initial 
condition could be satisfied by superposing Fourier components of the form 
f(y)ei(a-r+kx+=l, where the frequencies u, k, and m are real numbers. Accordingly, he 
contented himself with proving that, for any nonzero value of the viscosity parameter 
and for any values of u, k, and m, convergent power-series expansions could be found for 
the y dependence of the Fourier components. From this result and from the real character 
of the frequencies u, he concluded that the plane Poiseuille flow was also stable. 88 

Lastly, Thomson dealt with the practical instability of pipe flow. In conformance with 
Reynolds's observation that the growth of perturbations in this case depended on their 
size, he proposed that the flow was probably stable for infinitesimal perturbations (as he 
thought it was in two dimensions) but unstable for finite ones. It would be so, he argued, if 
the inviscid flow with Poiseuille velocity profile was unstable, and if viscosity could only 
damp sufficiently-small perturbations. The margin of stability would then increase for 
higher viscosity, as Reynolds had observed.89 

The instability of in viscid flow with a parabolic velocity profile clearly contradicted Ray
leigh's inflection theorem. Thomson believed, however, that a 'disturbing infinity vitiate[ d) 
[Rayleigh's] seeming proof of stability.' As Rayleigh himself noted, the stability equation 

(
U _I!_) (fflv -f<?-v) - d2 U v = 0 

k [)y2 dy2 
(5.20) 

becomes singular for values of the coordinate y for which the velocity u jk of the plane
wave perturbation is identical to the velocity U(y) of the unperturbed flow (and U" does 
not simultaneously vanish). At such a point, the flow is obtained by superposing a sine
wave velocity pattern with a shearing motion. For an observer moving along the fluid, the 
flow has the 'eat's eye' outlook of Fig. 5 .13,  which Thomson published in 1880.90 

From then on, Thomson attached great importance to the disturbing infinity: 'The 
"awkward infinity" ', he wrote to George Darwin in August 1 880, 'threatens quite a 
revolution in vortex motion (in fact a revolution where nothing of the kind, nothing but 
the laminar rotational movement, was even suspected before), and has been very bewilder
ing.' Thomson believed the elliptic whirls of this flow to be the source of the turbulence 
observed by Reynolds. Any simple perturbation of the fluid boundary necessarily con
tained Fourier components for which elliptic whirling would disturb the laminar flow.91 

Fig. 5.13. Thomsen's 'eat's eye' flow pattern. From Thomson [1880c] p. 187. 

88Thomson [1887d]. 89Ibid. p. 335. 

90Thomson [1887d] p. 334; Rayleigh [1880] p. 486; Thomson [1880c]. 

91Thomson to Darwin, 22 Aug. 1880, in Thompson [1910] p. 760. Thomson does not address the question of 
the growth of the whirls. 
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5.5.4 Challenging Thomson 
Rayleigh valiantly defended his stability criterion against Thomson's 'disturbing infinity': 

Perhaps I went too far in asserting that the motion was thoroughly stable; but it is to 
be observed that if [the frequency a-] be complex, there is no 'disturbing infinity'. The 
argument, therefore, does not fail regarded as one for excluding complex values of 
[a-]. What happens when [a-] has a real value such that [a- - kU] vanishes at an interior 
point, is a subject for further examination. 

Equation (5.20) is indeed non-singular for a complex value of a-, so that an exponential 
increase of infinitesimal perturbations and a constant sign of U" are truly incompatible. 
Rayleigh conceded, however, that the impossibility of an exponential increase did not 
rigorously establish stability. Perhaps a less rapid increase of perturbations was still 
possible owing to the 'disturbing infinity'. Perhaps higher-order terms in the stability 
equation implied a departure from the first-order behavior. In sequels to his 1 880 study, 
Rayleigh provided arguments that made these escapes implausible. Modem writers on 
hydrodynamic stability no longer question the validity of his stability criterion.92 

In return to Thomson's criticism of his criterion, Rayleigh politely questioned Thorn-
son's proofs of stability of plane viscous flow: 

Naturally, it is with diffidence that I hesitate to follow so great an authority, but 
I must confess that the argument does not appear to me demonstrative. No attempt is 
made to determine whether in free 'disturbances of the type [eiur] the imaginary part 
of [a-] is finite, and if so whether it is positive or negative.' If I rightly understand it, 
the process consists in an investigation of forced vibrations of arbitrary (real) 
frequency, and the conclusion depends on the tacit assumption that if these forced 
vibrations can be 'expressed in periodic form, the steady motion from which they are 
deviations cannot be unstable.' 

Rayleigh went on to show that the tacit assumption was wrong in the case of a (rigid) 
pendulum situated near the highest point of its orbit. Whether he correctly interpreted 
Thomson's intentions is questionable. He was right, however, to judge Thomson's rea
soning incomplete.93 

The Irish mathematician William Orr clearly identified the gaps in 1907. Consider first 
Thomson's proof of stability of plane Poiseuille flow. This proof assumes that a superpos
ition ofharmonic solutions (with respect to t, x, andz) that satisfies the boundary conditions 
is sufficient to reproduce any initial value of the velocity perturbation. This does not need to 
be tme, because the boundary conditions might restrict the harmonic solutions too much. 
Thomson's proof also fails in the case of plane Couette flow. The forced solution in this proof 
does not need to vanish for t =  0, even though it is forced to vanish on the boundaries of the 
fluid for any negative time. Indeed, the boundary conditions completely determine 
the Fourier-type solution, thus leaving no room for a further restriction of the initial motion. 
Consequently, the complete solution may not have the requested initial value.94 

92Rayleigh [1892] p. 380, [1887], [1895]. Cf. Drazin and Reid [1981] pp. 126-47. 

93Rayleigh (1892] p. 582. Yet, in 1895 Rayleigh (unwisely) endorsed Thomson's 'special solution' for disturb
ances of the plane Couette flow. 

940rr (1907]. This paper also contains an unconvincing interpretation of Rayleigh's criticism of 1892. 
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5.5.5 Rayleigh 's paradox 
Thomson himself had become aware of the weakness of his reasoning, as appears in a 
letter he wrote to Stokes in December 1 898: 'Several papers of mine in Phi!. Mag. about 
1887 touch inconclusively on this question [of the stabilizing effect of viscosity].' Yet he 
still believed that the instability observed by Reynolds depended on the instability of the 
parabolic velocity profile at zero viscosity. In contrast, Rayleigh never really doubted the 
truth of his inflection theorem, which forbade this sort of instability. This led him to 
enunciate the basic paradox of pipe flow: 

If[my criterion] is applied to a fluid of infinitely small viscosity, how are we to explain 
the observed instability which occurs with moderate viscosities? It seems very unlikely 
that the first effect of increasing viscosity should be to introduce an instability not 
previously existent, while, as observation shows, a large viscosity makes for stability. 

Rayleigh offered a few suggestions to explain this discrepancy. Firstly, irregularities of the 
wall surface could play a role. Secondly, instability could occur for finite disturbances even 
when the Rayleigh criterion gave stability. Thirdly, the three-dimensional case of Rey
nolds's experiments could qualitatively differ from the two-dimensional case studied by 
Rayleigh and Thomson. Fourthly, Rayleigh wrote, 'it is possible that, after all, the 
investigation in which viscosity is altogether ignored is inapplicable to the limiting case 
of a viscous fluid when the viscosity is supposed infinitely small. '95 

The main purpose of Rayleigh's paper was to exclude the third possibility by extending 
his stability criterion to cylindrically-symmetric flow. In retrospect, his short comments on 
the fourth conjecture are most interesting:96 

There is more to be said in favour of this view than would at first be supposed. In the 
calculated motion there is a finite slip at the walls [when viscosity is ignored], and this 
is inconsistent with even the smallest viscosity. And further, there are kindred 
problems relating to the behaviour of a viscous fluid in contact with fluid walls for 
which it can actually be proved that certain features of the motion which could not 
enter into the solution, were the viscosity ignored from the first, are nevertheless 
independent of the magnitude of viscosity, and therefore not to be eliminated by 
supposing the viscosity to be infinitely small. 

Rayleigh had in mind the explanation he had given in 1883 of an acoustic anomaly 
discovered by Savart in 1820 and studied by Faraday in 1831, namely that, when a plate 
sprayed with light powder is set into vibration, the powder gathers at the antinodes of the 
motion, whereas Chladni's earlier experiments with sand gave the expected nodal figures. 
Faraday traced this anomaly to the action of currents of air, rising from the plate at the 
antinodes, and falling back at the nodes.97 

In his confirming calculation, Rayleigh assumed a plane monochromatic standing wave 
for the motion of the plate and solved the Navier-Stokes equation for the fluid motion 
above the plate perturbatively, taking the nonlinear (v · 'V)v tenn as the perturbation. The 

95Thomson to Stokes, 27 Dec. 1898; Rayleigh [1892] pp. 576-7. 
96Rayleigh [1892] p. 577. 

97Cf. Rayleigh [1883a] pp. 239-40; [1896] vol. I, pp. 367-<l. Rayleigh also explained the air currents observed 
by Vincenz Dvofak in 1876 in Kundt's tubes. 
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Fig. 5.14. Motion of air near a vibrating plate. From Rayleigh [1883a] p. 250. 

resulting motion is confined near to the plate in a layer of thickness (v/!)112, where v is the 
kinematic viscosity andfis the frequency of the oscillations. This layer includes a periodic 
array of vortices, as shown in Fig. 5.14. The peripheral velocity of the vortices is of order 
v5/ V, where v0 is the maximum velocity of the particles of the plate, and Vis the celerity of 
the two progressive waves of which the standing wave motion of the plate is a superpos
ition. As Rayleigh emphasized, this vortical velocity does not depend on the value of the 
viscosity v: 'We cannot, therefore, avoid considering this motion by supposing the coef
ficient of viscosity to be very small, the maintenance of the vortices becoming easier in the 
same proportion as the forces tending to produce the vortical motion diminish.'98 

Rayleigh anticipated a similar singularity of the zero-viscosity limit in the case of plane 
parallel flow. This view agreed with Reynolds's assertion that intense shear near the walls 
caused the instability observed in pipe-flow experiments. As we will see in Chapter 7, in 
1 921 Ludwig Prandtl described a destabilizing mechanism for plane Poiseuille flow. In 
1 829 and 1 847, his disciple Waiter Tollmien proved the correctness of this intuition. In 
1 824, Heisenberg independently derived the instability of plane Poiseuille flow, through a 
method of approximation whose validity could only be established much later by Chia 
Chiao Lin and others. For circular pipes, the flow is probably stable at any Reynolds 
number, although a complete proof is still lacking. The latter problem is mathematically 
similar to plane Couette flow, for which a rigorous proof of stability is now available. 
Nineteenth-century experts on fluid mechanics did not possess the mathematical tech
niques that have proven necessary even in the simplest problems of viscous-flow stability. 
Yet they could anticipate various causes of instability, such as finite disturbances, intense 
shear in boundary layers, and irregularity of walls.99 

5.5.6 Reynolds's energetic approach 
Reynolds offered a last nineteenth-century approach to parallel-flow instability in a mem
oir of 1 894. His reasoning was based on an equation he derived for the variation in time of 
the energy of the eddying motion. He thereby assumed the existence of a macroscopic 
averaging scale for which the mean motion no longer involved turbulent eddying. Under 
this assumption, the energy of the eddying motion is borrowed inertially from the energy of 
the mean motion and damped by viscous forces. As a stability criterion, Reynolds required 
the dominance of the damping term of his eddying-energy equation over the inertial term 

"Rayleigh [1883a] p. 246. 
99For modern knowledge regarding the stability of parallel flow, cf. Drazin and Reid [1981] pp. 212-13 (plane 

Conette flow), 221 (plane Poiseuille flow), 219 (Poiseuille flow in a circular pipe); also Lin [1966] pp. 1 1-14. 
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for any choice of the eddying motion. By laborious calculations he estimated the corre
sponding Reynolds number in the case of flow between two fixed parallel plates. 100 

Reynolds's method can at best yield a value of the Reynolds number below which the 
motion must be stable. It does not allow one to determine the Reynolds number from 
which certain perturbations (not necessarily of the random eddying kind) will grow. The 
general idea of studying the evolution of the energy of a perturbation of the laminar 
motion has nevertheless seduced later students of hydrodynamic instability, including 
Hendrik Lorentz, William Orr, Theodor von Karman, and Ludwig Prandtl. In some 
cases, as the Prandtl-Tollmien boundary-layer instability, it provides some physical 
understanding of the mechanism of instability. 101 

Thomsen's, Rayleigh's, and Reynolds's mathematical studies of parallel flow show how 
impenetrable the caprices of fluid motion could be to the elite of nineteenth-century 
mathematical physics. Where stability was hoped for, for instance in Kelvin's vortex 
rings, it turned out to be highly improbable. Where instability was observed, for instance 
in Reynolds's pipes, it turned out to be very hard to prove. The first failure threatened the 
British hope of basing the entirety of physics on the perfect liquid. The second stood in the 
way of concrete applications of fluid dynamics to hydraulic or aerodynamic processes. Yet 
the few mathematical successes obtained in simple, idealized cases, together with inspired 
guesses on general fluid behavior, opened a few paths of the modern theory of hydro
dynamic instability. 

In general, the nineteenth-century concern with hydrodynamic stability or instability led 
to well-defined, clearly-stated questions on the stability of the solutions of the fundamen
tal hydrodynamic equations (Euler's and Navier's). Most answers to these questions were 
tentative, controversial, or plainly wrong. The subject that Rayleigh judged 'second to 
none in scientific as well as practical interest' remained utterly confused. Apart from the 
Helmholtz-Kelvin instability and Rayleigh's inflection theorem, the theoretical yield was 
rather modest. There was Stokes's vague, unproved instability of divergent flows, Thorn
son's unproved instability of vortex rings, the hanging question of the formation of 
discontinuity surfaces, and two illusory proofs of stability for simple cases of parallel 
viscous flow.102 

The situation could be compared to number theory, which is reputed for the contrast 
between the simple statements of some of its problems and the enormous difficulty of their 
solution. The parallel becomes even closer if we consider that some nineteenth-century 
problems of hydrodynamic stability, for example the stability of viscous flow in circular 
pipes or the stability of viscous flow past obstacles, are yet to be solved, and that the few 
available answers to such questions were obtained at the price of considerable mathemat
ical efforts. This long persistence of basic questions of fluid mechanics is the more striking 
because in physics questions tend to change faster than their answers. 

In number theory, failed demonstrations of famous conjectures sometimes brought 
forth novel styles of reasoning, interesting side problems, and even new branches of 

100Reynolds [1895]. See Chapter 6, pp. 259-62. What I here call 'mean motion' corresponds to Reynolds's 
'mean-mean-motion'. 

101Cf. Lin [1966] pp. 59-63. 102Rayleigh [1884b] p. 344. 
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mathematics. Something similar happened in the history of hydrodynamic stability, 
though to a less spectacular extent. Stokes's and Helrnholtz's surfaces of discontinuity 
were used to solve the old problem of the vena contracta and to determine the shape of 
liquid jets. They also permitted Rayleigh's solution (1 876) of d' Alembert's paradox, and 
inspired some aspects of Ludwig Prandtl's boundary-layer theory (1904). Rayleigh's 
formulation of the stability problem in terms of the real or imaginary character of the 
frequency of characteristic perturbation modes is the origin of the modem method of 
normal modes. 103 

As a last important example of fruitful groping, Stokes, Thomson, and Rayleigh all 
emphasized that the zero-viscosity limit of viscous-fluid behavior could be singular. Stokes 
regarded this singularity as a symptom of the instability of inviscid, divergent flows; 
Thomson regarded it as an indication that the formation of unstable states of parallel 
motion required finite viscosity; Rayleigh regarded it as a clue to why some states of 
parallel motion were stable for zero viscosity and unstable for a small, finite viscosity. 
Rayleigh even anticipated the modem concept of boundary-layer instability: 104 

But the impression upon my mind is that the motions calculated above for an 
absolutely inviscid liquid may be found inapplicable to a viscid liquid of vanishing 
viscosity, and that a more complete treatment might even yet indicate instability, 
perhaps of a local character, in the immediate neighbourhood of the walls, 'when the 
viscosity is very small.' 

In the absence of a mathematical proof, such utterances are of dubious value. Rayleigh 
himself warned that 'speculations on such a subject in advance of definite arguments are 
not worth much.' Many years later, Garrett Birkhoff reflected that speculations were 
especially fragile on systems like fluids that have infinitely many degrees of freedom. Yet, 
by imagining odd, singular behaviors, the pioneers of hydrodynamic instability avoided 
the temptation to discard the foundation of the field, the Navier-Stokes equation; and 
they sometimes indicated fertile directions of research. 105 

Early struggles with hydrodynamic stability are not only interesting for the clues they 
give on the later development of this topic; they also reveal fine stylistic differences among 
leaders of nineteenth-century physics. Due to the lack of rigorous mathematical solutions 
for the outstanding problems of fluid dynamics, these physicists had to rely on subtle, 
individual combinations of intuition, past experience or experiment, and improvised 
mathematics. They ascribed different roles to idealizations such as inviscidity, rigid 
walls, or infinitely-sharp edges. For instance, Helmholtz and Stokes believed that the 
perfect liquid provided a correct intuition oflow-viscosity liquid behavior, if only discon
tinuity surfaces were admitted. Thomson denied that, and reserved the perfect liquid 
(without discontinuity) for his sub-dynamics of the universe. As the means to exclude 
rigorously one of these two views were lacking, the protagonists preserved their colorful 
identities. 

103Kirchhoff [1869]; Rayleigh [1876b]; Prandtl [1905]. Cf. Drazin and Reid [1981] pp. 10-1 1 .  
104Rayleigh [1892] p .  577. 105Ibid. p .  576; Birkhoff [l950]. 
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TURBULENCE 

If the velocities [of water in rivers] remained constant in each point of 
the traversed space, the surface of the liquid would look like a plate of ice 
and the herbs growing at the bottom would be equally motionless. Far from 
that, the stream presents incessant agitation and tumultuous, disordered move
ments, so that the velocities change in an abrupt and most diverse manner from 
one point to another and from one instant to the next. As noted by Leonardo da 
Vinci, Venturi, and especially Ponce!et, one can perceive eddies, large and small, 
with a vertical mobile axis. One can also see, at the surface, bouillons, or eddies 
with a nearly horizontal axis, that constantly surge from the bottom and thus 
form genuine ruptures, with the intertwining and mixing motions that M. 
Boileau observed in his experiments. 1 (Adbemar Barn& de Saint-Venant, 1 872) 

Hard to gain though it may be, any understanding of hydrodynamic instabilities is of a 
negative kind. Namely, it only tells us when and why the rigorous solutions of the 
hydrodynamic equations under given boundary conditions fail to represent natural 
flows. It does not tell us much on the sort of motion into which the unstable system settles 
after perturbation. From common observations, everyone knows the great complexity of 
this motion. The capricious eddying of water behind obstacles, or the hesitating, convo
luted rise of smoke from a fire have indeed inspired poets with metaphors for the 
unpredictability of human life. 

William Thomson began using the term 'turbulent' in the 1880s to characterize such 
irregular motions, as opposed to the 'laminar' flows in which successive fluid layers glide 
smoothly over each other. Much earlier, in 1 822, Navier opposed 'linear' to 'nonlinear' flow, 
and from the 1 830s Saint-Venant opposed 'tumultuous' to 'regular' flow. The unpredict
ability captured in this terminology has long deterred the theorists of fluid motion. Yet, the 
intellectual mastery of some aspects of turbulent flow has proved possible. 2 

Turbulence studies began in the nineteenth century with what French engineers called 
eaux courantes, or open-channel flow. Pipe flow and fluid resistance took second priority, 
perhaps because turbulence is less visible in pipes and more heterogeneous around an 
obstacle, but also because in those years French engineers were busy building new canals 
and improving the navigability of rivers. In 1 822, just after proposing his equations for 
viscous-fluid motion, Navier recognized its impotence for describing the 'nonlinear' flows 
encountered in hydraulics. In the 1830s and 1840s, Saint-Venant suggested that the same 

1Saint-Venant [1872] p. 650 

2Cf. Thomson [1887e], [1 894]. Navier's and Saint-Venant's contributions are discussed later on pp. 229-31 .  
The opposition between turbulent and laminar flow is  used here as roughly as i t  was in the nineteenth century, with 
no consideration of intermediate, oscillatory forms of motion. 
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equation could be applied to the large-scale average of a tumultuous flow if the viscosity 
parameter was made to depend on the circumstances of the flow. In the 1 870s, his disciple 
Joseph Boussinesq implemented this approach in a monumental Theorie des eaux 
courantes. 

These early quantitative and statistical theories of turbulent flow are described in 
Sections 6.2 and 6.3. Section 6 .1  does not deal with turbulence per se, but with anterior 
studies of open channels in the 1 820s and 1 830s, mainly the problem of backwaters that 
largely motivated Saint-Venant's and Boussinesq's work. The authors of these studies did 
not calculate from the fundamental equations of hydrodynamics. Instead, they developed 
a semi-empirical approach that combined a parallel-slice idealization of the flow, mech
anical principles, and some experimental input for wall friction. They ignored the turbu
lent character of the motion. In contrast, Saint-Venant argued that insights into the nature 
of turbulence would permit more fundamental solutions of hydraulic problems. 

The mathematical theory of open-channel flow was a mostly French topic, usually 
avoided by British engineers. There was a significant exception, the brother James of 
William Thomson, who kept up with literature on this subject and agreed with his French 
counterparts that turbulence played a significant role in determining the flow pattern. 
While helping James explain an anomaly of the velocity profile, in 1887 William Thomson 
discovered that the turbulent fluid had effective rigidity and could thus propagate large
scale transverse vibrations. For a short, exhilarating time, he believed to have found the 
key to the perfect-fluid theory of the luminiferous ether. George Francis FitzGerald, who 
similarly dreamt of a 'vortex-sponge' theory of the ether, extended Thomsen's speculation 
with much enthusiasm. These theories are described in Section 6.4. 

Thomsen's and FitzGerald's ether theories, as for Saint-Venant's and Boussinesq's 
hydraulics, only involved developed turbulence. They did not require an understanding 
of the transition from laminar to turbulent flow. In 1839, the German hydraulician 
Gotthilf Hagen discovered the sudden character of this transition in the case of pipe 
flow. His original purpose was to provide engineers with more exact retardation formulas, 
so he did not dwell on this curious phenomenon. In contrast, Reynolds's hydrodynamic 
investigations of the 1 880s, described in Section 6.5, the flnal section of this chapter, 
concerned this transition and its 'criterion'. 

Problems of navigation, rather than hydraulics, motivated Reynolds's interest in tur
bulence. While reflecting on propellers, wakes, and sea waves, he surmised that most 
hydrodynamic paradoxes and anomalies resulted from our ignorance of invisible vortex 
motion. William Thomson and James Clerk Maxwell had already made vortices in a 
pervasive, ideal fluid responsible for the magnetic properties of the ether and for the 
stability of matter. Reynolds made their continual production the main cause of resistance 
and retardation in real fluids. To reveal the secrets of fluid motion, he only needed a few 
drops of ink. 

A more surprising source of Reynolds's reflections on turbulent flow was the kinetic 
theory of gases. Following an investigation ofWilliam Crookes's radiometer and Thomas 
Graham's transpiration phenomena, Reynolds argued that the nature of the flow of a 
dilute gas depended on the 'dimensional properties of matter', specifically on the ratio 
between the dimensions of the flow (vane size or tube diameter) and the mean free path. 
Similarly, he expected the nature of the flow of a denser fluid to depend on the dimensional 
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properties of the Navier-Stokes equation. This led him to the idea of a transition con
trolled by the Reynolds number, to the experimental verification and sharpening of this 
idea, and to his later kinetic-statistical theory of the turbulent transition. 

6.1 Hydraulic phenomenology 

6.1 . 1  Hydraulics versus hydrodynamics 
As the rational hydrodynamics of d' Alembert and Euler proved inept at practical prob
lems of hydraulics and navigation, empirical or semi-empirical methods began to thrive. 
When, in the 1870s, the minister Turgot consulted d' Alembert, the Marquis de Condorcet, 
and the abbot Charles Bossut about the project of an underground canal in Picardie, they 
performed towing experiments that showed, among other things, that the resistance 
increased with the narrowness of the canal. Bossut taught empirical hydrodynamics at 
the Ecole Royale du Genie de Meziere. The Ministry of War funded his numerous 
experiments on retardation in pipe and channel flow. The second edition of the resulting 
treatise, published in 1786/87, long remained a reference for hydraulic engineers.3 

Bossut praised the 'very profound and very generous method' of his friend d'Alembert 
as well as the 'scope and generality' of Euler's contribution. However, he did not try to 
apply these theories in the real world: 

These great geometers seem to have exhausted the resources that can be drawn from 

analysis to determine the motion of fluids: their formulas are so complex, by the 

nature of things, that we may only regard them as geometrical truths, and not as 
symbols fit to paint the sensible image of the actual and physical motion of a fluid. 

Bossut measured the loss of head in pipes and channels of various breadths, for which he 
provided a wealth of numerical tables and the inference that the loss was roughly propor
tional to the square of the average velocity.4 

The other French master of late-eighteenth-century hydraulics, Pierre Du Buat, agreed 
with Bossut that urgent hydraulic problems could only be solved by the experimental 
method. Yet he had the more theoretical ambition of providing general formulas for pipe 
and channel flow, as well as a detailed discussion of the course of rivers, which was his 
main interest. He applied Newton's second law to the bulk motion of water, guessed the 
form of retarding forces by molecular intuition, and inferred relevant parameters from 
abundant measurements.5 

Du Buat formulated the 'key to hydraulics' as the balance between the accelerating force 
(due to pressure gradient or gravity) of a fluid slice and its friction on the walls. For 
uniform, permanent flow in an open channel, this leads to the equation (in Prony's later 
notation) 

pgSi = xFu, 

3Cf. Dugas [1950] pp. 300-3, Rouse and !nee [1957] pp. 126-8, Redondi [1997]. 
4Bossut [1786/87] p. XV. 
5Du Buat [1786]. Cf. Dugas [1950] pp. 303-5, Rouse and !nee [1957] pp. 129-34. 

(6.1) 
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where p is the density of water, g is the acceleration of gravity, S is the normal fluid section, 
i is the slope of the bottom (the sine of the angle that it makes with a horizontal plane), x is 
the wetted perimeter of the channel, F u is the retarding force per unit length, and U is the 
average velocity. 6 

Du Buat's intuition of fluid tenacity and 'molecular gearing' yielded an intricate 
expression for the retarding force Fu, which reduces to the quadratic form bU2 in most 
practical cases. Combined with the equilibrium condition (6.1), this form gives the formula 
named after Antoine Chezy, who proposed it first in an unpublished report on a canal 
planned to bring the waters of the River Yvette into Paris. In 1804, the director of the 
Ecole des Ponts et Chaussees, Gaspard de Prony, inferred from Couplet's, Bossut's, and 
Du Buat's retardation measurements and from Charles Coulomb's understanding of 
surface friction the perennial form 7 

(6.2) 

As well as his treatment of uniform permanent flow, Du Buat gave semi-empirical 
formulas for weirs and backwaters. One of his main concerns was the improvement of 
the navigability of rivers, then usually achieved by a series of weirs that elevated the water 
level. The weir formula gives the height of the water above a weir as a function of the river's 
discharge and the weir's width and height. Upstream from the weir, the water surface has a 
curved shape that would asymptotically reach the natural level of the river if no other weir 
interfered. This is the 'backwater' phenomenon which Du Buat improperly called remou. 
The navigability of a naturally shallow river is improved by weirs placed so that the depth of 
the backwater of the nth weir at the foot of the (n - 1 )th weir exceeds the minimal depth 
required for navigation. A lock on the side of each weir permits the passage of the boats. 8 

6.1.2 Be/anger 's backwater theory 
Du Buat contented himself with a circular-arc approximation of the backwater curve, 
arguing that the knowledge of the relevant differential equation would be of no practical 
help. Some forty years later, Jean-Baptiste Belanger, an engineer with the Ponts et 
Chaussees, judged differently. Like many former polytechnicians, Belanger had faith in 
the practical usefulness of higher mathematics. While working on canals and adjacent 
rivers, he sought a theory of non-uniform flow that would permit more rational designs. 
The Royal Academy of Metz had recently advertized a prize for 'determining the curve 
that running water forms upstream from a weir'.9 

The only known open-channel formulas concerned uniform permanent flow, for which 
the section of the channel is uniform and the slope of the water surface is the same as the 
slope of the bottom. In his new theory, B61anger admitted a slow variation of the section of 
the channel and slight differences between the surface and bottom slopes. For simplicity, 
he assumed that the velocity (vector) within a section of the stream was nearly uniform, 

6Du Buat [1786] vol. I, p. xvii. 1Ibid. p. 62. Cf. Rouse and Ince [1957] pp. 141-3. 

8Du Buat [1786] vol. I,  chap. 4, pp. 205-17. 

9Belanger [1828] p. iii. Cf. Saint-Venant [1887c] pp. 1 54-7, Rouse and !nee [1957] pp. 148-9. On the prize, cf. 
Poncelet [1845] p. SI On. 
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although he knew from Du Buat that the velocity increased with the distance from the 
bottom. This assumption agrees with a variable fluid section as long as the departure from 
uniformity remains small. 10  

Following Belanger, take the s-axis parallel to the common velocity of the approxi
mately-parallel water filaments, and the x-axis normal to this axis (see Fig. 6.1 ). Denote by 
y the angle that the s-axis makes with the horizontal. A given particle of the fluid 
experiences three forces, namely, its weight, the pressure gradient, and a frictional force, 
which Belanger took to be the same at every point of a fluid section.1 1  Its velocity v varies 
with the section S, as follows from the constancy of the discharge Q = vS (the volume of 
water crossing a section of the channel per unit time). Newton's second law, projected onto 
the s- and x-axes then gives 

aP 
-

ox
- pgcos y = 0. 

(6.3a) 

(6.3b) 

With the origin of the x-axis at the bottom of the section, integration of eqn (6.3b) gives 

P = (h - x)pgcos y + Po, (6.4) 

where h is the depth measured in the direction of the x-axis and Po is the atmospheric 
pressure. 1 2  

So far, the slope of the s-axis could have any value between the slope of the surface and 
that of the bottom. Belanger ultimately placed the s-axis at the bottom (running through 

X 

s 

Fig. 6. 1 .  The geometrical parameters for slowly-varying flow in an open channel. 

10Belanger [1828] p. 5. 
1 1This assumption is clearly valid in the uniform case, since the frictional force is then balanced by the 

gravitational force, which is a constant. 
12Belanger [1828] p. 8. 
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the lowest point of each section). For any particle of a given fluid section, the equation of 
motion (6.3a) then gives 

dh . X 1 dv -- cos y + sm y --Fv = - - .  ds pSg g dt (6.5) 

Denoting by i the slope sin y of the bottom, Belanger obtained his backwater equation: 

i ds - vT=i2 dh _L(av + W) ds + Jt dS = o, pSg gS3 (6.6) 

the last term of which comes from the identities dvfdt = d(Q/S)/dt = -(Q/S2)dS/dt 
and dS/dt = (dS/ds)v = (dS/ds)Q/S. This equation completely determines the back
water curve if the variation of the fluid section S with the depth h and the distance s is 
known.13 

Belanger provided a stepwise integration of this equation in the simple case of the 
horizontal aqueduct which had been built recently to bring the waters of the River 
Ourcq into Paris. In this case, the practical question was the height that the water must 
have at the beginning of the aqueduct for a given height at the end. Belanger also gave a 
few examples of calculations of the backwaters before a weir, with the navigability of rivers 
in mind.14 

6. 1.3 Hydraulic jumps 
In most practical cases, the values of the parameters in eqn (6.6) allow integration 
that does not conflict with the starting assumption of a slow variation of the depth h. 
However, Belanger noticed the possibility of different behaviors. Consider the case of 
a straight canal with a wide rectangular section and with a purely quadratic friction. 
Denote by q the discharge per unit breadth, ho the depth (bq2 / pgi)113 that the flow would 
have in the uniform case, and he the depth (q2fg)1/3 • In these terms, eqn (6.6) takes 
the simple form 

dh h3 - h� 
ds = 

h3 - h3 tgy. 
e 

(6.7) 

Although this equation can be integrated explicitly, the variations of h are more conveni
ently inferred from the sign that the derivative dh/ds takes according to the relative values 
of h, h0, and he. In the frequent case of a swell (h > ho) on a small-sloped bed (ho > he), the 
curve h(s) is concave and has an upstream asymptote parallel to the bed and a horizontal 
downstream asymptote (see Fig. 6.2(a)). This means that the flow is asymptotically 
uniform in the upstream direction and then swells owing to a downstream cause, which 
could be a weir or the merging into a lake.15 

13Belanger [1828] p. 10. 14/bid. pp. I I-28. 

1 5Cf. Bresse [1860] pp. 218-30, Flamant [1891] pp. 237, 263-4, Forchheimer [1927] pp. 1 81-3. 
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Fig. 6.2. The backwater curves in the small-sloped case, and their concrete realizations according to For

chheimer [1927] p. 181 .  

In the case h < he < ho, which would occur when water is forced through a sluice gate 
into a small-sloped channel or when a high-sloped channel turns into a small-sloped one, 
the depth increases in the downstream direction until it reaches the critical value he for 
which the slope dh/ds becomes infinite (see Fig. 6.2(b)). The part of the curve close to this 
critical point cannot be trusted, for it contradicts the approximation of parallel-slice flow. 
Belanger surmised that in this case the water level would suddenly increase to a value 
higher than critical, and then again vary smoothly according to eqn (6.7). He identified this 
behavior with the 'hydraulic jumps' that the Italian hydraulician Giorgio Bidone had 
studied in the 1 820s. 16 

In order to determine the height of the jump, Belanger appealed to the theorem of live 
forces which his colleague Claude-Louis Navier and his friend Gaspard Coriolis had been 
applying to the theory of machines. In Coriolis's statement of this principle, the variation 
of live force of a mechanical system during a given time must be equal to the work of the 
forces acting on the system during this time. Belanger considered a portion of fluid 
delimited by two planes perpendicular to the bottom and situated before and after the 
jump. Denote by !; and !;' the surface heights (measured from a fixed horizontal plane) in 
these planes, v and v' the corresponding fluid velocities, and za and z'a the heights of their 
gravity centers (see Fig. 6.3). During a time dt, the live force of the portion of fluid varies 
by (I j2)p(VZ - v2)Qdt. The work of the pressures acting on the sections during the same 
time is pg(!; - za - !:' + z'a)Qdt, because the pressures vary hydrostatically in the two 
sections. The corresponding work of gravity is pg(za - z'a)Qdt. Neglecting the work of 
frictional forces, the theorem of live forces gives 

if v12 
!:' - !: = - - - .  (6.8) 2g 2g 

In the parlance of hydraulicians, the jump equals the decrease of the velocity head.17 

16Belanger [1828] pp. 29-31; Bidone [1820]. Cf. Rouse and !nee [1957] pp. 143-4, 149. 

17Belanger [1828] p. 32. 
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z 

Fig. 6.3. Geometrical parameters for a hydraulic jump. 

6. 1 .4 Backwater energetics 
As Belanger later realized, this reasoning errs by ignoring the loss of live force that the 
abrupt change of motion implies. 18  For a gradually-varying flow, the balance oflive force 
seems to apply to an infinitesimal change d� of surface height over the infinitesimal 
distance ds. Taking into account the work -(x./S)FvQdt of frictional forces, this gives 
the equation 

d� + S�g Fv ds + d (�) = 0, (6.9) 

which is a simpler form of Belanger's backwater equation, because of the relations 
d� = -i ds + dh ../f=i2 and v = Qj S (see Fig. 6.1). Poncelet and Navier obtained the 
backwater equation in this manner, the former in the same year as Belanger. 19 

In 1 836, Pierre Vaulthier, who only knew Belanger's proof, obtained the Poncelet form 
of the backwater equation by suspiciously simple reasoning. The surface of the water in 
equilibrium, Vaulthier reasoned, is horizontal. Then the immediate cause of the flow in a 
channel must be the slope of the surface. In the uniform case, the descent -d� of the water 
surface is given empirically by the Prony formula (x.j pgS)(av + bv2) ds. For a frictionless 
fluid it should be equal to the variation d(if /2g) of the velocity head, by analogy with 
frictionless fall on an inclined plane. V aulthier simply added these two contributions to get 
the backwater equation. His main service to the subject was not this dubious proof, but his 
many applications of the backwater equation at a time when French engineers busied 
themselves with the improvement of rivers. 20 

18Belanger [1841/42] pp. 94--6. Belanger obtained the correct expression for the jump by equating the resultant 
of the pressures acting on the sides of the fluid portion to the variation of its momentum. 

19Poncelet [1836] pp. 66n; Navier [1838] p. 190. Cf. Saint-Venant [1887c] p. 158. Belanger's procedure of 1828 
can also lead to the Poncelet form of the backwater equation if the s-axis is made parallel to the water surface. 

"'Vaulthier [1836] pp. 241-313. Cf. Saint-Venant [1887c] pp. 157-8. 
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Upon reading Vaulthier, Coriolis offered his own derivation of the backwater 
formula, which long remained the standard one. 'The question of the figure of back
waters', Coriolis declared, 'is the most important question that theoretical hydraulics 
presents to the engineer.' He meant that, whereas the known laws of efflux and uniform 
flow were essentially empirical, the backwater problem admitted a theoretical solution. 
He nonetheless disagreed with Belanger's treatment, which he misread as an incorrect 
application of the theorem of live forces, and with Vaulthier's, which ignored the prin
ciples of mechanics. Even Poncelet's treatment fell short of satisfying Coriolis, for it 
maintained Belanger's provisional assumption of uniform velocity in a given section of 
the flow.21 

Avoiding the latter restriction (but still neglecting the curvature of the lines of 
flow), Coriolis expressed the variation dT of live force of a slice of fluid in the time dt 
and the work WG of the gravity force and the work Wp of the pressure force in the same 
time as 

dT = dt 11 J J pv�dS, 

WG = -dt /1 J J pvgz dS, 

Wp = -dt 11 J J v[Po + pg([ - z)] dS, 

(6.10) 

where 11 denotes the difference between the values that the expression following it takes on 
the two sides of the slice, z denotes the height of a point of the fluid section, and the 
integrals are performed over this section. For the work of frictional forces, Coriolis simply 
assumed an external friction with an effective sliding velocity equal to the average velocity. 
The resulting backwater formula is 

I = - d? = 0._ Fu + i_ (a uz) 
ds s pg ds 2g , 

(6. 1 1) 

where U denotes the average velocity of the fluid through a given section, and 

(6. 12) 

This equation only differs from Vaulthier's by the introduction of the coefficient a, which 
Coriolis determined from Du Buat's old measurements of the velocity profile.22 

6. 1 .5  Rivers and torrents 
There is more to say about the critical depth he. In 1851, Saint-Venant noted that the form 
of the backwater curves below and above the critical depth corresponded to tumultuous 

2 1Coriolis (1 836] p. 314. Cf. Saint-Venant [1887c] pp. 1 58-67, Rouse and !nee [1957] pp. 150-1. 
22Coriolis [1 836] p. 318. 
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and tranquil flows, respectively. The subcritical case defmed 'torrents, the various parts of 
which seem to flow independently of each other and whose acquired velocity allows them 
to flow over small obstacles.' The supracritical case defined 'rivers or quiet streams whose 
successive slices press on each other and move along together, so that they can only get 
over obstacles by means of the weight of the elevated water and so that every elevation in 
one part is felt in the upstream direction to a finite distance. '23 

For a rectangular canal of small slope, the condition h >=:J he for the possibility of a jump 
is equivalent to U >=:J Vifi.. As Saint-Venant noted in 1870, this means that the velocity of 
the water is the same as the propagation velocity of a small swell as given by Lagrange. In a 
hydrostatic canal closed by two distant gates, with a rise of the water level obtained by 
constantly feeding water at one of the gates, the higher level propagates as a step along the 
canal with the Lagrangian celerity Vifi., as indicated in Fig. 6.4. A small hydraulic jump 
can be obtained by superposing with this motion a constant flow at the velocity -Vifi.. As 
we saw in Chapter 2, Saint-Venant used this remarkable connection between jumps and 
waves to confirm his distinction between rivers and torrents. In a stream slower than Vifi., 
the swells created by an obstacle must propagate in the upstream direction, so that water 
accumulates before it can pass the obstacle. This is the case of a river. In a stream faster 
than Vifi., the water can pass obstacles without previous accumulation. This is the case of a 
torrent.24 

With their sophisticated analysis of backwaters, hydraulic jumps, and critical depths, 
French hydraulicians could pride themselves on having transcended the more empirical 
approach of their predecessors. Yet they did not base their theories on the fundamental 
hydrodynamics of Euler and d' Alembert, which famously failed in most concrete prob
lems. Following a via media between pure empiricism and fundamental deduction, they 
developed effective theories that exploited the principles of mechanics but required some 
experimental input and various theoretical idealizations. 

The theorists of pipes and open channels obviously required empirical knowledge of the 
retarding action of the walls, and also of the transverse velocity profile in Coriolis's case. 
In a first idealization, they assumed the retarding effect of the walls to be transmitted 
uniformly to the inner filaments of the fluid by an unknown mechanism roughly inde
pendent of the varied character of the flow. Without knowledge of this mechanism, the 
velocity profile could not be derived. Most authors assumed approximate uniformity of 

Fig. 6.4. The progression (thin arrow) of a swell produced by feeding additional water (thick arrow) at one 

gate of a hydrostatic canal. 

23Saint-Venant [1851a] p. 319. 24Saint-Venant [1870] pp. 1 86-95. See Chapter 2, p. 82. 
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the fluid velocity within a given section. Although Coriolis avoided this restriction, he still 
neglected the curvature of the fluid filaments and the resulting centrifugal force. 

There was yet another simplification, so obvious that no one cared to mention it. The 
deductions of formulas for backwaters and hydraulic jumps all rested on the assumption 
that the only relevant motion was the average, macroscopic motion measured by standard 
gauging methods. Their authors must have been aware of the temporal and spatial 
irregularities constantly encountered in hydraulic experiments. However, they did not 
suspect that these irregularities could affect the average flow in pipes or channels of 
slowly-varying slope and section. 

6.2 Saint-Venant on tumultnous waters 

6.2. 1 Tumultuous flow 
Not all French engineer-mathematicians of this period confined themselves to a semi
empirical approach to hydraulics. An early exception was Navier, who in 1 822 derived a 
differential equation of fluid motion based on a simple molecular assumption and in
tended to describe the behavior of real, viscous fluids. As we saw in Chapter 2, Navier 
quickly realized that his equation only applied to 'linear motions' (we would say laminar) 
and not to 'the more complex motions' occurring in typical hydraulic systems. We also saw 
that in 1834 his former student and admirer Saint-Venant had begun to develop an equally 
fundamental approach.25 

Saint-Venant clearly distinguished two scales, namely, a larger scale at which the 
average velocity varies smoothly in space and time, and a smaller scale at which 
the motion can be highly irregular. In his derivation of the Navier-Stokes equation, he 
used volume elements that included 'the case when partial irregularities of the fluid motion 
force us to take faces of a certain extension so as to have regularly varying averages.' The 
effective viscosity parameter 8 defmed at this scale depended on the irregular motions at 
the smaller scale. Thus it could vary from one point of the fluid to another, and from one 
kind of flow to another.26 

Among the irregularities of motion on which the variable 8 depended, Saint-Venant 
included the undulations of molecular paths he had described in his memoir of 1834 as 
being caused by the sliding of successive fluid layers over each other. In a letter to Pierre 
Boileau of March 1846, he evoked the further possibility that 'the internal friction 
coefficient may vary with the general dimensions of the current and with the freedom 
that oblique motions and eddies thus have to develop and to disseminate live force, as you 
have very well said. m 

Leonardo da Vinci and Daniel Bemoulli had long ago noted the whirling motions 
induced by the sudden enlargement of a pipe or by obstacles. As we saw in Chapter 3, in 
1799 the Italian hydraulician Giovanni Battista Venturi pleaded for a more realistic 

25Navier [1823c] pp. 389-440. 26Saint-Venant [1843c] p. 1242n. 
27Saint-Venant to Boileau, 29 Mar. 1846, Fond Saint-Venant, Ecole Polytechnique. Boileau ([1846] p. 215) had 

written: 'The viscosity of liquids seems to play [in the retardation of the upper fluid layers] a more important and 
more complex role than has been admitted by geometers, by giving birth to molecular motions oblique to the 
stream and by disseminating the live force of the fluid filaments . . .  in a manner related to their mutual friction.' 
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conception of fluid motion in which 'the lateral communication of motion' and the 
resultant eddies played an essential role. According to Venturi, 'the eddies of the water 
in rivers are produced by motion, communicated from the more rapid parts of the stream 
to the lateral parts, which are less rapidly moved.' They contribute to the retardation of the 
flow:28 

One of the principal and most frequent causes of retardation in a river is produced by 

the eddies incessantly formed in the dilations of the bed, the cavities of the bottom, 

the inequalities of the banks, the bends or windings of its course, the criss-crossing 

currents, and the streams that intersect with different velocities. 

In a study of pressure losses in the pipes of steam engines published in 1 838, Saint
Venant emphasized the role of 'extraordinary friction, usually called loss of live force, and 
determined by the eddying of fluids especially at points where the section of the flow 
suddenly increases.' The following year, the military engineer Jean-Victor Poncelet pub
lished the second edition of his celebrated course 'for the artists and workers' of Metz, in 
which he gave much importance to the whirls observed during the sudden alteration of a 
flow. These motions, 'much more complicated than one usually thought', involved pulsa
tions, intermittence, and the conversion of large-scale motions to smaller-scale ones, 
perhaps thus cascading to the molecular level:29 

Careful observation of the facts justifies the belief that independently of the gyratory 

motions shared by a whole portion of the fluid mass, there are also secondary or less 

apparent motions that involve smaller groups of molecules and develop in the 
intervals between the former motions . . . .  We may further assume without much 

risk that the motions of rotation or oscillation thus impressed on individual mol

ecules or on the smallest groups of molecules are, in addition to adhesion and 

cohesion . . .  one of the most important causes of the loss of motion in fluids and 

especially of the resistance that their stream lines experience when gliding on each 
other or on the surface of solids. 

Poncelet thus provided the mechanism through which Joule and others later interpreted 
the dissipation of macroscopic motion into heat. He even explained Brownian motion as a 
consequence of the ensuing molecular agitation, instead of the vitality of organic particles 
imagined by naturalists. Less speculatively, he regarded the formation of eddies as 'one of 
the means that nature uses to extinguish, or rather to dissimulate the live force in the 
sudden changes of motion of fluids, as the vibratory motion themselves are another cause 
of its dissipation, of its dissemination in solids.' He also believed that smaller-scale 
whirling largely contributed to the effective friction between fluid filaments. 30 

Saint-Venant approved these considerations and brought them to bear on hydraulic 
problems. In 1 846, he examined Borda's old formula for the loss of head during a sudden 
enlargement of a pipe. 'The molecular gearing [engrenement moleculaire]', he wrote, 
'creates whirls and other non-translatory motions indicated by D. Bernoulli and by 
M. Poncelet, which, after being conserved for some time in the fluid, end up being 

28Venturi [1797] prop. X. Cf. Rouse and Ince [1957] pp. 1 34-7. See also Chapter 3, pp. 105-8. 
29Saint-Venant [1838] p. 47; Poncelet [1839] pp. 529-30. 

30Ibid. 
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dissipated under the effect of friction and extraordinary resistance.' He then offered a 
simple derivation of Borda's formula, based on the balance of live forces in a reference 
system moving at the final velocity of the fluid. 3 1 

In the same year, Saint-Venant also considered the old, difficult problem of fluid 
resistance. As we saw in Chapter 3, he related the resistance to the live force of the non
translatory fluid motions induced by the immersed body. When tumultuous, whirling 
motion occurs at the rear of the body, the resistance largely exceeds the value it would have 
for a perfectly smooth flow.32 

6.2.2 The effective viscosity 
In a memoir of 1851 on retardation formulas and backwater tables, Saint-Venant publi
cized the idea of small-scale tumultuous motions being responsible for the variable 8 that 
he had championed since 1 834:33 

Newton's hypothesis, as reproduced by MM. Navier and Poisson, consists in making 
internal friction proportional to the relative velocity of the filaments sliding on one 
another; if it can be approximately applied to the various points of the same fluid 
section, every known fact indicates that the proportionality coefficient must increase 
with the dimensions of transverse sections; which may be to some extent explained by 
noticing that the filaments do not proceed in parallel directions with a regular 
gradation of velocity, and that the ruptures, the whirls and other complex and oblique 
motions that must considerably influence the intensity of friction develop better and 
faster in large sections. 

Saint-Venant found much evidence for this view in experimental studies of open
channel flow. Boileau's contribution has already been mentioned in Chapter 3. In 1868, 
the American hydraulicians Andrew Humphreys and Henry Abbot published the results 
of their measurements and observations on the Mississippi River. From these sources, 
Saint-Venant extracted the contrast between small-scale disorder and large-scale order 
that justified the effective 8 approach:34 

Beyond this disorder [in the local fluid motion], as was especially noted by [Captain 
Boileau] and as has been observed in larger masses by American engineers [Hum
phreys and Abbot], a certain order is nevertheless observed; for the same particular
ities of the velocity of the fluid quickly repeat themselves everywhere, so that the 
motion, if determined by constant causes, settles up by periodicity [Humphreys and 
Abbot's 'river pulses'] . . .  and the effective velocities undergo complex but small 
oscillations around constant averages relative to each point. These local average 
velocities for fluid translation or transport are 'those measured by floats and other 
hydrometric instruments and they determine the flows to be computed.' 

31Saint-Venant [1846a] p. 147. Saint-Venant's reasoning was a simplification of an earlier reasoning by 
Belanger that combined momentum and live-force balance in the natural reference system. Rather than directly 
estimating the live force lost to whirls, Belanger and Saint-Venant assumed the pressure on the walls of the 
expanding part of the pipe to vary hydrostatically. 

32Saint-Venant [1846a] pp. 28, 72-8, 120-1. 33Saint-Venant [185la] p. 229. 

34Humphreys and Abbot [1868] pp. 165-94; Saint-Venant [1872] p. 650. 
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6.2.3 Darcy's and Bazin's measurements 
In 1 857, still another engineer at the Ponts et Chaussees, Henry Darcy, published system
atic hydraulic measurements. During the construction of a new water supply system for the· 
fountains of Dijon, Darcy had found faults in Prony's old retardation formula. His 
appointment as head of the municipal water service of Paris gave him the opportunity to 
perform experiments on pipes of various diameters and wall structure. These were by far the 
most extensive and sophisticated measurements of this kind since Bossut's and Du Buat's. 
Unlike his predecessors, Darcy used graphical plots as well as the method of! east squares to 
find the best-fitting resistance laws. His most important finding was that retardation 
depended on the roughness of the walls. Du Buat had excluded such an effect, because he 
believed that an adhering layer of fluid prepared a smooth surface for the gliding fluid.35 

Darcy further demonstrated that the friction per unit surface depended on the diameter 
D of the tube according to an a + f3 / D law, in conformance with the natural expectation 
that the effect of roughness should be more important for small pipes than for large pipes. 
Although he did not offer any precise theory, he suggested that the roughness of the wall 
played an essential role in determining the nature ofthe flow. He rejected the usual parallel
filament picture, because asperities on the wall implied 'gyratory motion by molecular 
groupings' and a concomitant loss of live force for the progressive motion. Far from the 
walls, or for a smooth wall, he believed that undulations or oscillations of eventual fluid 
filaments would also trigger gyratory motion at the surface of mutual contact.36 

In this view, as in Saint-Venant's, the velocity profile had special theoretical interest. 
Darcy measured it with unprecedented accuracy thanks to an improved Pitot tube, and 
found a semi-cubic profile for a circular section.37 For this profile, the dynamical equilib
rium of successive cylindrical layers of the fluid may be obtained by making the internal 
friction proportional to the square of the velocity gradient. Darcy favored this odd 
theoretical choice 'against the opinion of several eminent hydraulicians' .  Among the 
eminences, he mentioned Saint-Venant for his notion of a Newtonian internal friction 
(proportional to the velocity gradient) with a coefficient depending on ruptures and 
whirling motions. 38 

After completing his work on pipes, Darcy turned to open channels. He planned 
experiments on the canal of Burgundy and its reaches, with generous funding by the 

35Darcy [1856], [1857]; Du Buat (1786] vol. 1 ,  p. 41: 'Considering how water itself prepares the surface on which 
it flows, we see that the difference of the matters of which the wall may be composed cannot have a truly sensible 
effect on the resistance.' Cf. Rouse and !nee (1957] pp. 169-173, Brown, Garbrecht, and Hager [2003]. 

36Darcy [1857] pp. vi, 10, 188-93, 202-19. That Prony had failed to detect this dependence in the data 
accumulated by Couplet, Bossut, and Du Buat did not worry Darcy, because the larger pipes of Couplet's 
experiments were older and therefore rougher than the smaller pipes of Bossut and Du Buat. 

37Darcy [1857] p. 128. The original Pitot tube, invented by Henri de Pitot in 1732 (see Rouse and !nee [1957] 
pp. 1 1 5-16) was made of two parallel glass tubes, one being straight, and the other bent through a right angle at its 
lower end; the water-level difference in the two tubes after vertical immersion in a stream gives the pressure at their 
lower end. 

38Darcy [1857] pp. 181-2. Bazin's assumption for the internal shear stress is equivalent to a constant mixing 
length in Prandtl's later theory of turbulent flow (see Chapter 7, pp. 297-9). It does not really contradict Saint· 
Venant's theory, for the effective viscosity e may depend on the velocity gradient. Saint-Venant ((1869] p. 585) 
welcomed Drazin's suggestion, but approved Maurice Levy's rejection of generalizations that contradicted the 
form e(81v1 + 81v1) of the stress system. 
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Ministry of Public Works. After his sudden death in 1 858, his gifted disciple Henri Bazin 
completed the measurements and published them in 1865. As in the pipe case, Darcy and 
Bazin found that the roughness of the walls played an important role. They noted the 
pronounced irregularities of motion, 'the very sudden jolts' and 'ruptures' that Andre 
Baumgarten (from the Ponts et Chaussees) had long ago observed on the River Garonne 
with Reinhardt Woltman's velocity-measuring mill. They determined the velocity profile 
and found it to be quadratic in the case of a wide rectangular section, and cubic in the case 
of a semicircular section. 39 

Bazin also studied varied flow, thus partly confirming previous backwater and jump 
theories, but also pointing to discrepancies and new phenomena. For example, he de
scribed the undulations of the jumps occurring in small-sloped channels, and he found the 
height of the jumps to be generally smaller than the change in velocity head, owing to 
'losses by tumultuous motion'. Lastly, Bazin provided much data on non-permanent flow, 
including solitary waves and tidal bores, for which no satisfactory theory yet existed. For 
about half a century, Darcy's and Bazin's measurements remained the most reliable 
hydraulic data in France and abroad. Their wealth of new regularities and phenomena 
defied theory, Bazin thought: 'Maybe such a delicate part of science must long remain in 
the realm of experiment.'40 

6.3 Boussinesq on open channels 

6.3.1  Terrestrial physics 
Among those undeterred by this pessimistic forecast was Saint-Venant's protege Joseph 
Boussinesq. Born in Herault and from a family of small farmers, Boussinesq became a 
high-school surveillant and teacher. In this position he found time to take analysis and 
mechanics at the University of Montpellier and to study works of higher analysis by 
himself. He was mainly self-taught, which makes his writings sometimes difficult to 
penetrate. Saint-Venant noticed him in 1 867, upon reading his memoir on anisotropy 
induced by compression. The two men had a common interest in applied mechanics and 
also in religion. Their correspondence covers both topics with equal prolixity. Saint
Venant knew that a religious provincial without higher academic training had little chance 
to gain recognition. With his usual generosity, he supported Boussinesq so efficiently as to 
win him a chair at the University of Lille in 1 873, the chair of experimental and physical 
mechanics at the Sorbonne in 1 885, and election to the Academy of Sciences in 1 886.41 

Boussinesq defined 'the aim of his life' as 'the study of mathematics as they came alive in 
Creation, or, if you prefer, the study of the traces left in nature by the geometer who 
organized her when he produced her.' He shared Saint-Venant's dislike for the abstrac
tions of rational mechanics, and worked hard to develop a 'physical mechanics' based on a 
more realistic, molecular conception of matter. According to Saint-Venant, the latter 

39Darcy and Bazin [1865a] pp. 23-5; Baumgarten [1847]. These velocity profiles, together with the finite slip at 
the walls, can now be seen as approximations of the logarithmic profiles given by turbulent boundary-layer theory, 
cf. Prandtl [1933] p. 833n. 

40Darcy and Bazin [1865a] pp. 30-7, [1865b]. 

41Cf. Le Toumeur [1954], Picard [1933], Douysset [undated], Blaquii:re [1931]. 
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mechanics, developed in the 1 820s and 1830s by Poisson, Navier, Coriolis, Poncelet, 
Belanger, and himself, later met considerable skepticism from the powerful Joseph 
Bertrand and other academicians, who pursued 'an absolute and immediate rigor that 
prohibited any application of analysis to phenomena, even in celestial mechanics.'42 

Saint-Venant presented Boussinesq as the savior of the true, physical, 'terrestrial', or 
'intimate' mechanics:43 

The sterility that seemed to strike [this mechanics] some twenty years ago and the 

resulting skepticism in some excellent minds only derived from the manner of 

formulating questions; one tried to solve the general problem of each science, dealing 

with it in all generality and all inextricable complication, whereas what needed to be 

done was to seek a simplifying cause to permit simple, approximate laws or give a 

handle for successive approximations, without which celestial mechanics itself could 
not have been built. 

Laplace and Poisson excepted, the promoters of physical mechanics had all been engineers 
trained at the Ecole Polytechnique and one of the Ecoles d'application. Boussinesq was 
not. Saint-Venant nevertheless found him to possess a strong sense of the concrete:44 

Very well versed in analysis . . .  his positive spirit yet never rests in abstractions; even 

though he never went through any engineering school, he has passion for the real, the 

concrete as presented by our terrestrial world, which is certainly more difficult to 

know than the planetary world. The general law of the latter is already known, 

whereas the study of the other requires that a law be extracted for each subject, 

and a constant effort to discern the relative magnitudes and orders of approximation. 

6.3.2 Eaux courantes 
Boussinesq's biographers report that his interest in hydraulics started early, with the 
contemplation of whirls and waves during walks along the River Herault with his high
school teacher. Some of his early works, published in the Journal de mathematiques pures et 
appliquees, bore on internal fluid friction. They display the combination of analytical 
power and concrete sense praised by Saint-Venant. For example, Boussinesq solved the 
problem of the Poisenille flow in pipes of elliptical, rectangular, and triangular sections, 
and applied this kind of flow to the phenomena of infiltration and transpiration (in 
Graham's sense). Before William Thomson, who is usually credited for this discovery, 
he derived the helicoidal nature of the flow in a curved tube or channel, and used it to 
explain the evolution of meanders in rivers.45 

In these studies Boussinesq confined himself to larninar flow in small sections. He 
nonetheless gave the most striking illustration of the failure of this assumption in hydraulic 
pipes and channels: regular flow at ordinary temperature in a semicircular channel would 
yield, for a diameter of one meter and a slope of l o-4, the absurdly high velocity of 187 m/ s 

42Boussinesq to Saint-Venant, quoted in Picard [1933] p. 14; Boussinesq to Saint-Venant, 21 Apr. 1876, 
Bibliotheque de I'Institnt. 

43Saint-Venant [1876]. 44Saint-Venant [1880] p. 23. 

45Cf. Douysset [undated] (Herault), Boussinesq [1883]. 
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for the central fluid filament. In harmony with his mentor's view, Boussinesq concluded 
that in this case irregular transverse motions induced a much higher effective velocity than 
occurs in regular flow. Aware of Darcy's and Bazin's relevant measurements, he began a 
thorough investigation of open-channel flow that took the whirling agitation of the water 
into account.46 

Boussinesq borrowed from Saint-Venant the fundamental idea of a large-scale, effective 
viscosity that depended on the 'intensity of the whirling agitation'. Saint- Venant judged 
the distribution and effect of this agitation to be 'a hopeless enigma'. Similarly, Bazin 
concluded his hydraulic research with the pessimistic words: 

The question grows more complex and obscure just when new, numerous, and precise 
experiments would be expected to throw a brighter light . . .  We do not yet have 
reasonable notions about the internal motions of fluids and the mutual actions of 
their molecules. 

Boussinesq cut the Gordian knot by guessing the form of the effective viscosity and 
verifying observable consequences of the guess. 47 

According to Boussinesq's intuition, whirling originates in the macroscopic fluid slide 
on an unavoidably irregular wall and then propagates through the rest of the fluid, with 
an intensity depending globally on the breadth of the flow and locally on the distance 
from the wall. The effective viscosity then results from the additional momentum 
exchange that local agitation implies between successive fluid filaments. In the case of 
a wide rectangular channel, Boussinesq assumed an effective viscosity proportional to the 
sliding velocity vo on the walls and to the depth h of the water. In the case of a circular 
channel, he took it to be proportional to the sliding velocity on the walls, to the radius R 
of the channel, and to the ratio r I R of the distance from the axis of the channel to its 
radius.48 

Boussinesq substituted these values into the Navier-Stokes equation, which he care
fully rederived for large-scale, secular motions, in a manner reminiscent of Saint
Venant's reasoning of 1 843. For the boundary conditions, Boussinesq assumed a friction 
proportional to the square of the velocity slip on the bottom and a vanishing stress 
component on the surface. He then derived and discussed relations between surface slope 
and discharge in the following cases of increasing difficulty: permanent and uniform, 
permanent and slowly varying, permanent and quickly varying, and non-permanent. The 
consideration of the last two cases was new, except for some anticipations by Saint
Venant. The consideration of the first two cases led to important corrections to Belan
ger's and Coriolis's theories.49 

For a better control of approximations, Boussinesq generally started from the Navier
Stokes equation in an adequate coordinate system and integrated over a fluid section. The 
following is a sketch of simpler but less rigorous deductions based on a momentum 

46Boussinesq [1868]. 

47Boussinesq [1870], [1871b], [1872c]; Saint-Venant [1872] p. 774; Darcy and Bazin [1865a] p. 30. 

48Boussinesq [1877] pp. 45-51 .  49Cf. Saint-Venant [1873]. 
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balance for fluid elements or slices. Although Boussinesq knew of such deductions, Saint
Venant was the first to publish them in full in a suggestive memoir of 1 887.50 

6.3.3 Corio/is revisited 
In the permanent, uniform case, the main novelty of Boussinesq's approach was the 
determination of the velocity profile. For a wide rectangular channel, the viscosity e is a 
constant which is proportional to the depth and to the sliding velocity at the bottom. 
Balancing the weight of a truncated fluid filament with the stresses acting on its lower and 
upper sides (the pressures on the right and left sections cancel each other), Boussinesq 
found that 

(6.1 3) 

where x is the distance of the fluid filament from the surface and i is the slope. This implies 
a quadratic velocity profile, in conformance with Bazin's (still partial) measurements (see 
Fig. 6.5).51 

Denote by v0 the velocity on the bottom, and h the distance between the bottom and 
the surface. The expression e = pgAhvo for the viscosity, the formula F = pgBifo for the 
friction on the bottom, the second-order equation (6.13), and the boundary conditions 
v'(O) = 0 and, -ev'(h) = F lead to the formula 

v B ( y}-) 
:;; = 1 + 2A 1 - /;2  . (6. 14) 

Hence the average velocity U is proportional to the velocity vo, which is itself related to the 
slope i by the formula pghi = F = pgBifo which expresses the balance between the weight 
of a normal slice of fluid and the external friction F. In conclusion, the Cht\zy formula (6.1) 
still holds, despite the transverse variation of the velocity.52 

0 

X 

Fig. 6.5. Boussinesq's velocity profile (horizontal arrows) for permanent flow in a wide rectangular channel. 

50Saint-Venant [1887c] pp. 168-76. See also the simplified deductions for the case of a broad, rectangular 
channel in Boussinesq [1897]. 

51Boussinesq [1877] p. 72. 52/bid. p. 73. 
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In the permanent, slowly-varying case, consider a slice ds of fluid perpendicular to the 
s-axis, which is chosen to be parallel to the surface. The s-component of the weight of this 
slice is pg SI ds, where S is the fluid section and I is the slope of the surface. The pressures 
on both sides mutually cancel (up to a higher-order term), since their transverse variation 
is hydrostatic. The frictional force is -ds JF0 dx, where F0 denotes the wall friction per 
unit surface area for the shift velocity v and the integration runs over the wetted perimeter 
x (along which v may vary). The momentum variation per unit time is -d JJ v (pvdS), 
where the integration is performed over the section S. Denoting by TJ the number such 
that 

(6.15) 

and neglecting the variation of this number with s, the dynamical equilibrium of the slice 
reduces to 

(6.16) 

This equation differs from Coriolis's equation (6. 1 1) in two ways. Firstly, the coefficient 
I + TJ differs from Coriolis's a. Secondly, the velocity v in the frictional force differs from 
the average velocity U. 53 

The extent of the latter difference can be derived from the ,velocity profile. By a 
reasoning similar to that used in the uniform case, for a wide rectangular channel this 
profile satisfies the equation 

(6.17) 

where v denotes the acceleration of a fluid particle that results from the variation of the 
fluid section. This acceleration is given by -ifh-1 dh/ds in the approximation for which 
the slope of the fluid filaments varies linearly between the bottom and the surface. Since it 
is not uniform in a given section of the fluid, a distortion of the velocity profile results. 
Boussinesq determined this distortion approximately by replacing the acceleration with 
the value it would have if the velocity profile were still parabolic. The resulting difference 
between Boussinesq's and Coriolis's frictional terms has the same form as the inertial term, 
so that eqn (6. 1 6) can be rewritten as54 

(6.18) 

This equation has exactly the same form as Coriolis's, but with a new value for the 
numerical coefficient of the gradient of the velocity head. As Boussinesq emphasized, this 
similarity of form should not be mistaken for a justification of Coriolis's method. On the 

53 Ibid. p. 66, 54Boussinesq [1877] pp. 92, 1 12. 
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contrary, the new derivation makes it clear that Coriolis erred in equating the work of 
pressure, gravity, and frictional forces to the increase of large-scale kinetic energy; when
ever the fluid section changes, part of the energy of the large-scale motion goes to smaller
scale, eddying motion. Coriolis also underestimated the error he committed in assuming 
the same expression for the work of frictional forces in the uniform and varying cases. 55 

Boussinesq then approached the more delicate problem of quickly-varying permanent 
motion. In this case, a non-negligible centrifugal force acts on the fluid filaments. To first 
order in the filaments' curvature, and for a wide rectangular channel, the resulting 
equation is 

xFu d (u2) 2 
[I d3 (u2) 1 u2 d2i] 

1 = - + (1 + 71 + /3) - - - h  - - - + - - - . 
Spg ds 2g 3 ds3 2g 2 gh ds2 (6.19) 

Boussinesq deduced the profile of a hydraulic jump and confirmed Bazin's distinction 
between two sorts of jumps with or without long-range oscillations. He also refined Saint
Venant's distinction between torrents and rivers, now introducing an intermediate cat
egory of 'moderate torrents' for which jumps can occur, but only long and wavy ones. 
Lastly, Boussinesq obtained equations for non-permanent flow, and used them to discuss 
waves, river tides, tidal bores (mascarets), and floods. 56 

6.3.4 Praise and neglect 
Boussinesq's theory of open channels appeared in several papers between 1870 and 1872, 
and formed, together with an extension to pipe flow, the substance of a long essay 
submitted in 1872 to the Academie des Sciences and published five years later in its 
Memoires des savants etrangers together with Saint-Venant's laudatory report. Saint
Venant had himself introduced an equation for non-permanent flow in 1 871  and had 
integrated it in a simple case of fluvial tide, though only for negligible curvature. Also, he 
had obtained the equation for rapidly-varying permanent flow as early as 185 1 .  After his 
death, Boussinesq discovered and published the relevant manuscript as a homage to his 
mentor's modesty. Probably not to discourage his beloved disciple, Saint-Venant had 
hidden his priority on this important aspect of the theory of open channels. 57 

In his report on Boussinesq's essay, Saint-Venant emphasized its recourse to subtle 
methods of approximation and its agreement with Darcy's and Bazin's data: 

These numerous results of a high analysis, founded on a detailed discussion and on 

judicious comparisons of quantities of various orders of smallness, sometimes to be 

kept, sometimes to be neglected or abstracted, and their constant conformity with the 

results obtained by the most careful experimenters and observers, appear most 

remarkable to me. 

55Boussinesq [1877] pp. 1 12-13. 

56 Ibid. pp. 193, 196-217, 242-529. There is also a fourth part which includes notes on efflux, weirs, turns, and 
some effects of capillarity. 

57Boussinesq [1870], [1871b], [1 872c], [1 877]; Boussinesq's introduction to Saint-Venant [1887b] pp. 5-6 
(hidden priority); Saint-Venant [1873], [1871a], [1851b]. 
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Elsewhere, Saint-Venant praised 'the man who possessed intuition no less than high 
calculus, who knew how to invent new integrals for the needs of this intimate mechanics 
born in our century from our France, and pertaining to the real things of the terrestrial 

world that we inhabit.'58 

The reception of Boussinesq's theory was not as warm as Saint-Venant's comments 

would suggest. Most hydraulicians could not follow its analytical sophistication and 

regarded the practical circumstances of hydraulics as too complex for precise quantitative 

analysis. For example, in his authoritative treatise of 1882, the French hydraulician Michel 
Graeff condemned the application of backwater theory to the navigability of rivers 

because of the complex and variable shape of real beds. After praising Saint-Venant's 

and Boussinesq's analytical skills, he put forward his own empirical methods. British and 
American hydraulicians ignored the higher French theories. Some German-language 

hydraulicians picked up on Boussinesq's theory. In his major treatise of 1914, the Austrian 

Philipp Forchheimer gave detailed accounts of this and earlier French theories, which 
Saint-Venant's disciple Alfred Flamant had made more accessible in his clear, pedagogical 

treatise of 1891 .  In 1920, Josef Kozeny improved Boussinesq's theory of pipe flow by 
introducing a new form for the effective viscosity in circular pipes. Effective viscosity 

parameters remain a practically important approach to turbulent flow both in hydraulics 

and in atmospheric physics. 59 

For physicists, the most important aspect of Boussinesq's essay was the nonlinear 
theory of waves discussed in Chapter 2. However, this theory was confined to waves on 

calm water, for which the effects of internal friction are negligible. In general, Boussinesq's 

results depended little on his specific treatment of turbulence and internal friction. His 

equation for slowly-varying flow had exactly the same form as Coriolis's old equation, 
even though Coriolis's proof turned out to be unacceptable. For the curvature-dependent 
terms, Boussinesq mainly used an approximation in which the Jack of uniformity of the 
velocity in a given fluid section was irrelevant. Consequently, Boussinesq's readers could 
accept and rederive his final equations for the shape of the water surface without paying 
attention to his innovative treatment of turbulence. 60 

6.4 The turbulent ether 

6.4.1 A hydraulic anomaly 
French hydraulics attracted little attention from Britons, who preferred more empirical 

methods. The Glasgow engineer James Thomson was in this respect atypical. In 1878, his 
reading of Boileau, Darcy, and Bazin prompted him to reflect on an anomaly emphasized 

by Captain Boileau, namely that the maximum velocity in a fluid section lay somewhat 

below the water surface, at variance with the 'laminar theory' based on mutual friction 
between successive fluid layers. In this context, Boileau introduced the 'oblique motions' 

58Saint-Venant [1873] p. xxi; [1880] p. 16. 
59Graeff[1882], vol. 2, p. 130; Forchheimer [1914] (re-edited in 1924 and 1930); Flamant [1891]; Kozeny [1920] 

p. 3 1 .  
60In his Hydrodynamics (Lamb [1895], [1932] for the sixth edition), Horace Lamb only referred to Boussinesq 

for his derivation of the profile of solitary waves (Boussinesq [187la]) and for his calculations of Iaminar flow in 
pipes of various sections (Boussinesq [1868]). 

· 
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that met Saint-Venant's approval in the earlier cited letter. James Thomson similarly 
assumed transverse, 'commingling' motion of the water:61 

The laminar theory constitutes a very good representation of the viscid mode of 
motion; but it offers a very fallacious view of the motion in the flow of water in 
ordinary cases in which the inertia of the various parts of the fluid is not subordinated 
to the restraints of viscosity . . .  [In these cases], indefinite increase of velocity of the 
water situated in the interior of the current is prevented by continual transverse flows 
thereto, and commingling therewith, of portions of water already retarded through 
their having been lately in close proximity to the resisting channel face. 

To explain Boileau's maximum-velocity anomaly, Thomson assumed that 'deadened' 
water from the bottom of the channel reached the fluid surface and slowed the laminar 
motion there. Gravel, mud, and weeds at the bottom, when present, were a possible cause of 
this effect. However, Thomson believed it also occurred for a smooth bed. After consult
ation with his brother William, he assumed a thin layer of dead water at the bottom, on 
which the next layer slid with a finite velocity. This motion, being unstable according to 
Hehnholtz and William Thomson (Helmholtz-Kelvin instability), led to turbulent trans
verse fluxes. 62 

6.4.2 Turbulent rigidity 
These reflections prompted William Thomson to investigate the distribution of the aver
age velocity in the open channel. He was 'surprised to discover the seeming possibility of a 
law of propagation as of distortional waves in an elastic solid.' In a paper of 1 887, he 
applied a mixture of line, surface, and volume averages, as well as Fourier analysis, to the 
plane, laminar disturbance of homogeneous, isotropic, turbulent flow. The following is a 
generalization of his arguments to an arbitrary disturbance, with the benefit of modem 
tensor notation. 63 

Thomson conceived the flow as a superposition of a large-scale regular ('laminar') 
component u and a small-scale turbulent component v assumed to be homogeneous and 
isotropic, in a sense that will become clear. The total flow obeys Euler's equation 

(6.20) 

in tensor notation and for unit density. The partial flows obey the incompressibility 
equations 81u; = 0 and 8;v; = 0. Taking the average of Euler's equation over a volume 
that is small at the laminar scale and large at the turbulent scale, we obtain 

8,u; = -8;1> - 8j(u;Uj) - 8j(V;Vj). (6.21) 
The last term corresponds to a stress system v;vj (the Reynolds stress).64 

61J. Thomson [1878] pp. 114, 1 1 7, 120 (quote); Boileau [1846]; Saint-Venant to Boileau, 29 Mar. 1 846 (cited 
earlier on p. 229). J. Thomsen's paper probably inaugurated the hydrodynamic meaning of 'laminar'. Boileau, 
unlike Thomson, made viscosity responsible for the oblique movements, see footnote 27. 

62J. Thomson [1878] pp. 121, 124. 63W. Thomson [1887e] p. 314. 

64/bid. See later on p. 261 for the Reynolds stress. Thomson did not reason in terms of stresses. The last 
equation is a generalization of his equation (34). 
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When there is no Iaminar motion (u = 0), the homogeneity and isotropy of the turbulent 
motion implies that 

(6.22) 

where a represents the constant intensity of the turbulence. Now suppose a laminar 
motion to begin. Subtracting eqn (6.21) from eqn (6.20) and multiplying by Vj, we obtain 

(6.23) 

The large-scale average of the second of the resulting terms is 

(6.24) 

That of the third term vanishes after symmetrizing with respect to the indices i and j: 

(6.25) 

The averages of the fourth and fifth terms vanish because they contain odd-degree 
products of the components of the initial turbulent velocity, which is isotropic. The 
most delicate part is the evaluation of the first term. 

The incompressibility conditions together with eqns (6.20)-(6.22) yield 

I:!..(P - P) = -28;UjOjV[. (6.26) 

Consequently, the first term of eqn (6.23) is 

-vjB;(P - P) = 2vj8;1:!.. -! (OkUfOIVk). (6.27) 

Since the spatial variation of u is much slower than that of v, this may be rewritten as 

-vjB;(P P) = 28kUI(vj/:!,. -!O;OfVk). 

Owing to the isotropy of the original turbulent flow, averaging leads to65 

" -1 2 ? 1 2 -vjo;(P - P) = 2ukU!VjA O;O!Vk = 3a-8jUi - 3a O;Uj. 

Altogether, we have 

2 2 8,(v·v·) = --a  (o·u· + o·u·) I J 3 I J J 1 • 

(6.28) 

(6.29) 

(6.30) 

Strictly speaking, this expression only holds at the beginning of the Iaminar motion u. 
However, when this motion is small and periodic, eqn (6.30) remains valid at any time if 
the induced anisotropy of the turbulent motion stays small. Combining this equation with 
the average Euler equation (6.21) yields, to first order in u, 

65According to Thomson ([l887e] p. 316), isotropy and incompressibility lead to the relations 
Vxll.-1&�vx = Vxll.-1 iij;vx = Vxll.-18}vx = a2/3, Vxll.-1&x&yvy = (l/2)vxll. 1 &x(&yvy + &,v,) == -(lj2)vxll.-1&_;vx 

= -a2 /6, to similar relations for similar terms, and to the vanishing of other kinds of terms. 



242 WORLDS OF FLOW 

�z 2 2 otu - ·r� llu = o, (6.31) 

which means that transverse waves propagate in the turbulent liquid with a velocity 
proportional to the average velocity of the turbulent motion. 66 

6.4.3 The vortex sponge 

In Thomson's eyes, this result meant much more than a hydrodynamic curiosity. He 
announced it as 'something seemingly towards a solution (many times tried for within 
the last twenty years) of the problem to construct, by giving vortex motion to an incom
pressible fluid, a medium which shall transmit waves of laminar motion as the luminifer
ous ether transmits waves of light.' In 1847, Thomson had written to Stokes: 

I perceived a fine instance of elasticity in an incompressible liquid, in a very simple 
observation made at Paris, on a cup of thick 'chocolat au lait'. Wben I made the 
liquid revolve in the cup, by stirring it, and then took out the spoon, the twisting 
motion (in eddies, and in the general variation of angular vel[ocity] on acc[ount] of 
the action of the spoon overcoming the inertia of the liquid, and the fric[tion] at the 
sides) in becoming effaced, always gave rise to several oscillations so that before the 
liquid began to move as a rigid body, it performed oscillations like an elastic 
(incompressible) solid. 

In the 1850s, after Thomson developed the mechanical theory of heat, he became con
vinced that every physical phenomenon could be reduced to pure motion. In particular, he 
believed that the rigidity of solid bodies or of the ether derived from the centrifugal inertia 
of internal, rotary motions. 67 

In this state of mind, Thomson could turn his brother's hydraulic problem into a hope 
for ether theory. His formulation was nevertheless cautious in that he only claimed 
'something seemingly towards a solution' of the ether problem. He feared that the 
condition of persistent randomness of the turbulent flow could be 'vitiated by a rearrange
ment of vortices'. At the end of his paper, he showed that a symmetrical distribution of 
vortex rings satisfied the condition, but only if (as he now doubted) the vortex rings were 
themselves stable. 'I am thus driven to admit', he concluded, 'that the most favourable 
verdict I can ask for the propagation of laminar waves through turbulently moving 
inviscid liquid is the Scottish verdict of not proven.'68 

The Irish ether theorist George Francis FitzGerald embraced Thomson's deduction 
without the worries about vitiating effects. Two years earlier, while reviewing various 
mechanical theories ofthe ether, he had introduced the 'vortex-sponge theory' of the ether 
that became his foremost philosophical project: 

It seems certain that the only way in which a perfect liquid can become everywhere 
endowed with properties analogous to rigidity is by being everywhere in motion. The 

66Equations (6.30) and (6.31) generalize the equations (50) and (51) ofThomson [1887e]. 

61/bid. p. 308; Thomson to Stokes, 20 Oct. [1 847], in Wilson [1990]. Cf. Smith and Wise [1989] chap. 12. The 
relevance of Thomsen's casual observation is questionable as hot chocolate is hardly a perfect liquid. 

68Thomson [1887e] pp. 317, 320. On the instability of vortex motion, see Chapter 5, pp. 191-5. 
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most general supposition of this kind would be, that it was what Sir William Thomson 

has called a vortex sponge, i.e. everywhere endowed with vortex motion, but with this 

motion so mixed up as to have within any sensible volume an equal amount of vortex 

motion in all directions. There are many ways in which this supposition seems to be in 

accordance with what we know of the properties of the ether. 
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Thomson arrived at the vortex sponge in the 1 870s while considering the degradation of a 
cylindrical vortex, in connection with his speculations on vortex atoms. With little proof 
and strong faith, FitzGerald made this residue of Thomson's matter theory the primitive 
material of the universe.69 

Impressed by Thomson's deduction of laminar motion in a turbulent fluid, FitzGerald 
tried to interpret it in electromagnetic terms. This was part of the Maxwellian endeavor to 
find a mechanical medium whose equations of motion would correspond to Maxwell's 
equations. FitzGerald had already done so on the basis of lames MacCullagh's rotation
ally-elastic medium. The turbulent liquid, or vortex sponge, was a more appealing candi
date, for it derived elastic behavior from pure motion. In a first attempt published in 1889, 
FitzGerald identified the Reynolds stress system v;vj with Maxwell's electromagnetic 
stress system (E;Ei + H;llj for the off-diagonal elements), and the fluid velocity with the 
electromagnetic momentum flux E x  H (the vectors E and H denote the electric and 
magnetic field vectors, respectively). This works in the case of plane disturbances, the 
only ones considered by Thomson and FitzGerald. 70 

At the close of the century, FitzGerald still believed in the vortex sponge as the ultimate 
basis for a theory of ether and matter. He reasserted his conviction that Thomson's 
vitiating rearrangement was improbable. He upheld the electromagnetic interpretation, 
though in a different guise; he now compared the Iinearized, plane-disturbance counter
parts of eqns (6.21) and (6.30) directly with Maxwell's equations, so that the large-scale 
velocity u corresponded to the electric field vector and the Reynolds stress v;vj to the 
magnetic field. 71 

FitzGerald's analogies between the electromagnetic ether and a turbulent liquid fail for 
arbitrary, non-plane disturbances. Whether a better analogy of the same kind can be 
found is an open question. From a historical point of view, it matters only that the 
turbulent perfect liquid nourished the hopes of a few British ether theorists, in spite of 
or because of its inexhaustible complexity. 

6.5 Reynolds's criterion 

Girard's discharge experiments with narrow tubes in the 1 8 10s showed that, for a given 
head, the character of pipe flow depended on the diameter of the pipe. For small diam
eters, the flow was 'linear', that is, divisible into straight or slightly-curved filaments; 

69FitzGerald [1885] p. 154. Cf. Hunt [1991] pp. 96-107. On the origin of the vortex sponge, see Chapter 5, 
pp. 194-5. 

70FitzGerald [1889]. With the extension provided above, FitzGerald's analogy is easily seen to fail in the 
general case. 

71See FitzGerald [!899a], and [1899b] for a more picturesque expression of the same analogy in terms of 
spiraling vortex filaments. 
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the efflux was proportional to the head and it depended strongly on temperature. For the 
large diameters encountered in hydraulics, the flow was 'complicated', that is, the fluid 
particles followed tortuous, variable paths; the efflux was roughly proportional to the 
square root of the head. Girard, Navier, Poiseuille, Darcy, and Bazin all knew of this 
difference. Saint-Venant and Boussinesq first took it into account in theories of hydraulic 
flow. Yet none of these investigators examined the transition between the two kinds of 
flow. Their lack of interest in this question is not surprising: they believed the transition 
to depend on accidental circumstances (entrance effect, irregularities of the walls, etc.), 
and they probably expected it to be gradual, in analogy with Coulomb's study of 
fluid friction. 72 

6.5. 1 Hag en 's transition 

In 1 839, the German hydraulician Gotthilf Hagen accidentally observed the transition 
while experimenting with small pipes. In order to enhance the effect of wall friction, he 
used hydraulically unrealistic diameters, of the order of a millimeter. While varying the 
head of water h, he observed a sudden change in the efflux for velocities larger than a 
certain (small) fraction of Vlift. He also noted73 

an essential change of appearances themselves when this limit was crossed . . .  which 
was very clearly marked in all series of observations: when I let the water flow freely 

in the air, for smaller pressure heads the jet had a permanent shape, and near the pipe 

it looked like a solid piece of glass; but as soon as the velocity, by stronger pressure, 

exceeded the given limit, the jet started to fluctuate and the efflux was no longer 

uniform and occurred by pulses. 

As we saw in Chapter 3, he carefully established that below the turbulence threshold the loss 
ofhead per unit length of the tube was proportional to Q/ R 4, where Q denotes the efflux and 
R is the radius of the tube (Hagen-Poiseuille law). In the turbulent case, he found the loss of 
head to be much larger and roughly proportional to the square of the discharge, in 
conformance with previous hydraulic knowledge. However, he focused on the regular case, 
in his view the only one suited to precision measurement. For turbulent flow he believed that 
'the water [in the tube] lacked the tension [Spannung] necessary for the transmission of 
pressure', so that the conditions of motion were inherently underdeterruined.74 

Some fifteen years later, Hagen carefully studied the effect of temperature on the flow in 
his small pipes. He corroborated his earlier observation that the loss of head depended 
strongly on temperature in the non-turbulent case, whereas it did not in the turbulent case. 
He also observed that an increase in temperature could induce a transition from non
turbulent to turbulent flow. In his interpretation, the temperature increase implies a 
diminution of the internal friction of the fluid, which in turn causes the tension of the 
fluid to vanish at some point and fluctuations to occur. Then part of the pressure head is 

72Girard [1816]. See Chapter 3, pp. 1 04-6. 
73Hagen [1839] p. 424. Cf. Schiller [1933] pp. 83-4, Rouse and !nee [1957] pp. 157-61 .  Hagen's criterion for the 

transition agrees with Reynolds's, because below it, in the larninar mode, the viscous force is comparable to the 
pressure head. 

74Hagen [1839] p. 442. 
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lost in the production of 'internal motions, which are induced by the smallest irregularities 
of the walls, or perhaps during the entrance into the tube.'75 

Hagen insisted on the existence of these internal motions besides the motion measured 
by hydraulicians: 76 

Being reckoned from the efflux, the velocity [of the water] is only measured along the 

axis of the pipe and does not take into account internal motions and eddies. Hence it 

does not represent the total motion of the water; it only represents the part of the 

motion that corresponds to the progression of the whole mass. Special observations, 

which I performed with glass tubes, show the two kinds of motion very clearly. As I 
let saw dust enter these tubes along with the water, I observed that for small pressures 

the saw dust propagated only in the direction of the tube, whereas for strong 

pressures it shot from one side to another and often assumed an eddying motion. 

Non-German physicists and hydraulicians long remained unaware of Hagen's remark
able observations. Poiseuille is usually credited for the laminar discharge law, and Rey
nolds for the discovery of the suddenness of the transition to turbulent flow and for its 
criterion. The latter attribution does not misrepresent history as much as the foi:mer, 
because Hagen's research focused on the laws of capillary flow, not on the turbulent 
transition. The study of this transition remained wide open. 

6.5.2 An eccentric philosopher-engineer 

Born in Belfast in 1842, Osborne Reynolds entered Queen's College at Cambridge Uni
versity after completing an apprenticeship in mechanical engineering. He graduated 
seventh wrangler in 1867. The following year he obtained the new chair of engineering 
at Owens College, Manchester. Reynolds belonged to a new kind of British engineering 
professors and consultants, well versed in higher mathematics and familiar with recent 
advances in fundamental physics. Throughout his life he maintained a double interest in 
practical and philosophical questions.77 

Reynolds's teaching and research styles seemed highly idiosyncratic to his students and 
colleagues. His scientific papers were written in an unusually informal, concrete, and 
seemingly naive language. At first reading they often seem obscure, but tend to make 
more sense after careful study. They rely on astute analogies with previously known 
phenomena rather than deductive reasoning. Even though some of these analogies later 
proved superficial or misleading, in most cases Reynolds gained valuable insight from them. 
As he did not bother scanning older literature on his subject, he often duplicated previously 
known results. Perhaps for the same reason, some of his output was brilliantly original. 78 

75Hagen [1854] p. 8 1 .  Hagen believed that the maximum trans1atory velocity of the fluid, being superior to its 
average velocity, could exceed the value for which the pressure becomes negative according to Bernoulli's law. On 
his establishing of the Poiseuille law, see Chapter 3, pp. 140-1 . 

76Hagen [1854] pp. 80-1 . 
77Cf. Lamb [1913] pp. xv-xxi, Gibson [1946], Allen [1970]. 
78Reyno1ds's duplicate discoveries include the deflection of sound in a velocity gradient (known to Stokes), the 

law of discharge of gases under pressure (known to Saint-Venant), and the internal cohesion of liquids (known to 
Lap1ace); cf. Allen [1970] pp. 26-7, and J. J. Thomson, quoted ibid. p. 25: 'When he took up a problem, he did not 
begin by making a bibliography and reading the literature about the subject, but thought it out for himself from 



246 WORLDS OF FLOW 

Reynolds did his famous work on the transition between laminar and turbulent flow in 
the 1 880s. Two themes of his earlier research conditioned his approach. The first was the 
importance of eddying motion in fluids, and the second was the dimensional properties of 
matter related to its molecular structure. A paper of 1874 on steam boilers brought the two 
themes together. Reynolds puzzled over the rapidity of the transfer of heat through the 
surface of the boiler. His interest in this problem was not solely practical: 79 

The rapidity with which heat will pass from one fluid to another, through an 

intervening plate of metal, is a matter of such practical importance that I need not 
apologize for introducing it here. Besides its practical value, it also forms a subject of 

very great philosophical interest, being intimately connected with, if it does not form 

part of, molecular philosophy. 

As an admirer of James Joule and James Clerk Maxwell, Reynolds had a deep·interest in 
the kinetic molecular theory of heat and the resulting insights into transfer phenomena. In 
the boiler case, he concluded that ordinary diffusion bound to invisible molecular agita
tion did not suffice to explain the observed heat transfer. Adding to this process 'the eddies 
caused by visible motion which mixes the fluid up and continually brings fresh particles 
into contact with the surface', he deduced the form A +  Bv of the total heat transfer rate, 
where v denotes the velocity of the water along the walls of the boiler. He also noted the 
analogy with the Prony form av + m?  of fluid resistance in pipes. 80 

6.5.3 Revealing vortices 

In the same year, Reynolds encountered eddying fluid motion while investigating the 
racing of the engines of steamers. As British seamen had learned at their expense, when 
the rotational velocity of the propeller becomes too large, its propelling action as well as its 
counteracting torque on the engine's axis suddenly diminish. A damaging racing of the 
engine follows. Reynolds explained this behavior by a clever analogy with efflux from a 
vase. The velocity of the water expelled by the propeller in its rotation, he reasoned, cannot 
exceed the velocity of efflux through an opening of the same breadth as its own. For a 
velocity higher than this critical velocity, a vacuum should be created around the propeller, 
or air should be sucked in if the propeller breaks the water surface. 81 

According to this theory, a deeper immersion of the propeller should retard the racing 
(for the efflux velocity depends on the head of water) and the injection of air next to it 
should lower the critical velocity (for the efflux velocity into air is smaller than that into a 
vacuum). While verifying the second prediction, Reynolds found out that air did not rise in 
bubbles from the screw, but followed it in a long horizontal tail. Suspecting some peculi
arity of the motion of the water behind the screw, he injected dye instead of air and observed 

the beginning before reading what had been written about it. There is, I think, a good deal to be said for this 
method. Many people's minds are more alert when they are thinking than when they are reading, and less liable to 
accept a plausible hypothesis which will not bear criticism.' 

79Reynolds [1874c] p. 81. Cf. Silver [1970]. 
80Reynolds [1874c] p. 82. Reynold's argnment is strikingly similar to that found in Saint-Venant [1838] on the 

additional retardation caused by eddy formation in the pipes of steam engines (see earlier on p. 230). 
81Reynolds [1874a]. Reynolds later elaborated on cavitation in fluids. Cavitation in turbines was already 

known to Euler, cf. Ackeret [1957] p. L. 
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a complex vortex pattern in the trail. Similar experiments with a vane moving obliquely 
through water displayed vortex bands issuing from the angles of the vane. 

From these observations, Reynolds inferred that hidden vortex motion played 'a 
systematic part in almost every form of fluid motion'. These considerations came we11 
after Helmholtz's famous paper of 1 858 on the theory of vortex motion, and after 
Thomsen's, Tait's, and Maxwell's involvement in a vortex theory of matter. Reynolds 
convinced himself, in conversations with William Froude and William Thomson, that his 
forerunners had only seen the tip of the iceberg. The foJlowing year he brought invisible 
vortex formation to bear on a phenomenon well known to sailors, namely, the power that 
rain has to calm the sea. Letting a drop of water falJ on calm water covered by a thin layer 
of dye, he observed the formation of a vortex ring at the surface folJowed by a downward 
vertical motion. When the drops of rain falJ on agitated water, he reasoned, part of the 
momentum of this agitation is carried away by the induced vortices, so that the agitation 
gradualJy diminishes. 82 

Reynolds made vortex motion the subject of a popuJar conference at the Royal Insti
tution in 1 877. He began by promising a revelation: 

In this room, you are accustomed to have set before you the latest triumphs of mind 
over matter, the secrets last wrested from nature from the gigantic efforts of reason, 

imagination, and the most skillful manipulation. To-night, however, after you have 

seen what I shall endeavour to show you, I think you will readily admit that for once 

the case is reversed, and that the triumph rests with nature, in having for so long 
concealed what has been eagerly sought, and what is at last found to have been so 

thinly covered. 

He went on with the failure of hydrodynamics to account for the actual motion of fluids 
and propounded that this failure was due to the lack of empirical knowledge of their 
internal motions. 83 

Reynolds then recalled casual observations of vortex rings above chimneys, from the 
mouth of a smoker, or from Tait's smoke box. These rings had only been studied 'for their 
own sake, and for such light as they might throw on the constitution of matter.' To 
Reynolds's knowledge, no one had understood their essential role in fluid motion. This he 
could reveal 'by the simple process of colouring water', which he had first applied to elucidate 
the motion of water behind a prope1ler or oblique vane. By the same means, he studied the 
vortex rings formed behind a disc moved flatly through water. The resistance to the disc's 
motion appeared to be caused by the continual production and release of such rings. 84 

Reynolds emphasized that 'imagination or reason had failed to show' such forms of 
fluid motion. Everyone knew the impotence of rational hydrodynamics, but 'it wouJd seem 
that a certain pride in mathematics has prevented those engaged in these investigations 
from availing themselves of methods which might reflect on the infallibility of reason.' 
Only with hints from colored water could mathematicians proceed further:85 

Now that we can see what we are about, mathematics can be most usefully applied; 

and it is expected that when these facts come to be considered by those best able to do 

'2Reyno1ds [1 877a] p. 188, [1 875]. 83Reyno1ds [1877a] p. 184. 

84/bid. pp. 187, 191.  85Jbid. pp. 185, 191. 
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so, the theory of fluid motion will be placed on the same footing as the other branches 

of applied mechanics. 

6.5.4 The dimensional properties of matter 

Meanwhile, Reynolds became interested in what he called 'the dimensional properties of 
matter'. The context was an attempt to explain the working of William Crookes's radi
ometer by evaporation from the black side of its vanes. According to the kinetic theory of 
gases, Reynolds reasoned, the ejection of a molecule from the surface of a vane implies a 
recoil of this vane with a momentum opposite to that of the molecule. Through specific 
experiments, he verified that the evaporation of a liquid caused a pressure on its surface. In 
an appendix to the ensuing paper, he noted that Crookes's effect could also be explained 
by surface heating: the adsorbed molecules of the residual gas leave the dark side of a vane 
at a higher velocity than those of the silvery side. 86 

As Reynolds came to realize, this simple and still popular explanation of the radiometer 
leads to a serious paradox. Consider two infinite parallel plates immersed in a gas, with 
different temperatures of their facing sides and equal temperature of their external sides. If 
Reynolds's simple theory held, the forces acting on the two plates should be different, since 
the temperature asymmetries are different for the two plates. However, the equality of 
action and reaction implies that these two forces should be equal and opposite. In order to 
escape from this paradox, Reynolds introduced a finite extension of the plates. With the 
military analogy of two batteries of guns, he explained how the oblique shots near the 
corners of the plates disturbed the balance of forces, because for them the recoil of a gun 
on one plate was not necessarily compensated by the impact of a bullet on the other.87 

For a consideration of this sort to work in the radiometer case, the mean free path of the 
molecules has to be of the same order as the breadth of the vanes. This explains why a 
radiometer only works for a very small pressure of the residual gas. Reynolds further 
surmised that a radiometer with very tiny vanes would work at ordinary pressures. Such 
an experiment being practically impossible, he turned to the 'inverse phenomenon', that is, 
the gas motion induced by the temperature gradient of the vanes. This suggested a thermal 
counterpart to the 'transpiration' of a gas through a porous plug that Thomas Graham 
had investigated half a century earlier. Reynolds justified 'thermal transpiration' theoret
ically through an extension of Maxwell's kinetic theory of gases that included stresses in 
thermally heterogeneous gases, and experimentally by extending Graham's experiments to 
temperature gradients. 88 

Graham had noted that the law of transpiration became different for very small pores, 
but fell short of a theoretical conclusion. In contrast, Reynolds argued that the change of 
law occurred when the size of the pores became of the order of the mean free path. In the 
kinetic molecular conception of a gas, transpiration should only depend on the ratio 
between these two quantities. Reynolds therefore expected the transpiration curves to be 
homothetic whenever the product of the density of the gas and the diameter of the pores 
was the same. This he verified by means of a logarithmic plot of his data. He believed that 

86Reynolds [1874b], [1876]. On early theories of the radiometer, cf. Everitt [1974] pp. 224-5. 
87Reynolds [1879] pp. 304-5 (paradox), 306-9 (gun batteries). 

88Ibid. p. 261. 
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he had thus reached an 'absolute experimental demonstration that gas possesses a hetero
geneous structure. '89 

6.5.5 Guessing the criterion 

In his works on transpiration and kinetic theory, Reynolds wrote as a Cambridge-trained 
natural philosopher. He even enjoyed criticism from his hero James Clerk Maxwell, who 
had his own theory of stresses in rarefied gases. Yet the engineer was always alive in 
Reynolds. While philosophizing on the distinction between capillary and ballistic flow, he 
remembered the existence of a similar distinction between capillary and hydraulic flow, or 
between 'direct' and 'sinuous' motion in his terms. He called for a similar dimensional 
analysis in this case:90 

As there is no such thing as absolute space and time recognised in mechanical 

philosophy, to suppose that the character of motion of fluids in any way depended 

on absolute size or absolute velocity, would be to suppose such motion without the 

pale of the laws of motion. If then fluids in their motion are subject to these laws, 
what appears to be the dependence of the character of the motion on the absolute size 
of the tube, and on the absolute velocity of the immersed body, must in reality be a 

dependence on the size of the tube as compared with the size of some other object, 

and on the velocity of the body as compared with some 'other velocity'. 

In the case of pipe flow, the relevant theory was hydrodynamics based on the Navier
Stokes equation (with uniform viscosity). By the 1870s, the validity of this equation for 
capillary and small-scale motion was established, and its failure for larger-scale motion 
was blamed on unknown or uncontrollable circumstances of the motion rather than on the 
form of the equation itself. In his Royal Institution lecture on vortex motion, Reynolds 
criticized the deductive approach to hydrodynamics, but not its fundamental equation. As 
he remembered in 1 883, 'the equations of [fluid] motion had been subjected to such close 
scrutiny, particularly by Professor Stokes, that there was small chance of discovering 
anything new or faulty in them.' Moreover, Reynolds knew that in the case of gases 
Maxwell had provided a kinetic-theoretical derivation of the Navier-Stokes equation.91 

Reynolds noted that, after the elimination of pressure from this equation (by taking its 
curl), the time derivative of the vorticity w = V x v had two terms: 

8w 11--8 = V x (v x w) + -Llw. 
t p (6.32) 

If the motion depends on a single velocity parameter U and on a single linear parameter L, 
then the first term has the 'factor' U2 I L2 and the second CP-1 p)(U I L3). Hence Reynolds 

89Ibid. p. 259. 
90Reynolds [1883] p. 53. The present reconstruction agrees with Reynold's statement, ibid. p. 54: 'It is always 

difficult to trace the dependence of one idea on another. But it may be noticed that no idea of dimensional 
properties, as indicated by the dependence of the character of motion on the size of the tube and the velocity of the 
fluid, occurred to me until after the completion of my investigation of the law of transpiration of gases, in which 
was established the dependence of the law of transpiration on the relation between the size of the channel and the 
mean range of the gaseous molecules.' 

91Reynolds [1883] pp. 54-5. On Stokes's opinion, cf., e.g., Stokes [1850b]. 
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concluded that 'the birth of eddies depend[ed] on some definite value of [LUpjp.].' This 
dimensionless number is what Arnold Sommerfeld later called the Reynolds number.92 

6.5.6 Testing the criterion 

Reynolds tested his theory with two kinds of experiment. In the first, performed in 1 8 80, 
he injected ink at the center of the conical entrance of a glass tube in a tank of still, 
isothermal water. He controlled the water flow by a valve at the lower end of the tube. 
A preliminary small-scale trial failed to show the transition because the maximal velocity 
of the flow was too small. Reynolds therefore ordered the larger apparatus of Fig. 6.6. For 
a slow flow, the injected ink formed a steady band along the axis of the tube (see Fig. 
6.7(a)). At a certain value of the velocity, and at some distance from the entrance, 'the 
colour band appeared to expand and mix with the water so as to fill the remainder of the 
pipe with a coloured cloud' (see Fig. 6.7(b)). By moving the eye so as to follow the motion 
of the water, or under a flash of light, the cloud appeared to be made of two or three waves 
followed by distinct eddies (see Fig. 6.7(c)).93 

To test his criterion for the transition, Reynolds varied the diameter of the tube and the 
temperature of the water. The latter amounted to a variation of viscosity, calculable 
through a formula by Poiseuille. The experiments proved to be difficult, because the 
transition occurred suddenly and the slightest disturbance of the water entering the tube 
lowered the critical velocity. Reynolds had to wait several hours to reach sufficient 
equilibrium before each run. Instead of heating up the water, he cooled it with ice so as 
to minimize convection currents. He thus managed to establish that the critical velocity 
was proportional to the diameter of the tube and inversely proportional to the viscosity. 
This confirmed the theoretical criterion, with a Reynolds number of 6415 and the radius of 
the tube as the characteristic length.94 

6.5.7 The two kinds of instability 

The simple reasoning behind this criterion suggested that the instability of the fluid did not 
depend on the size of the disturbances, since it made the relative size of the two terms of 
eqn (6.32) depend only on the breadth and the velocity of the flow. The observations on 
pipe flow sharply contradicted this expectation. The water appeared to be in an unstable 
state with respect to finite disturbances well before the critical point was reached. Rey
nolds verified this condition by artificially inducing a finite disturbance with a wire placed 
in the tube (see Fig. 6.7(d)). He also noted that, for narrow tubes and velocities slightly 
above the critical point, the eddying occurred in a series of distinct 'flashes' (see Fig. 
6.7(e)). As Reynolds put it, 

the critical velocity was very sensitive to disturbance in the water before entering the 

tubes . . . This showed that the steady motion was unstable for large disturbances 

92Ibid. p. 55; Reynolds to Stokes, 25 Apr. 1883, in Stokes [1907], vol. I, pp. 232-3; Sommerfeld [1908] p. 599. 

93Reynolds [1883] pp. 59-61 ,  68-77, 72 (quote). 

94Reynolds [1883] pp. 44, 73-5. Later investigators found much higher critical numbers. According to Drazin 
and Reid ([1981] p. 216), the Poiseuille flow in a cylindrical pipe is probably stable (no rigorous proof exists), but 
there is an instability owing to the boundary layer that forms at the entrance of the pipe. 
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Fig. 6.6. Reynolds' apparatus for studying the turbulent transition of the flow of water in a tube (from 

Reynolds [1883] p. 71). Water from the tank enters the horizontal glass tube through the conical funnel. The 

valve with the long handle on the right controls the flux, whose value is inferred from the lowering of the 

floater. Ink from the flask is injected continuously in the middle of the entrance of the tube. 

long before the critical velocity was reached, a fact which agreed with the full-blown 

manner in which the eddies appeared. 

Indeed, the latter observation indicated a kind of snowball effect, a higher instability 
induced by the disturbances that appeared at the critical velocity.95 

Reynolds found this result the more surprising because other kinds of flow agreed with 
the expected behavior, namely, the transition from direct to sinuous motion independent 
of the size of disturbances, and the gradual divergence from direct motion above the 
critical velocity. Reynolds knew this from casual observations of crossing streams of water 

95Reynolds [1883] pp. 61 (quote), 76-7. 
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Fig. 6. 7. Reynolds' drawings of kinds of flow in a tube, as indicated by the ink jet method (from Reynolds 

[1883] pp. 59-60, 76-77): (a) 'direct' flow, (b) 'sinuous' flow, (c) the same observed with a flash of light 

(d) the disturbance of direct flow by a wire, and (e) intermittent 'flashes' of eddying. 

(see Fig. 6.8). He studied the corresponding type of instability with a clever device in which 
he made two fluids of different density slide over each other with a gradually increasing 
velocity (see Fig. 6.9). In this 'very pretty experiment', small waves appeared beyond a 
well-defined critical velocity and then grew until they curled and broke, 'the one fluid 
winding itself into the other in regular eddies'. In modem terms, what he observed was a 
simple spectrum of perturbations followed by developed turbulence.96 

6.5.8 Private calculations 

Having empirically established the existence of two different kinds of instability, Reynolds 
was 'anxious to obtain a fuller explanation . . .  from the equations of motion.' He first 
studied the stability of steady solutions ofEuler's equation for frictionless fluids and found 
that parallel flow in one direction was stable, while parallel flow in opposite directions was 
unstable. Since Reynolds assumed that viscosity could have only a stabilizing effect, he 
could not explain the observed instability of pipe flow. After a long period of p=lement, at 
the end of 1 882 he attempted a similar study in the more difficult case of the Navier-Stokes 
equation. He then found that the boundary condition for viscous fluids (vanishing velocity 
at the walls) implied instability for sufficiently small values of the viscosity. The transition 
between stability and instability still depended on the value of the Reynolds number.97 

96Ibid. pp. 56, 61 (pretty), 62 (eddies). 

97/bid. pp. 62-3. See Chapter 5, p. 215. The boundary-layer instability of the plane Poiseuille flow was 
suggested by Prandtl in 1821, and proved by Waiter Tollmien in 1 829 (cf. Drazin and Reid [1981] p. 216, this 
book, Chapter 7, pp. 294-6). It seems doubtful that Reynolds anticipated this difficult analysis. 
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Fig. 6.8. A case of unstable parallel flow (Reynolds [1883] p. 56). 

Fig. 6.9. Reynolds's device for studying the instability of the sliding of two fluids over one another (Reynolds 
[1883] pp. 61-2). (a) In the original configuration the higher-density colored fluid and the lower-density fluid 
rest horizontally in two superposed layers. (b) A double, conflicting flow is obtained by inclining the tube. 
Above a certain velocity, waves appear on the separating surface. 

Reynolds never published the relevant calculations. In his memoir of 1883 he only gave the 
results, together with a few empirical confirmations. In the course of experiments performed 
in 1876 to study the calming effect of oil on wind waves, he had incidentally observed another 
effect of the wind, namely, the formation of eddies beneath the oiled water surface. In the 
light ofhis new theory, he argued that the stiffness of the oil film introduced a new boundary 
condition on the water surface and thus destabilized the parallel flow beneath it.98 

As for the lowering of the critical velocity under finite disturbances in the case of pipe 
flow, Reynolds explained that 'as long as the motion was steady, the instability depended 
upon the boundary action alone, but once eddies were introduced, the stability would be 
broken down.' He thereby meant that the introduction of an eddy changed the distribution 
of velocity and thus induced an instability of the frictionless kind (inflection in the velocity 
profile). The latter instability could overcome a much higher viscous damping than the 
boundary-based instability.99 

6.5.9 Pipe discharge 

As a corollary, there should be a value of the Reynolds number below which instability 
with respect to finite disturbances disappears. Reynolds inferred the existence of a second 
critical velocity of pipe flow, 'which would be the velocity at which previously existing 
eddies would die out, and the motion become steady as the water proceeded along 

98Reynolds [1883] pp. 58-9, 63. 

99Reynolds [1883] p. 63. 
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the tube.' The method of colored bands could not test this conjecture, since the diffusion of 
the ink in turbulent water is irreversible. Reynolds therefore appealed to the law of 
discharge, the study of which he had so far avoided because of its greater experimental 
difficulty.100 

For temperature stability and to assure a wide range of pressure, Reynolds used 
the water from the Manchester main. He measured the fall of pressure within pipes of 
various diameters using a differential pressure gauge, and the corresponding discharge 
by means of a special weir gauge (see Fig. 6.1 0). Since the pressure from the main could 
vary during a run, Reynolds's assistant kept it constant with an additional valve and 
manometer. The pipes were fed through a T-shaped connection that caused considerable 
disturbance of the entering water. Reynolds placed the differential pressure gauge away 
from this connection, in order to give time for the regularization of the flow in the 
subcritical case. He conducted the experiments in the workshop of Owens College, 
'which offered considerable facilities owing to arrangements for supplying and measuring 
the water used in experimental turbines', and with the help of a Mr Forster, a skillful and 
clever technician.101 

As Reynolds expected the character of the flow to be the same for equal values of the 
number DU p j f.L, he used the 'method of logarithmic homologues' that had served him so 
well in his transpiration studies. He plotted the logarithm of the pressure slope i (the fall of 
pressure head per unit length) versus the logarithm of the velocity U (see Fig. 6.1 1). The 
curves had a well-defined critical point, corresponding to a Reynolds number of 1015. 
They were composed of two straight lines, save for a small curved portion around the 
critical point. They could be very accurately superposed through a shift of the ordinates by 
In (D3 jv3) and of the abscissas by In (D jv), where v is the ratio f.L/ p.102 

Accordingly, the relation between pressure slope and velocity has the general form 

D3i =!(DU) ·  
v2 v 

(6.33) 

Up to the critical point, the function f is linear, in conformance with Poiseuille's law. 
A little beyond the critical point, Reynolds's discharge law takes the form 

D3i ex: (DU)", v2 v (6.34) 

with a =  1 .753. Reynolds confined his measurements to pipes of relatively small sections. 
For larger pipes, he relied on Darcy's raw data. The law (6.34) still held, but with an 
exponent depending slightly on the roughness of the pipe's walls.103 

Unknown to Reynolds, German and French hydraulicians had already suggested 
fractional-power discharge laws. For example, in 1 851  Saint-Venant favored such a law 
over Prony's aU + bU2 law to permit the use of logarithms in backwater calculations. 

100Reynolds [1883] pp. 64. 101/bid. pp. 78-SS (quote on p. 79). 

102Ibid. pp. 93-4. The expressions for the abscissa and ordinate shifts result from the validity of the Poiseuille 
law below the critical point. 

103Reynolds [1883] pp. 94-7 (formula), 98-105 (on Darcy). 
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Fig. 6.1 0. Reynolds's apparatus for studying the loss of charge in a tube as a function of the discharge rate 

(Reynolds [1883] p. 79). Water from the main is fed at a constant rate into the lower horizontal tube, to 

which a differential manometer (the vertical U-shaped tube) is connected. The discharge rate is measured 

with the cylindrical weir gauge on the right-hand side. 

Reynolds's motivation, as well as the special form he gave to the discharge law, were 
nonetheless new. They reflected the dimensional properties of his stability criterion.104 

6.5. 1 0  The Reynolds legend 

In retrospect, Reynolds's achievement seems enormous. He gave a precise characterization 
of the transition to turbulence for pipe flow with respect to eddying and the discharge law, 
he defmed the two relevant critical points and their relation to the Reynolds number of the 

104Saint-Venant [185la]; also Woltman [1791-1799], and Hagen [1854]. 
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Fig. 6. 1 1 .  Reynolds's log-log plot of head loss versus fluid velocity (Reyno!ds [1883] p. 94). 

flow, he introduced the distinction between two kinds of hydrodynamic instability, and he 
gave the now canonical form of the turbulent discharge law in a smooth pipe. However, 
some of the discoveries usually credited to him were not his. Hagen already knew of 
the correlation between eddying and the discharge law, as well as the suddenness of the 
transition to turbulent flow. Saint-Venant, Hagen, and earlier German hydraulicians had 
used discharge laws with fractional powers. 105 

Reynolds did not provide the dimensional analysis for which he is most famous. He did 
not discuss the scaling invariance properties of the Navier-Stokes equation, even though 
his stability criterion and his discharge laws reflect this invariance. When Stokes read 
Reynolds's theoretical derivation of the criterion (article 6 of the 1883 memoir), he saw in 
it an argmnent of dynamical similarity. Reynolds mildly protested: 'I had no intention 
whatever of laying down the conditions of dynamical similarity, although I now see that 
Art. 6 not only bears this construction but really fails to express what I meant.' What he 
truly meant was a comparison of the magnitude of viscous and inertial forces. 106 

Stokes had noted the similarity property of the Navier-Stokes equation in the context of 
his pendulum studies. There he found that the equation was invariant under a change of 
space scale (L), time scale (T), viscosity (J.L), and density (p) if the ratio (L2/T)/(J.L/p) 

105For blasting criticism of Reynolds's priority claims and concomitant praise of Saint�Venant and Boussi
nesq, see Knibbs [1897]. 

106Reynolds to Stokes, 25 Apr. 1883, in Stokes [1907], vol. I, p. 232. 
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remained the same. This implies the similarity of flows related by the same change. From this 
property, Stokes inferred that the mass correction of the pendulum, already known to 
depend on the density of the fluid around it, also had to depend on the pendulum's period.107 

Stokes expected the similarity to hold only in the case of regular motions for which the 
Navier-Stokes equation effectively determined the flow. This explains his assessment of 
Reynolds's contribution: 108 

Professor Reynolds has shown that the same conditions of similarity hold good, as to 

the average effect, even when the motion is of the eddying kind; and moreover that if 

in one system the motion is on the border between steady and eddying, on another 

system it will also be on the border, provided the system satisfies the above conditions 

of dynamical as well as geometrical similarity. This is a matter of great practical 

importance, because the resistance to the flow of water in channels and conduits 

usually depends mainly on the formation of eddies; and though we cannot determine 

mathematically the actual resistance, yet the application of the above proposition 

leads to a formula for the flow, in which there is a most material reduction in the 

number of constants for the determination of which we are obliged to have recourse 

to experiment. 

Through this influential reading of Reynolds's contribution, Reynolds found himself 
credited for strategies that he did not use. Helmholtz was the first physicist, in 1 860, to 
apply the similarity condition of the Navier-Stokes equation to pipe flow. He showed that 
a flow known to be 'linear' for certain values D of the pipe's diameter, v of the fluid's 
velocity, and AP I AL of the pressure gradient, would also be linear for the values nD, vln, 
and AP I t.Ln3 of these quantities. In 1 873, the Prussian Ministry asked him to investigate 
the problem of the steering of balloons. Since the aerial motion around the rudder was too 
complex to be calculated, he decided to lay out the conditions for the rational use of small
scale experiments. As in Stokes's reinterpretation of Reynolds's memoir, Helmholtz 
assumed the similarity condition to extend to turbulent motion. 109 

The use of the similarity condition to restrict the form of the resistance law was Lord 
Rayleigh's invention. Reynolds discovered the restricted form empirically, due to the 
logarithmic plotting of his data. Rayleigh reasoned by dimensional analysis. If the density 
p, the kinematic viscosity v, the velocity U, and the diameter D entirely determine the flow, 
then dimensional homogeneity requires that the resistance AP I AL (pressure fall per unit 
length) should have the form (pU21D)!f!(DUiv) or (pv2ID3)<f>(DUiv). This is to be 
compared with Reynolds's relation (6.33), which implies the form (gpvl I �)f(DU lv) 
for the resistance (since AP I AL = ipg). The occurrence of the acceleration of gravity in 
the latter formula confirms Reynolds's neglect of dimensional analysis. In contrast, 
Rayleigh had been using dimensional analysis since the beginning of his career. He never 
missed an opportunity to denounce its neglect and to emphasize the severe constraint it 

107Stokes [1850a] p. 17. Stokes's analysis did not include the (v · \7)v term. 

108Stokes's statement in presenting the Royal Medal to Reynolds. in Stokes [1907] vol. 1, pp. 233-4. 

109Helmho1tz and Piotrowski [1860] p. 173; He1mholtz [1873]. In the same period William Froude applied a 
different similitude argument to naval construction, see later on pp. 278-9. Bertrand [1848] had discussed 
mechanical similarity in general. 
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placed on the laws of fluid resistance. As we will see in the next chapter, dimensional and 
similitude arguments gradually pervaded fluid mechanicsY0 

6.5.1 1  Calor bands, magic cubes, and military discipline 

The calor-band experiments on the two manners of fluid motion lent themselves to brilliant 
public shows. Reynolds did not miss this opportunity. In 1 884, at the Royal Institution, he 
claimed a partial verification of his earlier prediction that 'the method of coloured bands 
would reveal clues to those mysteries of fluid motion that had baffled philosophy.' Besides 
the transition from direct to sinuous flow in straight pipes, he showed instabilities occurring 
in jets and in diverging pipes. John Tyndall had already displayed the sensitivity of smoke 
jets to sound in the same room. Helmholtz had enunciated the theoretical instability of the 
implied surfaces of discontinuity. Reynolds showed the transitory formation of a vortex ring 
when the flow came on gradually, the stabilizing effect of viscosity for slow motion, and the 
existence of a critical velocity for which the jet became unstable. 1 1 1  

Reynolds also offered a few spectacular analogies for the effects o f  hidden motion. At 
the beginning of his lectures, he showed the oscillations of two visually identical cubes 
suspended on springs. One cube obeyed the laws of mechanics, while the other apparently 
violated them. Reynolds then revealed to his audience that a gyrostat had been mounted 
inside the second cube. In a humorous allusion to Newton's apple, he argued that the laws 
of mechanics would have been as impenetrable as the laws of fluid motion if apples had 
hidden internal motion. 1 12 

To illustrate the dependence of the manner of fluid motion on viscosity, size, and 
velocity, Reynolds resorted to an analogy with a disciplined troop. If the discipline 
is respected, then the motion of the troop should be regular. Yet the march may turn 
into a whirling, struggling mob under an external disturbance. This instability clearly 
increases with the velocity of the march, with the size of the troop, and with the difficulty 
of the maneuver ordered; it decreases if the discipline is reinforced. In a real fluid, 
discipline corresponds to viscosity, and the difficulty of the maneuver to the boundary 
conditions.113 

In 1 893, Reynolds gave his last calor-band show at the Royal Institution. This time he 
distinguished between two kinds of internal fluid motion. Firstly, wave-like motions are 
possible (in an incompressible fluid) when the fluid has a free surface. In this case, 'the 
colour bands, however much they may be distorted, cannot be relatively displaced, 
twisted, or curled up, and in this case motion in water once set up continues almost 
without resistance.' In the other class of internal motion, the colored band becomes 
thoroughly mixed with the rest of the water. As in cooking, wool spinning, and metal 
rolling, the mixing process involves 'folding, piling, and wrapping, by which the attenu-

1 10Rayleigh [1892]. See also Rayleigh [1904], [1909] (plate resistance), [1915b] (many examples). Cf. Rott 
[1992], Roche [1998] pp. 208-9. Although similarity arguments (Helmholtz) and dimensional analysis (Rayleigh) 
are not quite the same, they are intimately related to each other: in one case the scale of the actual system is 
changed, in the other the scale of units is changed. 

111Reynolds [1884] pp. 154 (quote), 1 58-9 Gets). 

m Ibid. p. 154. m Ibid. pp. 155-6. 
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ated layers are brought together.' Such mixing occurs when waves break at the free fluid 
surface, or when the fluid slides over a solid surface with sufficient velocity. It explains the 
ease with which stirring brings uniformity in a liquid, compared to the slowness of 
molecular diffusion. 1 14 

Lastly, Reynolds showed the precise mechanism by which the motion of a spoon or vane 
achieved mixing, namely, the creation of a spiraling vortex sheet behind the vane, together 
with wave motion outside the sheet. The theory of the teacup was not the sole ambition of 
this displayY5 

We can hope to interpret the parallel of the vortex wrapped up in the wave, as applied 

to the wind of heaven, and the grand phenomenon of the clouds, as well as those 

things which directly concern us, such as the resistance of ships. 

6.5.12 The philosophy of scales 

Reynolds intended his experiments, especially the color-band shows, to suggest new 
theoretical insights. Conversely, his experimental work depended on theoretical analysis. 
As we saw, his original analysis of pipe discharge depended on his theoretical understand
ing of the instabilities that led to turbulent motion. In his memoir of 1883, he mentioned 
that he had spent many months studying the infinitesimal perturbation of stationary 
solutions to the Euler and the Navier-Stokes equations. Yet he never published his 
calculations, perhaps because two giants of British hydrodynamics, Lord Kelvin and 
Lord Rayleigh, controlled the field.1 16 

Reynolds's idea that the dimensionless number UDjv determined the character of the 
fluid motion also derived from a theoretical consideration, namely, comparing the inertial 
and viscous terms in the vorticity equation. In 1894, Reynolds published a purely theor
etical memoir on this criterion. Instead of the vorticity equation, he now considered the 
energy distribution at various scales. His inspiration came from an analogy with the 
kinetic theory of gases and also from Stokes's analysis of dissipation in a viscous fluid. 
In 1 850, after being converted to Joule's concept of heat as a kind of motion, Stokes 
explained that the internal work of viscous stresses implied a continual conversion of the 
observable fluid motion into the microscopic motion called heat. 1 17  

Stokes derived the rate of this dissipation from the Navier-Stokes equation. In a 
reformulation inspired by Maxwell's identification of stress with momentum flux, Rey
nolds wrote this equation as 

with 

"4Reynolds [1893] pp. 529, 53 1 .  "'Ibid. p. 534. 

"'Reynolds [1883] p. 63. Cf. earlier pp. 253-4 Chapter 5, p. 21! .  

1 17Reynolds [1895); Stokes [1850b] pp. 67-70. 

(6.35) 

(6.36) 
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The part Pii of this tensor gives the viscous stresses and corresponds to molecular momen
tum transfer. The rest corresponds to molar momentum transfer . 1 18 

The convective derivative of the macroscopic kinetic energy density ( l/2)pv2 follows: 

(6.37) 

After integration over an internal portion of the fluid, the first term yields the work of the 
pressures acting on the portion's surface. For an incompressible fluid, the second term 
should therefore represent the 'vis viva consumed by internal friction' and 'converted into 
heat'. The expression 

(6.38) 

of the stress system implies that this term is always negative, in conformance with its 
dissipative character. 1 19 

As Reynolds correctly pointed out, this derivation assumes the possibility of discrimin
ating between small-scale motion to be identified with heat, and larger-scale motion to be 
described by the Navier-Stokes equation. Since the distinction involves some arbitrari
ness, Stokes's interpretation of the dissipative term in his energy balance is not entirely 
compelling. Part of the small-scale internal motion produced by dissipation might be 
different from heat. 120 

Reynolds's lengthy discussion of this point boils down to the simple requirement that 
the average velocity v in the Navier-Stokes equation should vary very slowly at the scale of 
the averaging length and time. Concretely, if v(r) represents the spatial average of the 
lower-scale velocity in a domain of radius R centered on the point r, then the variation of 
the function v(r) should be very small over the length R. As Reynolds emphasized, this 
property depends on the nature of the mechanical system. Reynolds hoped that the 
elucidation of this 'discriminative cause' would clarify the 'hitherto obscure . . .  connec
tion between thermodynamics and the principles of mechanics.'121 

6.5.13  Proving the criterion 

If the requirement of smooth averages is met at one scale, then it will be for any 
neighboring scale for which the variation of averages remains slow. This defines a certain 
scale band of consistent averaging. The equation of motion is approximately the same for 
any scale in this band, and implies the same dissipation rate. The Navier-Stokes equation 
corresponds to a first scale band. From hydraulics and from previous observations of 

1 18Reynolds [1895] p. 544. Of course, Reynolds did not use the tensor notation. FitzGerald ([1889] p. 254) 
introduced the momentum-transfer form of the Euler equation. 

1 19Stokes [1850b] p. 70; Reynolds [1895] p. 545. 
120 Ibid. p. 546. 

121Ibid. pp. 537--44, 547-50, 560 (quote). Similarly, Burbury's and Boltzmann's contemporary notion of 
molecular chaos allowed for equations of large-scale evolution (the Boltzmann equation) that no longer referred 
to the low-scale, molecular dynamics. 
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turbulent flows, Reynolds assumed a similar band to exist at a much higher scale, of the 
same order of magnitude as the 'pulse' and spatial 'period' of turbulence. 122 

This scale is also the averaging scale that Saint-Venant and Boussinesq had introduced 
in their theories. Reynolds, who had not read them, called the corresponding average 
motion the 'mean-mean-motion', for it could be obtained by averaging the 'mean-motion' 
of the Navier-Stokes equation, which itself comes from averaging the molecular motion. 
Whereas Saint-Venant determined the equation of mean-mean-motion by a symmetry 
argument, Reynolds relied on an analogy with the kinetic theory of gases. In 1866, 
Maxwell derived the Navier-Stokes equation for the mean-motion by averaging over 
molecular processes. Similarly, Reynolds obtained his equation of mean-mean-motion 
by averaging the Navier-Stokes equation.123 

Specifically, Reynolds divided the mean-motion v into the mean-mean-motion v and the 
'relative-mean-motion' v'. Averaging the form (6.35) of the Navier-Stokes equation then 
leads to 

(6.39) 

This equation has the same form as the Navier-Stokes equation, save for the additional 
stress system -pv;vj. The latter stress corresponds to momentum transfer between con
secutive layers of the fluid through the relative-mean-motion, whereas the viscous stress Pii 
corresponds to momentum transfer through molecular motion. For large Reynolds num
bers, the viscous stres.s is negligible.124 

Having no way to determine the statistical behavior of the relative-mean-motion, 
Reynolds could not reach a more determinate form of the equation of mean-mean-motion. 
He could, however, discuss energy transfers in a manner similar to Stokes. In the coun
terpart of the earlier balance (6.37), the additional stress system -pv;0 implies an add
itional term -pv;0a;vj, corresponding to the conversion rate of mean-mean-motion 
energy into relative-mean-motion energy.125 

Another equation can be written for the convective variation of the kinetic energy of the 
relative-mean-motion: 

(6.40) 

with pij = Pii -Pii for the viscous stress of the relative-mean-motion. Once integrated over 
a fluid portion, at the borders of which the relative-mean-motion vanishes, this equation 
means that the variation in the energy of the eddying motion in this portion is the sum of 
two terms, namely, a negative one corresponding to the conversion of eddying motion into 
heat, and a positive one corresponding to the conversion of mean-mean-motion into 
eddying motion.126 

122Reynolds [1895] pp. 538, 551-3. 123Ibid. pp. 553-4. 124Ibid. p. 554. 

125Reynolds [1895] p. 555. 126Ibid. p. 556. 
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Reynolds applied the latter balance to the determination of the Reynolds number below 
which turbulent flow becomes impossible, namely, the damping term dominates in the 
above equation for any relative-mean-motion that is compatible with the Navier-Stokes 
equation. With much laborious calculation, the best Reynolds could do was to determine a 
lower limit (51 7) of this number for the flow between two fixed parallel plates.127 

Reynolds's memoir should not be judged only for the 'determination of the criter
ion' promised in its title. It contained some basic ideas for a statistical approach to 
turbulence, namely, the mean-mean-motion, the turbulent stress, and the cascading of 
energy from one scale to another. Unknown to Reynolds, Saint-Venant had already 
introduced such notions. However, the purposes and manners of reasoning were different. 
Saint-Venant aimed at a fundamental foundation of hydraulics and offered new effective 
strategies for solving hydraulic problems. Reynolds had a more philosophical ambition: 
he wanted to reform hydrodynamics by specifying the conditions for turbulent flow and 
subjecting this kind of flow to methods similar to those of Maxwell's kinetic theory 
of gases. 1 28 

Although Reynolds's contribution to our understanding of turbulence is the most mem
orable, it was not the only nineteenth-century achievement on this arduous subject. For 
the investigators honored in this chapter, it was clear that many of the flows occurring in 
nature and in hydraulic systems had the unpredictable, multi-scale whirling character that 
we now call turbulent. Saint-Venant and Poncelet ascribed an essential role to this 
property in large-scale transfer phenomena. Saint-Venant, Thomson, Boussinesq, and 
Reynolds inaugurated statistical approaches to turbulent flow, based on effective viscosity 
and kinetic--molecular analogy. Hagen and Reynolds provided fine descriptions of the 
transition from laminar to turbulent flow. In this context, Reynolds introduced important 
dimensional considerations and the dimensionless number that relates viscous flows at 
different scales. 

This early history of turbulence offers a rich sample of the strategies that physicists may 
deploy when confronted with the complex, highly-irregular behavior of a dynamical 
system. Most primitively, they may completely ignore the complexity and reason on an 
ersatz system that obeys simple mechanical laws. This is what early backwater theorists 
such as Belanger did with a certain amount of success. In the more refined strategy 
inaugurated by Saint-Venant, they may try to average out the irregularities, to seek general 
relations between the averages based on symmetry considerations, conservation laws, and 
dimensional analysis, and to determine the leftover parameters empirically. At a still more 
advanced stage, they may investigate the stochastic processes that relate the macroscopic 
parameters to the microscopic dynamics. This is what Reynolds began to do by analogy 
with the kinetic theory of gases. 

These achievements guided later theories of turbulence, for instance Ludwig Prandtl's in 
the 1 920s and Geoffrey Taylor's in the 1930s. As the latter theories, especially Prandtl's, 

127Reynolds [1895] pp. 557-77. 

128Reynolds was not only interested in the philosophical aspects of hydrodynamics. In 1886, he gave an 
influential theory oflubrication based on the Navier-Stokes equation. Although this theory involves laminar flow 
only, he mentioned the existence of 'molar viscosity' in the turbulent case ([1886] pp. 236-8). 
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were the first to provide reliable guidance for hydraulic and aeronautic engineers, and 
because their authors founded important schools of pure and applied fluid mechanics, 
they are often regarded as the true starting-point of the scientific study of turbulence. In 
the next chapter, we will see how much twentieth-century success in this field and in the 
related resistance problem capitalized on insights from the previous century.129 

129For a historically sensitive review of the kinetic and statistical approaches to turbulence, cf. Farge and 
Guyon [1999]. On Taylor, cf. Battimelli [1990]. 
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DRAG AND LIFT 

When the complete mathematical problem looks hopeless, it is recommended to 

enquire what happens when one essential parameter of the problem reaches the 

limit zero. 1 (Ludwig Prandtl, 1 948) 

The problem of the forces that a fluid exerts on a solid body challenged hydrodynamics 

since d' Alembert's foundational Essai of 1752. It only found a quantitative, wide-ranging 

solution in the first third of the twentieth century, after a few partial successes in the 

nineteenth century and earlier. The first section of this chapter is devoted to these older 

attempts, including Newton's molecular-impact theory, Rayleigh's dead-water theory, 
and eddy-resistance theories by Poncelet and Saint-Venant. None of these theories truly 

succeeded in making quantitative predictions, and they all lacked a solid conceptual basis. 

Newton's theory artificially neglected the mutual action of fluid molecules, Rayleigh's 

implied an absurdly large wake, and Saint-Venant's required some observational input. 

Yet they all contained important elements of the modern understanding of fluid resistance. 

Newton understood how a similitude argument constrained inertial resistance to be 

quadratic. Rayleigh's theory foreshadowed the separation process now admitted for 

non-streamlined flow. Saint-Venant correctly described the eddy resistance resulting 
from the instability of separated flow. 

Section 7.2 is devoted to ship resistance. The development of steam navigation in the 

Victorian empire motivated the efforts of a few learned engineers to reflect on the optimal 

shape of ship hulls. John Scott Russell saw how to minimize wave resistance. William 

Rankine clearly distinguished skin friction, large-eddy resistance, and wave resistance. 
Lastly, and most importantly, William Froude expressed the conditions for a rational use 

of models and developed the relevant experimental techniques. In his analysis of skin 

friction, he finely described what Prandtl later called a turbulent boundary layer. His and 

Rankine's insights into the mechanisms ofhigh-Reynolds-number resistance nevertheless 

remained qualitative. The means were still lacking to turn them into efficient computa

tional schemes. 

In Section 7.3, we will step into the twentieth century and follow the successful devel

opment of Ludwig Prandtl's boundary-layer theory of fluid resistance at high Reynolds 

numbers. Contrary to a well-spread myth, this theory was not suddenly born out of a 
Prandtl paper of 1904. Prandtl benefited from the rich conceptual resources of earlier 
hydrodynamics, and many years elapsed before the aims expressed in this paper were truly 

reached. The boundary-layer concept only became practically useful around 1 830, after 

Prandtl and Theodore von Karman understood the role of turbulence in these layers. 

1Prandtl [1948] p. 1 606. 
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Building on Boussinesq's and Reynolds' intuition of eddy viscosity, they discovered the 
logarithmic velocity profile on which the modern understanding of hydraulic pipe retard
ation and turbulent boundary-layer theory is based. One important aspect of this evolu
tion was the pervasive use of similitude and dimensional arguments that Stokes and 
Rayleigh pioneered in the previous century. 

Section 7 .4, the final section of this Chapter, will take us into the air with the first 

successful theories of a peculiar, useful form of fluid resistance, namely aerodynamic lift. 
Whereas the leaders of late-nineteenth-century fluid mechanics adhered to concepts of 
fluid resistance that made it very difficult for birds and planes to fly, a British automobile 

engineer, Frederick Lanchester, and a young German mathematician, Wilhelm Kutta, 
independently arrived at the circulatory flow that occurs around any properly working 
wing. In Russia, Nikolai Joukowski clarified the relation between circulation and lift, and 
greatly generalized Kutta's two-dimensional theory. Amidst the German war effort, 
Prandtl capitalized on these analytical considerations and on Lanchester's intuitions to 
develop modern wing theory in three dimensions. Together with boundary-layer theory, 
this achievement crowned nineteenth-century efforts at reconciling theoretical and real 
flows. These efforts, recounted in the previous chapters, indeed brought many of the 
concepts that permitted Prandtl's breakthroughs: vortex structures, discontinuity surfaces, 
viscous stress, parallel-flow instability, eddy viscosity, conformal transformations, and 
similitude. 

7.1 Tentative theories 

7 . 1 . 1  Early views on fluid resistance 

The earliest quantitative studies of fluid resistance occurred in the seventeenth century, 
when Edme Mariotte and Christiaan Huygens investigated the impact of a fluid jet on a 
plate, with waterwheels and windmills in mind. They found the impulsion on the plate to 
be proportional to the density of the fluid and to the squared velocity of the jet. Huygens 

explained this result by analogy with the pressure that the water exerts on the bottom of 
the vessel from which the jet issues. In modern terms, he obtained the form �pifS for the 
impulsion, where p is the fluid's density, v is its velocity, and S is the section of the jet. 
Closer to our point, Mariotte believed the resistance encountered by a solid body moving 
through a fluid to result from the impact of fluid veins acting like the jets on which he 
experimented. 2 

In his Principia, Isaac Newton obtained a similar formula while trying to show that 
Descartes' matter-filled space led to an absurd resistance to planetary motion. He first 
used a similitude theorem to show that the resistance was necessarily proportional to the 
fluid density, to the square of the linear dimensions of the body, and to the square of its 

velocity. According to this influential theorem (anticipated by Mariotte), for any possible 
motion of a mechanical system, the similar motion obtained by uniformly rescaling all 

2Cf. Saint-Venant [1887b] pp. 12-15, Rouse and !nee [1957] pp. 65-7. These researches originated in an 
Academic commission of 1668 mainly devoted to the verification of Torricelli's law of efflux. Mariotte and 
Huygens, who belonged to this commission, were unaware of the vena contracta (the contraction of the fluid 
vein near to the opening on the vase) first described in the second edition ofNewton's Principia. Cf. Blay [1992] pp. 
339-42. 
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lengths and velocities is also a possible motion if all forces acting in the system are 
simultaneously rescaled as the inverse of a length times the square of a velocity. 3 

Newton next assumed that the particles of the fluid were individually deflected by the 
solid surface, and identified the force acting on this surface with the destroyed momentum 
(see Fig. 7.1) .  For normal impact, the resulting force on the surface element dS is pv2dS. 
When the incoming flow makes an angle IJ with the surface element, the particles' flux and 
the destroyed momentum of each particles are both multiplied by sin IJ. The resulting force 
is normal to the surface and has the intensity �dS sin2 1J. This implies the existence of a 
prow shape for which the resistance is a minimum for a given maximal breadth, a result 
Newton believed to be relevant to navigation. Newton next integrated the differential 
pressure over the front half of a sphere and compared the result with his own experiments 
on metal spheres dropped from the dome of Saint Paul's Cathedral in London. As the 
resistance turned out to be smaller than expected, he offered another theory based on 
efflux through a partially-obstructed opening. Assuming the 'cataract' flow of Fig. 7.2, he 
equated the resistance to the weight of the static pyramid of fluid above the obstacle.4 

This odd theory was soon forgotten, except for the dubious implication that the largest 
transverse section of the body determines the fluid resistance. The discrete-impact theory 
survived for about two centuries in engineering quarters, for it gave the correct dependence 

Fig. 7 . 1 .  The Newtoruan deflection of a fluid particle against an inclined surface element. 
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Fig. 7 .2. Newton's cataract (AEPH and BFQH) for the flow through an opening (EF) partially obstructed by 

the disc PQ. From Newton [1713]: book 2, sect. 7, prop. 36. 

'Newton [1 687], [1713], book 2, sect. 7, prop. 32 (sintilitude theorem), 33 (general form of resistance). 

4Ibid. prop. 34 (implicit sin2 0 law), 35 (resistance of globe), 36-9 (cataracts), 40 (experiments). Cf. Saint
Venant [1887b] pp. 15-19, G. Smith [1998]. 



DRAG AND LIFT 267 

on density and velocity in the simplest manner. Yet careful resistance measurements 
disproved it several times in the second half of the eighteenth century. In the 1760s, 
Jean-Charles de Borda found that the resistance more nearly depended on the sine of 
the inclination of the surface elements of the body. In the 1 770s, Charles Bossut included 
two other factors, namely, the dimensions of the towing tank, and the formation of waves 
in the case of partially-immersed bodies. In the 1 880s, Pierre Du Buat discovered that the 
form of the rear of the body largely controlled the resistance. He also found that a 
'negative pressure' (a pressure inferior to that of the undisturbed fluid) occurred in this 
region and contributed to the resistance. In the 1 890s, the British Colonel Mark Beaufoy 
identified fluid friction along the walls of the body as an important contribution to the 
resistance. Through precise experiments with plates towed edgewise, he showed that this 
frictional effect depended on the power 1 .8 of the velocity. In conformance with Borda's 
remark, Samuel Vince proved that the resistance offered by a slightly-inclined plate varied 
as the sine of the inclination, rather than the Newtonian squared sine.5 

This impressive rise of empirical knowledge went along with a distrust of higher 
hydrodynamic theory. In 1 768, d' Alembert admitted that he did not know how to avoid 
the vanishing resistance predicted by his theory. Two years earlier, Borda deduced the 
absence of resistance in a very general manner based on the principle of live forces: he 
showed that no work is needed to pull a body uniformly through a still fluid, because the 
live force of the fluid motion around the body remains globally unchanged in this process. 
Even earlier, in 1 745, Euler had used momentum balance along tubes of flow to deduce the 
absence of resistance. In an attempt of 1 760 to escape from this conclusion, he cut off the 
rear part of the tubes, thus effectively returning to the Newtonian theory of resistance and 
giving up recourse to his own hydrodynamic equations.6 

In summary, at the beginning of the nineteenth century the best-founded hydrodynamic 
theories, namely those of d'Alembert and Euler, led to a vanishing fluid resistance. 
Newton's old theory accounted for a finite resistance proportional to density and squared 
velocity, but failed in any other respect. 

7. 1 .2 Discontinuity surfaces 

A first way to avoid d' Alembert's paradox was to introduce viscosity, as Navier first did in 
1 822. Twenty years later, Stokes successfully obtained the viscous damping of pendulum 
oscillations and the linear resistance formula for slowly-moving, small spheres such as the 
droplets of clouds. He knew, however, that the most common kinds of fluid resistance 
eluded this theory, since their dependence on velocity was quadratic instead oflinear. One 
of Stokes's early suggestions for solving this difficulty was that a dead-water region 
circumscribed by surfaces of discontinuity occurred in the wake of bodies traveling through 
an inviscid fluid. Such discontinuities were indeed compatible with Euler's equations.7 

In 1 868, Helmholtz independently introduced surfaces of discontinuity (Trennungs
fliiche) in order to explain jet formation within a fluid. He believed that such surfaces 

5Cf. Saint-Venant [1887b] pp. 27, 37-9, Rouse and !nee [1957] pp. 128-9, 133-4. 
6Cf. Saint-Venant [1887b] pp. 9-11 , 21-37, Truesdell [1954] p. XL. 

7 See Chapter 3. 
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were formed whenever the pressure of the hypothetical irrotational flow became negative, 
typically near a sharp edge of a solid wall. He interpreted them as infinitely-thin vortex 
sheets and used his vortex theorems of 1 858 to show their tendency to spirally unroll under 
an infinitesimal perturbation. In geometrically simple cases of two-dimensional flow, he 
introduced the velocity potential cp and the stream function !f; in the manner of d' Alembert, 
Lagrange, and Stokes, and managed to determine the form of the discontinuity surfaces by 
seeking a holomorphic function cp + i!f; that satisfied the required boundary conditions in 
the plane of the complex variable x + iy. 8 

Kirchhoff and Rayleigh soon applied this technique to the motion around a flat plate (a 
segment in two dimensions, see Fig. 7.3) to derive the resistance formula 

1r sin 1J 2 R = 
4 . 8 pv S, 

+ 1T S!ll 
(7.1) 

where p is the fluid density, v is the constant fluid velocity far from the plate, S is the 
surface of the plate, and IJ is its inclination. Whereas the normal direction of the resistance, 
and its dependence on density and velocity agree with Newton's theory, the angular 
dependence does not and fits experiments much better, as Rayleigh judged on the basis 
of Vince's old data. Helmholtz agreed that the formation of surfaces of discontinuity was 
the main source of resistance in any large-scale (high-Reynolds-number) motion, although 
the instability of these surfaces cast doubt on any quantitative use of them. 9 

The recourse to surfaces of discontinuity and dead water was a controversial issue. 
William Thomson strictly rejected them, even though he was the British physicist closest to 
Helmholtz. According to Thomson, surfaces of discontinuity could never be formed in a 
perfect liquid, because Lagrange's and other theorems forbade the creation of vorticity; 
and the discontinuous state of motion, with its infinitely-long dead-water wake, was 
patently absurd. In his view, the true cause of any apparent departure from potential 
flow was viscosity or cavitation. In the viscous case, the intense shear of the flow past an 
edge induced the production of a series of vortices that roughly imitated Helmholtz's 

y 

Fig. 7.3. Flow around an inclined plate (thick line) according to Kirchhoff [1869] p. 425. The two lines of 

current from the edges of the plate delimit the dead-water region. 

8Helmholtz [l868b]. See Chapter 4, pp. 163-5. 

9Kirchhoff [l869]; Rayleigh [ l876b]; Helmholtz [1873]. See Chapter 4, pp. 164-5. 
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vortex sheets. In his playful correspondence with Thomson on this matter, Stokes valiantly 
defended the discontinuity surfaces, arguing that none of Helmholtz's theorems forbade 
the growth of surfaces of discontinuity from a germ on the wall surface, and that the zero
viscosity limit of viscous flow led to surfaces of discontinuity whenever the lines of the 
Eulerian flow diverged too much (typically, behind a body with a bluff rear). 10 

In 1 898, Stokes's focus on the zero-viscosity limit of viscous flow prompted Kelvin to 
reflect on the nature of the flow around a globe. He imagined that the motion of the globe 
was impulsively started from rest and then kept uniform. In the first instant, he reasoned, 
the induced motion is very similar to the potential flow ruled by Euler's equation, with a 
finite sliding velocity on the walls. The corresponding infinitesimal layer ofvorticity is then 
subjected to three effects, namely, viscous diffusion, convection through the impressed 
flow, and shear instability. The competition between the first two effects leads to deviations 
from the potential flow confined within an adjacent fluid layer that grows downstream: 

If the velocity is sufficiently great, the motion of the fluid at small distances from its 
surface all round will always be very nearly the same as if the fluid were inviscid, and 
the difference will be smaller near the front part than near the rear of the globe. 

Shear instability within the boundary layer, Thomson went on, induces a trail of turbulent 
motion behind the globe. Stokes agreed with this scenario, except that, in his view, the 
trail commenced with a surface of sudden slip whose instability led to the observed 
turbulence. 1 1  

These private considerations did not foster any quantitative estimate of resistance. In 
Britain, the Rayleigh-Kirchhoff dead-water theory remained the only published, quanti
tative estimate of resistance in a fluid of small viscosity. Before the end of the century, 
Samuel Langley's and William Henry Dines's resistance measurements showed that this 
theory failed by at least a factor of three in the case of a blade moving parallel to itself. 
Helmholtz's surfaces of discontinuity nonetheless enjoyed some popularity among physi
cists and mathematicians. Horace Lamb and Alfred Basset devoted to them long sections 
of their widely-used treatises. In Germany they graced the lectures of the influential 
Munich professor August Foppl (published in 1899), who even declared: 12 

The consideration of separation surfaces represents the first and the most important 
step toward a theory that better accounts for the facts . . . Helmholtz's doctrine of 
fluid jets is therefore to be regarded as a remarkable progress of hydrodynamics, even 
though it leaves much to be desired with regard to physical exactness. 

In 1901 ,  the Italian mathematician Tullio Levi-Civita made discontinuity surfaces 
responsible for the fluid resistance of bodies of any shape (see Fig. 7.4). Like Stokes, he 
traced the failure of early ideal-fluid theories of resistance to an unwarranted assumption: 

The [usual] analytical formulation of the problem [of the flow of an ideal fluid around 
a solid body] introduces some elements, seemingly innocuous but much more remote 

10See Chapter 5, pp. 197-207. 
1 1Thomson to Stokes, 27 Dec. 1898, ST; Stokes to Thomson, 30 Dec. 1898, ST. See Chapter 5, pp. 204-6. The 

modem reader may recognize a boundary layer with separation. 
12Langley [1891]; Dines [1891]; Foppl [1899] p. 396. 
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A 

Fig. 7 .4. The discontinuity surface (8) and dead-water region (B) for the flow past a bluff body moving at the 

velocity v through a perfect liquid. From Levi-Civita [1907] p. 131 .  

from reality than is the character of the perfect fluid. Such is, in my opinion, the 
hypothesis of the continuity of the movement of the fluid in the entire space around 
the body. 

Again like Stokes, Levi-Civita assumed the formation of discontinuity surfaces even for 
round bodies. He then showed that a dead-water wake generally implied a resistance 
proportional to the fluid density and to the squared velocity of the body. However, he did 
not address the question of the location of the curve s from which the discontinuity surface 
departed. Nor did he know, in 1901 ,  how to solve the system of equations that determine 
the shape of the discontinuity surface for a given curve s. He accomplished this difficult 
task in a larger memoir of 1907 through a broad extension of Helmholtz's complex-plane 
methodY 

In summary, at the turn of the century, discontinuity surfaces remained the main 
analytical approach to the resistance problem for a slightly-viscous fluid. Yet they had 
well-identified shortcomings, namely: they led to utterly instable and physically impossible 
motions, they gave smaller resistances than in reality, and they were essentially indeter
minate in the case of smoothly-shaped bodies. For a Kelvin, these defects were fatal. For a 
Rayleigh, a Foppl, or a Levi-Civita, discontinuity surfaces marked a significant step 
toward a successful theory of resistance. 

7 . 1 .3 Turbulent wakes and shear layers 

Another way to solve d'Alembert's paradox was to assume some instability of the laminar 
flow of a slightly-viscous fluid that prompted turbulent eddying in the rear of the body. 
Stokes first suggested this option in 1 843. Poncelet and Saint-Venant made it the basis of 
quantitative resistance estimates. In 1 846, Saint-Venant placed the fixed body within the 
current of a cylindrical pipe (see Fig. 7.5) which was so wide as to leave the resistance 

13Levi-Civita [1901] p. 130, [1907]. 
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Fig. 7.5. Flow around a truncated body (BDD) placed 
within a cylindrical pipe. From Saint-Venant [1887b] 
p. 89. 

unchanged. The momentum which the incompressible fluid conveys to the body in a unit 
time is equal to the difference P0S - PtS between the pressures on the faces of a column of 
fluid extending far before and after the body, because the momentum of the fluid column 
remains unchanged. The work (PoS - P1 S) vo of these pressures in a unit time is equal the 
live force of the 'non-translatory motions' generated in the fluid. Hence the resistance is 
given by this live force divided by the original velocity of the fluid. In the non-translatory 
motion, Saint-Venant included both the small-scale motions that are a direct consequence 
of viscous stress and the 'tumultuous', whirling motions observed at the rear of bluff 
bodies. 14 

Saint-Venant then improved on a method invented by Poncelet to estimate the magni
tude of the resistance, and based on the assumption that the wall pressure behind a 
separation point does not differ much from the value that Bernoulli's law gives it in the 
most contracted section of the flow. In the simple case of the truncated body of Fig. 7 .5, 
the pressure at the rear is thus made equal to the pressure Pt in the section w1 • Saint
Venant further included a stress acting tangentially to the walls of the body, mostly due to 
eddy viscosity in the case of a turbulent incoming flow. In conformance with the standard 
treatment of pipe and channel retardation, he assumed a large-scale sliding velocity of the 
fluid along the walls, and made the friction proportional to this velocity squared.15 

In the case of a plate parallel to the flow, for which wall friction is clearly the only cause 
of resistance, Saint-Venant compared Beaufoy's and Du Buat's measurements with the 
then-accepted friction coefficient in cylindrical pipes. The result indicated that the sliding 
velocity along the plate had to be smaller than the velocity of the incoming flow. Saint
Venant explained this difference as a retarding effect of eddy viscosity for the large-scale 
flow beyond the slide on the walls (see Fig. 7.6). 16 

Although Saint-Venant's disciple Boussinesq did not address the resistance problem 
per se, he abundantly developed Saint-Venant's idea of eddy viscosity in pipe and open
channel flow, with velocity profiles that had finite slide on the walls and parabolic (for 

14Saint-Venant [1846b]. See Chapter 3, pp. 134-5. 

15/bid. pp. 28, 72-8, 120-1; Saint-Venant [1887b] pp. 56-192. 

16/bid. (from a MS of 1847) pp. 1 16-49. The modern reader may recognize here a turbulent boundary layer, 
although Saint-Venant neglected any variation of this layer along the wall (in conformance with his assumption of 
a quadratic dependence on velocity). 
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Fig. 7.6. Velocity profile (FGHI, with the velocities 

DF, KG, LH, EI) for the flow between a body 

(DBD') and a cylindric wall (MM'NN'). From 

Saint-Venant [1887b] p. 132. M' lE' 

rectangular channels) or cubic (for circular pipes) increase from the wallsY In 1 880, 
Boussinesq discussed the more academic question of the role played by viscosity and 
adherence to the walls at the beginning of a laminar flow. He did this in reaction to Jacques 
Bresse's erroneous extension to viscous fluids ofLagrange's theorem, according to which a 
velocity potential exists for any fluid motion started from rest.18 

With Boussinesq, consider the simple case of a constant, uniform, and horizontal 
accelerating force pk applied at time zero and onward to the entire mass of a viscous 
fluid resting over the horizontal plane z = 0. The resulting flow is obviously parallel to the 
plane, and its velocity u vanishes on the plane at any time. The Navier-Stokes equation for 
a kinematic viscosity v gives 

(7.2) 

in which Boussinesq inunediately recogrlized Fourier's equation for the diffusion of heat. 
The relevant solution is 

(7.3) 

with a = z /2-/Vi. Consequently, the retarding effect of the wall is only sensible in a layer 
whose thickness is comparable to yVi.19 

In a second note, Boussinesq insisted that wall stress played an essential role in 
determining the nature of the motion in any hydraulic problem and that his simple 
calculation revealed the general mechanism through which rotational motion began in 
any flow:20 

17These profiles agreed with Darcy's and Bazin's measurements. They can now be seen as approximations to 
the logarithmic profiles given by turbulent boundary-layer theory (cf. Prandtl [1933] p. 833n). 

18Boussinesq [1880a]. 

19Stokes had already treated a similar problem in his pendulum memoir of 1850 (see later on pp. 290-1). 
20Boussinesq [1880b] p. 967. 
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The retarding influence of a wall wiiJ first only be sensible in the vicinity of this wall. 
Hence some time will elapse before the similar influences of the other walls reach this 
region, and it will therefore be permitted to evaluate the velocity variation at the 
beginning of motion as if . . .  the wall under consideration had infinite breadth and 
the fluid mass had infinite thickness . . .  Hence, [my previous calculation] most simply 

expresses what happens at the beginning of any flow, and demonstrates the general 

mechanism, abstracted from accessory complications. 

273 

Ten years later, Boussinesq examined a similar question in an attempt to correct for 
entrance effects in some of Poiseuille's experiments, namely: how does the velocity profile 
of a viscous fluid entering a capillary tube evolve toward the uniform, parabolic profile? 
Assuming a rectangular profile at the entrance of the tube, he showed that an annular layer 
of retarded fluid grew from the walls until it reached the central part of the tube. Through 
an approximate solution of the Navier-Stokes equation, he found that the departure from 
the steady profile varied as e-I6vxfUR', where x is the distance from the entrance, R is the 
radius of the tube, U is the average velocity, and v is the kinematic viscosity. Consequently, 
the retarded layer reaches the thickness R for a distance of the order x = UR2 jv, wbich 
means that the thickness grows with x as .jvxj U.Z1 

To summarize these French contributions, Saint-Venant's semi-empirical approach to 
hydraulic questions led to a well-defined strategy to take into account the turbulent 
character of the .fluid motion in the resistance problem and in similar problems of retard
ation. Most essential were the recourse to momentum and energy balance in astutely
chosen spatial domains, and the concept of effective stress depending on eddy viscosity. 
Saint-Venant and Boussinesq thus made sense of a large number of hydraulic measure
ments. Their theories nonetheless lacked predictive power, for they involved adjustable 
functions giving the distribution of the turbulent eddying in the fluid. This objection does 
not apply to laminar flows, in which case Boussinesq obtained the beginning of the motion 
by purely deductive means. He did not extend these insights to the resistance problem, for 
he lived in a world of rivers and canals rather than ships or airplanes. 

7.2 Ship resistance 

Until the 1 830s, the form of ship hulls was usually decided according to conservative and 
empirical principles. Naval architects distrusted theory-for good reason, as we may 
retrospectively judge. Contemporary hydraulics and hydrodynamics yielded an about 
even share of correct and incorrect ideas. True were the mostly quadratic dependence of 
resistance on velocity, Bossut's wave contribution, and Beaufoy's skin friction. Wrong 
were the concept of a bow resistance resulting from the impact of repelled water, the 
proportionality of the resistance with the mid-ship section, and the notion of a solid of 
least resistance. The latter ideas were dangerously stamped with Newton's authority. 
Pierre Bouguer enshrined them in his widely-used Traite du navire (1746).22 

For most kinds of commercial ships, the resistance of water was only a minor consider
ation among others that determined the preferred form of the hull. The required amount of 

21Boussinesq [1890], (1891]. The modem reader recognizes Prandtl's law for the growth of a laminar boundary 
layer. 

22Cf. Wright (1983] chap. 2. 
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wood, the weight and volume of the intended cargo, and the stability at sea were most 
important. A better understanding of ship resistance only began to matter with the deve
lopment of steam-powered, high-speed navigation in the first decades of the nineteenth 
century. One of the most important duties of the British Association for the Advancement 
of Science, founded in 1 8 3 1 ,  was precisely to favor the scientific study of navigation. A series 
of expert committees were formed to study ship resistance, stability, and propulsion.Z3 

Scott Russell steered a couple of these committees in the 1830s, and thus promoted his 
ideas on the contribution of wave formation to ship resistance. The hollow lines of the 
bow, and the proportions he gave to the rest of the hull were meant to minimize wave 
formation. Although they improved on more conservative designs, they rested on a fragile 
theoretical basis. Russell understood little of the principles of mechanics, and reasoned 
mo�tly through intuition, analogy, and empirical induction. Where we would see energy 
wasted through the constant emission of periodic waves, he instead saw a conflict between 
the 'bow wave' (surge of water) and the progression of the ship.Z4 

7 .2.1 Rankine's friction layer and stream lines 

The first British theorist of ship resistance who knew enough fluid mechanics was the 
Glasgow engineering professor William Macquorn Rankine. Educated at the University 
of Edinburgh, experienced in railways and hydraulic engineering, and a major contributor 
to the new mechanical theory of heat, Rankine best embodied a rising engineering science 
that profited from the fundamental theories of physics. His first considerations of ship 
resistance derived from his friendship with the Scottish shipbuilder James Napier who, in 
1 857, asked him for advice about the engine power necessary to propel a ship of given 
shape and size. Apparently, Napier did not trust the 'Admiralty formula' that had so far 
been used for this purpose: 

(7.4) 

where II is the power, S is the mid-ship section, V is the velocity, and C is an empirical 
constant.25 

Rankine communicated his own formula privately to Napier, and, 'for the sake of 
record', as an anagram in the August 1 858 issue of the Philosophical Magazine. He proudly 
announced:26 

In the course oflast year there were communicated to me in confidence the results of a 
great body of experimentation on the engine power required to propel steam-slrips of 
various sizes and figures at various speeds. From these results I deduced a general 
formula for the resistance of ships having such figures as usually occur in steamers, 
wlrich on the 23'd of December, 1857, I communicated to the owner of the experi
mental data; and he has since applied it to practice with complete success. 

Five years later, Rankine revealed his secret theory to the learned public. For ships 
designed according to Russell's wave principle, Rankine reasoned, the main cause of 
resistance had to be 'skin friction', that is, the force exerted tangentially by the water sliding 

23Cf. Wright [1983] Chap. 3. 24See Chapter 2, p. 51.  

25Cf. Wright [1983] pp. 89, 106-19. 26Rankine [1858] p. 238. 
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on the hull. In approximate conformance with Beaufoy's old measurements and by analogy 
with pipe retardation, Rankine took this force to be proportional to the fluid density and to 
the square of the sliding velocity. Unlike Beaufoy, however, he did not assume this velocity 
to be constant along the hull. Instead, as 'the only assumption', he propounded 'that the 
agitation in the water caused by the friction on the ship's bottom extends only to a layer of 
water which is very thin as compared with the dimensions of the ship.' Beyond that layer, he 
assumed a smooth motion obeying Euler's equation. In the case ofRussell's trochoidallines, 
Rankine determined the corresponding flow in Gerstner's manner and thus obtained the 
sliding velocity v as a function of the curvilinear abscissa s along the hull.Z7 

Rankine then equated the propelling engine power to the work done by the frictional 
forces: 

(7.5), 

wherejis a friction coefficient borrowed from Julius Weisbach's pipe-retardation formula, 
p is the density of water, G is the mean girth of the ship, V is its velocity, B is its greatest 
breadth, and £1 is the length between the bow and the stem. The parenthesis or 'augmen
ted length' factor contains the effect of the curvature of the hull. Rankine further obtained 
the resistance as the ratio PI V. The direct summation of the longitudinal component ofthe 
frictional force leads to a smaller result. Rankine attributed this discrepancy to a reaction 
of the hull on the water that slightly deformed the lines of flow and thus lowered the 
pressure on the stem. 28 

In 1 864, Rankine clearly distinguished three contributions to ship resistance: 

• a blunt stem leading to large eddies; 
• a front surge leading to surface waves; 
• frictional eddies. 

For a fair-shaped ship at moderate velocity, this last cause was the only important one. 
Rankine described the relevant process in a manner probably reminiscent of Darcy:29 

The resistance due to frictional eddies . . .  is a combination of the direct and indirect 

effects of the adhesion between the skin of the ship and the particles of water which 

glide over it; which adhesion, together with the stiffness [viscosity] of the water, 

occasions the production of a vast number of small whirls or eddies in the layer of 

water immediately adjoining the ship's surface. The velocity with which the particles 

of water whirl in these eddies bears some fixed proportion to that with which these 

particles glide over the ship's surface: hence the actual energy of the whirling motion 

impressed on a given mass of water at the expense of the propelling power of the ship, 

being proportional to the square of the velocity of the whirling motion, is propor-
tional to the square of the velocity of gliding. 

27Rankine [1862] p. 23. Rankine identified the flow in a horizontal plane with the vertical section of a Gerstner 
wave (see Chapter 2, pp. 73-5). This kind of flow is not irrotational, unlike those later favored by Rankine. 

28Rankine [1862] p. 24, [1863] p. 137, and [1864] p. 323 for the indirect effect of viscosity. 

29Rankine [I 864] p. 322. For Darcy's and Du Buat's similar ideas, see Chapter 6, pp. 224, 234. 
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In 1 871,  Rankine refined his description: 

It is well known through observation: that the friction between a ship and the water 

acts by producing a great number of very small eddies in a thin layer of water close to 

the skin of the vessel, and also an advancing motion in that layer of water; that this 

frictional layer (as it may be called) is of insensible thickness at the cutwater, and 

gradually increases in thickness towards the stern, by communication of the com
bined whirling and progressive motion to successive streams of particles; and that, 

finaJly the various elementary streams of which the frictional layer is composed, 

uniting at the stern of the ship, form the wake-that is, a steady or nearly steady 

current, full of small eddies, which follow the ship, but at a speed relatively to still 

water which is less than the speed of the ship. 

From this picture, Rankine derived the equality of the resistance with the momentum flux 
in the wake. If V is the velocity of the ship, A is the area of a section of the wake, and U 
is its average velocity, Rankine reasoned, then the mass of water fed into the wake is 
pA( V - U) per unit time, and its momentum is pA(V - U)U. Rankine chose U = V /2, 
which gives the smallest wake section, 4R/pV2, for a given resistance R.30 

As the dominance of skin resistance depended on the fairness of the ship's shape, 
Rankine wondered whether Russell's wave lines were the only ones that prevented wave 
formation. In order to answer this question, he considered simple, two-dimensional, 
potential flows obtained by superposing the flows defined by two opposite foci (a source 
and a sink) and a uniform flow directed along the lines joining the two foci. Figure 7.7 
represents the lines of flow that asymptotically merge with the uniform flow. Rankine 
called them 'oogenous neolds', for they correspond to the potential flow around a solid 
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Fig. 7. 7. Rankine's bifocal lines of flow. A is one of the foci (the other being its mirrorimage through OY), LB 

is the limiting oval, and PQ is the 'lissenoid' or line of minimal vertical disturbance. The lines AC are 

construction lines. From Rankine [1865] plate. 

"'Rankine [1871] pp. 300-1. 
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limited by the central oval. Yet he did not regard the oval as a plausible ship shape, since 
the resulting flow implies an abrupt vertical disturbance (through Bemoulli's law, the local 
depression of the free surface varies as the square of the fluid velocity). Rather, he selected 
the stream lines for which the velocity differs the least from that of the neigh boring lines. 
As these 'lissenoids' unfortunately have parallel asymptotes, Rankine cut them off at the 
point of slowest gliding and completed them with a plausible, edge-shaped stem and bow. 
The resulting shapes resembled Scott Russell's wave linesY 

When Rankine published these considerations, in 1 864, he seems to have believed that 
laminar flow was only possible around special, simple solids such as those given by the 
bifocal method. In reality, Laplace's equation for the velocity potential admits a solution 
that meets the boundary conditions for a body of any shape. Being close to William 
Thomson, to whom potential theory had no secret, Rankine could not remain long in 
error. In a note of 1 870 he explained: 

Although every surface is a possible stream-line, the surface of a ship is not even 

approximately an actual stream-line surface unless it is such that she does not drag 

along with her a mass of eddies of such volume and shape as to cause the actual tracks 

of the particles of water to differ materially in form from those which would be 

described in the absence of eddies. 

Being now aware of William Froude's water-bird proflles (to be discussed shortly), 
Rankine added two more foci to his previous scheme and obtained the 'cynoid' lines. As 
the number of foci was in principle unlimited, there seemed to be no limit to the variety of 
imaginable ship shapes. While gaining generality, Rankine's method lost predictive 
power.32 

7.2.2 Froude's models 

Even though Rankine's contributions marked a significant progress in the understanding 
of ship resistance, they turned out to be of little value in the computation of resistance, or 
so it appears from the report of the British Association Committee on 'Resistance of 
water' that Russell, Napier, Rankine, and Froude directed from 1 863 to 1 866. This failure 
probably motivated William Froude's experiments of 1 865-1867 on models. This country 
gentleman worked as a railway engineer until 1 845 and retired at the early age of thirty
five to look after his ailing father. He had an elementary knowledge of mathematics, but a 
very good understanding of the laws of mechanics. In 1 856, his former employer and Chief 
Engineer of the Great Eastern, Isambard Brunei, asked him for help in the study of wave
induced ship rolling. Froude's outstanding contributions to this subject won him the 
favors of the British Association, the ear of the Admiralty, and a membership of the 
Institution of Naval Architects. Worth noting are his consideration of skin friction as one 
of the damping factors of the rolling motion, and his use of similitude conditions to exploit 
rolling measurements carried out on a model of the Great Eastem.33 

31Rankine [1865]. 32Rankine [1871] p. 267n (note dated Dec. 1870). 
33For biographical information, cf. Abell [1933], Brown [1992]. For a penetrating analysis of his works, cf. 

Wright [1983] chaps 6, 7. 
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In the absence of a priori means to determine the most advantageous ship shapes, 
Froude consulted experiments. As full-scale trials excluded any radically innovative 
shape, he built models of small dimensions and towed them in Dartmouth harbor. Unlike 
previous ship-model experimenters, Froude understood that the rational use of models to 
derive the behavior of full-scale ships required adequate scaling rules. On the basis of the 
expression )gA./217" for the celerity of a deep-water wave of length A, he argued that 

similar wave patterns for models at different scales required a towing velocity proportional 
to the square of the dimensions of the model. Assuming that the total resistance varied as 
the square of the velocity and the square of a 'ruling dimension', he further expected this 

resistance to vary as the cube of the dimensions of the model. 34 

Such were the first scaling rules explained by Froude in an unpublished report to the 
Admiralty of April l 868. In an improved report of December 1868, he recognized that the 
wave component of the resistance did not generally vary as the squared velocity, but 
nonetheless varied as the cube ofthe dimensions of the ship. The advocated reason for this 
simple law was that the height of the waves as well as their length and breadth varied as the 
linear dimensions of the ship, so that their energy varied as the cube of these dimensions. 
As for the skin resistance, Froude believed that pipe-retardation measurements sufficiently 
proved its quadratic form. In his opinion, Beaufoy's 1 . 8  exponent probably resulted from 

experimental errors-a view that Froude revised a couple of years later.35 

Froude did not explicitly introduce the 'Froude number' of modern navigation theory. 
Nor did he reason from fundamental principles or equations. Newton had briefly done so 
in the section of the Principia devoted to fluid resistance, and Joseph Bertrand had given 
the general similitude conditions of rational mechanics in 1 848. Most relevantly, the 
director of the Ecole d'Application du Genie Maritime in Lorient, Ferdinand Reech, 
derived the similitude conditions for ship models in 1 844 and included them in his lectures 
on mechanics. Although Froude seems to have been unaware of Reech's reasoning, its 
generality and rigor deserve a few lines. 36 

In any mechanical system, Reech reasoned, the equations of equilibrium are unchanged 
under global change of the length scale, as long as this change affects all forces in the same 
proportion. Taking d'Alembert's principle into account, the equations of motion are 
unchanged through a change of the length and velocity scales, if this change affects all 
forces, including the inertial forces, in the same proportion. Denote by a and {3 the factors by 
which the lengths and velocities are respectively multiplied. Then inertial and gravitational 
forces are multiplied by a2[32 and a3, respectively. For a system in which the acting forces are 
inertial and gravitational, the equations of motion will be invariant if a2{32 = a3, or a = {32; 
so velocities must vary as the square root of a length in order that both kind of forces vary as 
the cube of a length. As Reech further noted, atmospheric pressure and viscosity forces 
behave differently, so that the rule no longer applies in problems for which these forces are 

34Unpublished report sent to Edward Reed, discussed in Wright [1983] p. 210. Rankine ([I 862] p. 28) had 
earlier expressed the condition that 'the velocities of the model and of the ship should be proportional to the square 
roots of their linear dimensions' in order that the wave effects should be comparable. 

35Froude [1868]. 
36Reech [1844] p. 166, [1852] pp. 265-75. On the broader history of similitude and models, cf. Wright [1983] 

chap. 8, [1992]. 
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not negligible. With this restriction, Reech concluded that 'Newton's theorem of similitude 
would always be the best and often the unique foundation of many practical applications [of 
mechanics]', and contrasted this power of similitude arguments with the meager yield of 
higher theories based on Euler's or Navier's 'special equations'. 37 

In order to verify his (or Reech's) scaling rules, in 1 867 Froude built a series of models at 
different scales (3, 6, and 12  feet) for two shapes, namely, a wave-line shape he called 
Raven, and a water-bird shape he called Swan (see Fig. 7.8). The results confirmed his 
expectations, although modern analysis of his data has shown enormous errors (up to 
50%!), probably due to a flawed dynamometer. He also concluded that the odd water-bird 
shape was superior to the wave-line shape at high velocities. This finding justified the need 
for further model experiments in which a large variety of unusual shapes could be tested. 
Froude soon planned the construction of a towing tank that would permit sufficient 
precision in such experiments. 38 

The project required important funds, which Froude secured from the Admiralty. The 
chief constructor of the Navy, Edward Reed, approved Froude's exploratory approach to 
ship form, in part because for iron-clad warships the high cost of iron excluded the slender 
forms recommended by Russell. Civil naval engineers were far less enthusiastic. In a 
British Association report of 1 869, the Principal of the Royal School of Naval Architec
ture and Marine Engineers, Charles Merrifield, pointed to Reech's similitude conditions 
and held ignorance of these conditions responsible for the past failures of the models 
approach. Yet his general distrust of theory prompted him to recommend a new series of 
full-scale experiments in the name of the BA committee. 39 

Fig. 7.8. Froude's Raven and Swan models. From Froude [1957] p. 132 (photos), [1869b] (half water lines). 

37Reech [1852] p. 274. 

"cr. Wright [1983] pp. 131-6. 
39Merrifield [1869] pp. 24-5. Merrifield had read Eugime Flachat's treatise on navigation, which reproduced 

writings by Sim6on Bourgois and Stanislas Dupuy de L6me, including discussions ofReech's similitude conditions 
(Fiachat [1866] vol. I ,  pp. 165n-167n, 214n). Bourgois noted that the frictional resistance measured by Beaufoy did 
not meet these conditions, so that their application to the total resistance could only be approximate (ibid. p. 167n). 
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Froude, who belonged to this committee, defended his own model approach in a long 
appendix to the report. He did the same at the Institution of Naval Architects, where 
Russell cited his own past failure to exploit model data and ironically questioned the 
future of this approach: 

You wiJI have on the small scale a series of beautiful, interesting little experiments, 

which I am sure will afford Mr. Froude infinite pleasure in making them, as they did 

to me, and will afford you infinite pleasure in the hearing of them; but which are quite 

remote from any practical results upon the large scale. 

Froude's defense brought forward the similitude conditions, the need to explore unusual 
shapes, the practical impossibility of predicting wave resistance, the agreement of his views 
with Rankine's earlier theories, and the success of his preliminary experiments on Raven 
and Swan. He conceded difficulties with small-scale towing, especially in the achievement 
of uniform speed, but felt able to surmount them. Merrifield, whose own full-scale towing 
project had just been rejected by the Admiralty, rejoiced magnanimously over the support 
given to 'a man of proven ability' (Froude).40 

Froude built a 25-foot long, 33-foot wide, 10-foot deep tank in Chelton Cross, near his 
home town of Torquay. In his first experiments in this tank, reported in 1872, he towed a 
plate edgewise through the water, with the skin friction of ship hulls in mind. Like 
Rankine, he believed that the resistance of any fair-shaped ship was mainly due to skin 
friction, and therefore computable if the laws of this sort of resistance were known. 
However, he doubted the correctness of Rankine's and others' assumptions about these 
laws. His suspicion derived from his involvement in a water-main problem in Torquay 
around 1 869. After a few tests, he had determined that the deplored loss of head was not 
due to obstructions, but to the roughness of the oxidized internal surface of the pipe. 
Scraping solved the problem.41 

While pondering on the effect of roughness-which he wrongly believed to be unknown 
to hydraulicians-Froude came to question Beaufoy's and Rankine's assumption that the 
friction on a plate moving edgewise was uniform along it. In a memoir of 1869, he 
explained why it should not be so:42 

It is certain that the anterior portions of the surface, in rubbing against the particles 

which it passes, and experiencing resistance from them, must impress on them an 

equivalent force in the direction of the motion, and must impart to them some 

velocity in that direction. Thus, though it may be in some sense asserted that the 

anterior portions of the plane rub against the contiguous particles with the entire 

velocity of the plane, since these particles are undisturbed, this cannot be truly 
asserted of the posterior portions of the plane, since the particles against which 

these rub have already received a velocity conformable to that of the plane; and a 
'state of motion' will be thus produced in the contiguous particles involving a 

widening body of fluid, and with increasing velocity imparted to it, as we recede 

foot by foot sternward along the plane; forming in fact a 'current', created and left 

40Froude [1869b]; Merrifield [1870] pp. 82 (Russell's comment), 87-90 (Froude's defense), 80-1 (Merrifield). 

41See R. Froude [1869]. 

42W. Froude [1869a] p. 212. Darcy had earlier emphasized the role of roughness, see Chapter 6, p. 232. 
Froude's description anticipates three features of modern boundary-layer theory, namely, the growth of the layer, 
the gradual decrease of wall stress along the wall, and the momentum balance. 
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behind, by the transit of the plane, such that if we could integrate the volume of 

current created in each unit of time, and the exact velocity possessed by each of its 

particles, the aggregate momentum must be precisely that which is due to the 

frictional resistance of the entire plane acting during that unit of time. Obviously 
the sternward portions of the plane moving forward in such a favouring current, must 

experience a less intense frictional resistance than the anterior portions. 
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With Rankine, Froude shared the idea of a growing layer of dragged fluid and the 
relation between wake momentum and resistance. Unlike Rankine, he did not regard the 
friction on the walls as being determined by the sliding velocity of the potential flow along 
the surface of the body. Instead, he made this friction depend on the normal gradient of the 
longitudinal fluid velocity. Whereas Rankine's sliding velocity is a constant along a plane, 
Froude's wall stress decreases along the plate owing to internal fluid friction. As Froude 
later wrote, 'it is the motion of the surface relative to contiguous particles, and not relative 
to distant ones, that governs the resistance.' Based on this idea, he indicated a way to 
compute the spreading of the motion from an infmite plate suddenly set in uniform motion 
in its own plane: he assumed the frictional force to be a( 8u/ ay )2 between consecutive layers 
of the fluid, and balanced the inertial force of each layer (of thickness 71) with the difference 
27Ja(8uj8y)(82uj8y2) between the frictional forces on its two faces. Froude next suggested 
that the solution would also apply to the case of a finite plane penetrating a still fluid with a 
constant velocity. However, he was reaching the limits of his mathematics.43 

In his plank-towing experiments of 1 872 and 1 874, Froude verified that the resistance 
was not proportional to the length of the plank, and that it depended on the roughness of 
the surface, with a velocity exponent ranging between 1 .83 for the smoothest surface 
(varnished) and 2.0 for the roughest one (sand-coated) in the case of the longest plank 
(50 feet). Whereas he did not comment on the relation between exponent and roughness, he 
gave the following discussion of the unexpectedly slow decrease of the friction a few feet 
behind the cutwater.44 

Assuming an approximately linear transverse variation of the velocity in the current 
induced by the plank's motion on each face, denoting by H the thickness of this current at 
the end of the plank, U the velocity of the plank, and p the density of water, Froude 
estimated the momentum flux (per unit breadth) in the wake to be pHU2 /3. Equating this 
value to the measured resistance in Rankine's manner, he derived values of H that 
matched observations and that increased with the length of the plank. This growth of 
the favoring current suggested a rapid decrease of the friction with the distance from the 
cutwater, in contradiction with the measurements. As a solution to this paradox, Froude 
imagined that violent eddying in the boundary current fed undisturbed fluid particles from 
the outer margin of the current to the surface of the plank.45 

43Froude [1874a] p. 253 (quote), [1869a] pp. 212-13 (computation). The modern reader may recognize 
Prandtl's assumption for the stress within a turbulent boundary layer in the case of a constant mixing length 
Va/P (in reality, the mixing length grows linearly with the distance from the wall), as well as Rayleigh's idea 
([1911]) of connecting temporal and spatial growths of a boundary layer. See later on pp. 290-1, 297-9. 

44Froude [1872], [1874a]. 
45Froude [1874a] p. 253. In conformance with Froude's view, Karmin's theory of 1921 yields a turbulent 

boundary layer growing as the power 4 I 5 of the distance from the cutwater, and a wall stress decreasing as the 
power -1/5 of this distance. See later on pp. 296-7. 
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In the same period, Froude performed full-scale experiments on HMS Greyhound and 
compared the results with measurements done on a model of this ship. This time Froude 
no longer assumed a quadratic form of the skin friction. Instead, he computed the skin 
resistance by extrapolation from his plank measurements. Then he subtracted this resist
ance from the measured total resistance, and applied his scaling rules to the remaining 
resistance. An impressive match between the model data and the full-scale data resulted. 
Froude concluded:46 

The experiments with the shlp, when compared with those tried with her model, 

substantially verify the law of comparison which has been propounded by me as 

governing the relation between the resistances of shlps and their models. This justifies 

the reliance I have placed on the method of investigating the effects of variation of 

form by trials with varied models-a method which, if trustworthy, is equally 
serviceable for testing abstract formulae, or for feeling the way towards perfection 

by a strictly inductive process. 

Froude's main service to naval engineering was indeed the development of the rational 
use of models. As he showed, the proper exploitation of model data required the know
ledge of the scaling laws for non-frictional resistance, and some understanding of the 
mechanism of skin friction. He modestly admitted to having borrowed most of his 
theoretical ideas from colleagues with higher mathematical skills (Rankine, Thomson, 
and Stokes): 'I am but insisting on views which the highest mathematicians ofthe day have 
established irrefutably; and rriy work has been to appreciate and adapt these views when 
presented to me.' Froude nevertheless grasped aspects of fluid motion that had eluded his 
predecessors. He understood that the variation of friction along a ship hull depended on 
an internal fluid-stress mechanism acting within a growing boundary layer of dragged 
fluid. Moreover, he foresaw the role of destructive wave interference in lowering the wave 
resistance of some ship shapes, such as the Swan of 1 867, and he described important wave 
phenomena, such as group velocity and echelon waves, thus stimulating mathematical 
studies by Stokes, Rayleigh, and Kelvin.47 

A last service of Froude was his simple, pedagogical explanation of the principles of ship 
resistance for lay audiences. Unconsciously imitating Euler, he derived d' Alembert's para
dox through momentum balance along tubes of flow, thus condemning the fallacy of 'head 
resistance' that had so long impeded the progress of naval architecture. The true causes of 
ship resistance, he went on, were skin friction, wave emission, and large-eddy production. 
About each kind of resistance he had a simple wisdom to offer. Skin resistance is about the 
same on a ship hull as on a flat surface, wave resistance only counts at velocities for which 
the wavelength is comparable to the ship's dimensions, and eddy resistance essentially 
depends on the tendency of stream lines to separate from a blunt stem and thus to form a 
dead-water, eddying region: 'Blunt tails rather than blunt nose cause eddies.'48 

46Froude [1874b] p. 59. 
47Froude [1877a] p. 213, [1877b] (on ship waves). See Chapter 2, pp. 85-6. 
48Froude [1875], [1877a] p. 205. Rayleigh ([1918] p. 553) claims to have obtained from Froude the idea (usually 

attributed to Prandtl) that separation is due to 'the loss of velocity near the walls in consequence of fluid friction, 
which is such that the fluid in question is unable to penetrate into what should be the region of higher pressure.' 
I have not been able to locate any statement of this sort in Froude's writings. 
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In summary, the development of steam-powered navigation prompted scientific studies 
of fluid resistance by RusseU, Rankine, and Froude, spanning from the mid-1830s to the 
1870s. These three investigators recognized, with increasing accuracy, the importance of 
wave resistance for partiaUy-immersed bodies moving at sufficient speed. None of them, 
however, could theoreticaUy predict the amount of this resistance. Froude remedied this 
weakness by a rational use of model measurements. Rankine and Froude recognized that 
the motion of water around a fair-shaped ship huU was mostly governed by the corre
sponding irrotational solution of Euler's equation, except for a layer of fluid adjacent to 
the hull, in which complex eddying motion occurred. Froude understood that the behavior 
of this layer and the resulting skin friction depended on internal friction within the layer. 
As he did not have the means to develop a quantitative theory of this behavior, he again 
relied on smaU-scale experiments, and extrapolated the results to large-scale skin friction. 

This research better achieved its aim, namely the prediction of ship resistance, than the 
resistance theories discussed above and based on the concepts of discontinuity surfaces 
and eddy viscosity. The key to this empirical efficiency was not the elaboration of a 
quantitative, deductive theory. It was a qualitative understanding of the implied physical 
processes along with the rational exploitation of smaU-scale experiments. 

7.3 Boundary layers 

7.3. 1  Prandtl's Heidelberg paper 

After completing his engineering studies at the Technische Hochschule in Munich, Ludwig 
Prandtl obtained a doctorate in 1 898 under Ludwig F6ppl on the lateral instability of 
beams in bending. From F6ppl he learnt a kind of engineering science that relied on higher 
mathematical skills, fundamental physical theory, and multifarious approximation strat
egies. He went on to work in the Maschinenfabrik Augsburg-Niirnberg, where he was 
asked to improve a suction device for the removal of shavings. While working on this 
project, he realized that the pressure rise expected in a sharply-divergent tube failed to 
occur because the lines of flow tended to separate from the walls-as Daniel Bernoulli had 
long ago noted in a similar hydraulic case. Prandtl later remembered this observation to 
have started the chain of reasoning that led him to the boundary-layer approach to 
resistance in slightly-viscous fluids.49 

In the foUowing years, Prandtl developed his resistance theory and tested it with a water 
tank of his own making, while teaching mechanics at the Technische Hochschule 
in Hannover. At the third international congress of mathematics held in Heidelberg in 
1904, he had ten minutes to announce results that inspired much fruitful research in 
subsequent years. In the short, dense report published in 1905, he began with the 'un
pleasant properties' of the Navier-Stokes equation 

(7.6) 

Solutions were known, he noted, for the simpler equations obtained by omitting either the 
nonlinear term p(v · v)v or the viscous term iJ-AV. No non-trivial solution had yet been 

49Prandtl [1948]. For biographical data, cf. Lienhard [1975], Rotta [1990]. 
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found for the complete equation. For a slightly-viscous fluid such as water or air, a natural 
course was to omit the viscous term. Alas, the resulting solutions to resistance problems 
differed widely from the observed behavior. A different strategy was needed. 50 

Prandtl assumed that the viscous term JJ-I1V could be neglected everywhere except in a 
'boundary layer' (Grenzschicht) or 'transition layer' (Obergangschicht) of fluid near the 
solid walls on which the fluid adheres. This layer remains thin only if the path of fluid 
particles along the walls is not too long. Without proof, Prandtl further asserted that, if the 
viscosity JJ- is an infinitesimal of second order, then the width of the transition layer and the 
normal velocity within the layer are of first order, and the normal pressure gradient and 
the curvature of the lines of flow are negligible. He presumably reasoned as follows. 51 

For a two-dimensional flow, denote by 8 the thickness of the transition layer, u the 
parallel velocity, v the normal velocity, x the curvilinear abscissa along the wall, and y a 
normal curvilinear coordinate. As long as the curvature radius of the surface is large 
compared to the thickness of the layer, the differential equations of the motion within the 
layer have the same form as if x and y were Cartesian coordinates. As the velocity within 
the layer varies much faster in the normal than in the parallel direction, B2ujax? is 
negligible compared to &uj8y2, and the Navier-Stokes equation for u reads 

Bu Bu Bu 1 BP B2u 
- + u- + v- = - - - + v-.  
Bt Bx By p Bx By2 

The continuity equation reads 

au av - + - = 0. 
ax By 

(7.7) 

(7.8) 

In the zero-viscosity limit, and at a given fraction y/8 of the transition layer, the terms 
uBujBx, - (ljp)BPjBx, and BujBx in these equations must remain finite; the term 
v&uj8y2 is of the order of vj82, and the term Bv/By is of the order ofv/8. Consequently, 
v is of the same order as 8, which is of the same order as .fii, and all of the terms of eqn 
(7.7) are ofthe same order. The Navier-Stokes equation for v further implies that BP j By is 
negligible, because all other terms are of the same order as 8. Therefore, the term 
-(1/p)BPjBx in eqn (7.7) may be regarded as a known function of x only that can be 
obtained by solving the Eulerian flow problem along the given solid body. Prandtl 
obtained the velocity profile of the boundary layer through the numerical, stepwise 
integration of eqns (7.7) and (7.8).52 

The simplest case is that of a uniform flow of velocity U encountering a parallel, infinite 
blade (see Fig. 7.9) in the domain x > O,y = 0. The corresponding Eulerian flow is strictly 
uniform, so that the pressure gradient vanishes. Prandtl asserted without proof that the 
velocity component u was a function of yj ..;X only. Presumably, he guessed that, in the 

"'Prandtl [1905] pp. 575-6. Cf. Ackroyd et al. [2001] Chap. 9. 

51 Ibid. pp. 576-577. Even though Grenzschicht occurs only once in this paper, it is the term that Prandtl later 
preferred. 

52 A similar reasoning is found in Blasius [1908] pp. 2-3. Prandtl is not likely to have used dimensionless 
variables, for these only became popular in later years. 
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Fig. 7.9. Flow along a flat plate. Here v is 

the asymptotic velocity, I the length of 

the plate, and is 5 is the thickness of the 

boundary layer at the end of the plate. 

From Prandtl l931b: 90. 

absence of a characteristic length (such as the length of the plate), the parallel-velocity 
profiles at different points of the plate only differed by the y-scale. Formally, this means 
that, for any constant a, there are two other constants {3 and 'Y for which the substitution 
u, v, x,y -t u, -yv, ax, {3y leaves the boundary-layer equations and the boundary conditions 
(zero velocity on the blade, u equal to U far from the plate) invariant. This is indeed the 
case if a = {32 and {3-y = 1 .  As the solution should be unique for given boundary cmi.di
tions, we have u(x,y) = u(ax,y.;a) for any values of x, y, and a. The choice a =  l jx leads 
to u(x,y) = u(l ,yjyX), in conformance with Prandtl's assertion. 53 

Prandtl then solved the resulting ordinary differential equation numerically. Integrating 
the stress J.L au; ay on both sides of the blade from the edge to the length l, he reached the 
resistance formula 

R = 1 . 1  byf J.LplU3, (7.9) 

where b is the breadth of the blade. He thereby assumed that the boundary layer of a finite
length blade was approximately the same as the x < l part of the boundary layer of an 
infmite plate. 

Prandtl next proceeded to 'the most important result with regard to application', that is, 
the separation (Ablosung) of the fluid current from the wall in the presence of an antag
onistic pressure gradient. Such a gradient typically occurs at the rear of a bluff-shaped 
body, where the lines of the Eulerian flow spread out, the sliding velocity diminishes, and 
the pressure therefore increases along the wall (through Bernoulli's law). Owing to viscous 
damping, Prandtl reasoned, the fluid in the transition layer may reach a point at which it 
does not have enough kinetic energy to surmount the pressure gradient, in which case it 
shoots off the wall. Prandtl drew the evolution of the velocity profile in such cases, and 
argued that separation occurred at the point 8uj8y = 0, beyond which an absurd back
ward flow would occur if separation did not prevent it (see Fig. 7.10). He assumed the 
separation to result in a vortex sheet a la Helmholtz: 

A layer of fluid that has been set into rotation through wall friction thus pushes itself 

into the free fluid and there plays the same role as Helmholtz's separation layers 

(Trennungschichten) in effecting a complete reconfiguration of the motion. 

53Prandtl [1905] p. 578. A similar reasoning is found in Blasius [1908] p. 5. 
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Fig. 7.1 0. The evolution of a boundary 

layer in an antagonistic pressure gradi
ent. From Prandtl [1905] p. 578. 

Prandlt summed up: 54 

The treatment of a given flow process divides itself in two mutually interacting parts: 
on one hand we have the free fluid that can be treated as friction-free according to 
Helmholtz's laws of vortex motion, on the other hand we have the transition layers 
on the solid boundaries, the motion of which is ruled by the free fluid, but which in 
return give to the latter its characteristic imprint. 

Prandtl then showed theoretical drawings of the formation of a separation surface at the 
edge of a plate and behind a cylinder (see Fig. 7.1 1) . He emphasized the instability of these 
surfaces, with the characteristic spiral unrolling identified by Helmholtz. Lastly, he de
scribed the apparatus he had used to verify (or reach?) his insights, a waterwheel-driven 
water current with suspended metal dust (see Fig. 7.12), and gave the pictures of the 
observed motions behind the edge of a blade and behind a cylinder (see Fig. 7. 13). In 
the latter case, he showed that the separation process could be prevented by pumping 
off the fluid of the boundary layer though a slit on the wall of the cylinder. 55 

Comparing this communication with earlier notions of a boundary layer and a separ
ation surface by Stokes, Thomson, Rankine, Froude, Boussinesq, and Levi-Civita, two 
specificities stand out. Firstly, Prandtl was able to mathematically derive the velocity 
profile within a laminar boundary layer and the resulting contribution to the resistance, 
whereas his predecessors (with the exception of Boussinesq) only had qualitative know
ledge of the layer. Secondly, Prandtl saw that the separation process and the departure 
point of discontinuity surfaces depended on how the velocity profile of the layer evolved 
along the walls, whereas previous advocates of flow separation and discontinuity surfaces 
ignored viscosity and the role of viscous stress in determining the separation point. 56 

7.3.2 Prandtl's heuristics 

According to Prandtl, a first key to his success in this and other problems was his ability to 
develop an intuitive, visual understanding of the phenomena before trying to set them into 
equations: 

54Prandtl [1905] pp. 578-9. 
55 Ibid. pp. 580-4. Prandtl later ([1927b] pp. 768-9) gave aerodynamic illustrations of the prevention of 

separation. 
56ln their correspondence ofDecember 1898 (see earlier on p. 269), Kelvin and Stokes regarded small viscosity as 

being responsible fora  high-shear instability in the boundary layer. However, they did not relate the separation point 
with the velocity prof!le in this layer. According to Prandtl, the position of the separation point does not depend on 
the value of the viscosity since the condition fJuj fJy = 0 does not. Yet the separation mechanism requires a finite 
value of the viscosity (see Chapter 5, pp. 214-5 for Rayleigh's discovery of a similar occurrence in 1883). 
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Fig. 7 . 1 1 .  Initial stages of the discontinuous fluid motion (a) past an edge, and (b) behind a cylinder. From 

Prandtl [1905] p. 579-80. 

Fig. 7 . 12. Prandtl's apparatus for 

studying the flow past a solid obs

tacle (at c). The water is set into 

motion by the paddle-wheel. The 

four sifters at b homogenize the 

flow after the sharp turn at a. 

From Prandtl [1905] p. 581. 

Herr Heisenberg has . . .  alleged that I had the ability to see without calculation what 

solutions the equations have. In reality I do not have this ability, but I strive to form 

the most penetrating intuition [Anschauung] I can of the things that make the basis of 

the problem, and I try to understand the processes. The equations come only later, 

when I think I have understood the matter. 

The sort of intuition he had in mind was acquired by 'special training', in the manner 
exemplified in his Digest [Abriss] of the science of flow. Instead of deriving the fundamental 
hydrodynamic equations and then discussing their consequences for a given hydrodynamic 
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5 

10 1 1  12 

Fig. 7 . 1 3. Pictures of the initial flow past the edges of flat and curved plates (2-6); past a cylinder, without 

(8-9) and with (1 1-12) suction through a slit. From Prandtl [1905] plate. 

system, he directly applied Newton's laws of motion to slices of the tubes of flow of the 
system, thus combining geometrical representation and dynamical understanding of 
the flow. Intuition was the experience gained by working out series of concrete examples 
in this manner. As Prandtl remembered, 'in the examples of mechanics, I gradually got 
used to "see" the forces and accelerations in the equations and sketches or to "feel" them 
by muscular sense.' When he learned the Navier-Stokes equation, he studied examples of 
viscous flow in order to appreciate the relative importance of each term and thus 'to 
penetrate the mode of action of this equation'. 57 

There was, however, a more specific key to Prandtl's invention of boundary-layer 
theory: 

When the complete mathematical problem looks hopeless, it is recommended to 

enquire what happens when one essential parameter of the problem reaches the limit 

57Prandtl [1948] pp. 1604-5. 
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zero. It is assumed that the problem is strictly soluble when this parameter is set to zero 

from the start and that for very small values of the parameter a simplified approximate 

solution is possible. Then it must still be checked whether the limiting process and the 

direct way lead to the same solution. Let the boundary conditions be chosen so that the 

answer is positive. The old saying 'Natura nonfacit saltus' decides the physical sound

ness of the solution: in nature the parameter is arbitrarily small, but it never vanishes. 

Consequently, the first way [the limiting process] is the physically correct one! 

289 

From this, we may infer that Prandtl conceived the boundary layer and the separation 
process by requiring that the zero-viscosity limit of the viscous flow should resemble the 
perfect-fluid flow. The finite fluid slide on a rigid wall in the latter case suggests a thin layer 
of intense shear in the former. Also, Helmholtz's recourse to discontinuity surfaces 
(altered boundary conditions) suggests separation in slightly-viscous fluids. Reciprocally, 
the working out of boundary-layer dynamics informs the genesis of separation surfaces. 58 

7.3.3 Lanchester and Rayleigh 

In 1907, the British automobile engineer and flight enthusiast Frederick Lanchester 
published his Aerodynamics, including a description of boundary layer and separation 
that was clearly independent of Prandtl's. Lanchester gave much importance to Helm
holtz's surfaces of discontinuity, to the point of defining a streamlined body as a body for 
which motion through a fluid does not give rise to a surface of discontinuity. For non
streamlined bodies, he ascribed most of the resistance to low pressure in the dead-water 
region within the surface of discontinuity. Around any body within a stream of a viscous 
fluid, he argued, there must be a layer of dead water adhering to the surface of the body. If 
the viscosity is small, then this layer is extremely thin near the cutwater, but grows in the 
sternward direction owing to internal friction. Along a curved surface, this dead water 
tends to move toward the places of lower pressure. For instance, in the case of a sphere the 
dead water tends to accumulate near the equator (the axis being parallel to the flow). If the 
curvature is too high, then viscous drag is not sufficient to 'pump off the excess of dead 
water, and a discontinuity surface is formed. Lanchester thus made separation depend on 
the competition between external pressure gradient and internal viscous stress, as Prandtl 
had done differently in 1904.59 

Lanchester also investigated skin friction along a plate advancing with the velocity U 
through a still fluid. Following Rankine and Froude, he balanced the frictional force on 
the plate with the momentum increase in the boundary layer. In Prandtl's symbols, this 
gives 

+oo 
8u d J 2 

jJ, [)y = d.x p(u - U) dy. 
0 

(7.10) 

Lanchester then assumed that the flow caused by the velocity a U only differed from the 
flow induced by the velocity U through the rescaling u -+ au, y -+ {3y of the velocity 

58 Ibid. p. 1606. 

59Lanchester [1907] pp. 27-30. Cf. Ackroyd [1992], (1996]. 
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prof!le. Since the previous balance between inertial and frictional forces must be preserved 
in the new flow, the relation a{32 = 1 must hold. The friction is therefore multiplied by 
a312, which means that the resistance is proportional to U312. Dimensional homogeneity 
further requires the resistance to have the form 

R = Cb.j f.LplU3, (7. 1 1) 

in conformance with Prandtl's result (7.9).60 

Besides this remarkably simple derivation of the form of the laminar resistance law for 
an edgewise moving plate, Lanchester explained that the U312 dependence corresponded 
to a form of resistance intermediate between purely viscous and purely inertial. In purely 
viscous cases, such as Stokes's pendulum, the resistance is entirely due to the energy 
dissipated by the viscous stresses and is therefore proportional to the velocity. In purely 
inertial cases, such as eddy production at a blunt stem, the resistance corresponds to the 
kinetic energy of a continually-generated wake of eddies and is therefore proportional to 
the velocity squared. For the edgewise moving plate, both effects are combined because 
both heat and wake are generated. Lanchester further noted that his derivation of the U312 
law required the motion around the plate to be laminar. As he knew from Rankine and 
Froude, the flow is in fact turbulent along a ship hulL In this case, Lanchester's intuition 
led to a velocity exponent intermediate between 3/2 and 2, in conformance with Beaufoy's 
and Froude's measurements.61 

Lanchester's derivation ofthe U312 law intrigued Lord Rayleigh. In 191 1 ,  this champion 
of dimensional reasoning commented that the only changes in space and velocity scale that 
led to geometrically-similar motions were those for which the Reynolds number Ul/v of 
the plate was left invariant. Lanchester's special rescaling assumption only made sense 
if the plate was so long that its length did not significantly affect the structure of the 
boundary layer. Rayleigh went on to derive this structure on the basis of an analogy with a 
problem that Stokes had long ago solved in his pendulum memoir, namely, the flow 
induced by an infmite plate suddenly set into constant motion in its own plane. 62 

As in the similar problem treated by Boussinesq, the only nonzero component of the 
induced fluid motion satisfies the equation 

8u 82u 
Ot = V [}y2 '  (7.12) 

which has the same form as the equation for the propagation of heat. For the given 
boundary condition (if t < 0 then u = 0 everywhere, and if t2::0 then u = U for y = 0 and 
u = 0 for y = oo), Stokes obtained the solution by Fourier analysis as 

60Lanchester [1907] pp. 50-2. As Lanchester implictly kept the ratio b I I constant, he wrote s3/4 instead of bv'i 
(with S = bl). 

61Lanchester [1907] pp. 70-5. Joukowski's brief discussion of1aminar boundary layers ([1916] pp. 120-1) was 
largely erroneous, for he assumed S ex 1/ U in order that the experimental law R ex U2 should result from the wall 
stress -r "'  p. U (S. 

62Rayleigh [191 1 ]  pp. 39-40. 
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u = � J e-TJ'd'lJ. 

y/2../Vi 
The corresponding resistance per unit area is 

P-au l = pU /v. 
ay y=o V -;;i 
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(7. 13) 

(7.14) 

By convolution, Stokes then determined the resistance induced by any given motion U(t) of 
the plane. His purpose was to refine the determination of a fluid's viscosity through Cou
lomb's old measurements of the viscous damping of a disc oscillating in its own plane, by 
taking into account the fact that the fluid is at rest at the beginning of the first oscillation. 63 

Rayleigh saw in eqn (7 . 13) the velocity profJ.!e of a boundary layer that has developed in 
the time t, and he guessed that a similar profile and a similar resistance per unit area 
roughly applied to Lanchester's boundary layer if the time t in Stokes's problem was 
identified with the time x I  U taken by the fluid to travel the distance x from the cutwater at 
velocity U. The resulting resistance for a blade of length l and width b is 

I 

R = bp(:;) 112 U312 J x-112 dx = 2bV P-PlU3, 
0 

(7. 1 5) 

in conformance with Lanchester's result (7.1 1). Rayleigh had no illusions about the 
practical usefulness of this result:64 

The fundamental condition as to the smallness of v would seem to be realized in 
numerous practical cases; but any one who has looked over the side of a steamer will 
know that the motion is not usually of the kind supposed in the theory. It would 
appear that the theoretical motion is subject to instabilities which prevent the motion 
from maintaining its simply stratified character. The resistance is then doubtless 
more nearly as the square of the velocity and independent of the value of v. 

7.3.4 Slow reception 
Neither Lanchester nor Rayleigh were aware of Prandtl's paper of 1904. Yet it did not go 
completely unnoticed. The towering Giittingen mathematician Felix Klein told Prandtl 
that his Heidelberg communication was 'the most beautiful' he had heard in the whole 
congress. Since the 1890s, Klein had been very active in promoting applied mathematics at 
Giittingen, securing private funds and recruiting competent personnel for this purpose. 
Since 1900, he had had an eye on Prandtl as a potential contributor to this effort. In June 
1904, Prandtl accepted a call to a chair of technical physics at Giittingen. The following 
year, he assumed the directorship of the Technical Physics Section of the new Institute for 
Applied Mathematics and Mechanics. Thus, he enjoyed excellent conditions for develop-

63Stokes [1850b] pp. 130-2, 102-3. 
64Rayleigh [191 I] p. 40 (I have corrected a transposition of b and [). The more exact coefficient ofB!asius [1908] 

is 1.33 (Prandtl's estimate was 1.1). 
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ing his research, having brilliant graduate students to help him develop theoretical ideas, 
and first-class experimental facilities to test the results.65 

Historians of boundary-layer theory all agree that this theory remained mostly a small 
Gottingen affair until the 1920s. Most frequently, they hold the concision of Prandtl's 
paper of 1904 and the boldness of its contents responsible for this sluggish reception. This 
is part of the Prandtl myth. In reality, Prandtl's short paper did not have much to dazzle 
contemporary experts on hydrodynamics. Its two main novelties, namely, the computa
tion of the laminar boundary-layer profile and a plausible separation mechanism, were 
largely irrelevant to resistance prediction in concrete cases. As Rayleigh emphasized in 
191 1 ,  laminar boundary layers are rarely encountered in nature. A critical reader could 
also doubt that Prandtl's separation mechanism sufficed to determine the separation 
point in the final separated flow, the ensuing turbulent motion, and the resistance. As is 
now well known, the tentative separation condition &ujay = 0 usually implies a failure 
of approximate integration procedures near this point. Even if this difficulty was solved, 
a more fundamental one would remain, namely that the potential gradient along the 
boundary layer is not a priori known, for it depends on the separated flow. Lastly, 
the instability of the separation surface leads to essentially unpredictable motions in the 
wake.66 

In summary, Prandtl's early insights into boundary-layer theory did not bring him much 
closer to a practical solution of low-viscosity resistance problems. The difficulties of the 
determination of separated flow remain unsolved to this day. Most of the thirteen papers 
on boundary layers published before 1930 were mathematical studies of the laminar case 
under Prandtl's supervision. In the first of these, published in 1908, Heinrich Blasius 
skillfully integrated the boundary-layer equation through power series, for a flat plate 
and for a synunetric cylinder. In the latter case, he managed to approximately determine 
the separation point in permanent, suddenly started, and uniformly-accelerated flows.67 

The limited value of such calculations soon became evident when testing experiments 
performed by Karl Hiemenz in Prandtl's laboratory led to unexpectedly violent but quite 
regular oscillations in the wake of the cylinder. In 191 1, Prandtl's brilliant, Hungarian
born student Theodore von Karman understood that the succession of vortices produced 
by the instability of the separation surface could only be stable if the vortices were 
arranged according to the double-alternating row of Fig. 7.14, where the distance 
h between the two rows is a definite fraction (0.283) of the spacing l between two succes
sive vortices. As Rayleigh later saw, this periodic shedding of vortices explains the 
'Aeolian harp' heard by sailors when strong wind blows past the shrouds of a mast. 
Unfortunately, this is about the ouly case where something simple can be said about a 
turbulent wake. 68 

65Cf. Rotta [1990] p. 9 (Klein's comment, reported by Sommerfeld), Hanle [1982] chap. 3 (Klein's project), 
chap. 4 (Prandtl's call). 

66For histories of boundary-layer theory, cf. Tani [1977], Dryden [1955]. For a critical assessment of separation 
prediction, cf. Batchelor [1967] pp. 325-9. 

67B!asius [1908]. Cf. Tani [1977], Ackroyd et al. [2001] chap. 1 1. 
68Karman [1911]; Rayleigh [1915a]. In 1908, Henri Benard had published a careful experimental study of what 

is now known as the 'K:irman vortex street'. Cf. K:irman [1954] pp. 67-72. 
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Fig. 7 . 14. Lines of flow for Kinnin's vortex street, (a) theoretical, and (b) experimental. From Kirmin 

[19l l], and Prandtl [1931b] p. 133. 

7.3.5 Turbulent layers 

In 1913, while trying to verify the U312 resistance law for a plate, Blasius found that this 
laminar law ceased to be valid for a critical Reynolds number Uljv of about 450000, 
beyond which turbulence occurred in the boundary layer and the resistance became 
proportional to uL864, in conformance with Beaufoy's and Froude's earlier measure
ments. The following year, Prandtl used the turbulent boundary layer to explain a strange 
anomaly in experiments performed by Gustave Eiffel on spheres suspended in a wind 
tunnel. Against any received theory, Eiffel found a sudden diminution of the resistance of 
his spheres beyond a certain critical velocity. Prandtl suspected that at that point the 
laminar boundary layer became unstable before the (laminar) separation point, and that 
the resulting eddies 'washed away the thin wedge of quiet air behind this point', thus 
retarding the separation of the flow. He succeeded in visualizing this effect with smoke in 
the Gottingen wind tunnel, but found a higher critical velocity than that measured in Paris. 
To explain this last anomaly, he noted that Eiffel's flow-homogenizing device caused 
turbulence of the incoming air and thus induced an earlier transition of the boundary 
layer from laminar to turbulent. Lastly, he confirmed this view by showing that a 
turbulence-inducing wire attached around a parallel of the sphere similarly retarded the 
separation of the flow (see Fig. 7.15).69 

As Prandtl immediately saw, in the case of airships and airplanes, the boundary layer 
always becomes turbulent before the laminar separation point. Consequently, the true 
separation point is very close to the rear end of the flying body, the global flow is nearly 
potential except in a narrow wake, and most of the resistance is frictional (unless there is 
also drag-related, induced resistance). Prandtl liked to emphasize the paradoxical role of 
turbulence in this felicitous cancellation of eddy resistance: 'It is precisely these turbulent 
flows of low resistance around bodies that can be so closely represented by the theory of a 
perfect fluid.' At the break of World War I, Prandtl worried that the boundary layer might 
not be turbulent in some model experiments, which would jeopardize predictions of full
scale resistance. Fortunately, he found this was generally not the case for the elongated 
bodies that imitated zeppelins or airfoils. 70 

69B!asius [1913] pp. 25-7; Eiffel [1912]; Prandtl [1914] p. 600. 
70Prandtl [1914] pp. 605-8, [1927] p. 773. 
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{b) 
Fig. 7 . 15 .  Separated flow around a sphere: (a) with laminar boundary layer, and (b) with turbulence induced 

in the boundary layer through the wire a From Prandtl [1914] p. 605; [1926] p. 720. 

7.3.6 Instabilities 

Despite the high technical importance of turbulent boundary layers, Prandtl held back 
their theoretical study. His priority of the 1910s was wing theory, for which it was 
sufficient to know that separation only occurred at the rear edge of the wing and that 
the flow was laminar and potential everywhere except in the boundary layer. As the 
frictional resistance of the wing could be evaluated from the measured flat-surface friction, 
its theory could be postponed. Prandtl began his theoretical investigation of turbulence in 
1921, with the onset of turbulence in Poiseuille flow and in boundary layers.71 

At that time, the received wisdom was that Poiseuille flow was always stable under an 
infmitesimal perturbation, but unstable with regard to finite perturbations. Prandtl's.own 
experiments on the critical transition of open-channel flow contradicted this view, as they 
showed that growing wave-like oscillations next to the walls preceded the transition to 
turbulence. With Oskar Tietjens's help, Prandtl examined the stability of non-viscous, 

71Prandtl [192lb]. 
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parallel, two-dimensional flow under an infinitesimal perturbation. In agreement with 
Rayleigh's theorem of 1 880, he found that an inflection of the velocity profile led to 
instability. As Prandtl had known since 1904, the evolution of a boundary layer along 
the wall leads to an inflected profile beyond a certain point (see Fig. 7.10). At that 
point, the boundary layer should become unstable, as long as viscous damping does not 
prevent the growth of perturbations. 72 

Prandtl and Tietjens next took into account viscosity, which leads to the much more 
difficult problem of Kelvin and Orr (in two dimensions). In order to simplify the calcula
tion, they replaced the continuously-curved profile with the broken profiles of Fig. 7 .16. 
They found instability even for convex profiles, and for any value ofthe Reynolds number. 
As this was more instability than Prandtl wanted-pipe flow has to be stable for a 
sufficiently high viscosity-Prandtl surmised that the broken-profile idealization was not 
permitted. In the real, continuously-curved case, he knew from Rayleigh that, at points of 
the velocity profile for which the celerity of the sine-wave perturbation equals the flow 
velocity, a special kind of motion occurs, namely the Kelvin 'cat-eye' pattern of Fig. 7.17. 
Prandtl suspected a connection with the wave-like behavior he had observed as a prelude 
to turbulence in channel flow.73 

In the absence of viscosity, the cat-eye motion is stationary. The most evident· effect of 
viscosity is a damping of the whirling motion in the eyes of the pattern. Prandtl speculated 
that the viscous stress also induced a phase difference between the u- and v-components 
of the oscillations of the fluid particles, in which case the energy I I (d U / dy)puvdxdy that 
the unperturbed motion U conveys to the oscillatory perturbation may have a positive 
value which exceeds the viscous damping. Another student of Prandtl, Waiter Tollmien, 
confirmed this intuition in 1929, thus providing one of the first proofs o( the instability of 

Fig. 7 . 16. Broken-line velocity profiles. From Prandtl 

mm®'??;mmm®mmmm'l?.// [1921b] p. 691. 

____,. ---;. Fig. 7.17. Kelvin's cat-eye flow pattern. From 

�hJJ..fi.J?.&d,L&%� Thomson (!880c] p. 187. 

12Ibid. pp. 688-9. 73 Ibid. pp. 689-93. 
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plane Poiseuille flow. Kelvin also believed the cat-eyes to cause instability, no doubt 
because he intuitively connected whirling motion with turbulence. He did not realize, 
however, the essential role that viscosity played in permitting the growth of the whirls. 74 

7.3. 7 Developed turbulence 

Prandtl's next concern was the 'developed turbulence' (ausgebildete Turbulenz) that occurs 
well after the critical point of instability has been reached. On this question he found 
himself in competition with Karman, who now held the chair of mechanics and aerody
namics in the Aachen Technische Hochschule. In 1921, Karman propounded a semi
empirical derivation of the basic properties of a turbulent boundary layer. Borrowing 
from Boussinesq's Eau courantes, he assumed that the average fluid motion obeyed an 
equation of the same form as the Navier-Stokes equation, but only if the ordinary 
viscosity was replaced by an eddy viscosity (Turbulenzfaktor) depending on the momen
tum convection caused by turbulent fluctuation. This implied that Prandtl's boundary
layer equation also held for the average motion, but only if the effective viscosity replaced 
the molecular viscosity.75 

As efforts to solve this equation had been largely frustrated, even in the simpler laminar 
case, Karman replaced it with the momentum equation obtained by integrating Prandtl's 
equation over the thickness 8 of the boundary layer (taking into account the continuity 
equation): 

8 8 8 

- pudy + - prldy - U- pudy = -8- - ro. a J a J a J aP 
8t 8x ax ax 

0 0 0 
(7.16) 

On the left-hand side of this equation, the first term represents the acceleration of a normal 
thin slice of the layer multiplied by its mass, the second term represents the difference of 
the momentum fluxes across the two sides of the slice, and the third term represents the 
momentum of the fluid that enters the tip of the slice with the asymptotic velocity U. On 
the right-hand side, the first term represents the impressed pressure difference on the two 
sides of the slice, and the second term represents the wall friction (-JL dufdy[y=O in the 
laminar case). If a reasonable Ansatz is made on the form of the velocity profile in the 
boundary layer (giving u/U as a function of y/8), then the above equation becomes a 
differential equation for the unknown function 8(x,t), or just 8(x) in the steady case. This 
mathematical problem is much easier than Prandtl's original problem. 

Karman drew his Ansiitze for the velocity profile and wall stress of a turbulent boundary 
layer from pipe-retardation data. In 1913, through careful experiments performed at the 
Versuchsanstalt fiir Wasserbau und Schiffbau and through compilation of older smooth
pipe data, Blasius had found the loss of head to vary as the power 7/4 of the section
average velocity. Exploiting a private suggestion by Prandtl, Karman used dimensional 

74Prandtl [192Ib] pp. 692-3; Tollmien [1929]. Cf. Prandtl [1930] p. 791. Prandtl borrowed the expression for the 
energy transfer between macro.flow and micro·perturbation from Reynolds [1894] (see Chapter 6, p. 261). 
Heisenberg gave another proof of this instability in 1 923. 

75Karman [1921]. The expression ausbebildete Turbulenz already appeared in Prandtl [1913] p. 1 19. 
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considerations to derive the velocity profile from Blasius's law. If the (large-scale) velocity 
u of the water does not depend on the radius of the tube, then it can only depend on the 
distance y from the wall, the wall stress To, the density p, and the kinematic viscosity v. As 
the quantities � and vjy both have the dimension of velocity, the only possible 
monomial expression for the fluid's velocity is 

(To) (n+IJI2 (Y)" u = A - - , p 1J 
(7. 17) 

.where A is a dimensionless constant. Accordingly, the wall stress and the loss of head vary 
as the power 2/(n + 1) of the average velocity in the pipe's section. Compatibility with 
Blasius's law then implies that n = 1/ 7. Having found satisfactory agreement with meas
ured pipe velocity profiles, Karman assumed the similar form 

if = m ll
7 

for the velocity profile of a turbulent boundary layer, with 

= 
(!!...) 714 (!::.) 114 To P A o . 

(7.18) 

(7.19) 

Substituting these two expressions into the momentum equation (7. 16), he found that the 
boundary-layer thickness o of a flat plate (for which the impressed velocity U is a constant) 
varied as the power 4 I 5 of the distance x from the cutwater, and that the corresponding 
resistance varied as the power 9 I 5 of the impressed velocity U. Accordingly, the growth of 
a turbulent boundary layer is faster than that of a laminar one, and the resistance has 
nearly the same form as found by Beaufoy and Froude. Karman found even better 
agreement with more recent experimental data.76 

7.3.8 The mixing length 

No matter how successful it was, Karman's approach remained semi-empirical, for it 
borrowed the law of pipe retardation from experiment. Prandtl wanted a more funda
mental theory of developed turbulence from which velocity profiles and the form of the 
resistance law would result without experimental input. In 1925, he announced significant 
progress toward this deductive goal. Starting from 'Boussinesq's formula' 

du 
T = e

dy 
(7.20) 

for the shear stress in a turbulent flow with the transverse, large-scale velocity gradient 
du/dy, he followed up Saint-Venant's idea that the effective viscosity e resulted from 
momentum transfer through velocity fluctuation. He had just read a popular book by 
the Viennese meteorologist Wilhelm Schmidt, who subsumed the transport of momentum, 

76Blasius [1913]; Karman [1921]. Unlike Boussinesq and French hydraulicians, Karman did not assume a finite 
velocity at the walls. The y111 law nonetheless gives a very rapid increase of the velocity near the walls. 
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heat, and electricity in the atmosphere under the unified concept of 'turbulent exchange' 
(Austausch) and 'mixing' a la Reynolds.77 

Knowing that e / p has the dimension of length multiplied by velocity, Prandtl sought an 
intuitive representation of the relevant length and velocity. For this purpose, he imagined 
that, owing to the turbulent fluctuation, balls of fluid were constantly carried over a 
distance of the order 1 from one layer of the fluid to another, with a transverse velocity w. 
Identifying the resulting momentum exchange, wpldufdy, with the Boussinesq stress, he 
obtained e = pwl. He then made the transverse velocity w result from the collision of two 
balls of fluid with different u, which gives the estimate w ""  lldu/dyl . The resulting 
expression for the turbulent stress is 

= 1
2 \du l du 

T p 
dy dy ' 

(7.21) 

This only improves on Boussinesq's formula if the length 1 is a simpler function of the flow 
than the coefficient e. Prandtl showed that this was indeed the case for the 'free turbulence' 
occurring in the boundary layer of an air jet. With Tollmien's help, he proved that the 
simple Ansatz 1 = Cx, where x is the distance the jet has traveled from the nozzle and C is a 
dimensionless constant, matched observations of the layer. The case of pipes did not work 
so well, since Blasius's law then required that !varies as the power 6 I 7 of the distance from 
the wall-not so simple a Jaw.78 

The following year, Prandtl gave a somewhat different interpretation ofthe length 1, the 
one most commonly known today. He now reasoned by analogy with the notion of the 
mean free path in the kinetic theory of gases and on the basis of Reynolds's stress formula 
T = piiv, where ii and v represent the turbulent fluctuations of the velocity components. 
According to the fluid-ball picture, ii "" v ""  ±l du/dy, and the stress formula (7.21) 
follows. Prandtl now called 1 the 'mixing length' (Mischungsweg), in conformance with 
Reynolds's and Schmidt's emphasis on mixing.79 

Prandtl returned to the mixing length in his Tokyo lectures of October 1929. For flow 
along a smooth wall, he then noted, the simplest possible Ansatz is l = Ky, where y is the 
distance from the wall and K is a numerical constant (l must vanish at the wall, since there 
is no room for fluctuation there). Within the boundary layer the stress T is nearly 
independent of y, so that eqn (7.21)  leads to 

u = - - (lny + C). 
1 /P 
K p 

(7.22) 

Prandtl rejected this option, because it implied the absurd u = -oo for y = 0. In general, 
he went on, dimensional homogeneity requires the form l = ycp(R.), with R. = (y j11)...[i7P. 

77Prandtl [1925] p. 716 (Boussinesg), [1927al (Schmidt); Schmidt [1925]. Foppl ([1909] vol. 4, pp. 364-5) 
already emphasized Mischbewegung, Platzwechsel, and Austausch. Prandtl ([1913] p. 120) used Mischbewegung 
and briefly described Boussinesq's and Reynolds's approaches. 

78Prandtl [1925]. Cf. Battimelli [1984] pp. 83-6. Darcy ([1857], see Chapter 6, p. 234), a few other French 
engineers, and Froude ([J869b], see earlier on p. 281) had used a similar stress formula (with an uninterpreted 
constant instead of pi2) in analogy with the quadratic form of waJI friction. 

79Prandtl [1926], [1927a]. 
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As he had already shown in 1825, the choice cp(R,) = AK;1/7 leads to u ex yl/7 and to 
Blasius's law for pipe retardation. Implicitly, Prandtl confined his Ansiitze for the mixing 
length to simple algebraic expressions meant to apply to the whole range of the y 
variable. 80 

7.3.9 The logarithmic profile 

Karman got rid of this prejudice in an important memoir of 1930. Instead of speculating 
on the form of the mixing length, he assumed that turbulent fluctuations at different 
locations of a fluid only differed in their temporal and spatial scales. He also implicitly 
assumed that these fluctuations were entirely determined by the first and second deriva
tives of the macroscopic velocity function u(y) in plane-parallel or circular-cylindrical 
flows. These two assumptions together imply that the Reynolds stress r can only depend 
on the characteristic length L = u ju', the characteristic time T =  1/rl, and the density p. 
In order to be homogenous to a pressure, it must then have the form 

kpL2 kpu'4 
r = ---:rr- = 

u't2 , (7.23) 

where k is a numerical constant. For a constant r, this equation leads to the logarithmic 
profile81 

(7.24) 

If the wall is rough, then eddy viscosity is dominant even next to the wall, and this 
formula applies to arbitrary small values of the variable y. Furthermore, the characteristic 
length L at the bottom must be of the order of the size a of the asperities of the wall. Taking 
into account the vanishing of the velocity at the wall, this gives 

(7.25) 

This formula holds as long as the stress r can be regarded as constant. In a circular pipe, 
this stress grows linearly with the distance from the axis, as required by the balance 
between the pressures and stresses acting on the surface of a volume element. 82 Karman 
obtained the counterparts of formulas (7.24) and (7.25) in this case, and used them to 
derive the retardation Jaw. 83 

It may be noted, however, that r remains approximately constant as long as the distance 
y from the wall does not exceed a small fraction, say 1 o-2, of the radius h of the tube. 

80Prandtl [1930] (translation of notes taken by a Japanese auditor). 

81Karman [1930] pp. 58-65. Saint-Venant ([1887b] pp. 133-4) had used a logarithmic profile, with finite slides 
on the walls, for the flow between two coaxial circular cylinders, one of which moves along the axis (with stress as 
the inverse of the distance from the axis, and a constant effective viscosity). 

82For a fluid disc of radius r and thickness dx, this balance requires 21rrrdx = .,.,.,.,_( - dP/dx) dx. 

83 Ibid. pp. 65-8, 74. 
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Denoting the wall stress by r0, it may also be noted that for dimensional reasons the ratio 
uj �must be a universal function of the ratio y I h provided that y is much larger than 
the size a of the asperities.84 Consequently, the average value of the former ratio over the 
cross-section of the pipe differs from its value for yjh = I0-2 by a universal constant 
(provided that ajh << I0-2). Hence the average velocity must have the form 

(7.26) 

where k and K are two universal numerical constants. The pressure gradient, which is 
balanced by the integral of the wall stress ro over the perimeter of the pipe, is thus 
proportional to the square of the velocity, in conformance with the usual assumption 
made by hydraulicians. 

If the walls are smooth, then the velocity formula (7 .24) can only hold at a sufficiently 
large distance from them. Near the walls the flow is controlled by the viscosity v. For 
dimensional reasons, the thickness of this viscous sublayer must be of the order vvPJT 
and the velocity at the border of this layer must be of the order v:rJP. Assuming that 
formula (7.24) begins to apply at this border, Kan:min required that 

(7.27) 

where a is a numerical constant. Hence the velocity profile must have the form 

(7.28) 

where f3 and y are two nmnerical constants. The resulting average velocity has the form 

(7.29) 

where k and K' are two nmnerical constants. Karman found excellent agreement with the 
latest pipe-retardation data provided by the Gottingen experimentalist Johann Nikuradse. 
Since this epoch-making paper, the problem of pipe retardation is reduced to the empirical 
determination of the two numerical constants k and K'. As Karman later remembered, his 
subsequent communication at the third international congress of applied mechanics in 
Stockhohn signaled his victory in a tacit competition with his mentor:85 

I came to realize that ever since I had come to Aachen my old professor and I were in a 

kind of world competition. The competition was gentlemanly, of course. But it was 

first-class rivalry nonetheless, a kind of Olympic Games, between Prandtl and me, and 

84Karman ([1930] p. 61) noted this property, but did not exploit it in the rest of his calculations. The following 
reasoning is found in Karman [1932] p. 409. 

85Karman [1930] pp. 69-72, [1967] p. 135 (quote). Cf. Battimelli [1984] pp. 86-92. 
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beyond that between Gottingen and Aachen. The 'playing field' was the Congress of 
Applied Mechanics. Our 'ball' was the search for a universal law of turbulence. 

301 

In the report of his Tokyo lectures, presumably written after he saw Karman's paper, 
Prandtl admitted the logarithmic velocity profile (7.22) that he had originally rejected 
because of its divergence on the wall. At a sufficient distance from the wall, he now 
reasoned, the mixing length must have the form Cy because, in the absence of viscosity, 
y is the only relevant length. Hence the profile must be logarithmic. Next to the wall the 
flow is laminar and the mixing length must be v/Pfi. In 1 833, Prandtl added that, in the 
case of the rough wall, the natural choice I =  a +  Cy immediately leads to Karman's 
velocity profile (7 .25). In the case of a smooth wall, he directly replaced the roughness 
with the length v/Pfi and thus obtained a formula similar to Karman's profile (7.28).86 

Commenting on Karman's 'very much noticed paper', Prandtl noted that his and 
Karman's approach coincided only for a constant stress r.87 For a variable r, both 
approaches become more arbitrary: Prandtl's does not take into account another charac
teristic length of the problem, which is r /(dr jdy), while Karman's overlooks derivatives of 
u of order higher than two. Fortunately, most applications only require knowledge of the 
velocity profile in regions of approximately constant r. Prandtl's approach is then recom
mended, since it is the simpler one. Prandtl attributed this simplicity to his focus on the 
mixing length as the main parameter of turbulent momentum transport. Yet he could also 
have reasoned directly in terms of Boussinesq's eddy viscosity e. The only expression of 
this parameter that can be built from y, p, and r is Kyy'/Yi', where K is a dimensionless 
constant. Then the relation r = e dujdy leads to dujdy = ( 1/Ky)/Pfi, from which 
Prandtl derived the logarithmic profile. 

In subsequent years, Karman's and Prandtl's derivations of the velocity profile of a 
turbulent boundary layer were improved in various manners. It was understood that the 
assumption of an overlap region between the turbulent layer and the laminar sublayer 
sufficed to establish the logarithmic form of the velocity profile, and more precise esti
mates of the numerical constants were given. From a practical point of view, the discovery 
of the logarithmic profile of turbulent boundary layers marked the successful completion 
of Prandtl's program for determining fluid resistance at high Reynolds numbers. Since 
18 14, it was clear that the resistance of well-designed airships, airfoils, and ship hulls, as 
well as hydraulic pipe retardation, depended on the formation of turbulent boundary 
layers. By 1930, the relevant wall stress could be computed directly from the logarithmic 
velocity profile in the hydraulic case, and indirectly via Karman's momentum equation in 
the nautical and aeronautical cases. From an academic, Giittingen-centered activity, 
boundary-layer theory gradually evolved into a widely-known procedure for determining 
fluid resistance in the real world. 88 

We may now reflect on the reasons for this success. In their major advances on the fluid
resistance problem, Prandtl and his disciples relied on the nineteenth-century key concepts 
of discontinuity, similitude, instability, and mixing. However, they transcended the ori
ginal use of these concepts in various manners. Whereas earlier users of Helrnholtz's 

86Prandtl [1931a], [1933]. 
87Prandtl [1933] p. 827. 

"cr. Tani [1977] pp. 102-3. 
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surface of discontinuity reasoned in a purely Eulerian context, Prandtl extracted part of the 
behavior of these surfaces from local, high-Reynolds-number approximations of the 
Navier-Stokes equation. Whereas previous similitude arguments by Stokes, Helmholtz, 
Rayleigh, and Froude were confined to the interpretation of model measurements and to 
the dimensional homogeneity of resistance formulas, Prandtl and Karman brought them to 
bear on the internal processes of a system: they saw that in some circumstances different 
parts of the system only differed in scale. Whereas Rayleigh's and Kelvin's theories of 
parallel-flow instability had no practical import, Prandtl, Tietjens, and Tollmien showed 
that properly completed and applied to boundary layers they bore on crucial mechanisms 
of fluid resistance and retardation. Whereas Boussinesq and Reynolds remained unable to 
quantify the mixing process that they regarded as the essence of turbulence, Karman's and 
Prandtl's insights into the similitude properties of this process led to accurate laws of pipe 
retardation and turbulent-boundary-layer resistance. 

Prandtl's extraordinary ability at combining and extending received theoretical con
cepts within a coherent, productive picture did not completely solve the resistance prob
lem, however. When it comes to separated flow, today's physicist can predict little more 
than Saint-Venant did in the mid-nineteenth century. Prandtl only told us how to avoid 
separation, so that the resistance be small and computable through the boundary-layer 
approximation. Fortunately, except for parachutes or braking flaps, low resistance is most 
frequently desired in technical applications. 

7.4 Wing theory 

In the 1890s, interest in flying contraptions grew tremendously, partly as a consequence of 
Otto Lilienthal's invention of the man-carrying glider in 1 889 (see Fig. 7.18). The pro
spects of building a motor-powered, piloted airplane seemed high in some engineering 
quarters. They materialized in 1903 when Wilbur and Orville Wright flew the first machine 
of that kind. Theory played almost no part in this spectacular success. Analogies with 
flying animals, experiments with models, and broad engineering ability were all the 
inventors needed. Although the most learned of them, Samuel Langley, contributed 
important measurements of lift and drag, refuted the Newtonian sin2 () dependence on 
the incidence angle, and even noted that this law would made artificial flight nearly 
impossible, he still refrained from higher hydrodynamic theory.89 

The contemporary flight frenzy nonetheless prompted theoretical comments and reflec
tions, ranging from flat rejection to elaborate support. Most negative was Lord Kelvin, 
who refused an invitation to join the Aeronautical Society of London with the comment: 
'I have not the smallest molecule of faith in aerial navigation other than ballooning or of 
expectation of good results from any of the trials we hear of.' Lord Rayleigh was far more 
favorable. Commenting on Langley's inclined-plane measurements, he noted qualitative 
agreement with the formula he had derived in 1 876 on the basis of Helmholtz's discon
tinuity surfaces; he tentatively ascribed the remaining quantitative disagreement to a 
viscosity-driven suction at the rear of the plate; and he agreed with Langley that the 
results justified optimism for the possibility of mechanical flight. Rayleigh also applied 
energy and momentum considerations to a global understanding of the conditions of 

89Cf. Gibbs-Smith [1960]. Anderson [1997]. 
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Fig. 7.18 .  Otto Lilienthal on a biplane glider in 1895. From Deutsches Museum collection. 

flight, insisting on 'the vicarious principle' that 'if the bird does not fall, something else 
must fall' (a downward air current). However, he did not attempt any detailed theory of 
the flow around the wings of flying objects.90 

Rayleigh presumably believed that his and K.irchhoff's solution of the two-dimensional 
inclined-plate problem offered a general explanation of the existence of lift. Indeed, 
discontinuity surfaces and dead water not only solved d'Alembert's paradox, but they 
also made the resistance perpendicular to the plate, which implies a finite lifting compon
ent when the plate is moving horizontally (see Fig. 7.19). Yet Rayleigh knew of a special 
case of fluid resistance in which the reaction was normal to the velocity of the moving 
body, that is, a pure lift without drag. In 1853, Gustav Magnus had explained the long
known deviation of spinning bullets by an induced whirlwind. The superposition of the 
whirling motion with that resulting from the translational motion of the ball implies 
different fluid velocities on the two sides of the ball, as indicated in Fig. 7.20. According 
to Bernoulli's law, this difference implies a pressure difference and a transverse deviation 
of the ball. Magnus tested his explanation with the device of Fig. 7.21.91 

In a memoir of 1877 'On the irregular flight of a tennis ball', Rayleigh recalled Magnus's 
reasoning and noted that the most general irrotational solution of Euler's equation for the 
two-dimensional flow around a cylinder with constant asymptotic velocity had the form 

l{l = a ( l -�) r sin B + .B ln r, (7.30) 

90Kelvin to Baden-Powell, 8 Dec. 1896, in Gibbs-Smith [1960] p. 35; Rayleigh [1891], [1 883c], [1900] p. 462. 
91 Magnus [1 853] pp. 5-7. 
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Fig. 7.19. Lift and drag components of fluid resist

ance for separated flow around an inclined plate. 

� 
� 

Fig. 7.20. Flow around a rotating sphere � 
according to Magnus [1853]. The straight 

arrows represent the fluid velocity. 

-
-
-

--

Fig. 7 .21. Magnus's apparatus for demonstrating the pressure difference between the two sides of a rotating 
cylinder subjected to the draft from the ventilator F. The light, horizontally movable blades a and b serve to 
detect the increase and decrease in pressure when the fan is turned on. From Magnus [1853] plate. 

where 1/J is the stream function, r is the distance from the axis of the cylinder, (} is the angle 
around this axis, and a is the radius of the cylinder. The first part of this formula, already 
known to Stokes, by itself satisfies the boundary conditions if a is equal to the asymptotic 
velocity of the flow. The second part represents a circulation of the fluid around the axis, 
with a velocity {3/r at the distance r from the axis. Integrating the pressure over the surface 
of the cylinder, Rayleigh found a resultant force perpendicular to the asymptotic velocity, 
with the intensity 2'1Ta[3.92 

At the very best, Rayleigh hoped this consideration to be relevant to the Magnus effect, 
abstraction being made of the circulation-inducing process and of the 'unwillingness of the 

92Rayleigh [1 877b]. A missing factor of 2 has been corrected. 
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stream-lines to close in at the stern of an obstacle'. He did not dream of any application to 
the problem of flight. That viscosity could possibly induce a fluid circulation around a 
non-rotating, flying object was hard to conceive. For a perfect liquid, Kelvin's circulation 
theorem seemed to prohibit the genesis of any circulation. In his treatise of 1 895, Lamb 
reproduced Rayleigh's solution of the cylinder problem as an interesting example of fluid 
motion that has circulation despite being everywhere irrotational. No more than Rayleigh 
did he perceive any connection with the problem of flight.93 

In summary, Rayleigh, Lamb, and Kelvin knew too much fluid mechanics to imagine 
that circulation around wings was the main cause oflift. The two men who independently 
hit upon this idea lacked training in theoretical physics. One of them was an engineer, and 
the other was a young mathematician. 

7 .4.1 Lanchester 's theory 

Frederick Lanchester was an automobile engineer and industrialist with a passion for 
aeronautics. In 1892, he imagined a singular theory of what he called an 'aerofoil', that is, 
the organ of sustentation of airplanes and birds. As he had 'very little acquaintance with 
classical hydrodynamics', he reasoned by direct application of the laws of mechanics to 
the particles of the fluid. In the first, Newtonian approximation, the fluid particles hit the 
aerofoil independently of each other, which leads to a resistance proportional to the 
squared sine of the inclination. 94 

In reality, Lanchester went on, the mutual interaction of the fluid particles implies that 
the layers of air adjacent to the foil react on the neigh boring layers, so that a stratum of air 
of considerable thickness is affected (see Fig. 7.22). Then the flux of deviated particles is no 
longer proportional to the sine of the inclination (as it was in Newton's reasoning) but to 
the width of the stratum or 'sweep', and the resistance becomes proportional to the sine of 
the inclination, in conformance with small-angle measurements. Lanchester estimated this 
width from Langley's experiments with superposed planes, which showed that the sustain
ing power of the planes added up only when the vertical distance between them exceeded a 
certain value. Substituting this value into the revised resistance formula, he obtained about 

Fig. 7 .22. Provisional, constant-sweep picture ofthe flow past an inclined plate. From Lanchester [1907] p. 227. 

93Rayleigh [1 877b] p. 346; Lamb [1895] pp. 87-90. 

94Lanchester [1 894], [1907] p. 143, [1 926] p. 593. On Lanchester's biography, cf. Fletcher [1996]. On his 
aerodynamics, cf. Ackroyd [1992], [1996], Ackroyd et al. [2001] pp. 57-69. The theory of 1892 is given in 
Lanchester [1907] pp. 143-62 (the manuscripts are lost). 
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half of the measured drag. Consequently, the flow of Fig. 7.22 could not accurately 
represent reality. 95 

The reason for this discrepancy, Lanchester surmised, was the dubious assumption that 
the air encountered by the front edge of the moving foil was at rest. In reality, air must flow 
from the region below the foil to the region above it in order to prevent the accumulation 
and rarefaction of fluid in these two regions. To make this clear, Lanchester decomposed 
the motion of an approximately-planar foil into a component parallel to the plane and a 
normal component. Then the resistance problem is the same as in the case of a falling plate 
subjected to a simultaneous (faster) horizontal motion. The fall of the plate, Lanchester 
reasoned, induces a fluid motion of the sort represented in Fig. 7.23, with an upward 
current or 'vortex fringe' in front of the plate. In its forward motion the plate intercepts 
this upward current, and thus experiences a stronger lift than it would by the sole 
production of a downward current.96 

To refine his reasoning, Lanchester gave the plate infinite span and loaded it with a 
small weight. He assimilated the effect of the weight with the creation of an acceleration 
field of the form given in Fig. 7 .24. The horizontal air flow with respect to the plate brings 
new fluid particles into this acceleration field. Their trajectory has the shape indicated in 

Fig. 7.23. Vortex fringe for a plate falling through the air with the velocity w. From Lanchester (1907] p. 145. 

Fig. 7 .24. Acceleration field around a falling plate. From Lanchester (1907] p. 176. 

95Lanchester (1907] (1892) pp. 144-5. 96Ibid. pp. 145-46. 
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Fig. 7.25. Horizontal flow modified by the acceleration field of Fig. 7.24. From Lanchester [1 907] p. 159. 

Fig. 7.25. Owing to the left-right symmetry of the acceleration field, the particles leave it 
with their original velocity and their original height. Therefore, the only effect of the small 
loading of the plate is to produce 'a supporting wave' traveling together with it. No work is 
needed to preserve the horizontality of the motion. In modern words, Lanchester imagined 
a state of fluid motion such that the lift exactly compensates the load of the plane, without 
any induced drag.97 

This state of motion is only possible if the plate is given a small curvature, so that the 
undulating trajectories of the fluid particles do not cross the foil. Using this principle, 
Lanchester drew the proflle marked by the thick line of Fig. 7 .25. The curvature increases 
with the load of the plate. An aerofoil can thus produce lift with vanishing inclination, as 
long as this foil is curved. Lanchester regarded the observed shape of bird wings as a 
vindication of this theory. Lilienthal and Langley also used cambered wings in their 
gliders, and the former had given precise experimental proof of their superiority.98 

Lastly, Lanchester considered the more difficult case of an aerofoil with finite span. 
Owing to the lateral spread of the field lines in this case, the ascending field that acts 
around the edges of the plane is weaker than the descending field that acts underneath and 
above the plane. Consequently, the fluid particles that travel through these two fields 
emerge with a downward velocity; there is a downward current in the wake of the foil, 
compensated for by two upward currents caused by the ascending field that acts alone 
beyond the tips of the foil. Since the accelerating field, seen from behind the foil, has a 
form similar to that drawn in Fig. 7.24, it must induce a whirling motion of the fluid, 
essentially two vortices starting from the tips of the aerofoil. The continual production of 
these vortices and the formation of the downward and upward currents spend energy, so 
that an induced drag necessarily accompanies the lift of a finite aerofoil.99 

Lanchester expounded these ideas at the annual meeting of the Birmingham Natural 
History and Philosophical Society on 19  June 1894. In 1 897, the Physical Society of 

91Ibid. pp. 149-56. Lanchester's acceleration field has the same geometry as the velocity field of a moving plate 
(indeed, the motion can be regarded as being impulsively started from rest). 

98 Ibid. pp. 1 58-60. Lilienthal attributed the superiority of cambered wings to the reduced production of eddies 
(on his resistance measurements, cf. Anderson [1997] pp. 138-59). 

99Lanchester [1907] pp. 1 56-8. 
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London rejected a fuller account. As Prandtl later put it, 'Lanchester's treatment is 
difficult to follow, since it makes a very great demand on the reader's intuitive percep
tions.' Only a reader who would have known the results to be essentially correct would 
have bothered penetrating the car maker's odd reasoning. Lanchester must have become 
aware of this communication problem, since he immersed himself in Lamb's Treatise and 
sought more academically acceptable justifications of his intuition of the flow around an 
aerofoil.100 

Most relevant to his thinking were Helmholtz's vortices and discontinuity surfaces, as 
well as Rayleigh's tennis-ball problem. Lanchester now understood that the flow he had 
imagined around an aerofoil belonged to the same category as Rayleigh's irrotationally
circulating flow: the same compression of the lines of flow above the flying object and 
rarefaction below occur in both problems. Lanchester now made circulation the essence of 
lift. From Helmholtz's law for the velocity induced by a linear vortex, he inferred the 
downward precession of the two trailing vortices of the foil. He further suggested that 
these vortices should be replaced by a Helmholtz vortex sheet extending behind the whole 
breadth of the foil, as the air skirting the upper surface of the aerofoil reaches its rear edge 
with a transverse velocity directed toward the axis of flight, and the air skirting the lower 
surface reaches the near edge with an opposite velocity (see Fig. 7.26). Wrongly assuming 
that the circulation around every transverse section of the foil caused a deviation of the 
vortex filaments away from the axis, and taking into account the mutual twisting and the 
viscous diffusion of these filaments, he obtained the emblematic picture in Fig. 7.27. 101 

Lanchester published these considerations together with his earlier intuitive theory in 
his Aerodynamics, constituting the first volume of a complete work on aerial flight of 1907. 
The book got fair reviews in the British press, and won Lanchester an appointment to the 
British Advisory Committee for Aeronautics. The president of this committee, Lord 
Rayleigh, endorsed Lanchester's boundary-layer consideration, as was mentioned earlier. 
Despite these welcoming signs, Lanchester's ambition to provide guidance for aeroplane 
builders was largely frustrated. When the Wright brothers' machine was first flown in 
Europe at Le Mans in 1908, Lanchester found Wilbur Wright very ill-disposed toward 
theory. The pioneering constructor dryly commented that the most talkative bird 

Fig. 7.26. The vortex sheet induced by the lateral skirting of the air on the upper and lower surfaces of the 
aerofoil, seen from behind. From Lanchester [1907] p. 176. 

100Lanchester [1894]; Prandtl [1927b] p. 753. Cf. Lanchester [1907] p. 142. 
101Lanchester [1907] pp. 1 62-78. Lanchester confused the circulation around the foil with a real layer of 

vorticity around it. He does not seem to have understood the connection between the circulation around the foil 
and the vorticity of the trailing vortices. 
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(a) 
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(b) 
Fig. 7.27. The trailing vortex of a flying wing according to Lanchester [1907] pp. 177-8. 

(the parrot) was also a poor flier. To a letter from Lanchester in the following year, he 
briefly replied: 102 

In glancing over [your paper] I note such differences in matters of information, 

theory, and even ideals, as to make it quite out of the questio
'
n to reach common 

ground by more talk, as I think it will save me much time if I follow my usual plan, 

and let the truth make itself apparent in actual practice. 

Although the British aeronautical establishment was more open to theory than the 
Wright brothers, it seems to have ignored Lanchester's aerofoil theory until Prandtl's 

102Cf. Lanchester [1926] p. 588, Ackroyd [1992]. 
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related theory became known after the war. The Germans were the most receptive to 
Lanchester's ideas. Soon after the publication of Aerodynamics, Prandtl's prominent col
league Car! Runge contacted Lanchester to propose a translation. He welcomed him to 
Gottingen in September 1908, and he arranged conversations with Prandtl, who was then 
busy completing the Gottingen wind channel. Although Prandtl later claimed (in Lanche
ster's presence) to have reached the main ideas of his wing theory before reading Lanchester, 
he also admitted that he and his collaborators 'were able to draw many useful ideas' from 
Aerodynamics. Karman, who had witnessed the Gottingen encounter, suggested that 
Prandtl had borrowed more from the English engineer than he was conscious of. 103 

7.4.2 Kutta's and Joukowski's theories 

In 1902, Wilhelm Kutta, a mathematics student in Munich with an interest in Lilienthal's 
gliding experiments, devoted his dissertation to the flow around the simplest idealization 
of Lilienthal's cambered wings, namely a circular arc. His method consisted in applying a 
conformal transformation z = c:!>(C) to the incompressible flow around a circular cylinder, 
represented in the complex plane of the variable z = x + iy. As Rayleigh had shown, the 
most general irrotational solution to the latter problem with an asymptotic, horizontal 
velocity U is given by 

. ( a2) r " I  
q; + u/J =  U z + -; -

27T
1 n z, (7.31) 

where q; is the velocity potential, 1/J is the stream function, a is the radius of the disc, and 
r is the cyclic period of the potential (the circulation fv  · dr). As a mathematician, Kutta 
had no objection against the circulatory component of this solution.104 

Kutta applied to this flow an intricate, double-step conformal transformation that 
turned the circular boundary of the cylinder into a circular arc with chord parallel to the 
asymptotic flow. The velocity at the tips of the arc, he found out, was only finite if the 
circulation r had the specific value 27ThU, where h is the maximum height of the arc. 
Under this condition, the flow has the shape shown in Fig. 7 .28. Kutta then integrated the 
fluid pressure (as given by Bernoulli's law) to obtain the lift 

(7.32) 

Comparing this theoretical result with Lilienthal's measurements, Kutta fourid a 25% 
excess that could plausibly be explained by vortex formation and a finite span.105 

Through a consideration of energy, Kutta also related this lift to the cyclic period r of 
the potential. The work done by the lift during a (virtual) vertical displacement 8y of the 

103Prandtl [1927b] pp. 753 (quote), 776 (Lanchester remembering Gottingen); Karman [1967] pp. 50-3. Runge, 
who had an English mother, was the interpreter. His and his wife Aimee's translation of Aerodynamics appeared in 
1909. 

104Kutta [1902a]. Sebastian Finsterwalder, a mathematics professor and ballooning expert at the Technische 
Hochschule in Munich, suggested the topic of Kutta's Habilitationsschrift (cf. Kutta [1910] p. 4). As was well 
known. the compressibility of the air can be neglected in any resistance problem for which the velocity of the air 
remains small compared to the celerity of sound waves. 

108Kutta [1902a], [1902b]. Cf. Ackroyd et al. [2001] pp. 70-6. 
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Fig. 7.28. Kutta's flow around a circular arc. From Kutta [1902b] p .  133. 

arc, he reasoned, should be equal to the energy produced by the annihilation of a 
horizontal fluid slice of the same breadth at a large positive ordinate Y and the creation 
of another slice at the symmetric ordinate - Y. This gives, for the lift L, [ +oo +oo ] L = Y�oo -_L �pv1(x, Y) dx + _[ �pv1(x, - Y) dx . 

Using the asymptotic approximation 

_2 2 ru Y v-(x, Y) � U + 
27T x2 + y2 , 

(7.33) 

(7.34) 

and lightheartedly assuming a mutual cancellation of infinite terms, Kutta found that 

L = pru, (7.35) 

in conformance with the result (7.32) of direct pressure integration.106 
In summary, Kutta's mathematics led to a flow around a thin curved foil that strikingly 

resembled the one Lanchester predicted. Instrumental to his derivation was the condition 
that the velocity of the flow should remain everywhere finite, which is now called the Kutta 
condition. The remarkably simple formula L = prU is now called the Kutta-Joukowski 
theorem. However, Kutta did not explicitly identify r with the circulation of the air 
around the foil. Nor did he refer to Rayleigh's tennis-ball problem as the origin of formula 
(7.31)  for the irrotational flow around a circular cylinder. In the semi-popular summary 
published in the Illustrirte aeronautische Mittheilungen, he did not give the general relation 
between lift and circulation. Instead, he argued that, in order to prevent the formation of 
vortex sheets at the extremities of the arc foil, the velocity of the air had to be tangential. 
This implies a higher velocity above and a lower velocity below the foil, and a lifting 
pressure difference by Bernoulli's law.107 

106Kutta [1910] pp. 19-20. In this article Kutta described the reasoning as belonging to his Habilitationschrift 
[1902a], which I have not been able to find. Joukowski ([1910] p. 282) accepted this claim. 

107Kutta [1902b]. Kutta ([1910] p. 3) credited Lanchester for the concept of wing circulation. 
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Fig. 7.29. A tentative flying device by Joukowski. The twisted rubber band C induces the rotation of the 
paddle-wheels A and B. From Joukowski [1890] p. 350. 

Unlike Lanchester and Kutta, the Russian physicist Nikolai Joukowski was a highly 
professional physicist of international repute, and head of the mechanics department at 
Moscow University. Much of his early work was in theoretical hydrodynamics, with an 
emphasis on potential flow and complex-variable methods. He published his first signifi
cant paper on aerodynamic lift in 1906, after several years of interest in the problem of 
flight. From then on, he played a leading role in developing the aeronautical industry in his 
country. His main contribution of 1906 was a rigorous and general derivation of the 
theorem that relates circulation and lift for the two-dimensional flow around a solid 
cylinder.108 

In an address of 1 890 on the theory of flight, Joukowski argued that paddle propulsion 
was only possible if the fluid motion implied discontinuity surfaces, .  viscous stress, or 
whirling motion. In the last case, he imagined and constructed the device shown in 
Fig. 7.29, in which each of the rotating paddle-wheels is subjected to the upward current 
induced by the rotation of the other. Although the device turned out to be too heavy to fly, 
Joukowski found that the rotation of the wheels diminished its apparent weight. There is 
no hint, in this communication, that whirling motion may also occur around static wings, 
nor that it may imply a transverse, lifting force when the whirl progresses horizontally. 
Worth noting, however, is the general idea of exploiting vortex motion for the sake of 
artificial flight.109 

Before 1906, Joukowski had read Louis Pierre Mouillard's L'empire de !'air, a book of 
1881 familiar to several pioneers of aeronautics. By careful observation of bird flight, 
Mouillard hoped to help in the successful design of gliders and 'aeroplanes' .  He also 
sketched a strange wing theory based on an analogy with the fall of a Bristol card (a rigid, 
rectangular paper strip). The fall of the card from a horizontal position usually implies a 

108Cf. Grigorian [1965], [1976], Strizhevskii [1957]. 
109Joukowski [1890]. I thank Yury Kolomensky, who helped me read this paper. 
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rotation around its axis of  symmetry, as well as a deviation in  the direction of  the 
horizontal velocity component of the lower edge of the strip. By the adequate loading of 
the strip and the folding of its tail, Mouillard believed he could check the rotation and yet 
preserve the deviation from a vertical fall. In his opinion, birds flew according to this 
mechanism. His theoretical explanation of the rotation involved the dubious principle that 
the center of gravity of any falling body should be displaced by an amount proportional to 
the velocity of fall. He remained silent on the cause of the horizontal deviation. 1 10 

Although Joukowski ignored Mouillard's speculations, he credited him with the de
scription of the 'interesting phenomena' accompanying the fall of a Bristol card. He also 
mentioned Wladimir Koppen's model of an aeroplane with motorized rotating wings, 
based on the principle that rotation prevents the fall of bodies. Joukowski justified this 
principle by analogy with the Magnus effect, according to which a rotating projectile is 
subjected to a deviating force proportional to its rotation. As he was unaware of Ray
leigh's tennis-ball paper, he explained this deviation by a general theorem of his ownY 1 

If an irrotational, two-dimensional flow with asymptotic velocity [U] surrounds a 

closed curve [made of lines of current] on which the circulation of the velocity is [Il, 

the resultant of hydrostatic pressure on this curve is perpendicular to the velocity [U] 

and has the value prU. The direction of this force is obtained through a right-angle 

rotation of the vector U in the sense of negative circulation. 

In his demonstration Joukowski imitated Poncelet's and Saint-Venant's recourse to 
momentum balance in their theories of resistance, with which he had .become familiar 
during a formative stay in Paris. Around the closed curve made oflines of current he drew 
a circle of large radius (see Fig. 7 .30), and required that the pressures acting on the fluid 
contained between the closed curve and the circle should balance the momentum increase 
of this fluid: 

-L - TPn ds = p fv(v · n ds), (7.36) 

where L represents the resistance (action of the fluid on the body) per unit length, and the 
integrals are taken over the circular trace of the fictitious cylinder (n being the unit normal 
vector). Using Bemoulli's law and retaining only first-order terms in w = v -U, this gives 

L = p T[(U · w)n - w(U · n)] ds = p TU x (n x w) ds. (7.37) 

At large distances from the body, w is the velocity of a pure circulation in a direction 
perpendicular to n. Therefore, the vector L is directed downward when U is directed to the 

1 10Mouillard [1881] pp. 210-17. Unknown to Mouillard, in 1 854 James Clerk Maxwell had explained the 
rotation by the greater resistance of the air to the motion of the lower edge of the plane, and the deviation by 
periodic modulations of the net resistance and the fall velocity. 

1 1 1Joukowski [1906a] p. 52; Koppen [1901] (falling card experiments); Moedebeck [1904] p. 179 (on Koppen's 
model). Joukowski tried to verify his theorem by measuring the force acting on a rotating blade in the wind tunnel 
of the Aerodynamic Institute of Koutchino. The director of this pioneering institute, Dimitri Riabouchinski 
[1909], criticized this procedure as well as Maxwel!'s old theory of the falling paper strip (Maxwell [ 1854]), which 
does not imply any transverse force when flow relative to a rotating blade is kept constant. 

,! I  

,: I 
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Fig. 7.30. Joukowski's flow past a blade (shaded rectangle) rotating around the axis Oz (perpendicular to 

O.xy). The closed curve ABO, made of two converging lines of current, separates the zone of whirling motion 

from a zone of larninar, irrotational flow. From Joukowski [1906a]. 

right and the circulation is oriented trigonometrically, and the intensity L agrees with the 
Kutta-Joukowski formula (7 .35).1 12 

Although Joukowski knew his theorem to apply to the case in which the closed line of 
current is the frontier of an immersed solid, he only applied it to a rotating blade immersed 
in a uniform stream, assuming that the flow was smooth and irrotational outside a pear
shaped zone (ABD in Fig. 7.30) delimited by converging lines of current. In another paper 
of 1906, he introduced the notion of 'bound vortices', that is, a series of virtual or real 
vortex lines contained within a closed curve and able to represent the circulatory part of 
the flow outside this curve. He enunciated theorems relating the force and angular 
momentum resulting from the pressure on this curve to the strength of the vortex lines 
and the fluid velocity on these lines. He applied these notions to the rotating blade and to 
the vortex pair behind a plate immersed perpendicularly in a uniform stream. He did not 
consider the case of an airfoil or wing, in which he may not yet have understood that 
circulation-flow occurred.1 13 

l 12Joukowski [1906a], [1906b]. Cf. Ackroyd et al. [2001] pp. 88-106. In the first paper, Joukowski uses the 

balance of angular momentum around an arbitrary axis instead of the momentum balance. Had Joukowski 
followed Saint-Venant closer, he would have used a fictitious surface of large rectangular section. In this case the 
momentum variation of the enclosed fluid vanishes, and the resistance is simply given by the pressure difference on 

the two horizontal walls of the fictitious cylinder. 

113Joukowski [1906b]. In 1909, Joukowski obtained the two-dimensional flow around a curved plate as an 

extension of Kirchhoff's flat-plate solution with surfaces of discontinuity: cf. Chaplygin [1911], who gives Kutta 
full credit for conceiving the possibility of smooth, circulatory flow around a cambered foil. I thauk my friend 

Guenaddi Sezonov who helped me with the Russian (before I became aware of Anatoly Ruban's translation in 

Ackroyd et al. [2001] pp. 88-104). 
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In 1910, Kutta extended his calculation of the lift of an arc of a circle to the case of an 
inclined flow. In the same year, Joukowski's brilliant disciple Sergei Alekseevich Chaply
gin rediscovered Kutta's solution for the smooth flow around a circular arc, using the 
much simpler conformal transformation 

A2 
? = z - ia + --.- , 

z - ta 
(7.38) 

where a and A are real constants. Kutta and Chaplygin both noted that, in the inclined 
case, an infinite velocity could only be avoided at one extremity of the arc, say the rear one. 
In order to avoid the remaining infinite velocity and vortex-sheet formation, Kutta 
rounded the front edge through a complicated numerical procedure, and Chaplygin 
grafted a disc onto it. Joukowski then found that a horizontal shift of the origin in the 
z-plane magically thickened the arc-shaped foil, leaving only one sharp edge at the rear. 
The transformation 

(7.39) 

now called the Joukowski transformation, turns a circle of radius A centered at the origin 
of the z-plane into a segment of length 4A in the ?-plane. A horizontal (real) shift of the 
origin of the circle turns the segment into a fish shape. A vertical (purely imaginary) shift 
of the origin turns it into a circular arc. Both shifts combined lead to a cambered fish shape 
(see Fig. 7.31).1 14 

++·H·FEt+f-H-WH-H-e--

Fig. 7.3 1 .  Joukowski's theoretical wing profiles. From Joukowski [1916] p .  105. 

1 14Kutta [1910); Chaplygin [1910); Joukowski [1910), [1916) chap. 6. Cf. Ackroyd et al. (2001), chaps 12-14. 
For a modem account, cf. Batchelor [1967) pp. 445-9. According to Chaplygin ([1945] p. 5), his paper was already 
in press when Joukowski told him about Kutta's earlier work. Chaplygin ([19 1 1 )  pp. 17-18) briefly mentioned the 
necessity of tip vortices in the case of finite span, but gave them an erroneous mustache shape. 
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The two-dimensional approach to wing theory culminated with these Russian fmdings. 
Joukowski's suggestion for obtaining a finite drag within this theory was, however, 
misconceived. He believed that two-dimensional vortex production at the front of the 
wing would account for observed drags, and ignored the effect of finite span, even though 
he had read Lanchester's book and approved the concept of trailing vortices. 1 1 5  

7.4.3 Prandtl's theory 

In the years 1910-1918, Prandtl and his collaborators combined Lanchester's intuition of 
the motion around a three-dimensional aerofoil with the mathematical precision of two
dimensional theories. His fullest publications on this topic appeared in 1918/19, with a 
delay due to wartime secrecy. As Prandtl himself noted, the organization of these papers 
does not reflect the historical course of his thoughts. This course may, however, be inferred 
from Prandtl's few historical remarks, from earlier fragmentary publications, and from the 
logic of the subject. 1 16 

One ofPrandtl's earliest contributions must have been the explanation of the process by 
which circulation is produced around a streamlined two-dimensional aerofoil. While 
Kutta said nothing on this process, Lanchester's falling-plate reasoning could not pass 
for a proper hydrodynamic demonstration. Yet for anyone versed in fluid mechanics, 
circulation was only admissible if its genesis could be reconciled with the theorems by 
Lagrange and Kelvin that seemed to forbid it. Due to his familiarity with Hehnholtz's 
vortex sheets, Prandtl easily solved the paradox as follows.117 

The irrotational, non-circulatory flow around the aerofoil involves infinite velocity at 
the rear edge. In order to keep the velocity finite, a vortex sheet must be generated at the 
beginning of the motion, as shown in Fig. 7.32. This process is perfectly compatible with 
Kelvin's theorem, which only forbids vorticity for fluid particles that have never been in 
contact with a wall. Neither does the theorem forbid a change in the velocity circulation 
around the body. On the contrary, when applied to a curve enclosing both the body and 
the emerging vortex sheet (the dotted line in Fig. 7.32), this theorem implies that the 
velocity circulation around the body should increase by an amount equal to the total 
vorticity of the vortex sheet. After a brief time, this circulation reaches the value for which 

Fig. 7 .32. Transient pattern of the flow 
around a wing, with vortex production at 
the trailing edge. From Prandtl [192la] 
p. 464. 

1 15Joukowski [1916] pp. 184-5, [1910] p. 282 (approving Lanchester). 
116Cf. Prandtl [1918] p. 322. 
1 17Prandtl's systematic use of Helmholtz's and Kelvin's vortex theorems in wing theory presupposes that the 

compressions of the air are negligible, which is true for widely subsonic flight. 



DRAG AND LIFT 317 

the Kutta condition of smooth flow is  satisfied, the vortex sheet production ceases, and the 
resulting vortex flows away.118 

For a wing of finite span, Prandtl reasoned, circulation must exist at least around the 
central sections of the wing in order to make lift possible. Such circulation, however, 
cannot exist without permanent vortex production. This is a consequence of the theorem 
according to which the variation of the circulation around a loop during a continuous 
deformation or a displacement of this loop is equal to the number of vortex filaments cut 
by the loop. 1 19 Consider a loop that embraces a section of the wing, and move it toward 
one of the tips of the wing. As the circulation necessarily vanishes at the tip (since the loop 
shrinks to a point), it must cross vortex filaments on its way. Hence vorticity is necessarily 
produced near the tips. More generally, vorticity must be produced whenever the circula
tion varies between successive sections of the wing. According to one of Helmholtz's 
theorems, the generated vorticity must follow the fluid motion. Therefore, a trailing vortex 
sheet is formed behind the wing, with an intensity depending on the rate of variation of the 
circulation along the span of the wing (see Fig. 7.33).120 

Prandtl once said that he had reached this picture while p=ling over Lanchester's 
trailing vortex.121 There are significant differences, however. Whereas Lanchester rea
soned in an intuitive, qualitative manner based on the 'field of force' of a falling plate, 
Prandtl applied Helmholtz's vortex theorems to derive a precise quantitative connection 
between the circulation around the wing and the trailing vortex. Prandtl had the vortex 
filaments follow the main flow, whereas Lanchester erroneously gave them a sideways 
inclination. Prandtl related the variation of the circulation and the production ofvorticity 
to the variation of the wing's section along its span, whereas Lanchester reasoned on a 
constant section. 

Lastly and most importantly, Prandtl was able to apply his picture of wing flow to a 
quantitative determination of lift and drag, whereas Lanchester's considerations remained 
mostly qualitative. In a first approximation, Prandtl reasoned, the lift is the sum of the lifts 
given by the Kutta-Joukowski theorem applied to the successive sections of the wing (as if 
they belonged to infinite cylinders), and there is no drag. In a second approximation, the 
velocity field of the trailing vortex must be taken into account. In the vicinity of a given 
section of the wing, this induced flow is approximately uniform and in the downward 
vertical direction (see Fig. 7 .34). Therefore, the net flow impressed on this section has a 
downward inclination, and the corresponding reaction, being rotated by the same angle, 
now has a finite drag component and a slightly diminished lift component.122 

Prandtl had this general picture by 1912. The mathematical implementation did not 
go as smoothly as he had hoped. The simplest conceivable case is that of constant 

1 18Prandtl [1913] pp. 1 1 8-19, [1918] pp. 325-8, [1921a] pp. 463-4. 

1 19This theorem results from the divergenceless character of the vorticity: the flux of the vorticity across the 
surface swept by the loop must be equal to the variation of its flux across a surface bounded by the loop, which by 
Stokes's theorem is equal to the circulation around the loop. 

120Prandtl [1913] p. 1 12, [1918] pp. 324-5, [1921a] pp. 465-6. 

121Prandtl [1948] p. 1607n. 

122Prandtl [1918] pp. 337-8, [!921a] p. 477. On Lanchester's few quantitative attempts, cf. Ackroyd [1992]. 
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arctg rv/V. 

z 

Fig. 7. 3 3. A trailing vortex sheet with vorticity 

profile dr /dx corresponding to the (elliptic) cir
culation profile r around a flying wing. From 
Prandtl [1918] p. 337. 

Fig. 7 .34. The Inclination of the resistance 

owing to the vertical induced velocity w super
posed to the unperturbed, horizontal air flow 
V. From Prandlt [1918] p. 337. 

circulation r along the span of the wing, for which the trailing vortex has the horseshoe 
shape of Fig. 7.35. The corresponding value of the velocity w(x) of the induced flow at the 
abcissa x along the span of the wing is given by the Biot and Savart law as 

r ( 1 1 ) 
w(x) = A- --+-- , 

...-n a - x  a + x  
(7.40) 

if 2a is the span of the wing. According to the reasoning outlined above, the resulting 
drag is 

+a 
D = p J fwdx. (7.41) 

-a 
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Fig. 7.35. The horseshoe vortex behind a flying wing. From Prandtl [192la] p. 466. 

This integral diverges logarithmically. Prandtl was thus compelled to use a variable 
circulation f(x). By the above-mentioned theorem, a vortex filament of intensity f' (x)dx 
trails behind the element dx of the wing's span. The resulting induced velocity is 

+a 

w(x) = __!._ J f'(s) 
df 4rr s - x  

(7.42) 

The divergence of this integral for g = x is easily avoided by taking its principal value in 
Cauchy's sense. Prandtl tried a number of simple expressions for the circulation profile 
f(x), but kept obtaining an infinite result for the drag integral (7.41). For a while, he put 
this difficulty on hold, and considered the non-divergent effect of the induced velocity on 
other wings in the same aeroplane. In the case of a biplane or a single wing interacting with 
its mirror image through a solid wall, his collaborator Albert Betz published consider
ations of this kind and their wind-tunnel confirmation in 1912/14. 123 

As last, in November 1 913, Betz and Prandtl found that the elliptic profiie 

� f(x) = roy 1 - di  (7.43) 

yielded the constant induced velocity w = fo/ a. For a horizontal velocity V of the wing, 
the lift 

takes the value 

and the drag is 

+a 

L = pV J f dx 

D = �L = .!lL 
V aV . 

(7.44) 

(7.45) 

(7.46) 

Remembering that the circulation fo is proportional to the velocity V (owing to Kutta's 
smooth-flow condition), the lift is proportional to the squared velocity of the wing and to 

123Prandtl [1913] p. 376; Betz [1912], [1914]. Cf. Anderson [1997] p. 285. 
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its span. The ratio of drag to lift is independent of the wing's velocity, and diminishes with 
the span, as was to be expected. 124 

In sum, Prandtl and Betz accidentally discovered the elliptically-loaded wing in an 
attempt to avoid drag-integral divergence. They soon realized that this circulation profile 
was the one for which the drag was a minimum for a given lift. Lagrange's variational 
method leads to a simple demonstration of this fact (not Prandtl's and Betz's original one). 
Denoting by A the Lagrange parameter for the constraint of constant lift, the minimum 
drag corresponds to 

+a 
8D - A8L = p J IPw + (w - A  V) 8f] dx = 0. 

The relation (7.42) between w and r further leads to 

+a +a J r 8w dx = J w ar dx, 
-a -a 

(7.47) 

(7.48) 

by analogy with the symmetry of mutual inductance coefficients.125 Hence the vanishing of 
the integral in eqn. (7.47) for an arbitrary variation ar requires w to be a constant. This 
only happens for the elliptic circulation profile. 

As Prandtl noted, the corresponding pattern of the induced flow in a vertical plane 
containing the wing is that of a horizontal plate suddenly set into motion with the 
downward velocity w, for this is the only irrotational flow that satisfies the boundary 
conditions (see Fig. 7.23). Amazingly, this flow is exactly the one on which Lanchester 
based his elementary, intuitive reasoning!126 

With this treatment of the elliptically-loaded lifting line, Prandtl had in hand the basic 
elements of his wing theory. During the war, Betz and another outstanding collaborator, 
Max Munk, helped Prandtl solve the following problems. 

(i) Determine the form and size of the sections of the wing that produce a given 
circulation f(x). 

(ii) Determine the circulation f(x) and the corresponding drag and lift for a given shape 
of the wing. 

The first problem is easily solved by noting that, according to the Kutta-Joukowski 
theory, the circulation around a given section of the wing has the form 

f(x) = (ae' + {3) Vl(x) (7.49) 

to first order in the effective angle of attack e', if l(x) denotes the chord of the section at the 
abscissa x. To first order in the induced velocity w(x), the effective angle of attack differs 

12'Prandtl [1918] p. 342, [192la] pp. 478-80. Hints to these results are in Betz [1914]. 

125Munk obtained this relation in 1918, cf. Prandtl [192la] p. 489. 
126Prandtl [1921a] pp. 464-5. 
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from the real angle of attack e by the amount -wjV. Taking into account the relation 
(7.42) between r and w, Prandtl obtained the equation 

+a 
r(x) + l(x) ..:!_ J r'(s)(s - x)-1 ds = (o:e + f3) Vl(x). 

47T 
-a 

(7.50) 

Problem (i), that is, the determination of the chord l(x) for a given circulation r(x), only 
involves a simple integration. In contrast, the inverse problem (ii) involves an integro
differential equation that required the full skills of Betz and Munk. 127 

By the end of the war, Prandtl and his collaborators could legitimately claim a math
ematical, quantitative solution of the wing problem. The only leftover task was to justify 
the various approximations that Prandtl had introduced at various steps of the reasoning. 
For this purpose, Prandtl started his memoir of 1918 with the exact, general equations of 
the problem. For a given wing at a given inclination, a first equation gives the velocity field 
as a function of the asymptotic velocity V, the trailing vortex sheet, and fictitious bound 
vortices that replace the boundary conditions on the wing. Reciprocally, the trailing vortex 
sheet depends on the velocity field through two conditions, namely, that the vortex 
filaments must be lines of flow for the velocity field, and their intensity must be given by 
the gradient of the circulation along the span of the wing. In principle, this mutual 
coupling should determine both the vortex sheet and the velocity field, and a three
dimensional generalization of the Kutta-Joukowski theorem then gives the force acting 
on the wingY8 

In practice, various approximations must be made. Treating the circulation and the 
induced velocities as small quantities, Prandtl argued that, in a first (linear) approxima
tion, the vortex sheet was parallel to the unperturbed flow V and the corresponding 
velocity field simply added to the unperturbed flow in the force formula. He also argued 
that, in the calculation of this first-order induced velocity field, the aerofoil could be 
replaced by a line of vorticity r(x)-hence the name 'lifting-line theory' now given to his 
wing theory. Lastly, he argued that along most of the span the motion could be regarded as 
being approximately two-dimensional, which makes the circulation a function of the angle 
of attack and the sectional form only.129 

Although Prandtl's justifications for these assumptions lacked rigor, experiments per
formed during the war in the Giittingen wind tunnel vindicated them. Post-war British and 
American experiments further confirmed Prandtl's theory. The purely empirical methods 
of early aeronautics gradually made room for refined theoretical considerations. In 
particular, Prandtl and his group computed the effect that the walls of the tunnel had on 
the vortex trail of the wings, and subtracted it from raw model data in order to improve 
full-scale predictions. After some hesitation on the British side, by the mid-1920s this 
'Prandtl correction' became a routine procedure in any wind-tunnel experiment.130 

127Prandt1 [1918] pp. 339-40. [192Ja] pp. 484-7. 
128Prandtl [1918] pp. 329-35. 

129Ibid. pp. 335-9. Prandtl ([1918] pp. 336) used the words tragender Faden and tragende Linie. 
130Cf. Anderson [1997] pp. 292-4. On the Prandtl correction, cf. Hashimoto [2000] pp. 231-5. 
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No matter how much it owes to Lanchester's intuitive mechanics, to Kutta's conformal 
transformations, or to Joukowski's interest in bird flight, the Gottingen wing theory may 
be seen as a splendid application of Helmholtz's theory of vortex motion, including 
discontinuity surfaces and conformal methods. As in the case of boundary-layer theory, 
Prandtl astutely combined and extended nineteenth-century concepts through intuitive 
pictures related to asymptotic approximations. Under the stimulus of the rising field of 
aeronautics and with the strong support of Gottingen institutions, his group put an end to 
the engineers' legitimate distrust of the theoretical predictions of fluid mechanics. 



8 
CONCLUSION 

Hydrodynamics evolved considerably in the course of its application to various phenom
ena. So did all major theories of mathematical physics. The myths that make Newton the 
sole creator of mechanics, Cauchy the father of the theory of elasticity, Clausius the 
founder of thermodynamics, and Maxwell the unique inventor of modem electrodynamics 
do not resist historical analysis. These theories have changed so much since the first 
formulations of their fundamental principles and equations that a modem physicist who 
reads the mythical founders can barely recognize a kinship with present theories. This 
estrangement is not limited to notations and styles of presentation, but runs very deeply 
into the conceptual structure of the theory. 

In many cases, these structural changes have occurred during attempts to apply the 
theory to a specific class of phenomena. For example, William Rowan Hamilton's attempt 
to apply mechanics to light rays led to the Hamiltonian formulation of mechanics; 
Charles-Eugene Delaunay's application of the same theory to the motion of the Moon 
yielded a new perturbation theory based on action and angle variables; Saint-Venant's 
application of the theory of elasticity to the flexion and torsion of prisms produced the 
semi-inverse method of approximation; the application of thermodynamics to mixtures 
and chemical reactions led to the concept of thermodynamic potential; Hendrik Lorentz's 
application of Maxwell's electrodynamics to certain optical phenomena led him to separ
ate ether and matter; the application of quantum mechanics to solid-state physics engen
dered the theory of bands; and its application to field-mediated interactions prompted 
Richard Feynman's path-integral formulation. 

In this small sample, four kinds of theory change are involved. In an order of increasing 
magnitude, they imply new methods of resolution or approximation (Saint-Venant, Delau
nay), new derived concepts (thermodynamic potentials, bands), a reformulation of the 
foundations (Hamilton, Feynman), and the replacement of a basic principle (Lorentz). 
Although such innovations are most frequent during the early applications of a theory, 
they may occur many years later. They affect the very life of the theory, that is, the class of 
problems to which it is believed to be relevant, the communities that use it, the way it is taught, 
its conceptual hierarchy, the attached paradigms, and its relationships to other theories. 

Such wide-ranging feedback effects of application are rarely acknowledged. Most 
commonly, applications are regarded as 'runs' of a theory, for utilitarian purposes or for 
transmitting implicit knowledge to students. According to Thomas Kuhn, applications 
contribute to the smooth, gradual expansion, and consolidation of normal science. Sig
nificant conceptual change can only result from the accumulation of major anomalies, in 
which case a global revolution occurs and a new paradigm emerges. 1  The above-cited 

1 See, e.g., Kuhn [1961]. 
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examples of application-induced change fit neither the smooth paradigmatic phase nor the 
revolutionary one. They do not lead to the overthrow of the theory, yet they entail 
transformations of such a magnitude that the word 'application' sounds inadequate. 
The phenomena are not passively subjected to a rigidly established theory, but instead 
react upon the content and structure of the theory. They challenge the theory and may thus 
induce important adaptive transformations. 

What distinguishes the history of hydrodynamics from that of other physical theories is 
not so much the tremendous effect of challenges from phenomenal worlds, but rather it is 
the slowness with which these challenges were successfully met. Nearly two centuries 
elapsed between the first formulation of the fundamental equations of the theory and 
the deductions of laws of fluid resistance in the most important case of large Reynolds 

numbers. In contrast, the theories of mechanics, electrodynamics, and thermodynamics 
were almost immediately useful in making predictions in the intended domains of appli
cation. Hydrodynamics is probably the only theory whose promises to comprehend a 
range of phenomena took so long to be fulfilled. 

The reasons for this extraordinary delay are easily identified a posteriori. They are the 
infinite number of degrees of freedom and the nonlinear character of the fundamental 

equations, both of which present formidable obstacles to obtaining solutions in concrete 
cases. Moreover, instability often deprives the few known exact solutions of any physical 
relevance. Although unstable solutions also occur in ordinary mechanics, they do not 
interfere with the most common applications. In contrast, almost every theoretical de
scription of a natural or man-made flow involves instabilities. 

These difficulties have barred progress along purely mathematical lines. They have also 
made physical intuition a poor guide, and a source of numerous paradoxes. Hydrody
narnicists therefore sought inspiration in concrete phenomena. Challenged to understand 
and act in real worlds, they developed a few innovative strategies. One was to modify the 

fundamental equations, introducing for instance Navier's viscous term, or still other terms 
of higher order (as a few French engineers tried to do). Another was to give up the 
continuity of the solutions of Euler's equation, and to study the evolution of the resulting 
singularities. Helmholtz pursued this approach without leaving the realm of the perfect 
liquid. The instability of laminar solutions was also evoked, and the resulting turbulence 

subjected to a statistical analysis or absorbed in the parameters of semi-empirical, effective 
theories oflarge-scale flow. Rules of similarity were used, either to predict the properties of 
full-scale flows from model measurements or to limit the form of resistance and retard
ation laws. When none of that worked, the Columbus-egg method was still available, 
where the hydrodynarnicist could try to determine the concrete conditions under which the 
few flows he could predict would actually occur. This 'streamlining' strategy proved quite 
fruitful, because the computable flows happen to be those for which fluid resistance is 
a minimum. 

None of these strategies sufficed to fully master the real flows for which they were 

intended. Prandtl's ultimate success depended on combining them within the asymptotic 
framework of high Reynolds numbers (quasi-inviscid fluid) and large aspect ratios (quasi
two-dimensional flow). The role of a small viscosity, Prandtl reasoned, is to produce 
boundary layers of high shear, and vortex sheets to which Helmholtz's theory of vortex 
motion may be applied in a second step. Vortex sheets are always unstable, and boundary 
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layers often are so. These instabilities lead to turbulence. Similitude and statistical con
siderations allow a quantitative determination of the average effects of turbulence in cases 
of non-separated flow. When separation occurs, the hydrodynamicist is left with Colum
bus's egg, unless strong resistance is desired, in which case he can appeal to model 
measurements combined with similitude arguments. 

Engagement with and challenges from the real worlds of flow were essential to the 
development of the above-mentioned strategies. The challenged theorists strove to find 
new solutions and to develop new methods of approximation. Experience indicated some 
general properties of the motion, such as the existence of boundary layers, the random 
character of turbulence, the sudden character of the Reynolds transition, or the formation 
of trailing vortices. Experimentation on ship models induced reflection on the conditions 
under which similitude applied. The focus on specific systems, such as Stokes's 'boxes of 
water' or Helmholtz's organ pipes, permitted instructive comparisons between explicit 
solutions of the fundamental equations and real flows. Altogether, there were many ways 
in which practical concerns oriented theorists in the conceptual maze of fluid dynamics. 

The evolution from a paper theory to an engineering tool thus depe�ded on transgres
sions of the limits between academic hydrodynamics and applied hydrodynamics. The 
utilitarian spirit of Victorian science, the Polytechnique ideal of a theory-based engineer
ing, a touch of Helmholtz's eclectic genius, and the Giittingen pursuit of applied math
ematics all contributed to the fruitful blurring of borders between physics and engineering. 
The 'sagacious geometers' who answered d'Alembert's ancient call for a solution to his 
resistance paradox all visited the real worlds of flow. 



APPENDIX A 
MODERN DISCUSSION OF D'ALEMBERT'S PARADOX 

A solid body is set into motion within an infinite, homogeneous, perfect liquid and kept 
moving at the constant velocity U. According to a theorem by Lagrange, the resulting flow 
admits a potential cp (as long as the fluid motion remains thoroughly continuous). Owing 
to the incompressibility of the fluid, this potential must satisfy Laplace's equation !lcp = 0. 
Consequently, at every instant it is completely determined (up to a constant) by the 
boundary conditions that the velocity v should vanish at infmity and that the normal 
component ofv - U should vanish on the surface of the body. The velocity field therefore 
follows the body in its motion, which means that the flow pattern is steady from the point 
of view of an observer bound to the body. 

The first non-constant term in the multipolar expansion of the potential at a large 
distance from the body is dipolar, since a single pole would imply a divergent flux from the 
body, in contradiction with the incompressibility of the fluid. Hence the fluid velocity 
varies asymptotically as the inverse cube of the distance from the body. 

The most direct way to determine the force impressed on the body by the fluid is to 
compute the pressure integral 

(A. I) 

over the surface u of the body. According to a theorem by Green, this is also equal to the 
integral 

R = J V' Pdr - JP dS, 
fluid }; 

(A.2) 

where the second integral is taken over a spherical surface 2: surrounding the body, and the 
first over the volume of the fluid contained between the surfaces u and 2: (see Fig. A. l). 
The surface integral tends to zero as r-4 when the radius r of the sphere approaches zero, 
because Bemoulli's law applies to the pressure P. Euler's equation gives 

8v 
V' P = -p Bt - p(v · Y')v = p[(U - v) · V']v, (A.3) 

or, using the incompressibility condition V' · v = 0, 

(A.4) 

Ostrogradski's theorem then gives 
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Fig. A. l .  Integration surfaces for a discussion of d' Alembert's paradox. 
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(A.5) 

The integral over the surface of the body vanishes since the normal component of U - v 
vanishes. The integral over the sphere l tends to zero as r-1 when its radius r tends to 
infinity. Consequently, the resistance vanishes. 

The former reasoning amounts to applying the momentum principle to the fluid con
tained between the surfaces <r and l in a reference system bound to the bo.dy: as the flow is 
steady in this system, the sum of the pressures applied to the fluid on these two surfaces 
must be equal to the flux of the momentum tensor p(v; - U;)(vj - Uj) across them. Taking 
into account the incompressibility of the fluid, this flux is identical to the right-hand side of 
eqn (A.5). 

Although it is tempting to apply the momentum principle to the whole, infmite volume 
of the fluid in the reference system for which the fluid is at rest at infinity, this is not 
possible because the total momentum of the fluid diverges logarithmically. In contrast, 
Borda's application of the energy principle (conservation of live force) turns out to be 
perfectly legitimate, because the total energy of the fluid is finite and well defined. 
According to Borda's simple reasoning of 1766, the work of the resistance during the 
motion of the body must be equal to the variation of the energy of the fluid motion, which 
is nil since the flow pattern is invariant. This reasoning only proves the nullity of the drag 
component of the resistance. Recourse to the momentum principle is necessary to prove 
the nullity of the lift component.1 

The derivations given above of d'Alembert's paradox crucially depend on the infinite 
extent of the fluid. If there is a wall or a free surface in the vicinity of the body, then the 
surface l can no longer be rejected to infinity, and the resistance generally takes a finite 
value. The only exception is the case of a body moving in a direction parallel to a 
cylindrical wall. In the vicinity of a free surface, the body experiences a resistance even if 
it moves in a direction parallel to the surface, owing to the constant production of surface 
waves. 

Another way to escape the nullity of the resistance within a perfect liquid is to reduce the 
dimensionality of the space. In two dimensions, the irrotational character of the motion no 

1 Borda [1766]. See Chapter 7, p. 267. 
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longer requires the velocity to asymptotically vary as the inverse cube of the distance from 
the body. If there is circulation around the body, then the velocity varies as the inverse of 
the distance and the counterpart of the 2. integral no longer tends to zero. The drag still 
vanishes by Borda's reasoning (the fluid-energy integral still converges). However, there is 
a lift proportional to the circulation according to the Kutta-Joukowski theorem (see 

Chapter 7, pp. 3 13-4). This result does not contradict the general fact that the resistance 
must vanish if the fluid motion remains continuous while the body is set into motion, 
because circulation and vorticity must both vanish under this condition. 
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